file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vale.AES.GCTR.fst | Vale.AES.GCTR.lemma_gctr_partial_append | val lemma_gctr_partial_append (alg:algorithm) (b1 b2:nat) (p1 c1 p2 c2:seq quad32) (key:seq nat32) (icb1 icb2:quad32) : Lemma
(requires gctr_partial alg b1 p1 c1 key icb1 /\
gctr_partial alg b2 p2 c2 key icb2 /\
b1 == length p1 /\ b1 == length c1 /\
b2 == length p2 /\ b2 == length c2 /\
icb2 == inc32 icb1 b1)
(ensures gctr_partial alg (b1 + b2) (p1 @| p2) (c1 @| c2) key icb1) | val lemma_gctr_partial_append (alg:algorithm) (b1 b2:nat) (p1 c1 p2 c2:seq quad32) (key:seq nat32) (icb1 icb2:quad32) : Lemma
(requires gctr_partial alg b1 p1 c1 key icb1 /\
gctr_partial alg b2 p2 c2 key icb2 /\
b1 == length p1 /\ b1 == length c1 /\
b2 == length p2 /\ b2 == length c2 /\
icb2 == inc32 icb1 b1)
(ensures gctr_partial alg (b1 + b2) (p1 @| p2) (c1 @| c2) key icb1) | let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 59,
"start_col": 0,
"start_line": 57
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
alg: Vale.AES.AES_common_s.algorithm ->
b1: Prims.nat ->
b2: Prims.nat ->
p1: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c1: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p2: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c2: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 ->
icb1: Vale.Def.Types_s.quad32 ->
icb2: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
Vale.AES.GCTR.gctr_partial alg b1 p1 c1 key icb1 /\
Vale.AES.GCTR.gctr_partial alg b2 p2 c2 key icb2 /\ b1 == FStar.Seq.Base.length p1 /\
b1 == FStar.Seq.Base.length c1 /\ b2 == FStar.Seq.Base.length p2 /\
b2 == FStar.Seq.Base.length c2 /\ icb2 == Vale.AES.GCTR_s.inc32 icb1 b1)
(ensures Vale.AES.GCTR.gctr_partial alg (b1 + b2) (p1 @| p2) (c1 @| c2) key icb1) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.AES.AES_common_s.algorithm",
"Prims.nat",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.nat32",
"Prims.unit",
"Vale.AES.GCTR.gctr_partial_reveal"
] | [] | true | false | true | false | false | let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
| gctr_partial_reveal ();
() | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.be_seq_quad32_to_bytes_tail_prefix | val be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) : Lemma
(requires (1 <= num_bytes /\
num_bytes < 16 * length s /\
16 * (length s - 1) < num_bytes /\
num_bytes % 16 <> 0))
(ensures (let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes (index s num_blocks)) 0 num_extra in
x == x')) | val be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) : Lemma
(requires (1 <= num_bytes /\
num_bytes < 16 * length s /\
16 * (length s - 1) < num_bytes /\
num_bytes % 16 <> 0))
(ensures (let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes (index s num_blocks)) 0 num_extra in
x == x')) | let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 39,
"start_col": 0,
"start_line": 22
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> num_bytes: Prims.nat
-> FStar.Pervasives.Lemma
(requires
1 <= num_bytes /\ num_bytes < 16 * FStar.Seq.Base.length s /\
16 * (FStar.Seq.Base.length s - 1) < num_bytes /\ num_bytes % 16 <> 0)
(ensures
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let x =
FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE
s))
(num_blocks * 16)
num_bytes
in
let x' =
FStar.Seq.Base.slice (Vale.Arch.Types.be_quad32_to_bytes (FStar.Seq.Base.index s
num_blocks))
0
num_extra
in
x == x')) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Words_s.nat8",
"Prims.eq2",
"FStar.Seq.Base.slice",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"Vale.Def.Types_s.nat32",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"Vale.Arch.Types.slice_commutes_be_seq_quad32_to_bytes",
"FStar.Seq.Base.create",
"Vale.Arch.Types.be_quad32_to_bytes",
"Vale.Def.Words_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Arch.Types.be_seq_quad32_to_bytes_of_singleton",
"FStar.Seq.Base.index",
"Prims.int",
"Prims.op_Division",
"Prims.op_Modulus"
] | [] | true | false | true | false | false | let be_seq_quad32_to_bytes_tail_prefix (s: seq quad32) (num_bytes: nat) =
| let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' ==
slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s))))
0
num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' ==
slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)
)
0
num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
() | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.pad_to_128_bits_multiples | val pad_to_128_bits_multiples (b: seq nat8)
: Lemma
(let full_blocks = ((length b) / 16) * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes) | val pad_to_128_bits_multiples (b: seq nat8)
: Lemma
(let full_blocks = ((length b) / 16) * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes) | let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
) | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 68,
"start_col": 0,
"start_line": 41
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Seq.Base.seq Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(ensures
(let full_blocks = (FStar.Seq.Base.length b / 16) * 16 in
let _ = FStar.Seq.Properties.split b full_blocks in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ full_bytes partial_bytes = _ in
Vale.AES.GCTR_BE_s.pad_to_128_bits b ==
full_bytes @| Vale.AES.GCTR_BE_s.pad_to_128_bits partial_bytes)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat8",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Prims.unit",
"FStar.Seq.Base.append_empty_l",
"Vale.AES.GCTR_BE_s.pad_to_128_bits",
"Prims._assert",
"Prims.eq2",
"FStar.Seq.Base.empty",
"Prims.bool",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.op_At_Bar",
"FStar.Seq.Properties.lemma_split",
"FStar.Seq.Base.equal",
"Vale.Def.Words_s.nat8",
"FStar.Seq.Base.create",
"Prims.op_Subtraction",
"Prims.op_Modulus",
"Prims.op_Addition",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.split",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let pad_to_128_bits_multiples (b: seq nat8)
: Lemma
(let full_blocks = ((length b) / 16) * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes) =
| let full_blocks = ((length b) / 16) * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16
then
(assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l (pad_to_128_bits partial_bytes);
())
else
(assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0
then
(lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
())
else
(let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
());
()) | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.gctr_encrypt_recursive_length | val gctr_encrypt_recursive_length
(icb: quad32)
(plain: gctr_plain_internal_LE)
(alg: algorithm)
(key: aes_key_LE alg)
(i: int)
: Lemma (requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] | val gctr_encrypt_recursive_length
(icb: quad32)
(plain: gctr_plain_internal_LE)
(alg: algorithm)
(key: aes_key_LE alg)
(i: int)
: Lemma (requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] | let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 69,
"end_line": 113,
"start_col": 0,
"start_line": 105
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*) | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
icb: Vale.Def.Types_s.quad32 ->
plain: Vale.AES.GCTR_s.gctr_plain_internal_LE ->
alg: Vale.AES.AES_common_s.algorithm ->
key: Vale.AES.AES_s.aes_key_LE alg ->
i: Prims.int
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.length (Vale.AES.GCTR_s.gctr_encrypt_recursive icb plain alg key i) ==
FStar.Seq.Base.length plain)
(decreases FStar.Seq.Base.length plain)
[SMTPat (FStar.Seq.Base.length (Vale.AES.GCTR_s.gctr_encrypt_recursive icb plain alg key i))] | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Vale.Def.Types_s.quad32",
"Vale.AES.GCTR_s.gctr_plain_internal_LE",
"Vale.AES.AES_common_s.algorithm",
"Vale.AES.AES_s.aes_key_LE",
"Prims.int",
"Prims.op_Equality",
"FStar.Seq.Base.length",
"Prims.bool",
"Vale.AES.GCTR.gctr_encrypt_recursive_length",
"FStar.Seq.Properties.tail",
"Prims.op_Addition",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.nat",
"Vale.AES.GCTR_s.gctr_encrypt_recursive",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec gctr_encrypt_recursive_length
(icb: quad32)
(plain: gctr_plain_internal_LE)
(alg: algorithm)
(key: aes_key_LE alg)
(i: int)
: Lemma (requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))] =
| if length plain = 0 then () else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.lemma_counter_init | val lemma_counter_init (x:quad32) (low64 low8:nat64) : Lemma
(requires low64 == lo64 x /\
low8 == iand64 low64 0xff)
(ensures low8 == x.lo0 % 256) | val lemma_counter_init (x:quad32) (low64 low8:nat64) : Lemma
(requires low64 == lo64 x /\
low8 == iand64 low64 0xff)
(ensures low8 == x.lo0 % 256) | let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 28,
"start_col": 0,
"start_line": 20
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0" | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Vale.Def.Types_s.quad32 -> low64: Vale.Def.Types_s.nat64 -> low8: Vale.Def.Types_s.nat64
-> FStar.Pervasives.Lemma
(requires low64 == Vale.Arch.Types.lo64 x /\ low8 == Vale.Arch.Types.iand64 low64 0xff)
(ensures low8 == Mkfour?.lo0 x % 256) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.nat64",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Types_s.nat32",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.pow2_32",
"FStar.Pervasives.assert_norm",
"Vale.Def.Words_s.pow2_norm",
"Vale.Arch.Types.lo64_reveal",
"Vale.Def.TypesNative_s.reveal_iand",
"Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1"
] | [] | true | false | true | false | false | let lemma_counter_init x low64 low8 =
| Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32);
assert (low64 == x.lo0 + x.lo1 * pow2_32);
assert (low64 % 256 == x.lo0 % 256);
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.gctr_partial_extend6 | val gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires length plain >= bound + 6 /\
length cipher >= bound + 6 /\
is_aes_key_LE alg key /\
bound + 6 < pow2_32 /\
gctr_partial alg bound plain cipher key icb /\
index cipher (bound + 0) == quad32_xor (index plain (bound + 0)) (aes_encrypt_BE alg key (inc32lite icb (bound + 0))) /\
index cipher (bound + 1) == quad32_xor (index plain (bound + 1)) (aes_encrypt_BE alg key (inc32lite icb (bound + 1))) /\
index cipher (bound + 2) == quad32_xor (index plain (bound + 2)) (aes_encrypt_BE alg key (inc32lite icb (bound + 2))) /\
index cipher (bound + 3) == quad32_xor (index plain (bound + 3)) (aes_encrypt_BE alg key (inc32lite icb (bound + 3))) /\
index cipher (bound + 4) == quad32_xor (index plain (bound + 4)) (aes_encrypt_BE alg key (inc32lite icb (bound + 4))) /\
index cipher (bound + 5) == quad32_xor (index plain (bound + 5)) (aes_encrypt_BE alg key (inc32lite icb (bound + 5)))
)
(ensures gctr_partial alg (bound + 6) plain cipher key icb) | val gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires length plain >= bound + 6 /\
length cipher >= bound + 6 /\
is_aes_key_LE alg key /\
bound + 6 < pow2_32 /\
gctr_partial alg bound plain cipher key icb /\
index cipher (bound + 0) == quad32_xor (index plain (bound + 0)) (aes_encrypt_BE alg key (inc32lite icb (bound + 0))) /\
index cipher (bound + 1) == quad32_xor (index plain (bound + 1)) (aes_encrypt_BE alg key (inc32lite icb (bound + 1))) /\
index cipher (bound + 2) == quad32_xor (index plain (bound + 2)) (aes_encrypt_BE alg key (inc32lite icb (bound + 2))) /\
index cipher (bound + 3) == quad32_xor (index plain (bound + 3)) (aes_encrypt_BE alg key (inc32lite icb (bound + 3))) /\
index cipher (bound + 4) == quad32_xor (index plain (bound + 4)) (aes_encrypt_BE alg key (inc32lite icb (bound + 4))) /\
index cipher (bound + 5) == quad32_xor (index plain (bound + 5)) (aes_encrypt_BE alg key (inc32lite icb (bound + 5)))
)
(ensures gctr_partial alg (bound + 6) plain cipher key icb) | let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 73,
"start_col": 0,
"start_line": 70
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
alg: Vale.AES.AES_common_s.algorithm ->
bound: Prims.nat ->
plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 ->
icb: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length plain >= bound + 6 /\ FStar.Seq.Base.length cipher >= bound + 6 /\
Vale.AES.AES_s.is_aes_key_LE alg key /\ bound + 6 < Vale.Def.Words_s.pow2_32 /\
Vale.AES.GCTR.gctr_partial alg bound plain cipher key icb /\
FStar.Seq.Base.index cipher (bound + 0) ==
Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain (bound + 0))
(Vale.AES.GCTR.aes_encrypt_BE alg key (Vale.AES.GCTR.inc32lite icb (bound + 0))) /\
FStar.Seq.Base.index cipher (bound + 1) ==
Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain (bound + 1))
(Vale.AES.GCTR.aes_encrypt_BE alg key (Vale.AES.GCTR.inc32lite icb (bound + 1))) /\
FStar.Seq.Base.index cipher (bound + 2) ==
Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain (bound + 2))
(Vale.AES.GCTR.aes_encrypt_BE alg key (Vale.AES.GCTR.inc32lite icb (bound + 2))) /\
FStar.Seq.Base.index cipher (bound + 3) ==
Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain (bound + 3))
(Vale.AES.GCTR.aes_encrypt_BE alg key (Vale.AES.GCTR.inc32lite icb (bound + 3))) /\
FStar.Seq.Base.index cipher (bound + 4) ==
Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain (bound + 4))
(Vale.AES.GCTR.aes_encrypt_BE alg key (Vale.AES.GCTR.inc32lite icb (bound + 4))) /\
FStar.Seq.Base.index cipher (bound + 5) ==
Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain (bound + 5))
(Vale.AES.GCTR.aes_encrypt_BE alg key (Vale.AES.GCTR.inc32lite icb (bound + 5))))
(ensures Vale.AES.GCTR.gctr_partial alg (bound + 6) plain cipher key icb) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.AES.AES_common_s.algorithm",
"Prims.nat",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.nat32",
"Prims.unit",
"Vale.AES.GCTR.gctr_partial_reveal"
] | [] | true | false | true | false | false | let gctr_partial_extend6
(alg: algorithm)
(bound: nat)
(plain cipher: seq quad32)
(key: seq nat32)
(icb: quad32)
=
| gctr_partial_reveal ();
() | false |
Steel.ST.GhostReference.fst | Steel.ST.GhostReference.write | val write (#a:Type)
(#u:_)
(#v:erased a)
(r:ref a)
(x:erased a)
: STGhostT unit u
(pts_to r full_perm v)
(fun _ -> pts_to r full_perm x) | val write (#a:Type)
(#u:_)
(#v:erased a)
(r:ref a)
(x:erased a)
: STGhostT unit u
(pts_to r full_perm v)
(fun _ -> pts_to r full_perm x) | let write (#a:Type)
(#u:_)
(#v:erased a)
(r:ref a)
(x:erased a)
: STGhostT unit u
(pts_to r full_perm v)
(fun _ -> pts_to r full_perm x)
= coerce_ghost (fun _ -> R.ghost_write_pt r x) | {
"file_name": "lib/steel/Steel.ST.GhostReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 48,
"end_line": 80,
"start_col": 0,
"start_line": 72
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.ST.GhostReference
open FStar.Ghost
open Steel.ST.Util
open Steel.ST.Coercions
module R = Steel.Reference
[@@ erasable]
let ref (a:Type u#0)
: Type u#0
= R.ghost_ref a
let dummy_ref a = R.dummy_ghost_ref a
let pts_to (#a:_)
(r:ref a)
(p:perm)
([@@@smt_fallback] v:a)
: vprop
= R.ghost_pts_to r p v
let pts_to_injective_eq (#a:_)
(#u:_)
(#p #q:_)
(#v0 #v1:a)
(r:ref a)
: STGhost unit u
(pts_to r p v0 `star` pts_to r q v1)
(fun _ -> pts_to r p v0 `star` pts_to r q v0)
(requires True)
(ensures fun _ -> v0 == v1)
= coerce_ghost
(fun _ -> R.ghost_pts_to_injective_eq #a #u #p #q r (hide v0) (hide v1))
let pts_to_perm r = coerce_ghost (fun _ -> R.ghost_pts_to_perm r)
let alloc (#a:Type)
(#u:_)
(x:erased a)
: STGhostT (ref a) u
emp
(fun r -> pts_to r full_perm x)
= coerce_ghost (fun _ -> R.ghost_alloc_pt x)
let read (#a:Type)
(#u:_)
(#p:perm)
(#v:erased a)
(r:ref a)
: STGhost (erased a) u
(pts_to r p v)
(fun x -> pts_to r p x)
(requires True)
(ensures fun x -> x == v)
= let y = coerce_ghost (fun _ -> R.ghost_read_pt r) in
y | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.Coercions.fsti.checked",
"Steel.Reference.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.ST.GhostReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Steel.ST.Coercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.ST.GhostReference.ref a -> x: FStar.Ghost.erased a
-> Steel.ST.Effect.Ghost.STGhostT Prims.unit | Steel.ST.Effect.Ghost.STGhostT | [] | [] | [
"Steel.Memory.inames",
"FStar.Ghost.erased",
"Steel.ST.GhostReference.ref",
"Steel.ST.Coercions.coerce_ghost",
"Prims.unit",
"Steel.Reference.ghost_pts_to",
"Steel.FractionalPermission.full_perm",
"FStar.Ghost.reveal",
"Steel.Effect.Common.vprop",
"Prims.l_True",
"Steel.Reference.ghost_write_pt",
"Steel.ST.GhostReference.pts_to"
] | [] | false | true | false | false | false | let write (#a: Type) (#u: _) (#v: erased a) (r: ref a) (x: erased a)
: STGhostT unit u (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) =
| coerce_ghost (fun _ -> R.ghost_write_pt r x) | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.gctr_partial_opaque_ignores_postfix | val gctr_partial_opaque_ignores_postfix (alg:algorithm) (bound:nat32) (plain plain' cipher cipher':seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires is_aes_key_LE alg key /\
length plain >= bound /\
length cipher >= bound /\
length plain' >= bound /\
length cipher' >= bound /\
slice plain 0 bound == slice plain' 0 bound /\
slice cipher 0 bound == slice cipher' 0 bound)
(ensures gctr_partial alg bound plain cipher key icb <==> gctr_partial alg bound plain' cipher' key icb) | val gctr_partial_opaque_ignores_postfix (alg:algorithm) (bound:nat32) (plain plain' cipher cipher':seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires is_aes_key_LE alg key /\
length plain >= bound /\
length cipher >= bound /\
length plain' >= bound /\
length cipher' >= bound /\
slice plain 0 bound == slice plain' 0 bound /\
slice cipher 0 bound == slice cipher' 0 bound)
(ensures gctr_partial alg bound plain cipher key icb <==> gctr_partial alg bound plain' cipher' key icb) | let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 68,
"start_col": 0,
"start_line": 61
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
alg: Vale.AES.AES_common_s.algorithm ->
bound: Vale.Def.Types_s.nat32 ->
plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
plain': FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
cipher': FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 ->
icb: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_s.is_aes_key_LE alg key /\ FStar.Seq.Base.length plain >= bound /\
FStar.Seq.Base.length cipher >= bound /\ FStar.Seq.Base.length plain' >= bound /\
FStar.Seq.Base.length cipher' >= bound /\
FStar.Seq.Base.slice plain 0 bound == FStar.Seq.Base.slice plain' 0 bound /\
FStar.Seq.Base.slice cipher 0 bound == FStar.Seq.Base.slice cipher' 0 bound)
(ensures
Vale.AES.GCTR.gctr_partial alg bound plain cipher key icb <==>
Vale.AES.GCTR.gctr_partial alg bound plain' cipher' key icb) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.AES.AES_common_s.algorithm",
"Vale.Def.Types_s.nat32",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Prims._assert",
"Prims.l_Forall",
"Prims.int",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"FStar.Seq.Base.slice",
"Prims.l_imp",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"FStar.Seq.Base.index",
"Vale.AES.GCTR.gctr_partial_reveal"
] | [] | false | false | true | false | false | let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
| gctr_partial_reveal ();
assert (forall i. 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i. 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i. 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i. 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
() | false |
Steel.ST.GhostReference.fst | Steel.ST.GhostReference.share | val share (#a:Type)
(#u:_)
(#p:perm)
(#x:erased a)
(r:ref a)
: STGhostT unit u
(pts_to r p x)
(fun _ -> pts_to r (half_perm p) x `star`
pts_to r (half_perm p) x) | val share (#a:Type)
(#u:_)
(#p:perm)
(#x:erased a)
(r:ref a)
: STGhostT unit u
(pts_to r p x)
(fun _ -> pts_to r (half_perm p) x `star`
pts_to r (half_perm p) x) | let share (#a:Type)
(#u:_)
(#p:perm)
(#x:erased a)
(r:ref a)
: STGhostT unit u
(pts_to r p x)
(fun _ -> pts_to r (half_perm p) x `star`
pts_to r (half_perm p) x)
= coerce_ghost (fun _ -> R.ghost_share_pt r) | {
"file_name": "lib/steel/Steel.ST.GhostReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 46,
"end_line": 95,
"start_col": 0,
"start_line": 86
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.ST.GhostReference
open FStar.Ghost
open Steel.ST.Util
open Steel.ST.Coercions
module R = Steel.Reference
[@@ erasable]
let ref (a:Type u#0)
: Type u#0
= R.ghost_ref a
let dummy_ref a = R.dummy_ghost_ref a
let pts_to (#a:_)
(r:ref a)
(p:perm)
([@@@smt_fallback] v:a)
: vprop
= R.ghost_pts_to r p v
let pts_to_injective_eq (#a:_)
(#u:_)
(#p #q:_)
(#v0 #v1:a)
(r:ref a)
: STGhost unit u
(pts_to r p v0 `star` pts_to r q v1)
(fun _ -> pts_to r p v0 `star` pts_to r q v0)
(requires True)
(ensures fun _ -> v0 == v1)
= coerce_ghost
(fun _ -> R.ghost_pts_to_injective_eq #a #u #p #q r (hide v0) (hide v1))
let pts_to_perm r = coerce_ghost (fun _ -> R.ghost_pts_to_perm r)
let alloc (#a:Type)
(#u:_)
(x:erased a)
: STGhostT (ref a) u
emp
(fun r -> pts_to r full_perm x)
= coerce_ghost (fun _ -> R.ghost_alloc_pt x)
let read (#a:Type)
(#u:_)
(#p:perm)
(#v:erased a)
(r:ref a)
: STGhost (erased a) u
(pts_to r p v)
(fun x -> pts_to r p x)
(requires True)
(ensures fun x -> x == v)
= let y = coerce_ghost (fun _ -> R.ghost_read_pt r) in
y
let write (#a:Type)
(#u:_)
(#v:erased a)
(r:ref a)
(x:erased a)
: STGhostT unit u
(pts_to r full_perm v)
(fun _ -> pts_to r full_perm x)
= coerce_ghost (fun _ -> R.ghost_write_pt r x)
let share_gen
#_ #_ #_ #v r p1 p2
= coerce_ghost (fun _ -> R.ghost_share_gen_pt #_ #_ #_ #v r p1 p2) | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.Coercions.fsti.checked",
"Steel.Reference.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.ST.GhostReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Steel.ST.Coercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.ST.GhostReference.ref a -> Steel.ST.Effect.Ghost.STGhostT Prims.unit | Steel.ST.Effect.Ghost.STGhostT | [] | [] | [
"Steel.Memory.inames",
"Steel.FractionalPermission.perm",
"FStar.Ghost.erased",
"Steel.ST.GhostReference.ref",
"Steel.ST.Coercions.coerce_ghost",
"Prims.unit",
"Steel.Reference.ghost_pts_to",
"FStar.Ghost.reveal",
"Steel.Effect.Common.star",
"Steel.FractionalPermission.half_perm",
"Steel.Effect.Common.vprop",
"Prims.l_True",
"Steel.Reference.ghost_share_pt",
"Steel.ST.GhostReference.pts_to"
] | [] | false | true | false | false | false | let share (#a: Type) (#u: _) (#p: perm) (#x: erased a) (r: ref a)
: STGhostT unit
u
(pts_to r p x)
(fun _ -> (pts_to r (half_perm p) x) `star` (pts_to r (half_perm p) x)) =
| coerce_ghost (fun _ -> R.ghost_share_pt r) | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.pad_to_128_bits_be_quad32_to_bytes | val pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) : Lemma
(requires 1 <= num_bytes /\
num_bytes < 16 * length s /\
16 * (length s - 1) < num_bytes /\
num_bytes % 16 <> 0 /\
length s == bytes_to_quad_size num_bytes)
(ensures (let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
length final_quads == 1 /\
(let final_quad = index final_quads 0 in
pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes)
==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads) @| pad_to_128_bits (slice (be_quad32_to_bytes final_quad) 0 (num_bytes % 16))))) | val pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) : Lemma
(requires 1 <= num_bytes /\
num_bytes < 16 * length s /\
16 * (length s - 1) < num_bytes /\
num_bytes % 16 <> 0 /\
length s == bytes_to_quad_size num_bytes)
(ensures (let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
length final_quads == 1 /\
(let final_quad = index final_quads 0 in
pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes)
==
seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads) @| pad_to_128_bits (slice (be_quad32_to_bytes final_quad) 0 (num_bytes % 16))))) | let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 86,
"start_col": 0,
"start_line": 70
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
) | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> num_bytes: Prims.int
-> FStar.Pervasives.Lemma
(requires
1 <= num_bytes /\ num_bytes < 16 * FStar.Seq.Base.length s /\
16 * (FStar.Seq.Base.length s - 1) < num_bytes /\ num_bytes % 16 <> 0 /\
FStar.Seq.Base.length s == Vale.AES.GCM_helpers_BE.bytes_to_quad_size num_bytes)
(ensures
(let num_blocks = num_bytes / 16 in
let _ = FStar.Seq.Properties.split s num_blocks in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ full_quads final_quads = _ in
FStar.Seq.Base.length final_quads == 1 /\
(let final_quad = FStar.Seq.Base.index final_quads 0 in
Vale.AES.GCTR_BE_s.pad_to_128_bits (FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE
(Vale.Def.Words.Seq_s.seq_four_to_seq_BE s))
0
num_bytes) ==
Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE
full_quads) @|
Vale.AES.GCTR_BE_s.pad_to_128_bits (FStar.Seq.Base.slice (Vale.Arch.Types.be_quad32_to_bytes
final_quad)
0
(num_bytes % 16))))
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.int",
"Vale.Def.Words_s.nat8",
"Prims.unit",
"Vale.AES.GCM_helpers_BE.be_seq_quad32_to_bytes_tail_prefix",
"FStar.Seq.Properties.slice_slice",
"Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE",
"Vale.Def.Words.Seq_s.seq_four_to_seq_BE",
"Vale.Def.Types_s.nat32",
"Prims._assert",
"Prims.eq2",
"Vale.Arch.Types.slice_commutes_be_seq_quad32_to_bytes0",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.split",
"FStar.Mul.op_Star",
"Prims.op_Division",
"FStar.Seq.Base.length",
"Vale.AES.GCM_helpers_BE.pad_to_128_bits_multiples",
"FStar.Seq.Base.slice",
"FStar.Seq.Base.index",
"Prims.op_Modulus"
] | [] | false | false | true | false | false | let pad_to_128_bits_be_quad32_to_bytes (s: seq quad32) (num_bytes: int) =
| let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads, final_quads = split s num_blocks in
assert (length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b;
let full_blocks = ((length b) / 16) * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.pow2_24 | val pow2_24 : Prims.int | let pow2_24 = 0x1000000 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 30,
"end_line": 296,
"start_col": 7,
"start_line": 296
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.int | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let pow2_24 =
| 0x1000000 | false |
|
Vale.AES.GCTR.fst | Vale.AES.GCTR.gctr_indexed | val gctr_indexed
(icb: quad32)
(plain: gctr_plain_internal_LE)
(alg: algorithm)
(key: aes_key_LE alg)
(cipher: seq quad32)
: Lemma
(requires
length cipher == length plain /\
(forall i. {:pattern index cipher i}
0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i))))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) | val gctr_indexed
(icb: quad32)
(plain: gctr_plain_internal_LE)
(alg: algorithm)
(key: aes_key_LE alg)
(cipher: seq quad32)
: Lemma
(requires
length cipher == length plain /\
(forall i. {:pattern index cipher i}
0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i))))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) | let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 24,
"end_line": 185,
"start_col": 0,
"start_line": 176
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
icb: Vale.Def.Types_s.quad32 ->
plain: Vale.AES.GCTR_s.gctr_plain_internal_LE ->
alg: Vale.AES.AES_common_s.algorithm ->
key: Vale.AES.AES_s.aes_key_LE alg ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length cipher == FStar.Seq.Base.length plain /\
(forall (i:
Prims.int
{ i >= 0 /\ i < FStar.Seq.Base.length plain /\
(i >= 0) /\ (i < FStar.Seq.Base.length cipher) }).
{:pattern FStar.Seq.Base.index cipher i}
0 <= i /\ i < FStar.Seq.Base.length cipher ==>
FStar.Seq.Base.index cipher i ==
Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain i)
(Vale.AES.GCTR.aes_encrypt_BE alg key (Vale.AES.GCTR_s.inc32 icb i))))
(ensures cipher == Vale.AES.GCTR_s.gctr_encrypt_recursive icb plain alg key 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Vale.AES.GCTR_s.gctr_plain_internal_LE",
"Vale.AES.AES_common_s.algorithm",
"Vale.AES.AES_s.aes_key_LE",
"FStar.Seq.Base.seq",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.AES.GCTR_s.gctr_encrypt_recursive",
"Prims.unit",
"Vale.AES.GCTR.gctr_indexed_helper",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"FStar.Seq.Base.length",
"Prims.l_Forall",
"Prims.int",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThan",
"Prims.l_imp",
"Prims.op_LessThanOrEqual",
"FStar.Seq.Base.index",
"Vale.Def.Types_s.quad32_xor",
"Vale.AES.GCTR.aes_encrypt_BE",
"Vale.AES.GCTR_s.inc32",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let gctr_indexed
(icb: quad32)
(plain: gctr_plain_internal_LE)
(alg: algorithm)
(key: aes_key_LE alg)
(cipher: seq quad32)
: Lemma
(requires
length cipher == length plain /\
(forall i. {:pattern index cipher i}
0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i))))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) =
| gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert (equal cipher c) | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.nat24 | val nat24 : Type0 | let nat24 = natN pow2_24 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 24,
"end_line": 297,
"start_col": 0,
"start_line": 297
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Vale.Def.Words_s.natN",
"Vale.AES.GCTR.pow2_24"
] | [] | false | false | false | true | true | let nat24 =
| natN pow2_24 | false |
|
Vale.AES.GCTR.fst | Vale.AES.GCTR.gctr_partial_completed | val gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial_def alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) | val gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial_def alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) | let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 190,
"start_col": 0,
"start_line": 188
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
alg: Vale.AES.AES_common_s.algorithm ->
plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 ->
icb: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_s.is_aes_key_LE alg key /\
FStar.Seq.Base.length plain == FStar.Seq.Base.length cipher /\
FStar.Seq.Base.length plain < Vale.Def.Words_s.pow2_32 /\
Vale.AES.GCTR.gctr_partial_def alg (FStar.Seq.Base.length cipher) plain cipher key icb)
(ensures cipher == Vale.AES.GCTR_s.gctr_encrypt_recursive icb plain alg key 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.nat32",
"Prims.unit",
"Vale.AES.GCTR.gctr_indexed"
] | [] | true | false | true | false | false | let gctr_partial_completed
(alg: algorithm)
(plain cipher: seq quad32)
(key: seq nat32)
(icb: quad32)
=
| gctr_indexed icb plain alg key cipher;
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.gctr_encrypt_length | val gctr_encrypt_length
(icb_BE: quad32)
(plain: gctr_plain_LE)
(alg: algorithm)
(key: aes_key_LE alg)
: Lemma (length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] | val gctr_encrypt_length
(icb_BE: quad32)
(plain: gctr_plain_LE)
(alg: algorithm)
(key: aes_key_LE alg)
: Lemma (length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] | let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
) | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 148,
"start_col": 0,
"start_line": 116
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1) | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 40,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
icb_BE: Vale.Def.Types_s.quad32 ->
plain: Vale.AES.GCTR_s.gctr_plain_LE ->
alg: Vale.AES.AES_common_s.algorithm ->
key: Vale.AES.AES_s.aes_key_LE alg
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.length (Vale.AES.GCTR_s.gctr_encrypt_LE icb_BE plain alg key) ==
FStar.Seq.Base.length plain)
[SMTPat (FStar.Seq.Base.length (Vale.AES.GCTR_s.gctr_encrypt_LE icb_BE plain alg key))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Vale.AES.GCTR_s.gctr_plain_LE",
"Vale.AES.AES_common_s.algorithm",
"Vale.AES.AES_s.aes_key_LE",
"Prims.op_Equality",
"Prims.int",
"Vale.AES.GCTR.gctr_encrypt_recursive_length",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Prims.bool",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.nat",
"FStar.Seq.Base.length",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"Vale.Def.Words_s.nat8",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"Vale.AES.GCTR_s.gctr_encrypt_block",
"Prims.op_Division",
"Vale.AES.GCTR_s.gctr_encrypt_recursive",
"Vale.Def.Types_s.le_bytes_to_quad32",
"Vale.AES.GCTR_s.pad_to_128_bits",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.split",
"Prims.op_Subtraction",
"Vale.AES.GCTR_s.gctr_encrypt_LE",
"Prims.op_Modulus",
"Vale.AES.GCTR_s.gctr_encrypt_LE_reveal",
"FStar.Pervasives.reveal_opaque",
"Prims.l_True",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | false | false | true | false | false | let gctr_encrypt_length
(icb_BE: quad32)
(plain: gctr_plain_LE)
(alg: algorithm)
(key: aes_key_LE alg)
: Lemma (length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))] =
| reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0
then
(let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0)
else
(let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE =
gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16)
in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()) | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.gctr_partial_opaque_completed | val gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) | val gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) | let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 49,
"end_line": 202,
"start_col": 0,
"start_line": 192
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
alg: Vale.AES.AES_common_s.algorithm ->
plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 ->
icb: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_s.is_aes_key_LE alg key /\
FStar.Seq.Base.length plain == FStar.Seq.Base.length cipher /\
FStar.Seq.Base.length plain < Vale.Def.Words_s.pow2_32 /\
Vale.AES.GCTR.gctr_partial alg (FStar.Seq.Base.length cipher) plain cipher key icb)
(ensures cipher == Vale.AES.GCTR_s.gctr_encrypt_recursive icb plain alg key 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.nat32",
"Vale.AES.GCTR.gctr_partial_completed",
"Prims.unit",
"Vale.AES.GCTR.gctr_partial_reveal",
"Prims.l_and",
"Vale.AES.AES_s.is_aes_key_LE",
"Prims.eq2",
"Prims.nat",
"FStar.Seq.Base.length",
"Prims.b2t",
"Prims.op_LessThan",
"Vale.Def.Words_s.pow2_32",
"Vale.AES.GCTR.gctr_partial",
"Prims.squash",
"Vale.AES.GCTR_s.gctr_encrypt_recursive",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let gctr_partial_opaque_completed
(alg: algorithm)
(plain cipher: seq quad32)
(key: seq nat32)
(icb: quad32)
: Lemma
(requires
is_aes_key_LE alg key /\ length plain == length cipher /\ length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0) =
| gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.lemma_ishl_ixor_32 | val lemma_ishl_ixor_32 (x y: nat32) (k: nat)
: Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) | val lemma_ishl_ixor_32 (x y: nat32) (k: nat)
: Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) | let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 294,
"start_col": 0,
"start_line": 285
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Vale.Def.Types_s.nat32 -> y: Vale.Def.Types_s.nat32 -> k: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Types_s.ishl (Vale.Def.Types_s.ixor x y) k ==
Vale.Def.Types_s.ixor (Vale.Def.Types_s.ishl x k) (Vale.Def.Types_s.ishl y k)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat32",
"Prims.nat",
"Prims.unit",
"FStar.UInt.shift_left_logxor_lemma",
"Vale.Def.TypesNative_s.reveal_ixor",
"Vale.Def.Types_s.ishl",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.TypesNative_s.reveal_ishl",
"Vale.Def.Types_s.ixor",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_ishl_ixor_32 (x y: nat32) (k: nat)
: Lemma (ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k)) =
| Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
() | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.lemma_div_n_8_lower1 | val lemma_div_n_8_lower1 (q: quad32) (n: nat)
: Lemma (requires n <= 4)
(ensures
((lo64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 ==
(q.lo1 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) | val lemma_div_n_8_lower1 (q: quad32) (n: nat)
: Lemma (requires n <= 4)
(ensures
((lo64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 ==
(q.lo1 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) | let lemma_div_n_8_lower1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((lo64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.lo1 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper1 (Mkfour 0 0 q0 q1) n | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 43,
"end_line": 178,
"start_col": 0,
"start_line": 171
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
)
let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
()
#reset-options "--smtencoding.elim_box true --z3rlimit 60 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1"
let lemma_pad_to_32_bits_helper (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 2 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
()
let lemma_pad_to_32_bits (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
if n <= 2 then lemma_pad_to_32_bits_helper s s'' n else
assert (n == 3 \/ n == 4);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (0 * 8) == 1);
assert_norm (pow2 (1 * 8) == 0x100);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 3 ==> x / pow2 (8 * (4 - n)) == x / 0x100);
assert (n == 4 ==> x / pow2 (8 * (4 - n)) == x / 0x1);
assert_norm (((x / pow2 (8 * 1)) * pow2 (8 * 1)) % pow2 (8 * 1) == 0);
assert_norm (((x / pow2 (8 * 0)) * pow2 (8 * 0)) % pow2 (8 * 0) == 0);
()
let lemma_div_n_8_upper1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = ((hi64_def q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 0);
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
()
let lemma_div_n_8_upper2_helper (q:quad32) (n:nat) : Lemma
(requires n <= 2)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 2);
assert_norm (f 1);
assert_norm (f 0);
()
let lemma_div_n_8_upper2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
if n <= 2 then lemma_div_n_8_upper2_helper q n else
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 4);
assert_norm (f 3);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": true,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | q: Vale.Def.Types_s.quad32 -> n: Prims.nat
-> FStar.Pervasives.Lemma (requires n <= 4)
(ensures
(Vale.Arch.Types.lo64 q / Prims.pow2 (8 * (8 - n))) * Prims.pow2 (8 * (8 - n)) /
Vale.Def.Words_s.pow2_32 ==
(Mkfour?.lo1 q / Prims.pow2 (8 * (4 - n))) * Prims.pow2 (8 * (4 - n))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Vale.Def.Types_s.nat32",
"Vale.AES.GCM_helpers_BE.lemma_div_n_8_upper1",
"Vale.Def.Words_s.Mkfour",
"Prims.unit",
"Vale.Arch.Types.lo64_reveal",
"Vale.Arch.Types.hi64_reveal",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.op_Division",
"FStar.Mul.op_Star",
"Vale.Arch.Types.lo64",
"Prims.pow2",
"Prims.op_Subtraction",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let lemma_div_n_8_lower1 (q: quad32) (n: nat)
: Lemma (requires n <= 4)
(ensures
((lo64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 ==
(q.lo1 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) =
| hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper1 (Mkfour 0 0 q0 q1) n | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.gctr_partial_to_full_basic | val gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) : Lemma
(requires
is_aes_key_LE alg key /\
cipher == gctr_encrypt_recursive icb_BE plain alg key 0 /\
length plain * 16 < pow2_32
)
(ensures le_seq_quad32_to_bytes cipher == gctr_encrypt_LE icb_BE (le_seq_quad32_to_bytes plain) alg key) | val gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) : Lemma
(requires
is_aes_key_LE alg key /\
cipher == gctr_encrypt_recursive icb_BE plain alg key 0 /\
length plain * 16 < pow2_32
)
(ensures le_seq_quad32_to_bytes cipher == gctr_encrypt_LE icb_BE (le_seq_quad32_to_bytes plain) alg key) | let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 212,
"start_col": 0,
"start_line": 204
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
icb_BE: Vale.Def.Types_s.quad32 ->
plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_s.is_aes_key_LE alg key /\
cipher == Vale.AES.GCTR_s.gctr_encrypt_recursive icb_BE plain alg key 0 /\
FStar.Seq.Base.length plain * 16 < Vale.Def.Words_s.pow2_32)
(ensures
Vale.Def.Types_s.le_seq_quad32_to_bytes cipher ==
Vale.AES.GCTR_s.gctr_encrypt_LE icb_BE
(Vale.Def.Types_s.le_seq_quad32_to_bytes plain)
alg
key) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Vale.AES.AES_common_s.algorithm",
"Vale.Def.Types_s.nat32",
"Prims.unit",
"Vale.Arch.Types.le_bytes_to_seq_quad32_to_bytes",
"Vale.Def.Words_s.nat8",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"Vale.AES.GCTR_s.gctr_encrypt_recursive",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Seq.Base.length",
"Vale.Def.Types_s.nat8",
"Vale.AES.GCTR_s.gctr_encrypt_LE_reveal"
] | [] | true | false | true | false | false | let gctr_partial_to_full_basic
(icb_BE: quad32)
(plain: seq quad32)
(alg: algorithm)
(key: seq nat32)
(cipher: seq quad32)
=
| gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
() | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.lemma_div_n_8_upper2_helper | val lemma_div_n_8_upper2_helper (q: quad32) (n: nat)
: Lemma (requires n <= 2)
(ensures
(hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) ==
0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) | val lemma_div_n_8_upper2_helper (q: quad32) (n: nat)
: Lemma (requires n <= 2)
(ensures
(hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) ==
0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) | let lemma_div_n_8_upper2_helper (q:quad32) (n:nat) : Lemma
(requires n <= 2)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 2);
assert_norm (f 1);
assert_norm (f 0);
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 157,
"start_col": 0,
"start_line": 147
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
)
let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
()
#reset-options "--smtencoding.elim_box true --z3rlimit 60 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1"
let lemma_pad_to_32_bits_helper (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 2 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
()
let lemma_pad_to_32_bits (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
if n <= 2 then lemma_pad_to_32_bits_helper s s'' n else
assert (n == 3 \/ n == 4);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (0 * 8) == 1);
assert_norm (pow2 (1 * 8) == 0x100);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 3 ==> x / pow2 (8 * (4 - n)) == x / 0x100);
assert (n == 4 ==> x / pow2 (8 * (4 - n)) == x / 0x1);
assert_norm (((x / pow2 (8 * 1)) * pow2 (8 * 1)) % pow2 (8 * 1) == 0);
assert_norm (((x / pow2 (8 * 0)) * pow2 (8 * 0)) % pow2 (8 * 0) == 0);
()
let lemma_div_n_8_upper1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = ((hi64_def q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 0);
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": true,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | q: Vale.Def.Types_s.quad32 -> n: Prims.nat
-> FStar.Pervasives.Lemma (requires n <= 2)
(ensures
(Vale.Arch.Types.hi64 q / Prims.pow2 (8 * (4 - n))) * Prims.pow2 (8 * (4 - n)) ==
0x100000000 * Mkfour?.hi3 q +
(Mkfour?.hi2 q / Prims.pow2 (8 * (4 - n))) * Prims.pow2 (8 * (4 - n))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Vale.Def.Types_s.nat32",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.logical",
"Prims.eq2",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Vale.Arch.Types.hi64_def",
"Prims.pow2",
"Prims.op_Subtraction",
"Prims.op_Addition",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Arch.Types.hi64_reveal",
"Prims.squash",
"Vale.Arch.Types.hi64",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let lemma_div_n_8_upper2_helper (q: quad32) (n: nat)
: Lemma (requires n <= 2)
(ensures
(hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) ==
0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) =
| hi64_reveal ();
let Mkfour _ _ _ _ = q in
let f (n: nat{n <= 4}) =
(hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) ==
0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))
in
assert_norm (f 2);
assert_norm (f 1);
assert_norm (f 0);
() | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.lemma_four_zero | val lemma_four_zero: unit -> Lemma (ensures four_to_nat 8 (seq_to_four_BE (create 4 0)) == 0) | val lemma_four_zero: unit -> Lemma (ensures four_to_nat 8 (seq_to_four_BE (create 4 0)) == 0) | let lemma_four_zero (_:unit) : Lemma
(ensures four_to_nat 8 (seq_to_four_BE (create 4 0)) == 0)
=
let s = create 4 0 in
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 267,
"start_col": 0,
"start_line": 262
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
)
let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
()
#reset-options "--smtencoding.elim_box true --z3rlimit 60 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1"
let lemma_pad_to_32_bits_helper (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 2 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
()
let lemma_pad_to_32_bits (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
if n <= 2 then lemma_pad_to_32_bits_helper s s'' n else
assert (n == 3 \/ n == 4);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (0 * 8) == 1);
assert_norm (pow2 (1 * 8) == 0x100);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 3 ==> x / pow2 (8 * (4 - n)) == x / 0x100);
assert (n == 4 ==> x / pow2 (8 * (4 - n)) == x / 0x1);
assert_norm (((x / pow2 (8 * 1)) * pow2 (8 * 1)) % pow2 (8 * 1) == 0);
assert_norm (((x / pow2 (8 * 0)) * pow2 (8 * 0)) % pow2 (8 * 0) == 0);
()
let lemma_div_n_8_upper1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = ((hi64_def q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 0);
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
()
let lemma_div_n_8_upper2_helper (q:quad32) (n:nat) : Lemma
(requires n <= 2)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 2);
assert_norm (f 1);
assert_norm (f 0);
()
let lemma_div_n_8_upper2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
if n <= 2 then lemma_div_n_8_upper2_helper q n else
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 4);
assert_norm (f 3);
()
let lemma_div_n_8_lower1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((lo64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.lo1 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper1 (Mkfour 0 0 q0 q1) n
let lemma_div_n_8_lower2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (lo64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.lo1 + (q.lo0 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper2 (Mkfour 0 0 q0 q1) n
let lemma_64_32_hi1 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' % pow2_32 == 0 /\ hi' / pow2_32 == q'.hi3 /\ q' == Mkfour 0 0 0 q'.hi3)
=
assert_norm (((hi / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm ((((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32) % pow2_32 ==
((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
()
let lemma_64_32_hi2 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' == 0x100000000 * q'.hi3 + q'.hi2 /\ q' == Mkfour 0 0 q'.hi2 q'.hi3)
=
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
()
let lemma_64_32_lo1 (q':quad32) (lo lo':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
lo' == (lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3)
)
(ensures lo' % pow2_32 == 0 /\ lo' / pow2_32 == q'.lo1 /\ q'.lo0 == 0)
=
assert_norm (((lo / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) / pow2_32) % pow2_32 ==
((lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 lo' == nat_to_two_unfold 32 lo');
()
let lemma_64_32_lo2 (q':quad32) (lo lo':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
lo' == (lo / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3)
)
(ensures lo' == q'.lo0 + 0x100000000 * q'.lo1)
=
assert_norm (nat_to_two 32 lo' == nat_to_two_unfold 32 lo');
()
let lemma_slices_be_bytes_to_quad32 (s:seq16 nat8) : Lemma
(ensures (
let q = be_bytes_to_quad32 s in
q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\
q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\
q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\
q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16))
))
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8);
be_bytes_to_quad32_reveal ();
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": true,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Words.Four_s.four_to_nat 8
(Vale.Def.Words.Seq_s.seq_to_four_BE (FStar.Seq.Base.create 4 0)) ==
0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Seq_s.seq_to_four_BE",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.create",
"Prims.l_True",
"Prims.squash",
"Prims.int",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_four_zero (_: unit) : Lemma (ensures four_to_nat 8 (seq_to_four_BE (create 4 0)) == 0) =
| let s = create 4 0 in
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.step1 | val step1 (p: seq quad32) (num_bytes: nat{num_bytes < 16 * length p})
: Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block =
split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16)
in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE) | val step1 (p: seq quad32) (num_bytes: nat{num_bytes < 16 * length p})
: Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block =
split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16)
in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE) | let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 266,
"start_col": 0,
"start_line": 246
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*) | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
num_bytes: Prims.nat{num_bytes < 16 * FStar.Seq.Base.length p}
-> FStar.Pervasives.Lemma
(ensures
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let _ =
FStar.Seq.Properties.split (FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes p
)
0
num_bytes)
(num_blocks * 16)
in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ full_blocks _ = _ in
let full_quads_LE = Vale.Def.Types_s.le_bytes_to_seq_quad32 full_blocks in
let p_prefix = FStar.Seq.Base.slice p 0 num_blocks in
p_prefix == full_quads_LE)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"FStar.Seq.Base.slice",
"Vale.Arch.Types.le_bytes_to_seq_quad32_to_bytes",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"Vale.Arch.Types.slice_commutes_le_seq_quad32_to_bytes0",
"Prims.int",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"FStar.Pervasives.Native.tuple2",
"Vale.Def.Words_s.nat8",
"FStar.Seq.Properties.split",
"Prims.op_Division",
"Prims.op_Modulus",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let step1 (p: seq quad32) (num_bytes: nat{num_bytes < 16 * length p})
: Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block =
split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16)
in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE) =
| let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block =
split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16)
in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.gctr_indexed_helper | val gctr_indexed_helper
(icb: quad32)
(plain: gctr_plain_internal_LE)
(alg: algorithm)
(key: aes_key_LE alg)
(i: int)
: Lemma (requires True)
(ensures
(let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j. {:pattern index cipher j}
0 <= j /\ j < length plain ==>
index cipher j ==
quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j))))))
(decreases %[length plain]) | val gctr_indexed_helper
(icb: quad32)
(plain: gctr_plain_internal_LE)
(alg: algorithm)
(key: aes_key_LE alg)
(i: int)
: Lemma (requires True)
(ensures
(let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j. {:pattern index cipher j}
0 <= j /\ j < length plain ==>
index cipher j ==
quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j))))))
(decreases %[length plain]) | let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 41,
"end_line": 174,
"start_col": 0,
"start_line": 151
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
icb: Vale.Def.Types_s.quad32 ->
plain: Vale.AES.GCTR_s.gctr_plain_internal_LE ->
alg: Vale.AES.AES_common_s.algorithm ->
key: Vale.AES.AES_s.aes_key_LE alg ->
i: Prims.int
-> FStar.Pervasives.Lemma
(ensures
(let cipher = Vale.AES.GCTR_s.gctr_encrypt_recursive icb plain alg key i in
FStar.Seq.Base.length cipher == FStar.Seq.Base.length plain /\
(forall (j:
i:
Prims.int
{ i >= 0 /\ i < FStar.Seq.Base.length plain /\
(i >= 0) /\ (i < FStar.Seq.Base.length cipher) }).
{:pattern FStar.Seq.Base.index cipher j}
0 <= j /\ j < FStar.Seq.Base.length plain ==>
FStar.Seq.Base.index cipher j ==
Vale.Def.Types_s.quad32_xor (FStar.Seq.Base.index plain j)
(Vale.AES.GCTR.aes_encrypt_BE alg key (Vale.AES.GCTR_s.inc32 icb (i + j))))))
(decreases FStar.Seq.Base.length plain) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Vale.Def.Types_s.quad32",
"Vale.AES.GCTR_s.gctr_plain_internal_LE",
"Vale.AES.AES_common_s.algorithm",
"Vale.AES.AES_s.aes_key_LE",
"Prims.int",
"Prims.op_Equality",
"FStar.Seq.Base.length",
"Prims.bool",
"FStar.Classical.forall_intro",
"Prims.l_imp",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.eq2",
"FStar.Seq.Base.index",
"Vale.Def.Types_s.quad32_xor",
"Vale.AES.GCTR.aes_encrypt_BE",
"Vale.AES.GCTR_s.inc32",
"Prims.op_Addition",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims.op_AmpAmp",
"Prims._assert",
"Prims.op_Subtraction",
"Vale.AES.GCTR.gctr_indexed_helper",
"Vale.AES.AES_s.aes_encrypt_LE_reveal",
"FStar.Seq.Base.seq",
"Vale.AES.GCTR_s.gctr_encrypt_recursive",
"FStar.Seq.Properties.tail",
"Prims.nat",
"Prims.l_Forall",
"Prims.op_GreaterThanOrEqual"
] | [
"recursion"
] | false | false | true | false | false | let rec gctr_indexed_helper
(icb: quad32)
(plain: gctr_plain_internal_LE)
(alg: algorithm)
(key: aes_key_LE alg)
(i: int)
: Lemma (requires True)
(ensures
(let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j. {:pattern index cipher j}
0 <= j /\ j < length plain ==>
index cipher j ==
quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j))))))
(decreases %[length plain]) =
| if length plain = 0
then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i + 1) in
let helper (j: int)
: Lemma
((0 <= j /\ j < length plain) ==>
(index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)))))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain
then
(gctr_indexed_helper icb tl alg key (i + 1);
assert (index r_cipher (j - 1) ==
quad32_xor (index tl (j - 1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)))))
in
FStar.Classical.forall_intro helper | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.lemma_slice_orig_index | val lemma_slice_orig_index (#a: Type) (s s': seq a) (m n: nat)
: Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures
(forall (i: int). {:pattern (index s i)\/(index s' i)}
m <= i /\ i < n ==> index s i == index s' i)) | val lemma_slice_orig_index (#a: Type) (s s': seq a) (m n: nat)
: Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures
(forall (i: int). {:pattern (index s i)\/(index s' i)}
m <= i /\ i < n ==> index s i == index s' i)) | let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 276,
"start_col": 0,
"start_line": 269
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: FStar.Seq.Base.seq a -> s': FStar.Seq.Base.seq a -> m: Prims.nat -> n: Prims.nat
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length s == FStar.Seq.Base.length s' /\ m <= n /\
n <= FStar.Seq.Base.length s /\ FStar.Seq.Base.slice s m n == FStar.Seq.Base.slice s' m n)
(ensures
forall (i: Prims.int). {:pattern FStar.Seq.Base.index s i\/FStar.Seq.Base.index s' i}
m <= i /\ i < n ==> FStar.Seq.Base.index s i == FStar.Seq.Base.index s' i) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Prims.nat",
"FStar.Classical.forall_intro",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.eq2",
"FStar.Seq.Base.index",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Seq.Base.lemma_index_slice",
"Prims.op_Subtraction",
"FStar.Seq.Base.length",
"FStar.Seq.Base.slice",
"Prims.l_Forall",
"Prims.int",
"Prims.l_imp"
] | [] | false | false | true | false | false | let lemma_slice_orig_index (#a: Type) (s s': seq a) (m n: nat)
: Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures
(forall (i: int). {:pattern (index s i)\/(index s' i)}
m <= i /\ i < n ==> index s i == index s' i)) =
| let aux (i: nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in
Classical.forall_intro aux | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.lemma_pad_to_32_bits | val lemma_pad_to_32_bits (s s'': seq4 nat8) (n: nat)
: Lemma
(requires
n <= 4 /\
(forall (i: nat). {:pattern (index s i)\/(index s'' i)}
i < 4 ==> index s'' i == (if i < n then index s i else 0)))
(ensures
four_to_nat 8 (seq_to_four_BE s'') ==
(four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) | val lemma_pad_to_32_bits (s s'': seq4 nat8) (n: nat)
: Lemma
(requires
n <= 4 /\
(forall (i: nat). {:pattern (index s i)\/(index s'' i)}
i < 4 ==> index s'' i == (if i < n then index s i else 0)))
(ensures
four_to_nat 8 (seq_to_four_BE s'') ==
(four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) | let lemma_pad_to_32_bits (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
if n <= 2 then lemma_pad_to_32_bits_helper s s'' n else
assert (n == 3 \/ n == 4);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (0 * 8) == 1);
assert_norm (pow2 (1 * 8) == 0x100);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 3 ==> x / pow2 (8 * (4 - n)) == x / 0x100);
assert (n == 4 ==> x / pow2 (8 * (4 - n)) == x / 0x1);
assert_norm (((x / pow2 (8 * 1)) * pow2 (8 * 1)) % pow2 (8 * 1) == 0);
assert_norm (((x / pow2 (8 * 0)) * pow2 (8 * 0)) % pow2 (8 * 0) == 0);
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 131,
"start_col": 0,
"start_line": 112
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
)
let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
()
#reset-options "--smtencoding.elim_box true --z3rlimit 60 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1"
let lemma_pad_to_32_bits_helper (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 2 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": true,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: Vale.Def.Words.Seq_s.seq4 Vale.Def.Types_s.nat8 ->
s'': Vale.Def.Words.Seq_s.seq4 Vale.Def.Types_s.nat8 ->
n: Prims.nat
-> FStar.Pervasives.Lemma
(requires
n <= 4 /\
(forall (i: Prims.nat). {:pattern FStar.Seq.Base.index s i\/FStar.Seq.Base.index s'' i}
i < 4 ==>
FStar.Seq.Base.index s'' i ==
(match i < n with
| true -> FStar.Seq.Base.index s i
| _ -> 0)))
(ensures
Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_BE s'') ==
(Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_BE s) /
Prims.pow2 (8 * (4 - n))) *
Prims.pow2 (8 * (4 - n))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Words.Seq_s.seq4",
"Vale.Def.Types_s.nat8",
"Prims.nat",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Prims.pow2",
"Prims._assert",
"Prims.l_imp",
"Prims.op_Subtraction",
"Vale.Def.Words_s.natN",
"Prims.op_Multiply",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Seq_s.seq_to_four_BE",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"Prims.op_LessThanOrEqual",
"Vale.AES.GCM_helpers_BE.lemma_pad_to_32_bits_helper",
"Prims.bool",
"Prims.l_or",
"Prims.l_and",
"Prims.b2t",
"Prims.l_Forall",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let lemma_pad_to_32_bits (s s'': seq4 nat8) (n: nat)
: Lemma
(requires
n <= 4 /\
(forall (i: nat). {:pattern (index s i)\/(index s'' i)}
i < 4 ==> index s'' i == (if i < n then index s i else 0)))
(ensures
four_to_nat 8 (seq_to_four_BE s'') ==
(four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) =
| if n <= 2 then lemma_pad_to_32_bits_helper s s'' n else assert (n == 3 \/ n == 4);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (0 * 8) == 1);
assert_norm (pow2 (1 * 8) == 0x100);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 3 ==> x / pow2 (8 * (4 - n)) == x / 0x100);
assert (n == 4 ==> x / pow2 (8 * (4 - n)) == x / 0x1);
assert_norm (((x / pow2 (8 * 1)) * pow2 (8 * 1)) % pow2 (8 * 1) == 0);
assert_norm (((x / pow2 (8 * 0)) * pow2 (8 * 0)) % pow2 (8 * 0) == 0);
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.lemma_ishl_32 | val lemma_ishl_32 (x: nat32) (k: nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) | val lemma_ishl_32 (x: nat32) (k: nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) | let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 283,
"start_col": 0,
"start_line": 278
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Vale.Def.Types_s.nat32 -> k: Prims.nat
-> FStar.Pervasives.Lemma
(ensures Vale.Def.Types_s.ishl x k == x * Prims.pow2 k % Vale.Def.Words_s.pow2_32) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat32",
"Prims.nat",
"Prims.unit",
"FStar.UInt.shift_left_value_lemma",
"Vale.Def.TypesNative_s.reveal_ishl",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Vale.Def.Types_s.ishl",
"Vale.Def.Words_s.pow2_32",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_ishl_32 (x: nat32) (k: nat) : Lemma (ensures ishl #pow2_32 x k == x * pow2 k % pow2_32) =
| Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
() | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.lemma_64_32_hi2 | val lemma_64_32_hi2 (q': quad32) (hi hi': nat64) (n: nat)
: Lemma
(requires
n <= 4 /\ hi' == (hi / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi'))
(ensures hi' == 0x100000000 * q'.hi3 + q'.hi2 /\ q' == Mkfour 0 0 q'.hi2 q'.hi3) | val lemma_64_32_hi2 (q': quad32) (hi hi': nat64) (n: nat)
: Lemma
(requires
n <= 4 /\ hi' == (hi / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi'))
(ensures hi' == 0x100000000 * q'.hi3 + q'.hi2 /\ q' == Mkfour 0 0 q'.hi2 q'.hi3) | let lemma_64_32_hi2 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' == 0x100000000 * q'.hi3 + q'.hi2 /\ q' == Mkfour 0 0 q'.hi2 q'.hi3)
=
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 218,
"start_col": 0,
"start_line": 208
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
)
let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
()
#reset-options "--smtencoding.elim_box true --z3rlimit 60 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1"
let lemma_pad_to_32_bits_helper (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 2 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
()
let lemma_pad_to_32_bits (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
if n <= 2 then lemma_pad_to_32_bits_helper s s'' n else
assert (n == 3 \/ n == 4);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (0 * 8) == 1);
assert_norm (pow2 (1 * 8) == 0x100);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 3 ==> x / pow2 (8 * (4 - n)) == x / 0x100);
assert (n == 4 ==> x / pow2 (8 * (4 - n)) == x / 0x1);
assert_norm (((x / pow2 (8 * 1)) * pow2 (8 * 1)) % pow2 (8 * 1) == 0);
assert_norm (((x / pow2 (8 * 0)) * pow2 (8 * 0)) % pow2 (8 * 0) == 0);
()
let lemma_div_n_8_upper1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = ((hi64_def q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 0);
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
()
let lemma_div_n_8_upper2_helper (q:quad32) (n:nat) : Lemma
(requires n <= 2)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 2);
assert_norm (f 1);
assert_norm (f 0);
()
let lemma_div_n_8_upper2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
if n <= 2 then lemma_div_n_8_upper2_helper q n else
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 4);
assert_norm (f 3);
()
let lemma_div_n_8_lower1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((lo64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.lo1 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper1 (Mkfour 0 0 q0 q1) n
let lemma_div_n_8_lower2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (lo64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.lo1 + (q.lo0 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper2 (Mkfour 0 0 q0 q1) n
let lemma_64_32_hi1 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' % pow2_32 == 0 /\ hi' / pow2_32 == q'.hi3 /\ q' == Mkfour 0 0 0 q'.hi3)
=
assert_norm (((hi / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm ((((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32) % pow2_32 ==
((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": true,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
q': Vale.Def.Types_s.quad32 ->
hi: Vale.Def.Types_s.nat64 ->
hi': Vale.Def.Types_s.nat64 ->
n: Prims.nat
-> FStar.Pervasives.Lemma
(requires
n <= 4 /\ hi' == (hi / Prims.pow2 (8 * (4 - n))) * Prims.pow2 (8 * (4 - n)) /\
Vale.Def.Words.Four_s.four_to_two_two q' ==
Vale.Def.Words_s.Mktwo (Vale.Def.Words.Two_s.nat_to_two 32 0)
(Vale.Def.Words.Two_s.nat_to_two 32 hi'))
(ensures
hi' == 0x100000000 * Mkfour?.hi3 q' + Mkfour?.hi2 q' /\
q' == Vale.Def.Words_s.Mkfour 0 0 (Mkfour?.hi2 q') (Mkfour?.hi3 q')) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.nat64",
"Prims.nat",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.two",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"Vale.Def.Words.Two_s.nat_to_two",
"Vale.Def.Words.Two_s.nat_to_two_unfold",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Prims.op_Subtraction",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words.Four_s.four_to_two_two",
"Vale.Def.Words_s.Mktwo",
"Prims.squash",
"Prims.op_Addition",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.Mkfour",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_64_32_hi2 (q': quad32) (hi hi': nat64) (n: nat)
: Lemma
(requires
n <= 4 /\ hi' == (hi / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi'))
(ensures hi' == 0x100000000 * q'.hi3 + q'.hi2 /\ q' == Mkfour 0 0 q'.hi2 q'.hi3) =
| assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
() | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.lemma_div_n_8_upper1 | val lemma_div_n_8_upper1 (q: quad32) (n: nat)
: Lemma (requires n <= 4)
(ensures
((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 ==
(q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) | val lemma_div_n_8_upper1 (q: quad32) (n: nat)
: Lemma (requires n <= 4)
(ensures
((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 ==
(q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) | let lemma_div_n_8_upper1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = ((hi64_def q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 0);
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 145,
"start_col": 0,
"start_line": 133
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
)
let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
()
#reset-options "--smtencoding.elim_box true --z3rlimit 60 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1"
let lemma_pad_to_32_bits_helper (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 2 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
()
let lemma_pad_to_32_bits (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
if n <= 2 then lemma_pad_to_32_bits_helper s s'' n else
assert (n == 3 \/ n == 4);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (0 * 8) == 1);
assert_norm (pow2 (1 * 8) == 0x100);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 3 ==> x / pow2 (8 * (4 - n)) == x / 0x100);
assert (n == 4 ==> x / pow2 (8 * (4 - n)) == x / 0x1);
assert_norm (((x / pow2 (8 * 1)) * pow2 (8 * 1)) % pow2 (8 * 1) == 0);
assert_norm (((x / pow2 (8 * 0)) * pow2 (8 * 0)) % pow2 (8 * 0) == 0);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": true,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | q: Vale.Def.Types_s.quad32 -> n: Prims.nat
-> FStar.Pervasives.Lemma (requires n <= 4)
(ensures
(Vale.Arch.Types.hi64 q / Prims.pow2 (8 * (8 - n))) * Prims.pow2 (8 * (8 - n)) /
Vale.Def.Words_s.pow2_32 ==
(Mkfour?.hi3 q / Prims.pow2 (8 * (4 - n))) * Prims.pow2 (8 * (4 - n))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Vale.Def.Types_s.nat32",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.logical",
"Prims.eq2",
"Prims.int",
"Prims.op_Division",
"FStar.Mul.op_Star",
"Vale.Arch.Types.hi64_def",
"Prims.pow2",
"Prims.op_Subtraction",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Arch.Types.hi64_reveal",
"Prims.squash",
"Vale.Arch.Types.hi64",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let lemma_div_n_8_upper1 (q: quad32) (n: nat)
: Lemma (requires n <= 4)
(ensures
((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 ==
(q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) =
| hi64_reveal ();
let Mkfour _ _ _ _ = q in
let f (n: nat{n <= 4}) =
((hi64_def q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 ==
(q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))
in
assert_norm (f 0);
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
() | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.lemma_div_n_8_lower2 | val lemma_div_n_8_lower2 (q: quad32) (n: nat)
: Lemma (requires n <= 4)
(ensures
(lo64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) ==
0x100000000 * q.lo1 + (q.lo0 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) | val lemma_div_n_8_lower2 (q: quad32) (n: nat)
: Lemma (requires n <= 4)
(ensures
(lo64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) ==
0x100000000 * q.lo1 + (q.lo0 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) | let lemma_div_n_8_lower2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (lo64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.lo1 + (q.lo0 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper2 (Mkfour 0 0 q0 q1) n | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 43,
"end_line": 187,
"start_col": 0,
"start_line": 180
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
)
let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
()
#reset-options "--smtencoding.elim_box true --z3rlimit 60 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1"
let lemma_pad_to_32_bits_helper (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 2 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
()
let lemma_pad_to_32_bits (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
if n <= 2 then lemma_pad_to_32_bits_helper s s'' n else
assert (n == 3 \/ n == 4);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (0 * 8) == 1);
assert_norm (pow2 (1 * 8) == 0x100);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 3 ==> x / pow2 (8 * (4 - n)) == x / 0x100);
assert (n == 4 ==> x / pow2 (8 * (4 - n)) == x / 0x1);
assert_norm (((x / pow2 (8 * 1)) * pow2 (8 * 1)) % pow2 (8 * 1) == 0);
assert_norm (((x / pow2 (8 * 0)) * pow2 (8 * 0)) % pow2 (8 * 0) == 0);
()
let lemma_div_n_8_upper1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = ((hi64_def q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 0);
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
()
let lemma_div_n_8_upper2_helper (q:quad32) (n:nat) : Lemma
(requires n <= 2)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 2);
assert_norm (f 1);
assert_norm (f 0);
()
let lemma_div_n_8_upper2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
if n <= 2 then lemma_div_n_8_upper2_helper q n else
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 4);
assert_norm (f 3);
()
let lemma_div_n_8_lower1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((lo64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.lo1 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper1 (Mkfour 0 0 q0 q1) n | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": true,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | q: Vale.Def.Types_s.quad32 -> n: Prims.nat
-> FStar.Pervasives.Lemma (requires n <= 4)
(ensures
(Vale.Arch.Types.lo64 q / Prims.pow2 (8 * (4 - n))) * Prims.pow2 (8 * (4 - n)) ==
0x100000000 * Mkfour?.lo1 q +
(Mkfour?.lo0 q / Prims.pow2 (8 * (4 - n))) * Prims.pow2 (8 * (4 - n))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Vale.Def.Types_s.nat32",
"Vale.AES.GCM_helpers_BE.lemma_div_n_8_upper2",
"Vale.Def.Words_s.Mkfour",
"Prims.unit",
"Vale.Arch.Types.lo64_reveal",
"Vale.Arch.Types.hi64_reveal",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Vale.Arch.Types.lo64",
"Prims.pow2",
"Prims.op_Subtraction",
"Prims.op_Addition",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let lemma_div_n_8_lower2 (q: quad32) (n: nat)
: Lemma (requires n <= 4)
(ensures
(lo64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) ==
0x100000000 * q.lo1 + (q.lo0 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) =
| hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper2 (Mkfour 0 0 q0 q1) n | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.lemma_64_32_hi1 | val lemma_64_32_hi1 (q': quad32) (hi hi': nat64) (n: nat)
: Lemma
(requires
n <= 4 /\ hi' == (hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi'))
(ensures hi' % pow2_32 == 0 /\ hi' / pow2_32 == q'.hi3 /\ q' == Mkfour 0 0 0 q'.hi3) | val lemma_64_32_hi1 (q': quad32) (hi hi': nat64) (n: nat)
: Lemma
(requires
n <= 4 /\ hi' == (hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi'))
(ensures hi' % pow2_32 == 0 /\ hi' / pow2_32 == q'.hi3 /\ q' == Mkfour 0 0 0 q'.hi3) | let lemma_64_32_hi1 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' % pow2_32 == 0 /\ hi' / pow2_32 == q'.hi3 /\ q' == Mkfour 0 0 0 q'.hi3)
=
assert_norm (((hi / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm ((((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32) % pow2_32 ==
((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 206,
"start_col": 0,
"start_line": 189
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
)
let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
()
#reset-options "--smtencoding.elim_box true --z3rlimit 60 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1"
let lemma_pad_to_32_bits_helper (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 2 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
()
let lemma_pad_to_32_bits (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
if n <= 2 then lemma_pad_to_32_bits_helper s s'' n else
assert (n == 3 \/ n == 4);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (0 * 8) == 1);
assert_norm (pow2 (1 * 8) == 0x100);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 3 ==> x / pow2 (8 * (4 - n)) == x / 0x100);
assert (n == 4 ==> x / pow2 (8 * (4 - n)) == x / 0x1);
assert_norm (((x / pow2 (8 * 1)) * pow2 (8 * 1)) % pow2 (8 * 1) == 0);
assert_norm (((x / pow2 (8 * 0)) * pow2 (8 * 0)) % pow2 (8 * 0) == 0);
()
let lemma_div_n_8_upper1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = ((hi64_def q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 0);
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
()
let lemma_div_n_8_upper2_helper (q:quad32) (n:nat) : Lemma
(requires n <= 2)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 2);
assert_norm (f 1);
assert_norm (f 0);
()
let lemma_div_n_8_upper2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
if n <= 2 then lemma_div_n_8_upper2_helper q n else
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 4);
assert_norm (f 3);
()
let lemma_div_n_8_lower1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((lo64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.lo1 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper1 (Mkfour 0 0 q0 q1) n
let lemma_div_n_8_lower2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (lo64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.lo1 + (q.lo0 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper2 (Mkfour 0 0 q0 q1) n | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": true,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
q': Vale.Def.Types_s.quad32 ->
hi: Vale.Def.Types_s.nat64 ->
hi': Vale.Def.Types_s.nat64 ->
n: Prims.nat
-> FStar.Pervasives.Lemma
(requires
n <= 4 /\ hi' == (hi / Prims.pow2 (8 * (8 - n))) * Prims.pow2 (8 * (8 - n)) /\
Vale.Def.Words.Four_s.four_to_two_two q' ==
Vale.Def.Words_s.Mktwo (Vale.Def.Words.Two_s.nat_to_two 32 0)
(Vale.Def.Words.Two_s.nat_to_two 32 hi'))
(ensures
hi' % Vale.Def.Words_s.pow2_32 == 0 /\ hi' / Vale.Def.Words_s.pow2_32 == Mkfour?.hi3 q' /\
q' == Vale.Def.Words_s.Mkfour 0 0 0 (Mkfour?.hi3 q')) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.nat64",
"Prims.nat",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.two",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"Vale.Def.Words.Two_s.nat_to_two",
"Vale.Def.Words.Two_s.nat_to_two_unfold",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Division",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Vale.Def.Words_s.pow2_32",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words.Four_s.four_to_two_two",
"Vale.Def.Words_s.Mktwo",
"Prims.squash",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.Mkfour",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_64_32_hi1 (q': quad32) (hi hi': nat64) (n: nat)
: Lemma
(requires
n <= 4 /\ hi' == (hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi'))
(ensures hi' % pow2_32 == 0 /\ hi' / pow2_32 == q'.hi3 /\ q' == Mkfour 0 0 0 q'.hi3) =
| assert_norm (((hi / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm ((((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32) % pow2_32 ==
((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.nat32_xor_bytewise_1_helper2 | val nat32_xor_bytewise_1_helper2 (x x': nat32) (t t': four nat8)
: Lemma
(requires
x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000) (ensures t.lo0 == t'.lo0) | val nat32_xor_bytewise_1_helper2 (x x': nat32) (t t': four nat8)
: Lemma
(requires
x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000) (ensures t.lo0 == t'.lo0) | let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 344,
"start_col": 0,
"start_line": 329
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x: Vale.Def.Types_s.nat32 ->
x': Vale.Def.Types_s.nat32 ->
t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000)
(ensures Mkfour?.lo0 t == Mkfour?.lo0 t') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"Vale.AES.GCTR.nat32_xor_bytewise_1_helper1",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"Prims.int",
"Prims.op_Addition",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Vale.Def.Words_s.pow2_32",
"Prims.op_Modulus",
"Prims.squash",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let nat32_xor_bytewise_1_helper2 (x x': nat32) (t t': four nat8)
: Lemma
(requires
x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000) (ensures t.lo0 == t'.lo0) =
| let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t);
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
() | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.lemma_pad_to_32_bits_helper | val lemma_pad_to_32_bits_helper (s s'': seq4 nat8) (n: nat)
: Lemma
(requires
n <= 2 /\
(forall (i: nat). {:pattern (index s i)\/(index s'' i)}
i < 4 ==> index s'' i == (if i < n then index s i else 0)))
(ensures
four_to_nat 8 (seq_to_four_BE s'') ==
(four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) | val lemma_pad_to_32_bits_helper (s s'': seq4 nat8) (n: nat)
: Lemma
(requires
n <= 2 /\
(forall (i: nat). {:pattern (index s i)\/(index s'' i)}
i < 4 ==> index s'' i == (if i < n then index s i else 0)))
(ensures
four_to_nat 8 (seq_to_four_BE s'') ==
(four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) | let lemma_pad_to_32_bits_helper (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 2 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 110,
"start_col": 0,
"start_line": 89
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
)
let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": true,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: Vale.Def.Words.Seq_s.seq4 Vale.Def.Types_s.nat8 ->
s'': Vale.Def.Words.Seq_s.seq4 Vale.Def.Types_s.nat8 ->
n: Prims.nat
-> FStar.Pervasives.Lemma
(requires
n <= 2 /\
(forall (i: Prims.nat). {:pattern FStar.Seq.Base.index s i\/FStar.Seq.Base.index s'' i}
i < 4 ==>
FStar.Seq.Base.index s'' i ==
(match i < n with
| true -> FStar.Seq.Base.index s i
| _ -> 0)))
(ensures
Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_BE s'') ==
(Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_BE s) /
Prims.pow2 (8 * (4 - n))) *
Prims.pow2 (8 * (4 - n))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Words.Seq_s.seq4",
"Vale.Def.Types_s.nat8",
"Prims.nat",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Prims.pow2",
"Prims._assert",
"Prims.l_imp",
"Prims.op_Subtraction",
"Vale.Def.Words_s.natN",
"Prims.op_Multiply",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Seq_s.seq_to_four_BE",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"Prims.l_or",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.l_Forall",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Prims.bool",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_pad_to_32_bits_helper (s s'': seq4 nat8) (n: nat)
: Lemma
(requires
n <= 2 /\
(forall (i: nat). {:pattern (index s i)\/(index s'' i)}
i < 4 ==> index s'' i == (if i < n then index s i else 0)))
(ensures
four_to_nat 8 (seq_to_four_BE s'') ==
(four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) =
| assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
() | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.lemma_64_32_lo2 | val lemma_64_32_lo2 (q': quad32) (lo lo': nat64) (n: nat)
: Lemma
(requires
n <= 4 /\ lo' == (lo / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3))
(ensures lo' == q'.lo0 + 0x100000000 * q'.lo1) | val lemma_64_32_lo2 (q': quad32) (lo lo': nat64) (n: nat)
: Lemma
(requires
n <= 4 /\ lo' == (lo / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3))
(ensures lo' == q'.lo0 + 0x100000000 * q'.lo1) | let lemma_64_32_lo2 (q':quad32) (lo lo':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
lo' == (lo / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3)
)
(ensures lo' == q'.lo0 + 0x100000000 * q'.lo1)
=
assert_norm (nat_to_two 32 lo' == nat_to_two_unfold 32 lo');
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 247,
"start_col": 0,
"start_line": 238
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
)
let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
()
#reset-options "--smtencoding.elim_box true --z3rlimit 60 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1"
let lemma_pad_to_32_bits_helper (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 2 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
()
let lemma_pad_to_32_bits (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
if n <= 2 then lemma_pad_to_32_bits_helper s s'' n else
assert (n == 3 \/ n == 4);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (0 * 8) == 1);
assert_norm (pow2 (1 * 8) == 0x100);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 3 ==> x / pow2 (8 * (4 - n)) == x / 0x100);
assert (n == 4 ==> x / pow2 (8 * (4 - n)) == x / 0x1);
assert_norm (((x / pow2 (8 * 1)) * pow2 (8 * 1)) % pow2 (8 * 1) == 0);
assert_norm (((x / pow2 (8 * 0)) * pow2 (8 * 0)) % pow2 (8 * 0) == 0);
()
let lemma_div_n_8_upper1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = ((hi64_def q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 0);
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
()
let lemma_div_n_8_upper2_helper (q:quad32) (n:nat) : Lemma
(requires n <= 2)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 2);
assert_norm (f 1);
assert_norm (f 0);
()
let lemma_div_n_8_upper2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
if n <= 2 then lemma_div_n_8_upper2_helper q n else
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 4);
assert_norm (f 3);
()
let lemma_div_n_8_lower1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((lo64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.lo1 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper1 (Mkfour 0 0 q0 q1) n
let lemma_div_n_8_lower2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (lo64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.lo1 + (q.lo0 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper2 (Mkfour 0 0 q0 q1) n
let lemma_64_32_hi1 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' % pow2_32 == 0 /\ hi' / pow2_32 == q'.hi3 /\ q' == Mkfour 0 0 0 q'.hi3)
=
assert_norm (((hi / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm ((((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32) % pow2_32 ==
((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
()
let lemma_64_32_hi2 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' == 0x100000000 * q'.hi3 + q'.hi2 /\ q' == Mkfour 0 0 q'.hi2 q'.hi3)
=
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
()
let lemma_64_32_lo1 (q':quad32) (lo lo':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
lo' == (lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3)
)
(ensures lo' % pow2_32 == 0 /\ lo' / pow2_32 == q'.lo1 /\ q'.lo0 == 0)
=
assert_norm (((lo / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) / pow2_32) % pow2_32 ==
((lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 lo' == nat_to_two_unfold 32 lo');
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": true,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
q': Vale.Def.Types_s.quad32 ->
lo: Vale.Def.Types_s.nat64 ->
lo': Vale.Def.Types_s.nat64 ->
n: Prims.nat
-> FStar.Pervasives.Lemma
(requires
n <= 4 /\ lo' == (lo / Prims.pow2 (8 * (4 - n))) * Prims.pow2 (8 * (4 - n)) /\
Vale.Def.Words.Four_s.four_to_two_two q' ==
Vale.Def.Words_s.Mktwo (Vale.Def.Words.Two_s.nat_to_two 32 lo')
(Vale.Def.Words_s.Mktwo (Mkfour?.hi2 q') (Mkfour?.hi3 q')))
(ensures lo' == Mkfour?.lo0 q' + 0x100000000 * Mkfour?.lo1 q') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.nat64",
"Prims.nat",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.two",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"Vale.Def.Words.Two_s.nat_to_two",
"Vale.Def.Words.Two_s.nat_to_two_unfold",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Prims.op_Subtraction",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words.Four_s.four_to_two_two",
"Vale.Def.Words_s.Mktwo",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Prims.squash",
"Prims.op_Addition",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_64_32_lo2 (q': quad32) (lo lo': nat64) (n: nat)
: Lemma
(requires
n <= 4 /\ lo' == (lo / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3))
(ensures lo' == q'.lo0 + 0x100000000 * q'.lo1) =
| assert_norm (nat_to_two 32 lo' == nat_to_two_unfold 32 lo');
() | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.pad_to_128_bits_lower_8 | val pad_to_128_bits_lower_8 (q:quad32) : Lemma
(requires True)
(ensures (let q' = two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (hi64 q))) in
q' == be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 8)))) | val pad_to_128_bits_lower_8 (q:quad32) : Lemma
(requires True)
(ensures (let q' = two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (hi64 q))) in
q' == be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 8)))) | let pad_to_128_bits_lower_8 (q:quad32) =
small_division_lemma_1 (lo64 q) (pow2 64);
pad_to_128_bits_lower q 8 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 27,
"end_line": 383,
"start_col": 0,
"start_line": 381
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
)
let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
()
#reset-options "--smtencoding.elim_box true --z3rlimit 60 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1"
let lemma_pad_to_32_bits_helper (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 2 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
()
let lemma_pad_to_32_bits (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
if n <= 2 then lemma_pad_to_32_bits_helper s s'' n else
assert (n == 3 \/ n == 4);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (0 * 8) == 1);
assert_norm (pow2 (1 * 8) == 0x100);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 3 ==> x / pow2 (8 * (4 - n)) == x / 0x100);
assert (n == 4 ==> x / pow2 (8 * (4 - n)) == x / 0x1);
assert_norm (((x / pow2 (8 * 1)) * pow2 (8 * 1)) % pow2 (8 * 1) == 0);
assert_norm (((x / pow2 (8 * 0)) * pow2 (8 * 0)) % pow2 (8 * 0) == 0);
()
let lemma_div_n_8_upper1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = ((hi64_def q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 0);
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
()
let lemma_div_n_8_upper2_helper (q:quad32) (n:nat) : Lemma
(requires n <= 2)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 2);
assert_norm (f 1);
assert_norm (f 0);
()
let lemma_div_n_8_upper2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
if n <= 2 then lemma_div_n_8_upper2_helper q n else
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 4);
assert_norm (f 3);
()
let lemma_div_n_8_lower1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((lo64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.lo1 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper1 (Mkfour 0 0 q0 q1) n
let lemma_div_n_8_lower2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (lo64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.lo1 + (q.lo0 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper2 (Mkfour 0 0 q0 q1) n
let lemma_64_32_hi1 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' % pow2_32 == 0 /\ hi' / pow2_32 == q'.hi3 /\ q' == Mkfour 0 0 0 q'.hi3)
=
assert_norm (((hi / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm ((((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32) % pow2_32 ==
((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
()
let lemma_64_32_hi2 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' == 0x100000000 * q'.hi3 + q'.hi2 /\ q' == Mkfour 0 0 q'.hi2 q'.hi3)
=
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
()
let lemma_64_32_lo1 (q':quad32) (lo lo':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
lo' == (lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3)
)
(ensures lo' % pow2_32 == 0 /\ lo' / pow2_32 == q'.lo1 /\ q'.lo0 == 0)
=
assert_norm (((lo / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) / pow2_32) % pow2_32 ==
((lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 lo' == nat_to_two_unfold 32 lo');
()
let lemma_64_32_lo2 (q':quad32) (lo lo':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
lo' == (lo / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3)
)
(ensures lo' == q'.lo0 + 0x100000000 * q'.lo1)
=
assert_norm (nat_to_two 32 lo' == nat_to_two_unfold 32 lo');
()
let lemma_slices_be_bytes_to_quad32 (s:seq16 nat8) : Lemma
(ensures (
let q = be_bytes_to_quad32 s in
q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\
q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\
q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\
q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16))
))
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8);
be_bytes_to_quad32_reveal ();
()
let lemma_four_zero (_:unit) : Lemma
(ensures four_to_nat 8 (seq_to_four_BE (create 4 0)) == 0)
=
let s = create 4 0 in
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
()
let pad_to_128_bits_upper (q:quad32) (num_bytes:int) =
let n = num_bytes in
let new_hi = ((hi64 q / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8)) % pow2_64 in
hi64_reveal ();
let f (n:nat{1 <= n /\ n < 8}) = (hi64_def q / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8) == ((hi64_def q / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8)) % pow2_64 in
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
assert_norm (f 5);
assert_norm (f 6);
assert_norm (f 7);
assert (((hi64 q) / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8) == (((hi64 q) / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8)) % pow2_64);
let s = be_quad32_to_bytes q in
let s' = slice s 0 n in
let q' = two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 new_hi)) in
let s'' = pad_to_128_bits s' in
let q'' = be_bytes_to_quad32 s'' in
let s0_4 = slice s 0 4 in
let s4_8 = slice s 4 8 in
let s8_12 = slice s 8 12 in
let s12_16 = slice s 12 16 in
let s0_4'' = slice s'' 0 4 in
let s4_8'' = slice s'' 4 8 in
let s8_12'' = slice s'' 8 12 in
let s12_16'' = slice s'' 12 16 in
if n < 4 then
(
lemma_div_n_8_upper1 q n;
lemma_64_32_hi1 q' (hi64 q) new_hi n;
lemma_pad_to_32_bits s0_4 s0_4'' n;
()
)
else
(
lemma_div_n_8_upper2 q (n - 4);
lemma_64_32_hi2 q' (hi64 q) new_hi (n - 4);
lemma_pad_to_32_bits s4_8 s4_8'' (n - 4);
()
);
lemma_slices_be_quad32_to_bytes q;
lemma_slices_be_bytes_to_quad32 s'';
lemma_four_zero ();
let zero_4 : seq nat8 = create 4 0 in
assert (n < 4 ==> equal s4_8'' zero_4);
assert (equal s8_12'' zero_4);
assert (equal s12_16'' zero_4);
()
#reset-options "--smtencoding.elim_box true --z3rlimit 100 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1"
let pad_to_128_bits_lower (q:quad32) (num_bytes:int) =
let n = num_bytes in
let new_lo = (((lo64 q) / pow2 ((16 - n) * 8)) * pow2 ((16 - n) * 8)) % pow2_64 in
lo64_reveal ();
hi64_reveal ();
let f (n:nat{8 <= n /\ n < 16}) = (lo64_def q / pow2 ((16 - n) * 8)) * pow2 ((16 - n) * 8) == ((lo64_def q / pow2 ((16 - n) * 8)) * pow2 ((16 - n) * 8)) % pow2_64 in
assert_norm (f 8);
assert_norm (f 9);
assert_norm (f 10);
assert_norm (f 11);
assert_norm (f 12);
assert_norm (f 13);
assert_norm (f 14);
assert_norm (f 15);
assert (((lo64 q) / pow2 ((16 - n) * 8)) * pow2 ((16 - n) * 8) == (((lo64 q) / pow2 ((16 - n) * 8)) * pow2 ((16 - n) * 8)) % pow2_64);
let s = be_quad32_to_bytes q in
let s' = slice s 0 n in
let q' = two_two_to_four (Mktwo (nat_to_two 32 new_lo) (nat_to_two 32 (hi64 q))) in
let s'' = pad_to_128_bits s' in
let q'' = be_bytes_to_quad32 s'' in
let s0_4 = slice s 0 4 in
let s4_8 = slice s 4 8 in
let s8_12 = slice s 8 12 in
let s12_16 = slice s 12 16 in
let s0_4'' = slice s'' 0 4 in
let s4_8'' = slice s'' 4 8 in
let s8_12'' = slice s'' 8 12 in
let s12_16'' = slice s'' 12 16 in
let Mkfour q0 q1 q2 q3 = q in
let Mkfour q0' q1' q2' q3' = q' in
let Mkfour q0'' q1'' q2'' q3'' = q'' in
if n < 12 then
(
lemma_div_n_8_lower1 q (n - 8);
lemma_64_32_lo1 q' (lo64 q) new_lo (n - 8);
lemma_pad_to_32_bits s8_12 s8_12'' (n - 8);
()
)
else
(
lemma_div_n_8_lower2 q (n - 12);
lemma_64_32_lo2 q' (lo64 q) new_lo (n - 12);
lemma_pad_to_32_bits s12_16 s12_16'' (n - 12);
()
);
lemma_slices_be_quad32_to_bytes q;
lemma_slices_be_bytes_to_quad32 s'';
lemma_four_zero ();
let zero_4 : seq nat8 = create 4 0 in
assert (n < 12 ==> equal s12_16'' zero_4);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": true,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | q: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures
(let q' =
Vale.Def.Words.Four_s.two_two_to_four (Vale.Def.Words_s.Mktwo
(Vale.Def.Words.Two_s.nat_to_two 32 0)
(Vale.Def.Words.Two_s.nat_to_two 32 (Vale.Arch.Types.hi64 q)))
in
q' ==
Vale.Def.Types_s.be_bytes_to_quad32 (Vale.AES.GCTR_BE_s.pad_to_128_bits (FStar.Seq.Base.slice
(Vale.Arch.Types.be_quad32_to_bytes q)
0
8)))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Vale.AES.GCM_helpers_BE.pad_to_128_bits_lower",
"Prims.unit",
"FStar.Math.Lemmas.small_division_lemma_1",
"Vale.Arch.Types.lo64",
"Prims.pow2"
] | [] | true | false | true | false | false | let pad_to_128_bits_lower_8 (q: quad32) =
| small_division_lemma_1 (lo64 q) (pow2 64);
pad_to_128_bits_lower q 8 | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.lemma_div_n_8_upper2 | val lemma_div_n_8_upper2 (q: quad32) (n: nat)
: Lemma (requires n <= 4)
(ensures
(hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) ==
0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) | val lemma_div_n_8_upper2 (q: quad32) (n: nat)
: Lemma (requires n <= 4)
(ensures
(hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) ==
0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) | let lemma_div_n_8_upper2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
if n <= 2 then lemma_div_n_8_upper2_helper q n else
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 4);
assert_norm (f 3);
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 169,
"start_col": 0,
"start_line": 159
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
)
let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
()
#reset-options "--smtencoding.elim_box true --z3rlimit 60 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1"
let lemma_pad_to_32_bits_helper (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 2 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
()
let lemma_pad_to_32_bits (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
if n <= 2 then lemma_pad_to_32_bits_helper s s'' n else
assert (n == 3 \/ n == 4);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (0 * 8) == 1);
assert_norm (pow2 (1 * 8) == 0x100);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 3 ==> x / pow2 (8 * (4 - n)) == x / 0x100);
assert (n == 4 ==> x / pow2 (8 * (4 - n)) == x / 0x1);
assert_norm (((x / pow2 (8 * 1)) * pow2 (8 * 1)) % pow2 (8 * 1) == 0);
assert_norm (((x / pow2 (8 * 0)) * pow2 (8 * 0)) % pow2 (8 * 0) == 0);
()
let lemma_div_n_8_upper1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = ((hi64_def q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 0);
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
()
let lemma_div_n_8_upper2_helper (q:quad32) (n:nat) : Lemma
(requires n <= 2)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 2);
assert_norm (f 1);
assert_norm (f 0);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": true,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | q: Vale.Def.Types_s.quad32 -> n: Prims.nat
-> FStar.Pervasives.Lemma (requires n <= 4)
(ensures
(Vale.Arch.Types.hi64 q / Prims.pow2 (8 * (4 - n))) * Prims.pow2 (8 * (4 - n)) ==
0x100000000 * Mkfour?.hi3 q +
(Mkfour?.hi2 q / Prims.pow2 (8 * (4 - n))) * Prims.pow2 (8 * (4 - n))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Vale.AES.GCM_helpers_BE.lemma_div_n_8_upper2_helper",
"Prims.bool",
"Vale.Def.Types_s.nat32",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.logical",
"Prims.eq2",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Vale.Arch.Types.hi64_def",
"Prims.pow2",
"Prims.op_Subtraction",
"Prims.op_Addition",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Arch.Types.hi64_reveal",
"Prims.squash",
"Vale.Arch.Types.hi64",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let lemma_div_n_8_upper2 (q: quad32) (n: nat)
: Lemma (requires n <= 4)
(ensures
(hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) ==
0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))) =
| hi64_reveal ();
if n <= 2
then lemma_div_n_8_upper2_helper q n
else
let Mkfour _ _ _ _ = q in
let f (n: nat{n <= 4}) =
(hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) ==
0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n))
in
assert_norm (f 4);
assert_norm (f 3);
() | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.lemma_slices_be_bytes_to_quad32 | val lemma_slices_be_bytes_to_quad32 (s: seq16 nat8)
: Lemma
(ensures
(let q = be_bytes_to_quad32 s in
q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\
q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\
q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\
q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16)))) | val lemma_slices_be_bytes_to_quad32 (s: seq16 nat8)
: Lemma
(ensures
(let q = be_bytes_to_quad32 s in
q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\
q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\
q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\
q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16)))) | let lemma_slices_be_bytes_to_quad32 (s:seq16 nat8) : Lemma
(ensures (
let q = be_bytes_to_quad32 s in
q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\
q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\
q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\
q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16))
))
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8);
be_bytes_to_quad32_reveal ();
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 260,
"start_col": 0,
"start_line": 249
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
)
let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
()
#reset-options "--smtencoding.elim_box true --z3rlimit 60 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1"
let lemma_pad_to_32_bits_helper (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 2 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
()
let lemma_pad_to_32_bits (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
if n <= 2 then lemma_pad_to_32_bits_helper s s'' n else
assert (n == 3 \/ n == 4);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (0 * 8) == 1);
assert_norm (pow2 (1 * 8) == 0x100);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 3 ==> x / pow2 (8 * (4 - n)) == x / 0x100);
assert (n == 4 ==> x / pow2 (8 * (4 - n)) == x / 0x1);
assert_norm (((x / pow2 (8 * 1)) * pow2 (8 * 1)) % pow2 (8 * 1) == 0);
assert_norm (((x / pow2 (8 * 0)) * pow2 (8 * 0)) % pow2 (8 * 0) == 0);
()
let lemma_div_n_8_upper1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = ((hi64_def q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 0);
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
()
let lemma_div_n_8_upper2_helper (q:quad32) (n:nat) : Lemma
(requires n <= 2)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 2);
assert_norm (f 1);
assert_norm (f 0);
()
let lemma_div_n_8_upper2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
if n <= 2 then lemma_div_n_8_upper2_helper q n else
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 4);
assert_norm (f 3);
()
let lemma_div_n_8_lower1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((lo64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.lo1 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper1 (Mkfour 0 0 q0 q1) n
let lemma_div_n_8_lower2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (lo64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.lo1 + (q.lo0 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper2 (Mkfour 0 0 q0 q1) n
let lemma_64_32_hi1 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' % pow2_32 == 0 /\ hi' / pow2_32 == q'.hi3 /\ q' == Mkfour 0 0 0 q'.hi3)
=
assert_norm (((hi / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm ((((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32) % pow2_32 ==
((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
()
let lemma_64_32_hi2 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' == 0x100000000 * q'.hi3 + q'.hi2 /\ q' == Mkfour 0 0 q'.hi2 q'.hi3)
=
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
()
let lemma_64_32_lo1 (q':quad32) (lo lo':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
lo' == (lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3)
)
(ensures lo' % pow2_32 == 0 /\ lo' / pow2_32 == q'.lo1 /\ q'.lo0 == 0)
=
assert_norm (((lo / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) / pow2_32) % pow2_32 ==
((lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 lo' == nat_to_two_unfold 32 lo');
()
let lemma_64_32_lo2 (q':quad32) (lo lo':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
lo' == (lo / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3)
)
(ensures lo' == q'.lo0 + 0x100000000 * q'.lo1)
=
assert_norm (nat_to_two 32 lo' == nat_to_two_unfold 32 lo');
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": true,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Vale.Def.Words.Seq_s.seq16 Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(ensures
(let q = Vale.Def.Types_s.be_bytes_to_quad32 s in
Mkfour?.hi3 q ==
Vale.Def.Words.Four_s.four_to_nat 8
(Vale.Def.Words.Seq_s.seq_to_four_BE (FStar.Seq.Base.slice s 0 4)) /\
Mkfour?.hi2 q ==
Vale.Def.Words.Four_s.four_to_nat 8
(Vale.Def.Words.Seq_s.seq_to_four_BE (FStar.Seq.Base.slice s 4 8)) /\
Mkfour?.lo1 q ==
Vale.Def.Words.Four_s.four_to_nat 8
(Vale.Def.Words.Seq_s.seq_to_four_BE (FStar.Seq.Base.slice s 8 12)) /\
Mkfour?.lo0 q ==
Vale.Def.Words.Four_s.four_to_nat 8
(Vale.Def.Words.Seq_s.seq_to_four_BE (FStar.Seq.Base.slice s 12 16)))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Words.Seq_s.seq16",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"Vale.Def.Types_s.be_bytes_to_quad32_reveal",
"FStar.Pervasives.reveal_opaque",
"FStar.Seq.Base.seq",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Seq.Base.length",
"Vale.Def.Words_s.four",
"Prims.op_Division",
"Vale.Def.Words.Seq_s.seq_to_seq_four_BE",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Vale.Def.Words_s.natN",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Seq_s.seq_to_four_BE",
"FStar.Seq.Base.slice",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.be_bytes_to_quad32",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_slices_be_bytes_to_quad32 (s: seq16 nat8)
: Lemma
(ensures
(let q = be_bytes_to_quad32 s in
q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\
q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\
q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\
q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16)))) =
| reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8);
be_bytes_to_quad32_reveal ();
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.nat32_xor_bytewise_3_helper2 | val nat32_xor_bytewise_3_helper2 (x x': nat32) (t t': four nat8)
: Lemma
(requires
x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) | val nat32_xor_bytewise_3_helper2 (x x': nat32) (t t': four nat8)
: Lemma
(requires
x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) | let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 380,
"start_col": 0,
"start_line": 365
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x: Vale.Def.Types_s.nat32 ->
x': Vale.Def.Types_s.nat32 ->
t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000)
(ensures
Mkfour?.lo0 t == Mkfour?.lo0 t' /\ Mkfour?.lo1 t == Mkfour?.lo1 t' /\
Mkfour?.hi2 t == Mkfour?.hi2 t') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"Vale.AES.GCTR.nat32_xor_bytewise_3_helper1",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"Prims.int",
"Prims.op_Addition",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Vale.Def.Words_s.pow2_32",
"Prims.op_Modulus",
"Prims.squash",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let nat32_xor_bytewise_3_helper2 (x x': nat32) (t t': four nat8)
: Lemma
(requires
x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) =
| let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t);
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.nat32_xor_bytewise_2_helper2 | val nat32_xor_bytewise_2_helper2 (x x': nat32) (t t': four nat8)
: Lemma
(requires
x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) | val nat32_xor_bytewise_2_helper2 (x x': nat32) (t t': four nat8)
: Lemma
(requires
x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) | let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 363,
"start_col": 0,
"start_line": 346
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x: Vale.Def.Types_s.nat32 ->
x': Vale.Def.Types_s.nat32 ->
t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000)
(ensures Mkfour?.lo0 t == Mkfour?.lo0 t' /\ Mkfour?.lo1 t == Mkfour?.lo1 t') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"Vale.AES.GCTR.nat32_xor_bytewise_2_helper1",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"Prims.int",
"Prims.op_Addition",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Vale.Def.Words_s.pow2_32",
"Prims.op_Modulus",
"Prims.squash",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let nat32_xor_bytewise_2_helper2 (x x': nat32) (t t': four nat8)
: Lemma
(requires
x == four_to_nat 8 t /\ x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) =
| let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t);
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.nat32_xor_bytewise_2_helper3 | val nat32_xor_bytewise_2_helper3 (k k': nat32) (s s': four nat8)
: Lemma
(requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) | val nat32_xor_bytewise_2_helper3 (k k': nat32) (s s': four nat8)
: Lemma
(requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) | let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 408,
"start_col": 0,
"start_line": 396
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0
)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Vale.Def.Types_s.nat32 ->
k': Vale.Def.Types_s.nat32 ->
s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\
Mkfour?.lo0 s == Mkfour?.lo0 s' /\ Mkfour?.lo1 s == Mkfour?.lo1 s')
(ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Prims.squash",
"Prims.int",
"Prims.op_Modulus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let nat32_xor_bytewise_2_helper3 (k k': nat32) (s s': four nat8)
: Lemma
(requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
) (ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000) =
| let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s);
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.nat32_xor_bytewise_1_helper3 | val nat32_xor_bytewise_1_helper3 (k k': nat32) (s s': four nat8)
: Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) | val nat32_xor_bytewise_1_helper3 (k k': nat32) (s s': four nat8)
: Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) | let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0
)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 394,
"start_col": 0,
"start_line": 382
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Vale.Def.Types_s.nat32 ->
k': Vale.Def.Types_s.nat32 ->
s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\
Mkfour?.lo0 s == Mkfour?.lo0 s')
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Prims.squash",
"Prims.int",
"Prims.op_Modulus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let nat32_xor_bytewise_1_helper3 (k k': nat32) (s s': four nat8)
: Lemma (requires k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000) =
| let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s);
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
() | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.lemma_64_32_lo1 | val lemma_64_32_lo1 (q': quad32) (lo lo': nat64) (n: nat)
: Lemma
(requires
n <= 4 /\ lo' == (lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3))
(ensures lo' % pow2_32 == 0 /\ lo' / pow2_32 == q'.lo1 /\ q'.lo0 == 0) | val lemma_64_32_lo1 (q': quad32) (lo lo': nat64) (n: nat)
: Lemma
(requires
n <= 4 /\ lo' == (lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3))
(ensures lo' % pow2_32 == 0 /\ lo' / pow2_32 == q'.lo1 /\ q'.lo0 == 0) | let lemma_64_32_lo1 (q':quad32) (lo lo':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
lo' == (lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3)
)
(ensures lo' % pow2_32 == 0 /\ lo' / pow2_32 == q'.lo1 /\ q'.lo0 == 0)
=
assert_norm (((lo / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) / pow2_32) % pow2_32 ==
((lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 lo' == nat_to_two_unfold 32 lo');
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 236,
"start_col": 0,
"start_line": 220
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
)
let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
()
#reset-options "--smtencoding.elim_box true --z3rlimit 60 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1"
let lemma_pad_to_32_bits_helper (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 2 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
()
let lemma_pad_to_32_bits (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
if n <= 2 then lemma_pad_to_32_bits_helper s s'' n else
assert (n == 3 \/ n == 4);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (0 * 8) == 1);
assert_norm (pow2 (1 * 8) == 0x100);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 3 ==> x / pow2 (8 * (4 - n)) == x / 0x100);
assert (n == 4 ==> x / pow2 (8 * (4 - n)) == x / 0x1);
assert_norm (((x / pow2 (8 * 1)) * pow2 (8 * 1)) % pow2 (8 * 1) == 0);
assert_norm (((x / pow2 (8 * 0)) * pow2 (8 * 0)) % pow2 (8 * 0) == 0);
()
let lemma_div_n_8_upper1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = ((hi64_def q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 0);
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
()
let lemma_div_n_8_upper2_helper (q:quad32) (n:nat) : Lemma
(requires n <= 2)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 2);
assert_norm (f 1);
assert_norm (f 0);
()
let lemma_div_n_8_upper2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
if n <= 2 then lemma_div_n_8_upper2_helper q n else
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 4);
assert_norm (f 3);
()
let lemma_div_n_8_lower1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((lo64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.lo1 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper1 (Mkfour 0 0 q0 q1) n
let lemma_div_n_8_lower2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (lo64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.lo1 + (q.lo0 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper2 (Mkfour 0 0 q0 q1) n
let lemma_64_32_hi1 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' % pow2_32 == 0 /\ hi' / pow2_32 == q'.hi3 /\ q' == Mkfour 0 0 0 q'.hi3)
=
assert_norm (((hi / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm ((((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32) % pow2_32 ==
((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
()
let lemma_64_32_hi2 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' == 0x100000000 * q'.hi3 + q'.hi2 /\ q' == Mkfour 0 0 q'.hi2 q'.hi3)
=
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": true,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
q': Vale.Def.Types_s.quad32 ->
lo: Vale.Def.Types_s.nat64 ->
lo': Vale.Def.Types_s.nat64 ->
n: Prims.nat
-> FStar.Pervasives.Lemma
(requires
n <= 4 /\ lo' == (lo / Prims.pow2 (8 * (8 - n))) * Prims.pow2 (8 * (8 - n)) /\
Vale.Def.Words.Four_s.four_to_two_two q' ==
Vale.Def.Words_s.Mktwo (Vale.Def.Words.Two_s.nat_to_two 32 lo')
(Vale.Def.Words_s.Mktwo (Mkfour?.hi2 q') (Mkfour?.hi3 q')))
(ensures
lo' % Vale.Def.Words_s.pow2_32 == 0 /\ lo' / Vale.Def.Words_s.pow2_32 == Mkfour?.lo1 q' /\
Mkfour?.lo0 q' == 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Vale.Def.Types_s.nat64",
"Prims.nat",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.two",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"Vale.Def.Words.Two_s.nat_to_two",
"Vale.Def.Words.Two_s.nat_to_two_unfold",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Division",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Vale.Def.Words_s.pow2_32",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words.Four_s.four_to_two_two",
"Vale.Def.Words_s.Mktwo",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Prims.squash",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_64_32_lo1 (q': quad32) (lo lo': nat64) (n: nat)
: Lemma
(requires
n <= 4 /\ lo' == (lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3))
(ensures lo' % pow2_32 == 0 /\ lo' / pow2_32 == q'.lo1 /\ q'.lo0 == 0) =
| assert_norm (((lo / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) / pow2_32) % pow2_32 ==
((lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 lo' == nat_to_two_unfold 32 lo');
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.nat32_xor_bytewise_3_helper3 | val nat32_xor_bytewise_3_helper3 (k k': nat32) (s s': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\
s.hi2 == s'.hi2) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) | val nat32_xor_bytewise_3_helper3 (k k': nat32) (s s': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\
s.hi2 == s'.hi2) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) | let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 422,
"start_col": 0,
"start_line": 410
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0
)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Vale.Def.Types_s.nat32 ->
k': Vale.Def.Types_s.nat32 ->
s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\
Mkfour?.lo0 s == Mkfour?.lo0 s' /\ Mkfour?.lo1 s == Mkfour?.lo1 s' /\
Mkfour?.hi2 s == Mkfour?.hi2 s')
(ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Prims.squash",
"Prims.int",
"Prims.op_Modulus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let nat32_xor_bytewise_3_helper3 (k k': nat32) (s s': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\
s.hi2 == s'.hi2) (ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000) =
| let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s);
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.nat32_xor_bytewise_2 | val nat32_xor_bytewise_2 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\
s.lo1 == s'.lo1) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) | val nat32_xor_bytewise_2 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\
s.lo1 == s'.lo1) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) | let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishl_32 k 16;
lemma_ishl_32 k' 16;
lemma_ishl_32 x 16;
lemma_ishl_32 x' 16;
lemma_ishl_ixor_32 k m 16;
lemma_ishl_ixor_32 k' m 16;
// assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16));
// assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16));
// assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16));
// assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16));
nat32_xor_bytewise_2_helper2 x x' t t';
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 483,
"start_col": 0,
"start_line": 451
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0
)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishl_32 k 24;
lemma_ishl_32 k' 24;
lemma_ishl_32 x 24;
lemma_ishl_32 x' 24;
lemma_ishl_ixor_32 k m 24;
lemma_ishl_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Vale.Def.Types_s.nat32 ->
k': Vale.Def.Types_s.nat32 ->
x: Vale.Def.Types_s.nat32 ->
x': Vale.Def.Types_s.nat32 ->
m: Vale.Def.Types_s.nat32 ->
s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\
x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\
Vale.Def.Types_s.ixor k m == x /\ Vale.Def.Types_s.ixor k' m == x' /\
Mkfour?.lo0 s == Mkfour?.lo0 s' /\ Mkfour?.lo1 s == Mkfour?.lo1 s')
(ensures Mkfour?.lo0 t == Mkfour?.lo0 t' /\ Mkfour?.lo1 t == Mkfour?.lo1 t') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"Vale.AES.GCTR.nat32_xor_bytewise_2_helper2",
"Vale.AES.GCTR.lemma_ishl_ixor_32",
"Vale.AES.GCTR.lemma_ishl_32",
"Vale.AES.GCTR.nat32_xor_bytewise_2_helper3",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Types_s.ixor",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let nat32_xor_bytewise_2 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\
s.lo1 == s'.lo1) (ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1) =
| let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishl_32 k 16;
lemma_ishl_32 k' 16;
lemma_ishl_32 x 16;
lemma_ishl_32 x' 16;
lemma_ishl_ixor_32 k m 16;
lemma_ishl_ixor_32 k' m 16;
nat32_xor_bytewise_2_helper2 x x' t t';
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.nat32_xor_bytewise_1 | val nat32_xor_bytewise_1 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0)
(ensures t.lo0 == t'.lo0) | val nat32_xor_bytewise_1 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0)
(ensures t.lo0 == t'.lo0) | let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishl_32 k 24;
lemma_ishl_32 k' 24;
lemma_ishl_32 x 24;
lemma_ishl_32 x' 24;
lemma_ishl_ixor_32 k m 24;
lemma_ishl_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 449,
"start_col": 0,
"start_line": 424
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0
)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Vale.Def.Types_s.nat32 ->
k': Vale.Def.Types_s.nat32 ->
x: Vale.Def.Types_s.nat32 ->
x': Vale.Def.Types_s.nat32 ->
m: Vale.Def.Types_s.nat32 ->
s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\
x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\
Vale.Def.Types_s.ixor k m == x /\ Vale.Def.Types_s.ixor k' m == x' /\
Mkfour?.lo0 s == Mkfour?.lo0 s') (ensures Mkfour?.lo0 t == Mkfour?.lo0 t') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"Vale.AES.GCTR.nat32_xor_bytewise_1_helper2",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.pow2",
"Vale.AES.GCTR.pow2_24",
"Vale.AES.GCTR.lemma_ishl_ixor_32",
"Vale.AES.GCTR.lemma_ishl_32",
"Vale.AES.GCTR.nat32_xor_bytewise_1_helper3",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Vale.Def.Words_s.natN",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Types_s.ixor",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let nat32_xor_bytewise_1 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0)
(ensures t.lo0 == t'.lo0) =
| let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishl_32 k 24;
lemma_ishl_32 k' 24;
lemma_ishl_32 x 24;
lemma_ishl_32 x' 24;
lemma_ishl_ixor_32 k m 24;
lemma_ishl_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.nat32_xor_bytewise_3 | val nat32_xor_bytewise_3 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\
s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) | val nat32_xor_bytewise_3 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\
s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) | let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishl_32 k 8;
lemma_ishl_32 k' 8;
lemma_ishl_32 x 8;
lemma_ishl_32 x' 8;
lemma_ishl_ixor_32 k m 8;
lemma_ishl_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 509,
"start_col": 0,
"start_line": 485
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0
)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishl_32 k 24;
lemma_ishl_32 k' 24;
lemma_ishl_32 x 24;
lemma_ishl_32 x' 24;
lemma_ishl_ixor_32 k m 24;
lemma_ishl_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishl_32 k 16;
lemma_ishl_32 k' 16;
lemma_ishl_32 x 16;
lemma_ishl_32 x' 16;
lemma_ishl_ixor_32 k m 16;
lemma_ishl_ixor_32 k' m 16;
// assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16));
// assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16));
// assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16));
// assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16));
nat32_xor_bytewise_2_helper2 x x' t t';
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Vale.Def.Types_s.nat32 ->
k': Vale.Def.Types_s.nat32 ->
x: Vale.Def.Types_s.nat32 ->
x': Vale.Def.Types_s.nat32 ->
m: Vale.Def.Types_s.nat32 ->
s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\
x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\
Vale.Def.Types_s.ixor k m == x /\ Vale.Def.Types_s.ixor k' m == x' /\
Mkfour?.lo0 s == Mkfour?.lo0 s' /\ Mkfour?.lo1 s == Mkfour?.lo1 s' /\
Mkfour?.hi2 s == Mkfour?.hi2 s')
(ensures
Mkfour?.lo0 t == Mkfour?.lo0 t' /\ Mkfour?.lo1 t == Mkfour?.lo1 t' /\
Mkfour?.hi2 t == Mkfour?.hi2 t') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"Vale.AES.GCTR.nat32_xor_bytewise_3_helper2",
"Vale.AES.GCTR.lemma_ishl_ixor_32",
"Vale.AES.GCTR.lemma_ishl_32",
"Vale.AES.GCTR.nat32_xor_bytewise_3_helper3",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Types_s.ixor",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let nat32_xor_bytewise_3 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s.lo0 == s'.lo0 /\
s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2) =
| let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishl_32 k 8;
lemma_ishl_32 k' 8;
lemma_ishl_32 x 8;
lemma_ishl_32 x' 8;
lemma_ishl_ixor_32 k m 8;
lemma_ishl_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.slice_pad_to_128_bits | val slice_pad_to_128_bits (s: seq nat8 {0 < length s /\ length s < 16})
: Lemma (slice (pad_to_128_bits s) 0 (length s) == s) | val slice_pad_to_128_bits (s: seq nat8 {0 < length s /\ length s < 16})
: Lemma (slice (pad_to_128_bits s) 0 (length s) == s) | let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) :
Lemma(slice (pad_to_128_bits s) 0 (length s) == s)
=
assert (length s % 16 == length s);
assert (equal s (slice (pad_to_128_bits s) 0 (length s)));
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 605,
"start_col": 0,
"start_line": 600
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0
)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishl_32 k 24;
lemma_ishl_32 k' 24;
lemma_ishl_32 x 24;
lemma_ishl_32 x' 24;
lemma_ishl_ixor_32 k m 24;
lemma_ishl_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishl_32 k 16;
lemma_ishl_32 k' 16;
lemma_ishl_32 x 16;
lemma_ishl_32 x' 16;
lemma_ishl_ixor_32 k m 16;
lemma_ishl_ixor_32 k' m 16;
// assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16));
// assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16));
// assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16));
// assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16));
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishl_32 k 8;
lemma_ishl_32 k' 8;
lemma_ishl_32 x 8;
lemma_ishl_32 x' 8;
lemma_ishl_ixor_32 k m 8;
lemma_ishl_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
()
#reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap"
let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
)
(ensures t == t')
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
()
#reset-options
let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
k == four_to_nat 8 (seq_to_four_LE s) /\
k' == four_to_nat 8 (seq_to_four_LE s') /\
ixor k m == four_to_nat 8 (seq_to_four_LE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\
equal (slice s 0 n) (slice s' 0 n)
)
// (ensures equal (slice t 0 n) (slice t' 0 n))
(ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i))
=
assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0);
assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1);
assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2);
assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3);
let x = ixor k m in
let x' = ixor k' m in
if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
assert (equal (slice t 0 n) (slice t' 0 n));
lemma_slice_orig_index t t' 0 n;
()
let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma
(requires (let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures (let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n))
=
let s = le_quad32_to_bytes q in
let s' = le_quad32_to_bytes q' in
let t = le_quad32_to_bytes (quad32_xor q r) in
let t' = le_quad32_to_bytes (quad32_xor q' r) in
lemma_slices_le_quad32_to_bytes q;
lemma_slices_le_quad32_to_bytes q';
lemma_slices_le_quad32_to_bytes (quad32_xor q r);
lemma_slices_le_quad32_to_bytes (quad32_xor q' r);
lemma_slice_orig_index s s' 0 n;
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
if n < 4 then nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n
else
(
nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4;
if n < 8 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4)
else
(
nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4;
if n < 12 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8)
else
(
nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4;
nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12);
()
)
)
);
assert (equal (slice t 0 n) (slice t' 0 n));
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s:
FStar.Seq.Base.seq Vale.Def.Types_s.nat8
{0 < FStar.Seq.Base.length s /\ FStar.Seq.Base.length s < 16}
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.slice (Vale.AES.GCTR_s.pad_to_128_bits s) 0 (FStar.Seq.Base.length s) == s) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat8",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"Vale.AES.GCTR_s.pad_to_128_bits",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let slice_pad_to_128_bits (s: seq nat8 {0 < length s /\ length s < 16})
: Lemma (slice (pad_to_128_bits s) 0 (length s) == s) =
| assert (length s % 16 == length s);
assert (equal s (slice (pad_to_128_bits s) 0 (length s)));
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.lemma_length_simplifier | val lemma_length_simplifier (s bytes t: seq quad32) (num_bytes: nat)
: Lemma
(requires
t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1)
(ensures
slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes) | val lemma_length_simplifier (s bytes t: seq quad32) (num_bytes: nat)
: Lemma
(requires
t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1)
(ensures
slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes) | let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
=
if num_bytes > (length s) * 16 then (
()
) else (
calc (==) {
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes;
== { append_distributes_le_seq_quad32_to_bytes s bytes }
slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes;
== { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes) }
le_seq_quad32_to_bytes s;
== { assert (length (le_seq_quad32_to_bytes s) == num_bytes) }
slice (le_seq_quad32_to_bytes s) 0 num_bytes;
};
()
) | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 751,
"start_col": 0,
"start_line": 728
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0
)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishl_32 k 24;
lemma_ishl_32 k' 24;
lemma_ishl_32 x 24;
lemma_ishl_32 x' 24;
lemma_ishl_ixor_32 k m 24;
lemma_ishl_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishl_32 k 16;
lemma_ishl_32 k' 16;
lemma_ishl_32 x 16;
lemma_ishl_32 x' 16;
lemma_ishl_ixor_32 k m 16;
lemma_ishl_ixor_32 k' m 16;
// assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16));
// assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16));
// assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16));
// assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16));
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishl_32 k 8;
lemma_ishl_32 k' 8;
lemma_ishl_32 x 8;
lemma_ishl_32 x' 8;
lemma_ishl_ixor_32 k m 8;
lemma_ishl_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
()
#reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap"
let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
)
(ensures t == t')
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
()
#reset-options
let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
k == four_to_nat 8 (seq_to_four_LE s) /\
k' == four_to_nat 8 (seq_to_four_LE s') /\
ixor k m == four_to_nat 8 (seq_to_four_LE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\
equal (slice s 0 n) (slice s' 0 n)
)
// (ensures equal (slice t 0 n) (slice t' 0 n))
(ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i))
=
assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0);
assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1);
assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2);
assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3);
let x = ixor k m in
let x' = ixor k' m in
if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
assert (equal (slice t 0 n) (slice t' 0 n));
lemma_slice_orig_index t t' 0 n;
()
let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma
(requires (let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures (let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n))
=
let s = le_quad32_to_bytes q in
let s' = le_quad32_to_bytes q' in
let t = le_quad32_to_bytes (quad32_xor q r) in
let t' = le_quad32_to_bytes (quad32_xor q' r) in
lemma_slices_le_quad32_to_bytes q;
lemma_slices_le_quad32_to_bytes q';
lemma_slices_le_quad32_to_bytes (quad32_xor q r);
lemma_slices_le_quad32_to_bytes (quad32_xor q' r);
lemma_slice_orig_index s s' 0 n;
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
if n < 4 then nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n
else
(
nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4;
if n < 8 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4)
else
(
nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4;
if n < 12 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8)
else
(
nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4;
nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12);
()
)
)
);
assert (equal (slice t 0 n) (slice t' 0 n));
()
let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) :
Lemma(slice (pad_to_128_bits s) 0 (length s) == s)
=
assert (length s % 16 == length s);
assert (equal s (slice (pad_to_128_bits s) 0 (length s)));
()
let step2 (s:seq nat8 { 0 < length s /\ length s < 16 }) (q:quad32) (icb_BE:quad32) (alg:algorithm) (key:aes_key_LE alg) (i:int):
Lemma(let q_bytes = le_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes)
=
let q_bytes = le_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in
let enc_ctr = aes_encrypt_LE alg key (reverse_bytes_quad32 (inc32 icb_BE i)) in
let icb_LE = reverse_bytes_quad32 (inc32 icb_BE i) in
if s = q_bytes_prefix then (
// s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s)
// = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE s_quad alg key i)) 0 (length s)
// = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE (le_bytes_to_quad32 (pad_to_128_bits s)) alg key i)) 0 (length s)
// q_cipher_bytes = gctr_encrypt_block icb_BE q alg key i
le_quad32_to_bytes_to_quad32 (pad_to_128_bits s);
slice_pad_to_128_bits s;
quad32_xor_bytewise q (le_bytes_to_quad32 (pad_to_128_bits s)) (aes_encrypt_LE alg key icb_LE) (length s);
//assert (equal s_cipher_bytes q_cipher_bytes);
()
) else
();
()
#reset-options "--z3rlimit 30"
open FStar.Seq.Properties
let gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) =
gctr_encrypt_LE_reveal ();
let num_blocks = num_bytes / 16 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 num_bytes in
step1 plain num_bytes;
let s = slice (le_seq_quad32_to_bytes plain) (num_blocks * 16) num_bytes in
let final_p = index plain num_blocks in
step2 s final_p icb_BE alg key num_blocks;
let num_extra = num_bytes % 16 in
let full_bytes_len = num_bytes - num_extra in
let full_blocks, final_block = split plain_bytes full_bytes_len in
assert (full_bytes_len % 16 == 0);
assert (length full_blocks == full_bytes_len);
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
assert (cipher_quads_LE == slice cipher 0 num_blocks); // LHS quads
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
assert (le_seq_quad32_to_bytes cipher_quads_LE == le_seq_quad32_to_bytes (slice cipher 0 num_blocks)); // LHS bytes
assert (length s == num_extra);
let q_prefix = slice (le_quad32_to_bytes final_p) 0 num_extra in
le_seq_quad32_to_bytes_tail_prefix plain num_bytes;
assert (q_prefix == s);
assert(final_cipher_bytes_LE == slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra); // RHS bytes
le_seq_quad32_to_bytes_tail_prefix cipher num_bytes;
assert (slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra ==
slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes);
slice_commutes_le_seq_quad32_to_bytes0 cipher num_blocks;
assert (le_seq_quad32_to_bytes (slice cipher 0 num_blocks) == slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16));
assert (slice (slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) (length cipher * 16)) 0 num_extra ==
slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes);
slice_append_adds (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes;
assert (slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16) @|
slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes ==
slice (le_seq_quad32_to_bytes cipher) 0 num_bytes);
assert (cipher_bytes == (le_seq_quad32_to_bytes (slice cipher 0 num_blocks)) @| slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra);
()
let gctr_encrypt_one_block (icb_BE plain:quad32) (alg:algorithm) (key:seq nat32) =
gctr_encrypt_LE_reveal ();
assert(inc32 icb_BE 0 == icb_BE);
let encrypted_icb = aes_encrypt_BE alg key icb_BE in
let p = le_quad32_to_bytes plain in
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let p_seq = create 1 plain in
assert (length p == 16);
le_bytes_to_seq_quad32_to_bytes_one_quad plain;
assert (p_seq == plain_quads_LE);
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (cipher_quads_LE == cons (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0) (gctr_encrypt_recursive icb_BE (tail plain_quads_LE) alg key (1)));
assert (head plain_quads_LE == plain);
assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 ==
(let icb_LE = reverse_bytes_quad32 (inc32 icb_BE 0) in
quad32_xor (head plain_quads_LE) (aes_encrypt_LE alg key icb_LE)));
assert (quad32_xor plain (aes_encrypt_LE alg key (reverse_bytes_quad32 icb_BE))
==
(let icb_LE = reverse_bytes_quad32 (inc32 icb_BE 0) in
quad32_xor (head plain_quads_LE) (aes_encrypt_LE alg key icb_LE)));
assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain (aes_encrypt_LE alg key (reverse_bytes_quad32 icb_BE)));
aes_encrypt_LE_reveal ();
assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain (aes_encrypt_BE alg key icb_BE));
assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain encrypted_icb);
assert(gctr_encrypt_recursive icb_BE (tail p_seq) alg key 1 == empty); // OBSERVE
//assert(gctr_encrypt_LE icb p alg key == cons (quad32_xor plain encrypted_icb) empty);
let x = quad32_xor plain encrypted_icb in
append_empty_r (create 1 x); // This is the missing piece
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
t: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
num_bytes: Prims.nat
-> FStar.Pervasives.Lemma
(requires
t ==
(match num_bytes > FStar.Seq.Base.length s * 16 with
| true -> FStar.Seq.Base.append s bytes
| _ -> s) /\
(num_bytes <= FStar.Seq.Base.length s * 16 ==> num_bytes == FStar.Seq.Base.length s * 16) /\
FStar.Seq.Base.length s * 16 <= num_bytes /\ num_bytes < FStar.Seq.Base.length s * 16 + 16 /\
FStar.Seq.Base.length bytes == 1)
(ensures
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes t) 0 num_bytes ==
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.append s bytes
))
0
num_bytes) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Prims.op_GreaterThan",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"Prims.bool",
"Prims.unit",
"FStar.Calc.calc_finish",
"Vale.Def.Types_s.nat8",
"Prims.eq2",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"FStar.Seq.Base.append",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Vale.Arch.Types.append_distributes_le_seq_quad32_to_bytes",
"Prims.squash",
"Vale.Lib.Seqs.lemma_slice_first_exactly_in_append",
"Prims._assert",
"Prims.l_and",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.int",
"Prims.op_LessThan",
"Prims.op_Addition",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let lemma_length_simplifier (s bytes t: seq quad32) (num_bytes: nat)
: Lemma
(requires
t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1)
(ensures
slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes) =
| if num_bytes > (length s) * 16
then (())
else
(calc ( == ) {
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes;
( == ) { append_distributes_le_seq_quad32_to_bytes s bytes }
slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes;
( == ) { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s)
(le_seq_quad32_to_bytes bytes) }
le_seq_quad32_to_bytes s;
( == ) { assert (length (le_seq_quad32_to_bytes s) == num_bytes) }
slice (le_seq_quad32_to_bytes s) 0 num_bytes;
};
()) | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.nat32_xor_bytewise | val nat32_xor_bytewise (k k' m: nat32) (s s' t t': seq4 nat8) (n: nat)
: Lemma
(requires
n <= 4 /\ k == four_to_nat 8 (seq_to_four_LE s) /\ k' == four_to_nat 8 (seq_to_four_LE s') /\
ixor k m == four_to_nat 8 (seq_to_four_LE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\ equal (slice s 0 n) (slice s' 0 n))
(ensures
(forall (i: nat). {:pattern (index t i)\/(index t' i)} i < n ==> index t i == index t' i)) | val nat32_xor_bytewise (k k' m: nat32) (s s' t t': seq4 nat8) (n: nat)
: Lemma
(requires
n <= 4 /\ k == four_to_nat 8 (seq_to_four_LE s) /\ k' == four_to_nat 8 (seq_to_four_LE s') /\
ixor k m == four_to_nat 8 (seq_to_four_LE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\ equal (slice s 0 n) (slice s' 0 n))
(ensures
(forall (i: nat). {:pattern (index t i)\/(index t' i)} i < n ==> index t i == index t' i)) | let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
k == four_to_nat 8 (seq_to_four_LE s) /\
k' == four_to_nat 8 (seq_to_four_LE s') /\
ixor k m == four_to_nat 8 (seq_to_four_LE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\
equal (slice s 0 n) (slice s' 0 n)
)
// (ensures equal (slice t 0 n) (slice t' 0 n))
(ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i))
=
assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0);
assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1);
assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2);
assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3);
let x = ixor k m in
let x' = ixor k' m in
if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
assert (equal (slice t 0 n) (slice t' 0 n));
lemma_slice_orig_index t t' 0 n;
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 557,
"start_col": 0,
"start_line": 533
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0
)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishl_32 k 24;
lemma_ishl_32 k' 24;
lemma_ishl_32 x 24;
lemma_ishl_32 x' 24;
lemma_ishl_ixor_32 k m 24;
lemma_ishl_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishl_32 k 16;
lemma_ishl_32 k' 16;
lemma_ishl_32 x 16;
lemma_ishl_32 x' 16;
lemma_ishl_ixor_32 k m 16;
lemma_ishl_ixor_32 k' m 16;
// assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16));
// assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16));
// assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16));
// assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16));
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishl_32 k 8;
lemma_ishl_32 k' 8;
lemma_ishl_32 x 8;
lemma_ishl_32 x' 8;
lemma_ishl_ixor_32 k m 8;
lemma_ishl_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
()
#reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap"
let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
)
(ensures t == t')
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
()
#reset-options | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Vale.Def.Types_s.nat32 ->
k': Vale.Def.Types_s.nat32 ->
m: Vale.Def.Types_s.nat32 ->
s: Vale.Def.Words.Seq_s.seq4 Vale.Def.Types_s.nat8 ->
s': Vale.Def.Words.Seq_s.seq4 Vale.Def.Types_s.nat8 ->
t: Vale.Def.Words.Seq_s.seq4 Vale.Def.Types_s.nat8 ->
t': Vale.Def.Words.Seq_s.seq4 Vale.Def.Types_s.nat8 ->
n: Prims.nat
-> FStar.Pervasives.Lemma
(requires
n <= 4 /\ k == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_LE s) /\
k' == Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_LE s') /\
Vale.Def.Types_s.ixor k m ==
Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_LE t) /\
Vale.Def.Types_s.ixor k' m ==
Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Seq_s.seq_to_four_LE t') /\
FStar.Seq.Base.equal (FStar.Seq.Base.slice s 0 n) (FStar.Seq.Base.slice s' 0 n))
(ensures
forall (i: Prims.nat). {:pattern FStar.Seq.Base.index t i\/FStar.Seq.Base.index t' i}
i < n ==> FStar.Seq.Base.index t i == FStar.Seq.Base.index t' i) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words.Seq_s.seq4",
"Vale.Def.Types_s.nat8",
"Prims.nat",
"Prims.unit",
"Vale.AES.GCTR.lemma_slice_orig_index",
"Prims._assert",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.slice",
"Prims.op_Equality",
"Prims.int",
"Vale.AES.GCTR.nat32_xor_bytewise_4",
"Vale.Def.Words.Seq_s.seq_to_four_LE",
"Prims.bool",
"Vale.AES.GCTR.nat32_xor_bytewise_3",
"Vale.AES.GCTR.nat32_xor_bytewise_2",
"Vale.AES.GCTR.nat32_xor_bytewise_1",
"Vale.Def.Words_s.natN",
"Vale.Def.Types_s.ixor",
"Vale.Def.Words_s.pow2_32",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.eq2",
"FStar.Seq.Base.index",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Vale.Def.Words.Four_s.four_to_nat",
"Prims.pow2",
"FStar.Mul.op_Star",
"Prims.squash",
"Prims.l_Forall",
"Prims.op_LessThan",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let nat32_xor_bytewise (k k' m: nat32) (s s' t t': seq4 nat8) (n: nat)
: Lemma
(requires
n <= 4 /\ k == four_to_nat 8 (seq_to_four_LE s) /\ k' == four_to_nat 8 (seq_to_four_LE s') /\
ixor k m == four_to_nat 8 (seq_to_four_LE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\ equal (slice s 0 n) (slice s' 0 n))
(ensures
(forall (i: nat). {:pattern (index t i)\/(index t' i)} i < n ==> index t i == index t' i)) =
| assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0);
assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1);
assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2);
assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3);
let x = ixor k m in
let x' = ixor k' m in
if n = 1
then
nat32_xor_bytewise_1 k
k'
x
x'
m
(seq_to_four_LE s)
(seq_to_four_LE s')
(seq_to_four_LE t)
(seq_to_four_LE t');
if n = 2
then
nat32_xor_bytewise_2 k
k'
x
x'
m
(seq_to_four_LE s)
(seq_to_four_LE s')
(seq_to_four_LE t)
(seq_to_four_LE t');
if n = 3
then
nat32_xor_bytewise_3 k
k'
x
x'
m
(seq_to_four_LE s)
(seq_to_four_LE s')
(seq_to_four_LE t)
(seq_to_four_LE t');
if n = 4
then
nat32_xor_bytewise_4 k
k'
x
x'
m
(seq_to_four_LE s)
(seq_to_four_LE s')
(seq_to_four_LE t)
(seq_to_four_LE t');
assert (equal (slice t 0 n) (slice t' 0 n));
lemma_slice_orig_index t t' 0 n;
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.gctr_bytes_helper | val gctr_bytes_helper (alg:algorithm) (key:seq nat32)
(p128 p_bytes c128 c_bytes:seq quad32)
(p_num_bytes:nat)
(iv_BE:quad32) : Lemma
(requires length p128 * 16 < pow2_32 /\
length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128 * 16 + 16 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
is_aes_key_LE alg key /\
// Ensured by Gctr_core_opt
gctr_partial_def alg (length p128) p128 c128 key iv_BE /\
(p_num_bytes > length p128 * 16 ==>
index c_bytes 0 == gctr_encrypt_block (inc32 iv_BE (length p128)) (index p_bytes 0) alg key 0))
(ensures (let plain_raw_quads = append p128 p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append c128 c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
is_gctr_plain_LE plain_bytes /\
cipher_bytes == gctr_encrypt_LE iv_BE plain_bytes alg key)) | val gctr_bytes_helper (alg:algorithm) (key:seq nat32)
(p128 p_bytes c128 c_bytes:seq quad32)
(p_num_bytes:nat)
(iv_BE:quad32) : Lemma
(requires length p128 * 16 < pow2_32 /\
length p128 * 16 <= p_num_bytes /\
p_num_bytes < length p128 * 16 + 16 /\
length p128 == length c128 /\
length p_bytes == 1 /\
length c_bytes == 1 /\
is_aes_key_LE alg key /\
// Ensured by Gctr_core_opt
gctr_partial_def alg (length p128) p128 c128 key iv_BE /\
(p_num_bytes > length p128 * 16 ==>
index c_bytes 0 == gctr_encrypt_block (inc32 iv_BE (length p128)) (index p_bytes 0) alg key 0))
(ensures (let plain_raw_quads = append p128 p_bytes in
let plain_bytes = slice (le_seq_quad32_to_bytes plain_raw_quads) 0 p_num_bytes in
let cipher_raw_quads = append c128 c_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher_raw_quads) 0 p_num_bytes in
is_gctr_plain_LE plain_bytes /\
cipher_bytes == gctr_encrypt_LE iv_BE plain_bytes alg key)) | let gctr_bytes_helper alg key p128 p_bytes c128 c_bytes p_num_bytes iv_BE =
let icb_BE_inc = inc32 iv_BE (length p128) in
assert (gctr_encrypt_block icb_BE_inc (index p_bytes 0) alg key 0 ==
gctr_encrypt_block iv_BE (index p_bytes 0) alg key (length p128));
//assert (gctr_partial_def alg 1 p_bytes c_bytes key icb_BE_inc);
gctr_partial_reveal ();
if p_num_bytes = length p128 * 16 then (
gctr_partial_completed alg p128 c128 key iv_BE;
gctr_partial_to_full_basic iv_BE p128 alg key c128;
assert (le_seq_quad32_to_bytes c128 == gctr_encrypt_LE iv_BE (le_seq_quad32_to_bytes p128) alg key);
assert (equal (slice (le_seq_quad32_to_bytes p128) 0 p_num_bytes) (le_seq_quad32_to_bytes p128));
assert (equal (slice (le_seq_quad32_to_bytes c128) 0 p_num_bytes) (le_seq_quad32_to_bytes c128));
()
) else (
aes_encrypt_LE_reveal ();
lemma_gctr_partial_append alg (length p128) 1 p128 c128 p_bytes c_bytes key iv_BE icb_BE_inc;
let plain = append p128 p_bytes in
let cipher = append c128 c_bytes in
let num_blocks = p_num_bytes / 16 in
//gctr_partial_completed alg plain cipher key iv_BE;
gctr_partial_completed alg p128 c128 key iv_BE;
assert (equal (slice plain 0 num_blocks) p128);
assert (equal (slice cipher 0 num_blocks) c128);
gctr_partial_to_full_advanced iv_BE (append p128 p_bytes) (append c128 c_bytes) alg key p_num_bytes
);
lemma_length_simplifier p128 p_bytes (if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128) p_num_bytes;
lemma_length_simplifier c128 c_bytes (if p_num_bytes > length c128 * 16 then append c128 c_bytes else c128) p_num_bytes;
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 781,
"start_col": 0,
"start_line": 753
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0
)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishl_32 k 24;
lemma_ishl_32 k' 24;
lemma_ishl_32 x 24;
lemma_ishl_32 x' 24;
lemma_ishl_ixor_32 k m 24;
lemma_ishl_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishl_32 k 16;
lemma_ishl_32 k' 16;
lemma_ishl_32 x 16;
lemma_ishl_32 x' 16;
lemma_ishl_ixor_32 k m 16;
lemma_ishl_ixor_32 k' m 16;
// assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16));
// assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16));
// assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16));
// assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16));
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishl_32 k 8;
lemma_ishl_32 k' 8;
lemma_ishl_32 x 8;
lemma_ishl_32 x' 8;
lemma_ishl_ixor_32 k m 8;
lemma_ishl_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
()
#reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap"
let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
)
(ensures t == t')
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
()
#reset-options
let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
k == four_to_nat 8 (seq_to_four_LE s) /\
k' == four_to_nat 8 (seq_to_four_LE s') /\
ixor k m == four_to_nat 8 (seq_to_four_LE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\
equal (slice s 0 n) (slice s' 0 n)
)
// (ensures equal (slice t 0 n) (slice t' 0 n))
(ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i))
=
assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0);
assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1);
assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2);
assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3);
let x = ixor k m in
let x' = ixor k' m in
if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
assert (equal (slice t 0 n) (slice t' 0 n));
lemma_slice_orig_index t t' 0 n;
()
let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma
(requires (let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures (let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n))
=
let s = le_quad32_to_bytes q in
let s' = le_quad32_to_bytes q' in
let t = le_quad32_to_bytes (quad32_xor q r) in
let t' = le_quad32_to_bytes (quad32_xor q' r) in
lemma_slices_le_quad32_to_bytes q;
lemma_slices_le_quad32_to_bytes q';
lemma_slices_le_quad32_to_bytes (quad32_xor q r);
lemma_slices_le_quad32_to_bytes (quad32_xor q' r);
lemma_slice_orig_index s s' 0 n;
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
if n < 4 then nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n
else
(
nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4;
if n < 8 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4)
else
(
nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4;
if n < 12 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8)
else
(
nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4;
nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12);
()
)
)
);
assert (equal (slice t 0 n) (slice t' 0 n));
()
let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) :
Lemma(slice (pad_to_128_bits s) 0 (length s) == s)
=
assert (length s % 16 == length s);
assert (equal s (slice (pad_to_128_bits s) 0 (length s)));
()
let step2 (s:seq nat8 { 0 < length s /\ length s < 16 }) (q:quad32) (icb_BE:quad32) (alg:algorithm) (key:aes_key_LE alg) (i:int):
Lemma(let q_bytes = le_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes)
=
let q_bytes = le_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in
let enc_ctr = aes_encrypt_LE alg key (reverse_bytes_quad32 (inc32 icb_BE i)) in
let icb_LE = reverse_bytes_quad32 (inc32 icb_BE i) in
if s = q_bytes_prefix then (
// s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s)
// = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE s_quad alg key i)) 0 (length s)
// = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE (le_bytes_to_quad32 (pad_to_128_bits s)) alg key i)) 0 (length s)
// q_cipher_bytes = gctr_encrypt_block icb_BE q alg key i
le_quad32_to_bytes_to_quad32 (pad_to_128_bits s);
slice_pad_to_128_bits s;
quad32_xor_bytewise q (le_bytes_to_quad32 (pad_to_128_bits s)) (aes_encrypt_LE alg key icb_LE) (length s);
//assert (equal s_cipher_bytes q_cipher_bytes);
()
) else
();
()
#reset-options "--z3rlimit 30"
open FStar.Seq.Properties
let gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) =
gctr_encrypt_LE_reveal ();
let num_blocks = num_bytes / 16 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 num_bytes in
step1 plain num_bytes;
let s = slice (le_seq_quad32_to_bytes plain) (num_blocks * 16) num_bytes in
let final_p = index plain num_blocks in
step2 s final_p icb_BE alg key num_blocks;
let num_extra = num_bytes % 16 in
let full_bytes_len = num_bytes - num_extra in
let full_blocks, final_block = split plain_bytes full_bytes_len in
assert (full_bytes_len % 16 == 0);
assert (length full_blocks == full_bytes_len);
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
assert (cipher_quads_LE == slice cipher 0 num_blocks); // LHS quads
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
assert (le_seq_quad32_to_bytes cipher_quads_LE == le_seq_quad32_to_bytes (slice cipher 0 num_blocks)); // LHS bytes
assert (length s == num_extra);
let q_prefix = slice (le_quad32_to_bytes final_p) 0 num_extra in
le_seq_quad32_to_bytes_tail_prefix plain num_bytes;
assert (q_prefix == s);
assert(final_cipher_bytes_LE == slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra); // RHS bytes
le_seq_quad32_to_bytes_tail_prefix cipher num_bytes;
assert (slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra ==
slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes);
slice_commutes_le_seq_quad32_to_bytes0 cipher num_blocks;
assert (le_seq_quad32_to_bytes (slice cipher 0 num_blocks) == slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16));
assert (slice (slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) (length cipher * 16)) 0 num_extra ==
slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes);
slice_append_adds (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes;
assert (slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16) @|
slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes ==
slice (le_seq_quad32_to_bytes cipher) 0 num_bytes);
assert (cipher_bytes == (le_seq_quad32_to_bytes (slice cipher 0 num_blocks)) @| slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra);
()
let gctr_encrypt_one_block (icb_BE plain:quad32) (alg:algorithm) (key:seq nat32) =
gctr_encrypt_LE_reveal ();
assert(inc32 icb_BE 0 == icb_BE);
let encrypted_icb = aes_encrypt_BE alg key icb_BE in
let p = le_quad32_to_bytes plain in
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let p_seq = create 1 plain in
assert (length p == 16);
le_bytes_to_seq_quad32_to_bytes_one_quad plain;
assert (p_seq == plain_quads_LE);
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (cipher_quads_LE == cons (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0) (gctr_encrypt_recursive icb_BE (tail plain_quads_LE) alg key (1)));
assert (head plain_quads_LE == plain);
assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 ==
(let icb_LE = reverse_bytes_quad32 (inc32 icb_BE 0) in
quad32_xor (head plain_quads_LE) (aes_encrypt_LE alg key icb_LE)));
assert (quad32_xor plain (aes_encrypt_LE alg key (reverse_bytes_quad32 icb_BE))
==
(let icb_LE = reverse_bytes_quad32 (inc32 icb_BE 0) in
quad32_xor (head plain_quads_LE) (aes_encrypt_LE alg key icb_LE)));
assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain (aes_encrypt_LE alg key (reverse_bytes_quad32 icb_BE)));
aes_encrypt_LE_reveal ();
assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain (aes_encrypt_BE alg key icb_BE));
assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain encrypted_icb);
assert(gctr_encrypt_recursive icb_BE (tail p_seq) alg key 1 == empty); // OBSERVE
//assert(gctr_encrypt_LE icb p alg key == cons (quad32_xor plain encrypted_icb) empty);
let x = quad32_xor plain encrypted_icb in
append_empty_r (create 1 x); // This is the missing piece
()
let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma
(requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\
(num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\
length s * 16 <= num_bytes /\
num_bytes < length s * 16 + 16 /\
length bytes == 1
)
(ensures slice (le_seq_quad32_to_bytes t) 0 num_bytes ==
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes)
=
if num_bytes > (length s) * 16 then (
()
) else (
calc (==) {
slice (le_seq_quad32_to_bytes (append s bytes)) 0 num_bytes;
== { append_distributes_le_seq_quad32_to_bytes s bytes }
slice (append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes)) 0 num_bytes;
== { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (le_seq_quad32_to_bytes s) (le_seq_quad32_to_bytes bytes) }
le_seq_quad32_to_bytes s;
== { assert (length (le_seq_quad32_to_bytes s) == num_bytes) }
slice (le_seq_quad32_to_bytes s) 0 num_bytes;
};
()
) | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 ->
p128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
c_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
p_num_bytes: Prims.nat ->
iv_BE: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(requires
FStar.Seq.Base.length p128 * 16 < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length p128 * 16 <= p_num_bytes /\
p_num_bytes < FStar.Seq.Base.length p128 * 16 + 16 /\
FStar.Seq.Base.length p128 == FStar.Seq.Base.length c128 /\
FStar.Seq.Base.length p_bytes == 1 /\ FStar.Seq.Base.length c_bytes == 1 /\
Vale.AES.AES_s.is_aes_key_LE alg key /\
Vale.AES.GCTR.gctr_partial_def alg (FStar.Seq.Base.length p128) p128 c128 key iv_BE /\
(p_num_bytes > FStar.Seq.Base.length p128 * 16 ==>
FStar.Seq.Base.index c_bytes 0 ==
Vale.AES.GCTR_s.gctr_encrypt_block (Vale.AES.GCTR_s.inc32 iv_BE
(FStar.Seq.Base.length p128))
(FStar.Seq.Base.index p_bytes 0)
alg
key
0))
(ensures
(let plain_raw_quads = FStar.Seq.Base.append p128 p_bytes in
let plain_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes plain_raw_quads)
0
p_num_bytes
in
let cipher_raw_quads = FStar.Seq.Base.append c128 c_bytes in
let cipher_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher_raw_quads)
0
p_num_bytes
in
Vale.AES.GCTR_s.is_gctr_plain_LE plain_bytes /\
cipher_bytes == Vale.AES.GCTR_s.gctr_encrypt_LE iv_BE plain_bytes alg key)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat32",
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Prims.unit",
"Vale.AES.GCTR.lemma_length_simplifier",
"Prims.op_GreaterThan",
"FStar.Mul.op_Star",
"FStar.Seq.Base.length",
"FStar.Seq.Base.append",
"Prims.bool",
"Prims.op_Equality",
"Prims.int",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Types_s.nat8",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"Prims.eq2",
"Vale.AES.GCTR_s.gctr_encrypt_LE",
"Vale.AES.GCTR.gctr_partial_to_full_basic",
"Vale.AES.GCTR.gctr_partial_completed",
"Vale.AES.GCTR.gctr_partial_to_full_advanced",
"Prims.op_Division",
"Vale.AES.GCTR.lemma_gctr_partial_append",
"Vale.AES.AES_s.aes_encrypt_LE_reveal",
"Vale.AES.GCTR.gctr_partial_reveal",
"Vale.AES.GCTR_s.gctr_encrypt_block",
"FStar.Seq.Base.index",
"Vale.AES.GCTR_s.inc32"
] | [] | false | false | true | false | false | let gctr_bytes_helper alg key p128 p_bytes c128 c_bytes p_num_bytes iv_BE =
| let icb_BE_inc = inc32 iv_BE (length p128) in
assert (gctr_encrypt_block icb_BE_inc (index p_bytes 0) alg key 0 ==
gctr_encrypt_block iv_BE (index p_bytes 0) alg key (length p128));
gctr_partial_reveal ();
if p_num_bytes = length p128 * 16
then
(gctr_partial_completed alg p128 c128 key iv_BE;
gctr_partial_to_full_basic iv_BE p128 alg key c128;
assert (le_seq_quad32_to_bytes c128 ==
gctr_encrypt_LE iv_BE (le_seq_quad32_to_bytes p128) alg key);
assert (equal (slice (le_seq_quad32_to_bytes p128) 0 p_num_bytes) (le_seq_quad32_to_bytes p128));
assert (equal (slice (le_seq_quad32_to_bytes c128) 0 p_num_bytes) (le_seq_quad32_to_bytes c128));
())
else
(aes_encrypt_LE_reveal ();
lemma_gctr_partial_append alg (length p128) 1 p128 c128 p_bytes c_bytes key iv_BE icb_BE_inc;
let plain = append p128 p_bytes in
let cipher = append c128 c_bytes in
let num_blocks = p_num_bytes / 16 in
gctr_partial_completed alg p128 c128 key iv_BE;
assert (equal (slice plain 0 num_blocks) p128);
assert (equal (slice cipher 0 num_blocks) c128);
gctr_partial_to_full_advanced iv_BE
(append p128 p_bytes)
(append c128 c_bytes)
alg
key
p_num_bytes);
lemma_length_simplifier p128
p_bytes
(if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128)
p_num_bytes;
lemma_length_simplifier c128
c_bytes
(if p_num_bytes > length c128 * 16 then append c128 c_bytes else c128)
p_num_bytes;
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.gctr_encrypt_one_block | val gctr_encrypt_one_block (icb_BE plain:quad32) (alg:algorithm) (key:seq nat32) : Lemma
(requires is_aes_key_LE alg key)
(ensures
gctr_encrypt_LE icb_BE (le_quad32_to_bytes plain) alg key ==
le_seq_quad32_to_bytes (create 1 (quad32_xor plain (aes_encrypt_BE alg key icb_BE)))
) | val gctr_encrypt_one_block (icb_BE plain:quad32) (alg:algorithm) (key:seq nat32) : Lemma
(requires is_aes_key_LE alg key)
(ensures
gctr_encrypt_LE icb_BE (le_quad32_to_bytes plain) alg key ==
le_seq_quad32_to_bytes (create 1 (quad32_xor plain (aes_encrypt_BE alg key icb_BE)))
) | let gctr_encrypt_one_block (icb_BE plain:quad32) (alg:algorithm) (key:seq nat32) =
gctr_encrypt_LE_reveal ();
assert(inc32 icb_BE 0 == icb_BE);
let encrypted_icb = aes_encrypt_BE alg key icb_BE in
let p = le_quad32_to_bytes plain in
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let p_seq = create 1 plain in
assert (length p == 16);
le_bytes_to_seq_quad32_to_bytes_one_quad plain;
assert (p_seq == plain_quads_LE);
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (cipher_quads_LE == cons (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0) (gctr_encrypt_recursive icb_BE (tail plain_quads_LE) alg key (1)));
assert (head plain_quads_LE == plain);
assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 ==
(let icb_LE = reverse_bytes_quad32 (inc32 icb_BE 0) in
quad32_xor (head plain_quads_LE) (aes_encrypt_LE alg key icb_LE)));
assert (quad32_xor plain (aes_encrypt_LE alg key (reverse_bytes_quad32 icb_BE))
==
(let icb_LE = reverse_bytes_quad32 (inc32 icb_BE 0) in
quad32_xor (head plain_quads_LE) (aes_encrypt_LE alg key icb_LE)));
assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain (aes_encrypt_LE alg key (reverse_bytes_quad32 icb_BE)));
aes_encrypt_LE_reveal ();
assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain (aes_encrypt_BE alg key icb_BE));
assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain encrypted_icb);
assert(gctr_encrypt_recursive icb_BE (tail p_seq) alg key 1 == empty); // OBSERVE
//assert(gctr_encrypt_LE icb p alg key == cons (quad32_xor plain encrypted_icb) empty);
let x = quad32_xor plain encrypted_icb in
append_empty_r (create 1 x); // This is the missing piece
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 724,
"start_col": 0,
"start_line": 695
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0
)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishl_32 k 24;
lemma_ishl_32 k' 24;
lemma_ishl_32 x 24;
lemma_ishl_32 x' 24;
lemma_ishl_ixor_32 k m 24;
lemma_ishl_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishl_32 k 16;
lemma_ishl_32 k' 16;
lemma_ishl_32 x 16;
lemma_ishl_32 x' 16;
lemma_ishl_ixor_32 k m 16;
lemma_ishl_ixor_32 k' m 16;
// assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16));
// assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16));
// assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16));
// assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16));
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishl_32 k 8;
lemma_ishl_32 k' 8;
lemma_ishl_32 x 8;
lemma_ishl_32 x' 8;
lemma_ishl_ixor_32 k m 8;
lemma_ishl_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
()
#reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap"
let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
)
(ensures t == t')
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
()
#reset-options
let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
k == four_to_nat 8 (seq_to_four_LE s) /\
k' == four_to_nat 8 (seq_to_four_LE s') /\
ixor k m == four_to_nat 8 (seq_to_four_LE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\
equal (slice s 0 n) (slice s' 0 n)
)
// (ensures equal (slice t 0 n) (slice t' 0 n))
(ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i))
=
assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0);
assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1);
assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2);
assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3);
let x = ixor k m in
let x' = ixor k' m in
if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
assert (equal (slice t 0 n) (slice t' 0 n));
lemma_slice_orig_index t t' 0 n;
()
let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma
(requires (let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures (let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n))
=
let s = le_quad32_to_bytes q in
let s' = le_quad32_to_bytes q' in
let t = le_quad32_to_bytes (quad32_xor q r) in
let t' = le_quad32_to_bytes (quad32_xor q' r) in
lemma_slices_le_quad32_to_bytes q;
lemma_slices_le_quad32_to_bytes q';
lemma_slices_le_quad32_to_bytes (quad32_xor q r);
lemma_slices_le_quad32_to_bytes (quad32_xor q' r);
lemma_slice_orig_index s s' 0 n;
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
if n < 4 then nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n
else
(
nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4;
if n < 8 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4)
else
(
nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4;
if n < 12 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8)
else
(
nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4;
nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12);
()
)
)
);
assert (equal (slice t 0 n) (slice t' 0 n));
()
let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) :
Lemma(slice (pad_to_128_bits s) 0 (length s) == s)
=
assert (length s % 16 == length s);
assert (equal s (slice (pad_to_128_bits s) 0 (length s)));
()
let step2 (s:seq nat8 { 0 < length s /\ length s < 16 }) (q:quad32) (icb_BE:quad32) (alg:algorithm) (key:aes_key_LE alg) (i:int):
Lemma(let q_bytes = le_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes)
=
let q_bytes = le_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in
let enc_ctr = aes_encrypt_LE alg key (reverse_bytes_quad32 (inc32 icb_BE i)) in
let icb_LE = reverse_bytes_quad32 (inc32 icb_BE i) in
if s = q_bytes_prefix then (
// s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s)
// = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE s_quad alg key i)) 0 (length s)
// = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE (le_bytes_to_quad32 (pad_to_128_bits s)) alg key i)) 0 (length s)
// q_cipher_bytes = gctr_encrypt_block icb_BE q alg key i
le_quad32_to_bytes_to_quad32 (pad_to_128_bits s);
slice_pad_to_128_bits s;
quad32_xor_bytewise q (le_bytes_to_quad32 (pad_to_128_bits s)) (aes_encrypt_LE alg key icb_LE) (length s);
//assert (equal s_cipher_bytes q_cipher_bytes);
()
) else
();
()
#reset-options "--z3rlimit 30"
open FStar.Seq.Properties
let gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) =
gctr_encrypt_LE_reveal ();
let num_blocks = num_bytes / 16 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 num_bytes in
step1 plain num_bytes;
let s = slice (le_seq_quad32_to_bytes plain) (num_blocks * 16) num_bytes in
let final_p = index plain num_blocks in
step2 s final_p icb_BE alg key num_blocks;
let num_extra = num_bytes % 16 in
let full_bytes_len = num_bytes - num_extra in
let full_blocks, final_block = split plain_bytes full_bytes_len in
assert (full_bytes_len % 16 == 0);
assert (length full_blocks == full_bytes_len);
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
assert (cipher_quads_LE == slice cipher 0 num_blocks); // LHS quads
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
assert (le_seq_quad32_to_bytes cipher_quads_LE == le_seq_quad32_to_bytes (slice cipher 0 num_blocks)); // LHS bytes
assert (length s == num_extra);
let q_prefix = slice (le_quad32_to_bytes final_p) 0 num_extra in
le_seq_quad32_to_bytes_tail_prefix plain num_bytes;
assert (q_prefix == s);
assert(final_cipher_bytes_LE == slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra); // RHS bytes
le_seq_quad32_to_bytes_tail_prefix cipher num_bytes;
assert (slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra ==
slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes);
slice_commutes_le_seq_quad32_to_bytes0 cipher num_blocks;
assert (le_seq_quad32_to_bytes (slice cipher 0 num_blocks) == slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16));
assert (slice (slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) (length cipher * 16)) 0 num_extra ==
slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes);
slice_append_adds (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes;
assert (slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16) @|
slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes ==
slice (le_seq_quad32_to_bytes cipher) 0 num_bytes);
assert (cipher_bytes == (le_seq_quad32_to_bytes (slice cipher 0 num_blocks)) @| slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
icb_BE: Vale.Def.Types_s.quad32 ->
plain: Vale.Def.Types_s.quad32 ->
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32
-> FStar.Pervasives.Lemma (requires Vale.AES.AES_s.is_aes_key_LE alg key)
(ensures
Vale.AES.GCTR_s.gctr_encrypt_LE icb_BE (Vale.Def.Types_s.le_quad32_to_bytes plain) alg key ==
Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create 1
(Vale.Def.Types_s.quad32_xor plain (Vale.AES.GCTR.aes_encrypt_BE alg key icb_BE)))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat32",
"Prims.unit",
"FStar.Seq.Base.append_empty_r",
"FStar.Seq.Base.create",
"Vale.Def.Types_s.quad32_xor",
"Prims._assert",
"Prims.eq2",
"Vale.AES.GCTR_s.gctr_encrypt_recursive",
"FStar.Seq.Properties.tail",
"FStar.Seq.Base.empty",
"Vale.AES.GCTR_s.gctr_encrypt_block",
"FStar.Seq.Properties.head",
"Vale.AES.GCTR.aes_encrypt_BE",
"Vale.AES.AES_s.aes_encrypt_LE_reveal",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.AES.GCTR_s.inc32",
"FStar.Seq.Base.cons",
"Vale.Arch.Types.le_bytes_to_seq_quad32_to_bytes_one_quad",
"Prims.int",
"FStar.Seq.Base.length",
"Vale.Def.Types_s.nat8",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Vale.Def.Words_s.nat8",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Vale.AES.GCTR_s.gctr_encrypt_LE_reveal"
] | [] | true | false | true | false | false | let gctr_encrypt_one_block (icb_BE plain: quad32) (alg: algorithm) (key: seq nat32) =
| gctr_encrypt_LE_reveal ();
assert (inc32 icb_BE 0 == icb_BE);
let encrypted_icb = aes_encrypt_BE alg key icb_BE in
let p = le_quad32_to_bytes plain in
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let p_seq = create 1 plain in
assert (length p == 16);
le_bytes_to_seq_quad32_to_bytes_one_quad plain;
assert (p_seq == plain_quads_LE);
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (cipher_quads_LE ==
cons (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0)
(gctr_encrypt_recursive icb_BE (tail plain_quads_LE) alg key (1)));
assert (head plain_quads_LE == plain);
assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 ==
(let icb_LE = reverse_bytes_quad32 (inc32 icb_BE 0) in
quad32_xor (head plain_quads_LE) (aes_encrypt_LE alg key icb_LE)));
assert (quad32_xor plain (aes_encrypt_LE alg key (reverse_bytes_quad32 icb_BE)) ==
(let icb_LE = reverse_bytes_quad32 (inc32 icb_BE 0) in
quad32_xor (head plain_quads_LE) (aes_encrypt_LE alg key icb_LE)));
assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 ==
quad32_xor plain (aes_encrypt_LE alg key (reverse_bytes_quad32 icb_BE)));
aes_encrypt_LE_reveal ();
assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 ==
quad32_xor plain (aes_encrypt_BE alg key icb_BE));
assert (gctr_encrypt_block icb_BE (head plain_quads_LE) alg key 0 == quad32_xor plain encrypted_icb);
assert (gctr_encrypt_recursive icb_BE (tail p_seq) alg key 1 == empty);
let x = quad32_xor plain encrypted_icb in
append_empty_r (create 1 x);
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.nat32_xor_bytewise_4 | val nat32_xor_bytewise_4 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s') (ensures t == t') | val nat32_xor_bytewise_4 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s') (ensures t == t') | let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
)
(ensures t == t')
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 530,
"start_col": 0,
"start_line": 512
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0
)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishl_32 k 24;
lemma_ishl_32 k' 24;
lemma_ishl_32 x 24;
lemma_ishl_32 x' 24;
lemma_ishl_ixor_32 k m 24;
lemma_ishl_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishl_32 k 16;
lemma_ishl_32 k' 16;
lemma_ishl_32 x 16;
lemma_ishl_32 x' 16;
lemma_ishl_ixor_32 k m 16;
lemma_ishl_ixor_32 k' m 16;
// assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16));
// assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16));
// assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16));
// assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16));
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishl_32 k 8;
lemma_ishl_32 k' 8;
lemma_ishl_32 x 8;
lemma_ishl_32 x' 8;
lemma_ishl_ixor_32 k m 8;
lemma_ishl_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Vale.Def.Types_s.nat32 ->
k': Vale.Def.Types_s.nat32 ->
x: Vale.Def.Types_s.nat32 ->
x': Vale.Def.Types_s.nat32 ->
m: Vale.Def.Types_s.nat32 ->
s: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
s': Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t: Vale.Def.Words_s.four Vale.Def.Types_s.nat8 ->
t': Vale.Def.Words_s.four Vale.Def.Types_s.nat8
-> FStar.Pervasives.Lemma
(requires
k == Vale.Def.Words.Four_s.four_to_nat 8 s /\ k' == Vale.Def.Words.Four_s.four_to_nat 8 s' /\
x == Vale.Def.Words.Four_s.four_to_nat 8 t /\ x' == Vale.Def.Words.Four_s.four_to_nat 8 t' /\
Vale.Def.Types_s.ixor k m == x /\ Vale.Def.Types_s.ixor k' m == x' /\ s == s')
(ensures t == t') | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"FStar.Mul.op_Star",
"Vale.Def.Words.Four_s.four_to_nat",
"Vale.Def.Words.Four_s.four_to_nat_unfold",
"Vale.Def.Words_s.nat8",
"Prims.l_and",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Types_s.ixor",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let nat32_xor_bytewise_4 (k k' x x' m: nat32) (s s' t t': four nat8)
: Lemma
(requires
k == four_to_nat 8 s /\ k' == four_to_nat 8 s' /\ x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\ ixor k m == x /\ ixor k' m == x' /\ s == s') (ensures t == t') =
| let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t);
() | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.step2 | val step2
(s: seq nat8 {0 < length s /\ length s < 16})
(q icb_BE: quad32)
(alg: algorithm)
(key: aes_key_LE alg)
(i: int)
: Lemma
(let q_bytes = le_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes) | val step2
(s: seq nat8 {0 < length s /\ length s < 16})
(q icb_BE: quad32)
(alg: algorithm)
(key: aes_key_LE alg)
(i: int)
: Lemma
(let q_bytes = le_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes) | let step2 (s:seq nat8 { 0 < length s /\ length s < 16 }) (q:quad32) (icb_BE:quad32) (alg:algorithm) (key:aes_key_LE alg) (i:int):
Lemma(let q_bytes = le_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes)
=
let q_bytes = le_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in
let enc_ctr = aes_encrypt_LE alg key (reverse_bytes_quad32 (inc32 icb_BE i)) in
let icb_LE = reverse_bytes_quad32 (inc32 icb_BE i) in
if s = q_bytes_prefix then (
// s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s)
// = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE s_quad alg key i)) 0 (length s)
// = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE (le_bytes_to_quad32 (pad_to_128_bits s)) alg key i)) 0 (length s)
// q_cipher_bytes = gctr_encrypt_block icb_BE q alg key i
le_quad32_to_bytes_to_quad32 (pad_to_128_bits s);
slice_pad_to_128_bits s;
quad32_xor_bytewise q (le_bytes_to_quad32 (pad_to_128_bits s)) (aes_encrypt_LE alg key icb_LE) (length s);
//assert (equal s_cipher_bytes q_cipher_bytes);
()
) else
();
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 640,
"start_col": 0,
"start_line": 607
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0
)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishl_32 k 24;
lemma_ishl_32 k' 24;
lemma_ishl_32 x 24;
lemma_ishl_32 x' 24;
lemma_ishl_ixor_32 k m 24;
lemma_ishl_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishl_32 k 16;
lemma_ishl_32 k' 16;
lemma_ishl_32 x 16;
lemma_ishl_32 x' 16;
lemma_ishl_ixor_32 k m 16;
lemma_ishl_ixor_32 k' m 16;
// assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16));
// assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16));
// assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16));
// assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16));
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishl_32 k 8;
lemma_ishl_32 k' 8;
lemma_ishl_32 x 8;
lemma_ishl_32 x' 8;
lemma_ishl_ixor_32 k m 8;
lemma_ishl_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
()
#reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap"
let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
)
(ensures t == t')
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
()
#reset-options
let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
k == four_to_nat 8 (seq_to_four_LE s) /\
k' == four_to_nat 8 (seq_to_four_LE s') /\
ixor k m == four_to_nat 8 (seq_to_four_LE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\
equal (slice s 0 n) (slice s' 0 n)
)
// (ensures equal (slice t 0 n) (slice t' 0 n))
(ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i))
=
assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0);
assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1);
assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2);
assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3);
let x = ixor k m in
let x' = ixor k' m in
if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
assert (equal (slice t 0 n) (slice t' 0 n));
lemma_slice_orig_index t t' 0 n;
()
let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma
(requires (let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures (let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n))
=
let s = le_quad32_to_bytes q in
let s' = le_quad32_to_bytes q' in
let t = le_quad32_to_bytes (quad32_xor q r) in
let t' = le_quad32_to_bytes (quad32_xor q' r) in
lemma_slices_le_quad32_to_bytes q;
lemma_slices_le_quad32_to_bytes q';
lemma_slices_le_quad32_to_bytes (quad32_xor q r);
lemma_slices_le_quad32_to_bytes (quad32_xor q' r);
lemma_slice_orig_index s s' 0 n;
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
if n < 4 then nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n
else
(
nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4;
if n < 8 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4)
else
(
nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4;
if n < 12 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8)
else
(
nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4;
nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12);
()
)
)
);
assert (equal (slice t 0 n) (slice t' 0 n));
()
let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) :
Lemma(slice (pad_to_128_bits s) 0 (length s) == s)
=
assert (length s % 16 == length s);
assert (equal s (slice (pad_to_128_bits s) 0 (length s)));
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s:
FStar.Seq.Base.seq Vale.Def.Types_s.nat8
{0 < FStar.Seq.Base.length s /\ FStar.Seq.Base.length s < 16} ->
q: Vale.Def.Types_s.quad32 ->
icb_BE: Vale.Def.Types_s.quad32 ->
alg: Vale.AES.AES_common_s.algorithm ->
key: Vale.AES.AES_s.aes_key_LE alg ->
i: Prims.int
-> FStar.Pervasives.Lemma
(ensures
(let q_bytes = Vale.Def.Types_s.le_quad32_to_bytes q in
let q_bytes_prefix = FStar.Seq.Base.slice q_bytes 0 (FStar.Seq.Base.length s) in
let q_cipher = Vale.AES.GCTR_s.gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_quad32_to_bytes q_cipher)
0
(FStar.Seq.Base.length s)
in
let s_quad = Vale.Def.Types_s.le_bytes_to_quad32 (Vale.AES.GCTR_s.pad_to_128_bits s) in
let s_cipher = Vale.AES.GCTR_s.gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_quad32_to_bytes s_cipher)
0
(FStar.Seq.Base.length s)
in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Vale.Def.Types_s.nat8",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Vale.Def.Types_s.quad32",
"Vale.AES.AES_common_s.algorithm",
"Vale.AES.AES_s.aes_key_LE",
"Prims.int",
"Prims.unit",
"Prims.op_Equality",
"Vale.AES.GCTR.quad32_xor_bytewise",
"Vale.Def.Types_s.le_bytes_to_quad32",
"Vale.AES.GCTR_s.pad_to_128_bits",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.AES.GCTR.slice_pad_to_128_bits",
"Vale.Arch.Types.le_quad32_to_bytes_to_quad32",
"Prims.bool",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.AES.GCTR_s.inc32",
"Vale.Def.Words_s.nat8",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Vale.AES.GCTR_s.gctr_encrypt_block",
"Prims.l_True",
"Prims.squash",
"Prims.l_imp",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let step2
(s: seq nat8 {0 < length s /\ length s < 16})
(q icb_BE: quad32)
(alg: algorithm)
(key: aes_key_LE alg)
(i: int)
: Lemma
(let q_bytes = le_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes) =
| let q_bytes = le_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in
let enc_ctr = aes_encrypt_LE alg key (reverse_bytes_quad32 (inc32 icb_BE i)) in
let icb_LE = reverse_bytes_quad32 (inc32 icb_BE i) in
if s = q_bytes_prefix
then
(le_quad32_to_bytes_to_quad32 (pad_to_128_bits s);
slice_pad_to_128_bits s;
quad32_xor_bytewise q
(le_bytes_to_quad32 (pad_to_128_bits s))
(aes_encrypt_LE alg key icb_LE)
(length s);
());
() | false |
FStar.FiniteSet.Base.fst | FStar.FiniteSet.Base.union_is_differences_and_intersection | val union_is_differences_and_intersection (#a: eqtype) (s1 s2: set a)
: Lemma
(union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) | val union_is_differences_and_intersection (#a: eqtype) (s1 s2: set a)
: Lemma
(union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) | let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1))) | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 103,
"end_line": 330,
"start_col": 0,
"start_line": 328
} | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a
-> FStar.Pervasives.Lemma
(ensures
FStar.FiniteSet.Base.union s1 s2 ==
FStar.FiniteSet.Base.union (FStar.FiniteSet.Base.union (FStar.FiniteSet.Base.difference s1 s2)
(FStar.FiniteSet.Base.intersection s1 s2))
(FStar.FiniteSet.Base.difference s2 s1)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims._assert",
"FStar.FunctionalExtensionality.feq",
"Prims.bool",
"FStar.FiniteSet.Base.union",
"FStar.FiniteSet.Base.difference",
"FStar.FiniteSet.Base.intersection",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let union_is_differences_and_intersection (#a: eqtype) (s1 s2: set a)
: Lemma
(union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
| assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1))
) | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.gctr_partial_to_full_advanced | val gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) : Lemma
(requires
is_aes_key_LE alg key /\
1 <= num_bytes /\
num_bytes < 16 * length plain /\
16 * (length plain - 1) < num_bytes /\
num_bytes % 16 <> 0 /\ num_bytes < pow2_32 /\
length plain == length cipher /\
( let num_blocks = num_bytes / 16 in
slice cipher 0 num_blocks == gctr_encrypt_recursive icb_BE (slice plain 0 num_blocks) alg key 0 /\
index cipher num_blocks == gctr_encrypt_block icb_BE (index plain num_blocks) alg key num_blocks)
)
(ensures (
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 num_bytes in
cipher_bytes == gctr_encrypt_LE icb_BE plain_bytes alg key
)) | val gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) : Lemma
(requires
is_aes_key_LE alg key /\
1 <= num_bytes /\
num_bytes < 16 * length plain /\
16 * (length plain - 1) < num_bytes /\
num_bytes % 16 <> 0 /\ num_bytes < pow2_32 /\
length plain == length cipher /\
( let num_blocks = num_bytes / 16 in
slice cipher 0 num_blocks == gctr_encrypt_recursive icb_BE (slice plain 0 num_blocks) alg key 0 /\
index cipher num_blocks == gctr_encrypt_block icb_BE (index plain num_blocks) alg key num_blocks)
)
(ensures (
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 num_bytes in
cipher_bytes == gctr_encrypt_LE icb_BE plain_bytes alg key
)) | let gctr_partial_to_full_advanced (icb_BE:quad32) (plain:seq quad32) (cipher:seq quad32) (alg:algorithm) (key:seq nat32) (num_bytes:nat) =
gctr_encrypt_LE_reveal ();
let num_blocks = num_bytes / 16 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 num_bytes in
step1 plain num_bytes;
let s = slice (le_seq_quad32_to_bytes plain) (num_blocks * 16) num_bytes in
let final_p = index plain num_blocks in
step2 s final_p icb_BE alg key num_blocks;
let num_extra = num_bytes % 16 in
let full_bytes_len = num_bytes - num_extra in
let full_blocks, final_block = split plain_bytes full_bytes_len in
assert (full_bytes_len % 16 == 0);
assert (length full_blocks == full_bytes_len);
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
assert (cipher_quads_LE == slice cipher 0 num_blocks); // LHS quads
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
assert (le_seq_quad32_to_bytes cipher_quads_LE == le_seq_quad32_to_bytes (slice cipher 0 num_blocks)); // LHS bytes
assert (length s == num_extra);
let q_prefix = slice (le_quad32_to_bytes final_p) 0 num_extra in
le_seq_quad32_to_bytes_tail_prefix plain num_bytes;
assert (q_prefix == s);
assert(final_cipher_bytes_LE == slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra); // RHS bytes
le_seq_quad32_to_bytes_tail_prefix cipher num_bytes;
assert (slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra ==
slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes);
slice_commutes_le_seq_quad32_to_bytes0 cipher num_blocks;
assert (le_seq_quad32_to_bytes (slice cipher 0 num_blocks) == slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16));
assert (slice (slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) (length cipher * 16)) 0 num_extra ==
slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes);
slice_append_adds (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes;
assert (slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16) @|
slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes ==
slice (le_seq_quad32_to_bytes cipher) 0 num_bytes);
assert (cipher_bytes == (le_seq_quad32_to_bytes (slice cipher 0 num_blocks)) @| slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra);
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 692,
"start_col": 0,
"start_line": 645
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0
)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishl_32 k 24;
lemma_ishl_32 k' 24;
lemma_ishl_32 x 24;
lemma_ishl_32 x' 24;
lemma_ishl_ixor_32 k m 24;
lemma_ishl_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishl_32 k 16;
lemma_ishl_32 k' 16;
lemma_ishl_32 x 16;
lemma_ishl_32 x' 16;
lemma_ishl_ixor_32 k m 16;
lemma_ishl_ixor_32 k' m 16;
// assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16));
// assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16));
// assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16));
// assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16));
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishl_32 k 8;
lemma_ishl_32 k' 8;
lemma_ishl_32 x 8;
lemma_ishl_32 x' 8;
lemma_ishl_ixor_32 k m 8;
lemma_ishl_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
()
#reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap"
let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
)
(ensures t == t')
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
()
#reset-options
let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
k == four_to_nat 8 (seq_to_four_LE s) /\
k' == four_to_nat 8 (seq_to_four_LE s') /\
ixor k m == four_to_nat 8 (seq_to_four_LE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\
equal (slice s 0 n) (slice s' 0 n)
)
// (ensures equal (slice t 0 n) (slice t' 0 n))
(ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i))
=
assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0);
assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1);
assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2);
assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3);
let x = ixor k m in
let x' = ixor k' m in
if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
assert (equal (slice t 0 n) (slice t' 0 n));
lemma_slice_orig_index t t' 0 n;
()
let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma
(requires (let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures (let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n))
=
let s = le_quad32_to_bytes q in
let s' = le_quad32_to_bytes q' in
let t = le_quad32_to_bytes (quad32_xor q r) in
let t' = le_quad32_to_bytes (quad32_xor q' r) in
lemma_slices_le_quad32_to_bytes q;
lemma_slices_le_quad32_to_bytes q';
lemma_slices_le_quad32_to_bytes (quad32_xor q r);
lemma_slices_le_quad32_to_bytes (quad32_xor q' r);
lemma_slice_orig_index s s' 0 n;
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
if n < 4 then nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n
else
(
nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4;
if n < 8 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4)
else
(
nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4;
if n < 12 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8)
else
(
nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4;
nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12);
()
)
)
);
assert (equal (slice t 0 n) (slice t' 0 n));
()
let slice_pad_to_128_bits (s:seq nat8 { 0 < length s /\ length s < 16 }) :
Lemma(slice (pad_to_128_bits s) 0 (length s) == s)
=
assert (length s % 16 == length s);
assert (equal s (slice (pad_to_128_bits s) 0 (length s)));
()
let step2 (s:seq nat8 { 0 < length s /\ length s < 16 }) (q:quad32) (icb_BE:quad32) (alg:algorithm) (key:aes_key_LE alg) (i:int):
Lemma(let q_bytes = le_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in
s == q_bytes_prefix ==> s_cipher_bytes == q_cipher_bytes)
=
let q_bytes = le_quad32_to_bytes q in
let q_bytes_prefix = slice q_bytes 0 (length s) in
let q_cipher = gctr_encrypt_block icb_BE q alg key i in
let q_cipher_bytes = slice (le_quad32_to_bytes q_cipher) 0 (length s) in
let s_quad = le_bytes_to_quad32 (pad_to_128_bits s) in
let s_cipher = gctr_encrypt_block icb_BE s_quad alg key i in
let s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s) in
let enc_ctr = aes_encrypt_LE alg key (reverse_bytes_quad32 (inc32 icb_BE i)) in
let icb_LE = reverse_bytes_quad32 (inc32 icb_BE i) in
if s = q_bytes_prefix then (
// s_cipher_bytes = slice (le_quad32_to_bytes s_cipher) 0 (length s)
// = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE s_quad alg key i)) 0 (length s)
// = slice (le_quad32_to_bytes (gctr_encrypt_block icb_BE (le_bytes_to_quad32 (pad_to_128_bits s)) alg key i)) 0 (length s)
// q_cipher_bytes = gctr_encrypt_block icb_BE q alg key i
le_quad32_to_bytes_to_quad32 (pad_to_128_bits s);
slice_pad_to_128_bits s;
quad32_xor_bytewise q (le_bytes_to_quad32 (pad_to_128_bits s)) (aes_encrypt_LE alg key icb_LE) (length s);
//assert (equal s_cipher_bytes q_cipher_bytes);
()
) else
();
()
#reset-options "--z3rlimit 30"
open FStar.Seq.Properties | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
icb_BE: Vale.Def.Types_s.quad32 ->
plain: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
cipher: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 ->
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 ->
num_bytes: Prims.nat
-> FStar.Pervasives.Lemma
(requires
Vale.AES.AES_s.is_aes_key_LE alg key /\ 1 <= num_bytes /\
num_bytes < 16 * FStar.Seq.Base.length plain /\
16 * (FStar.Seq.Base.length plain - 1) < num_bytes /\ num_bytes % 16 <> 0 /\
num_bytes < Vale.Def.Words_s.pow2_32 /\
FStar.Seq.Base.length plain == FStar.Seq.Base.length cipher /\
(let num_blocks = num_bytes / 16 in
FStar.Seq.Base.slice cipher 0 num_blocks ==
Vale.AES.GCTR_s.gctr_encrypt_recursive icb_BE
(FStar.Seq.Base.slice plain 0 num_blocks)
alg
key
0 /\
FStar.Seq.Base.index cipher num_blocks ==
Vale.AES.GCTR_s.gctr_encrypt_block icb_BE
(FStar.Seq.Base.index plain num_blocks)
alg
key
num_blocks))
(ensures
(let plain_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes plain) 0 num_bytes
in
let cipher_bytes =
FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes cipher) 0 num_bytes
in
cipher_bytes == Vale.AES.GCTR_s.gctr_encrypt_LE icb_BE plain_bytes alg key)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"FStar.Seq.Base.seq",
"Vale.AES.AES_common_s.algorithm",
"Vale.Def.Types_s.nat32",
"Prims.nat",
"Vale.Def.Types_s.nat8",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"FStar.Seq.Base.op_At_Bar",
"Vale.Def.Types_s.le_seq_quad32_to_bytes",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.le_quad32_to_bytes",
"FStar.Seq.Base.index",
"FStar.Mul.op_Star",
"Vale.Lib.Seqs.slice_append_adds",
"FStar.Seq.Base.length",
"Vale.Arch.Types.slice_commutes_le_seq_quad32_to_bytes0",
"Vale.AES.GCM_helpers.le_seq_quad32_to_bytes_tail_prefix",
"Vale.Def.Words_s.nat8",
"Prims.int",
"Vale.AES.GCTR_s.gctr_encrypt_block",
"Prims.op_Division",
"Vale.AES.GCTR_s.gctr_encrypt_recursive",
"Vale.Def.Types_s.le_bytes_to_quad32",
"Vale.AES.GCTR_s.pad_to_128_bits",
"Vale.Def.Types_s.le_bytes_to_seq_quad32",
"Prims.op_Modulus",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.split",
"Prims.op_Subtraction",
"Vale.AES.GCTR.step2",
"Vale.AES.GCTR.step1",
"Vale.AES.GCTR_s.gctr_encrypt_LE_reveal"
] | [] | false | false | true | false | false | let gctr_partial_to_full_advanced
(icb_BE: quad32)
(plain cipher: seq quad32)
(alg: algorithm)
(key: seq nat32)
(num_bytes: nat)
=
| gctr_encrypt_LE_reveal ();
let num_blocks = num_bytes / 16 in
let plain_bytes = slice (le_seq_quad32_to_bytes plain) 0 num_bytes in
let cipher_bytes = slice (le_seq_quad32_to_bytes cipher) 0 num_bytes in
step1 plain num_bytes;
let s = slice (le_seq_quad32_to_bytes plain) (num_blocks * 16) num_bytes in
let final_p = index plain num_blocks in
step2 s final_p icb_BE alg key num_blocks;
let num_extra = num_bytes % 16 in
let full_bytes_len = num_bytes - num_extra in
let full_blocks, final_block = split plain_bytes full_bytes_len in
assert (full_bytes_len % 16 == 0);
assert (length full_blocks == full_bytes_len);
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
assert (cipher_quads_LE == slice cipher 0 num_blocks);
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
assert (le_seq_quad32_to_bytes cipher_quads_LE == le_seq_quad32_to_bytes (slice cipher 0 num_blocks)
);
assert (length s == num_extra);
let q_prefix = slice (le_quad32_to_bytes final_p) 0 num_extra in
le_seq_quad32_to_bytes_tail_prefix plain num_bytes;
assert (q_prefix == s);
assert (final_cipher_bytes_LE == slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra);
le_seq_quad32_to_bytes_tail_prefix cipher num_bytes;
assert (slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra ==
slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes);
slice_commutes_le_seq_quad32_to_bytes0 cipher num_blocks;
assert (le_seq_quad32_to_bytes (slice cipher 0 num_blocks) ==
slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16));
assert (slice (slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) (length cipher * 16))
0
num_extra ==
slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes);
slice_append_adds (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes;
assert (slice (le_seq_quad32_to_bytes cipher) 0 (num_blocks * 16) @|
slice (le_seq_quad32_to_bytes cipher) (num_blocks * 16) num_bytes ==
slice (le_seq_quad32_to_bytes cipher) 0 num_bytes);
assert (cipher_bytes ==
(le_seq_quad32_to_bytes (slice cipher 0 num_blocks)) @|
slice (le_quad32_to_bytes (index cipher num_blocks)) 0 num_extra);
() | false |
Steel.ST.GhostReference.fst | Steel.ST.GhostReference.gather | val gather (#a:Type)
(#u:_)
(#p0 #p1:perm)
(#x0 #x1:erased a)
(r:ref a)
: STGhost unit u
(pts_to r p0 x0 `star` pts_to r p1 x1)
(fun _ -> pts_to r (sum_perm p0 p1) x0)
(requires True)
(ensures fun _ -> x0 == x1) | val gather (#a:Type)
(#u:_)
(#p0 #p1:perm)
(#x0 #x1:erased a)
(r:ref a)
: STGhost unit u
(pts_to r p0 x0 `star` pts_to r p1 x1)
(fun _ -> pts_to r (sum_perm p0 p1) x0)
(requires True)
(ensures fun _ -> x0 == x1) | let gather (#a:Type)
(#u:_)
(#p0 #p1:perm)
(#x0 #x1:erased a)
(r:ref a)
: STGhost unit u
(pts_to r p0 x0 `star` pts_to r p1 x1)
(fun _ -> pts_to r (sum_perm p0 p1) x0)
(requires True)
(ensures fun _ -> x0 == x1)
= coerce_ghost (fun _ -> R.ghost_gather_pt #a #u #p0 #p1 #x0 #x1 r) | {
"file_name": "lib/steel/Steel.ST.GhostReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 69,
"end_line": 107,
"start_col": 0,
"start_line": 97
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.ST.GhostReference
open FStar.Ghost
open Steel.ST.Util
open Steel.ST.Coercions
module R = Steel.Reference
[@@ erasable]
let ref (a:Type u#0)
: Type u#0
= R.ghost_ref a
let dummy_ref a = R.dummy_ghost_ref a
let pts_to (#a:_)
(r:ref a)
(p:perm)
([@@@smt_fallback] v:a)
: vprop
= R.ghost_pts_to r p v
let pts_to_injective_eq (#a:_)
(#u:_)
(#p #q:_)
(#v0 #v1:a)
(r:ref a)
: STGhost unit u
(pts_to r p v0 `star` pts_to r q v1)
(fun _ -> pts_to r p v0 `star` pts_to r q v0)
(requires True)
(ensures fun _ -> v0 == v1)
= coerce_ghost
(fun _ -> R.ghost_pts_to_injective_eq #a #u #p #q r (hide v0) (hide v1))
let pts_to_perm r = coerce_ghost (fun _ -> R.ghost_pts_to_perm r)
let alloc (#a:Type)
(#u:_)
(x:erased a)
: STGhostT (ref a) u
emp
(fun r -> pts_to r full_perm x)
= coerce_ghost (fun _ -> R.ghost_alloc_pt x)
let read (#a:Type)
(#u:_)
(#p:perm)
(#v:erased a)
(r:ref a)
: STGhost (erased a) u
(pts_to r p v)
(fun x -> pts_to r p x)
(requires True)
(ensures fun x -> x == v)
= let y = coerce_ghost (fun _ -> R.ghost_read_pt r) in
y
let write (#a:Type)
(#u:_)
(#v:erased a)
(r:ref a)
(x:erased a)
: STGhostT unit u
(pts_to r full_perm v)
(fun _ -> pts_to r full_perm x)
= coerce_ghost (fun _ -> R.ghost_write_pt r x)
let share_gen
#_ #_ #_ #v r p1 p2
= coerce_ghost (fun _ -> R.ghost_share_gen_pt #_ #_ #_ #v r p1 p2)
let share (#a:Type)
(#u:_)
(#p:perm)
(#x:erased a)
(r:ref a)
: STGhostT unit u
(pts_to r p x)
(fun _ -> pts_to r (half_perm p) x `star`
pts_to r (half_perm p) x)
= coerce_ghost (fun _ -> R.ghost_share_pt r) | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.Coercions.fsti.checked",
"Steel.Reference.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.ST.GhostReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Steel.ST.Coercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.ST.GhostReference.ref a -> Steel.ST.Effect.Ghost.STGhost Prims.unit | Steel.ST.Effect.Ghost.STGhost | [] | [] | [
"Steel.Memory.inames",
"Steel.FractionalPermission.perm",
"FStar.Ghost.erased",
"Steel.ST.GhostReference.ref",
"Steel.ST.Coercions.coerce_ghost",
"Prims.unit",
"Steel.Effect.Common.star",
"Steel.Reference.ghost_pts_to",
"FStar.Ghost.reveal",
"Steel.FractionalPermission.sum_perm",
"Steel.Effect.Common.vprop",
"Prims.b2t",
"Prims.eq2",
"Steel.Reference.ghost_gather_pt",
"Steel.ST.GhostReference.pts_to",
"Prims.l_True"
] | [] | false | true | false | false | false | let gather (#a: Type) (#u: _) (#p0 #p1: perm) (#x0 #x1: erased a) (r: ref a)
: STGhost unit
u
((pts_to r p0 x0) `star` (pts_to r p1 x1))
(fun _ -> pts_to r (sum_perm p0 p1) x0)
(requires True)
(ensures fun _ -> x0 == x1) =
| coerce_ghost (fun _ -> R.ghost_gather_pt #a #u #p0 #p1 #x0 #x1 r) | false |
Vale.AES.GCTR.fst | Vale.AES.GCTR.quad32_xor_bytewise | val quad32_xor_bytewise (q q' r: quad32) (n: nat{n <= 16})
: Lemma
(requires
(let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures
(let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n)) | val quad32_xor_bytewise (q q' r: quad32) (n: nat{n <= 16})
: Lemma
(requires
(let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures
(let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n)) | let quad32_xor_bytewise (q q' r:quad32) (n:nat{ n <= 16 }) : Lemma
(requires (let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures (let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n))
=
let s = le_quad32_to_bytes q in
let s' = le_quad32_to_bytes q' in
let t = le_quad32_to_bytes (quad32_xor q r) in
let t' = le_quad32_to_bytes (quad32_xor q' r) in
lemma_slices_le_quad32_to_bytes q;
lemma_slices_le_quad32_to_bytes q';
lemma_slices_le_quad32_to_bytes (quad32_xor q r);
lemma_slices_le_quad32_to_bytes (quad32_xor q' r);
lemma_slice_orig_index s s' 0 n;
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
if n < 4 then nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n
else
(
nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4;
if n < 8 then nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) (n - 4)
else
(
nat32_xor_bytewise q.lo1 q'.lo1 r.lo1 (slice s 4 8) (slice s' 4 8) (slice t 4 8) (slice t' 4 8) 4;
if n < 12 then nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) (n - 8)
else
(
nat32_xor_bytewise q.hi2 q'.hi2 r.hi2 (slice s 8 12) (slice s' 8 12) (slice t 8 12) (slice t' 8 12) 4;
nat32_xor_bytewise q.hi3 q'.hi3 r.hi3 (slice s 12 16) (slice s' 12 16) (slice t 12 16) (slice t' 12 16) (n - 12);
()
)
)
);
assert (equal (slice t 0 n) (slice t' 0 n));
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCTR.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 598,
"start_col": 0,
"start_line": 559
} | module Vale.AES.GCTR
open Vale.Def.Opaque_s
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.AES.AES_s
open Vale.AES.GCTR_s
open Vale.AES.GCM_helpers
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
#set-options "--z3rlimit 20 --max_fuel 1 --max_ifuel 0"
let lemma_counter_init x low64 low8 =
Vale.Poly1305.Bitvectors.lemma_bytes_and_mod1 low64;
Vale.Def.TypesNative_s.reveal_iand 64 low64 0xff;
assert (low8 == low64 % 256);
lo64_reveal ();
assert_norm (pow2_norm 32 == pow2_32); // OBSERVE
assert (low64 == x.lo0 + x.lo1 * pow2_32); // OBSERVE
assert (low64 % 256 == x.lo0 % 256);
()
let gctr_encrypt_block_offset (icb_BE:quad32) (plain_LE:quad32) (alg:algorithm) (key:seq nat32) (i:int) =
()
let gctr_encrypt_empty (icb_BE:quad32) (plain_LE cipher_LE:seq quad32) (alg:algorithm) (key:seq nat32) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let plain = slice (le_seq_quad32_to_bytes plain_LE) 0 0 in
let cipher = slice (le_seq_quad32_to_bytes cipher_LE) 0 0 in
assert (plain == empty);
assert (cipher == empty);
assert (length plain == 0);
assert (make_gctr_plain_LE plain == empty);
let num_extra = (length (make_gctr_plain_LE plain)) % 16 in
assert (num_extra == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
assert (equal plain_quads_LE empty); // OBSERVE
assert (plain_quads_LE == empty);
assert (cipher_quads_LE == empty);
assert (equal (le_seq_quad32_to_bytes cipher_quads_LE) empty); // OBSERVEs
()
let gctr_partial_opaque_init alg plain cipher key icb =
gctr_partial_reveal ();
()
#restart-solver
let lemma_gctr_partial_append alg b1 b2 p1 c1 p2 c2 key icb1 icb2 =
gctr_partial_reveal ();
()
let gctr_partial_opaque_ignores_postfix alg bound plain plain' cipher cipher' key icb =
gctr_partial_reveal ();
// OBSERVE:
assert (forall i . 0 <= i /\ i < bound ==> index plain i == index (slice plain 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index plain' i == index (slice plain' 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher i == index (slice cipher 0 bound) i);
assert (forall i . 0 <= i /\ i < bound ==> index cipher' i == index (slice cipher' 0 bound) i);
()
let gctr_partial_extend6 (alg:algorithm) (bound:nat) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32)
=
gctr_partial_reveal ();
()
(*
let rec seq_map_i_indexed' (#a:Type) (#b:Type) (f:int->a->b) (s:seq a) (i:int) :
Tot (s':seq b { length s' == length s /\
(forall j . {:pattern index s' j} 0 <= j /\ j < length s ==> index s' j == f (i + j) (index s j))
})
(decreases (length s))
=
if length s = 0 then empty
else cons (f i (head s)) (seq_map_i_indexed f (tail s) (i + 1))
let rec test (icb_BE:quad32) (plain_LE:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) :
Lemma (ensures
(let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
gctr_encrypt_recursive icb_BE plain_LE alg key i == seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i))
(decreases (length plain_LE))
=
let gctr_encrypt_block_curried (j:int) (p:quad32) = gctr_encrypt_block icb_BE p alg key j in
let g = gctr_encrypt_recursive icb_BE plain_LE alg key i in
let s = seq_map_i_indexed' gctr_encrypt_block_curried plain_LE i in
if length plain_LE = 0 then (
assert(equal (g) (s));
()
) else (
test icb_BE (tail plain_LE) alg key (i+1);
assert (gctr_encrypt_recursive icb_BE (tail plain_LE) alg key (i+1) == seq_map_i_indexed' gctr_encrypt_block_curried (tail plain_LE) (i+1))
)
*)
let rec gctr_encrypt_recursive_length (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures length (gctr_encrypt_recursive icb plain alg key i) == length plain)
(decreases %[length plain])
[SMTPat (length (gctr_encrypt_recursive icb plain alg key i))]
=
if length plain = 0 then ()
else gctr_encrypt_recursive_length icb (tail plain) alg key (i + 1)
#reset-options "--z3rlimit 40"
let gctr_encrypt_length (icb_BE:quad32) (plain:gctr_plain_LE)
(alg:algorithm) (key:aes_key_LE alg) :
Lemma(length (gctr_encrypt_LE icb_BE plain alg key) == length plain)
[SMTPat (length (gctr_encrypt_LE icb_BE plain alg key))]
=
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32;
gctr_encrypt_LE_reveal ();
let num_extra = (length plain) % 16 in
let result = gctr_encrypt_LE icb_BE plain alg key in
if num_extra = 0 then (
let plain_quads_LE = le_bytes_to_seq_quad32 plain in
gctr_encrypt_recursive_length icb_BE plain_quads_LE alg key 0
) else (
let full_bytes_len = (length plain) - num_extra in
let full_blocks, final_block = split plain full_bytes_len in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let final_quad_LE = le_bytes_to_quad32 (pad_to_128_bits final_block) in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE full_quads_LE alg key 0 in
let final_cipher_quad_LE = gctr_encrypt_block icb_BE final_quad_LE alg key (full_bytes_len / 16) in
let cipher_bytes_full_LE = le_seq_quad32_to_bytes cipher_quads_LE in
let final_cipher_bytes_LE = slice (le_quad32_to_bytes final_cipher_quad_LE) 0 num_extra in
gctr_encrypt_recursive_length icb_BE full_quads_LE alg key 0;
assert (length result == length cipher_bytes_full_LE + length final_cipher_bytes_LE);
assert (length cipher_quads_LE == length full_quads_LE);
assert (length cipher_bytes_full_LE == 16 * length cipher_quads_LE);
assert (16 * length full_quads_LE == length full_blocks);
assert (length cipher_bytes_full_LE == length full_blocks);
()
)
#reset-options
let rec gctr_indexed_helper (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (i:int) : Lemma
(requires True)
(ensures (let cipher = gctr_encrypt_recursive icb plain alg key i in
length cipher == length plain /\
(forall j . {:pattern index cipher j} 0 <= j /\ j < length plain ==>
index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) ))))
(decreases %[length plain])
=
if length plain = 0 then ()
else
let tl = tail plain in
let cipher = gctr_encrypt_recursive icb plain alg key i in
let r_cipher = gctr_encrypt_recursive icb tl alg key (i+1) in
let helper (j:int) :
Lemma ((0 <= j /\ j < length plain) ==> (index cipher j == quad32_xor (index plain j) (aes_encrypt_BE alg key (inc32 icb (i + j)) )))
=
aes_encrypt_LE_reveal ();
if 0 < j && j < length plain then (
gctr_indexed_helper icb tl alg key (i+1);
assert(index r_cipher (j-1) == quad32_xor (index tl (j-1)) (aes_encrypt_BE alg key (inc32 icb (i + 1 + j - 1)) )) // OBSERVE
) else ()
in
FStar.Classical.forall_intro helper
let gctr_indexed (icb:quad32) (plain:gctr_plain_internal_LE)
(alg:algorithm) (key:aes_key_LE alg) (cipher:seq quad32) : Lemma
(requires length cipher == length plain /\
(forall i . {:pattern index cipher i} 0 <= i /\ i < length cipher ==>
index cipher i == quad32_xor (index plain i) (aes_encrypt_BE alg key (inc32 icb i) )))
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_indexed_helper icb plain alg key 0;
let c = gctr_encrypt_recursive icb plain alg key 0 in
assert(equal cipher c) // OBSERVE: Invoke extensionality lemmas
let gctr_partial_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) =
gctr_indexed icb plain alg key cipher;
()
let gctr_partial_opaque_completed (alg:algorithm) (plain cipher:seq quad32) (key:seq nat32) (icb:quad32) : Lemma
(requires
is_aes_key_LE alg key /\
length plain == length cipher /\
length plain < pow2_32 /\
gctr_partial alg (length cipher) plain cipher key icb
)
(ensures cipher == gctr_encrypt_recursive icb plain alg key 0)
=
gctr_partial_reveal ();
gctr_partial_completed alg plain cipher key icb
let gctr_partial_to_full_basic (icb_BE:quad32) (plain:seq quad32) (alg:algorithm) (key:seq nat32) (cipher:seq quad32) =
gctr_encrypt_LE_reveal ();
let p = le_seq_quad32_to_bytes plain in
assert (length p % 16 == 0);
let plain_quads_LE = le_bytes_to_seq_quad32 p in
let cipher_quads_LE = gctr_encrypt_recursive icb_BE plain_quads_LE alg key 0 in
let cipher_bytes = le_seq_quad32_to_bytes cipher_quads_LE in
le_bytes_to_seq_quad32_to_bytes plain;
()
(*
Want to show that:
slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, out_b))) 0 num_bytes
==
gctr_encrypt_LE icb_BE (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) ...
We know that
slice (buffer128_as_seq(mem, out_b) 0 num_blocks
==
gctr_encrypt_recursive icb_BE (slice buffer128_as_seq(mem, in_b) 0 num_blocks) ...
And we know that:
get_mem out_b num_blocks
==
gctr_encrypt_block(icb_BE, (get_mem inb num_blocks), alg, key, num_blocks);
Internally gctr_encrypt_LE will compute:
full_blocks, final_block = split (slice (le_seq_quad32_to_bytes (buffer128_as_seq(mem, in_b))) 0 num_bytes) (num_blocks * 16)
We'd like to show that
Step1: le_bytes_to_seq_quad32 full_blocks == slice buffer128_as_seq(mem, in_b) 0 num_blocks
and
Step2: final_block == slice (le_quad32_to_bytes (get_mem inb num_blocks)) 0 num_extra
Then we need to break down the byte-level effects of gctr_encrypt_block to show that even though the
padded version of final_block differs from (get_mem inb num_blocks), after we slice it at the end,
we end up with the same value
*)
let step1 (p:seq quad32) (num_bytes:nat{ num_bytes < 16 * length p }) : Lemma
(let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
p_prefix == full_quads_LE)
=
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_blocks, final_block = split (slice (le_seq_quad32_to_bytes p) 0 num_bytes) (num_blocks * 16) in
let full_quads_LE = le_bytes_to_seq_quad32 full_blocks in
let p_prefix = slice p 0 num_blocks in
assert (length full_blocks == num_blocks * 16);
assert (full_blocks == slice (slice (le_seq_quad32_to_bytes p) 0 num_bytes) 0 (num_blocks * 16));
assert (full_blocks == slice (le_seq_quad32_to_bytes p) 0 (num_blocks * 16));
slice_commutes_le_seq_quad32_to_bytes0 p num_blocks;
assert (full_blocks == le_seq_quad32_to_bytes (slice p 0 num_blocks));
le_bytes_to_seq_quad32_to_bytes (slice p 0 num_blocks);
assert (full_quads_LE == (slice p 0 num_blocks));
()
#reset-options "--smtencoding.elim_box true --z3rlimit 30"
let lemma_slice_orig_index (#a:Type) (s s':seq a) (m n:nat) : Lemma
(requires length s == length s' /\ m <= n /\ n <= length s /\ slice s m n == slice s' m n)
(ensures (forall (i:int).{:pattern (index s i) \/ (index s' i)} m <= i /\ i < n ==> index s i == index s' i))
=
let aux (i:nat{m <= i /\ i < n}) : Lemma (index s i == index s' i) =
lemma_index_slice s m n (i - m);
lemma_index_slice s' m n (i - m)
in Classical.forall_intro aux
let lemma_ishl_32 (x:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 x k == x * pow2 k % pow2_32)
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
FStar.UInt.shift_left_value_lemma #32 x k;
()
let lemma_ishl_ixor_32 (x y:nat32) (k:nat) : Lemma
(ensures ishl #pow2_32 (ixor x y) k == ixor (ishl x k) (ishl y k))
=
Vale.Def.TypesNative_s.reveal_ishl 32 x k;
Vale.Def.TypesNative_s.reveal_ishl 32 y k;
Vale.Def.TypesNative_s.reveal_ishl 32 (ixor x y) k;
Vale.Def.TypesNative_s.reveal_ixor 32 x y;
Vale.Def.TypesNative_s.reveal_ixor 32 (ishl x k) (ishl y k);
FStar.UInt.shift_left_logxor_lemma #32 x y k;
()
unfold let pow2_24 = 0x1000000
let nat24 = natN pow2_24
let nat32_xor_bytewise_1_helper1 (x0 x0':nat8) (x1 x1':nat24) (x x':nat32) : Lemma
(requires
x == x0 + 0x100 * x1 /\
x' == x0' + 0x100 * x1' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_2_helper1 (x0 x0' x1 x1':nat16) (x x':nat32) : Lemma
(requires
x == x0 + 0x10000 * x1 /\
x' == x0' + 0x10000 * x1' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_3_helper1 (x0 x0':nat24) (x1 x1':nat8) (x x':nat32) : Lemma
(requires
x == x0 + 0x1000000 * x1 /\
x' == x0' + 0x1000000 * x1' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures x0 == x0')
=
()
let nat32_xor_bytewise_1_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x1000000 % 0x100000000 == x' * 0x1000000 % 0x100000000
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t123 = t1 + 0x100 * t2 + 0x10000 * t3 in
let t123' = t1' + 0x100 * t2' + 0x10000 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_1_helper1 t0 t0' t123 t123' x x';
()
let nat32_xor_bytewise_2_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x10000 % 0x100000000 == x' * 0x10000 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t01 = t0 + 0x100 * t1 in
let t23 = t2 + 0x100 * t3 in
let t01' = t0' + 0x100 * t1' in
let t23' = t2' + 0x100 * t3' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_2_helper1 t01 t01' t23 t23' x x';
()
let nat32_xor_bytewise_3_helper2 (x x':nat32) (t t':four nat8) : Lemma
(requires
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
x * 0x100 % 0x100000000 == x' * 0x100 % 0x100000000
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
let t012 = t0 + 0x100 * t1 + 0x10000 * t2 in
let t012' = t0' + 0x100 * t1' + 0x10000 * t2' in
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
nat32_xor_bytewise_3_helper1 t012 t012' t3 t3' x x';
()
let nat32_xor_bytewise_1_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0
)
(ensures k * 0x1000000 % 0x100000000 == k' * 0x1000000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_2_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures k * 0x10000 % 0x100000000 == k' * 0x10000 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_3_helper3 (k k':nat32) (s s':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures k * 0x100 % 0x100000000 == k' * 0x100 % 0x100000000)
=
let Mkfour _ _ _ _ = s in
let Mkfour _ _ _ _ = s' in
assert_norm (four_to_nat 8 s == four_to_nat_unfold 8 s );
assert_norm (four_to_nat 8 s' == four_to_nat_unfold 8 s');
()
let nat32_xor_bytewise_1 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0
)
(ensures t.lo0 == t'.lo0)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_1_helper3 k k' s s';
lemma_ishl_32 k 24;
lemma_ishl_32 k' 24;
lemma_ishl_32 x 24;
lemma_ishl_32 x' 24;
lemma_ishl_ixor_32 k m 24;
lemma_ishl_ixor_32 k' m 24;
assert_norm (pow2 24 == pow2_24);
nat32_xor_bytewise_1_helper2 x x' t t';
()
let nat32_xor_bytewise_2 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_2_helper3 k k' s s';
lemma_ishl_32 k 16;
lemma_ishl_32 k' 16;
lemma_ishl_32 x 16;
lemma_ishl_32 x' 16;
lemma_ishl_ixor_32 k m 16;
lemma_ishl_ixor_32 k' m 16;
// assert (ishl #pow2_32 k 16 == k * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 k' 16 == k' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == x * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x' 16 == x' * 0x10000 % 0x100000000);
// assert (ishl #pow2_32 x 16 == ixor (ishl k 16) (ishl m 16));
// assert (ishl #pow2_32 x' 16 == ixor (ishl k' 16) (ishl m 16));
// assert (x * 0x10000 % 0x100000000 == ixor (k * 0x10000 % 0x100000000) (ishl m 16));
// assert (x' * 0x10000 % 0x100000000 == ixor (k' * 0x10000 % 0x100000000) (ishl m 16));
nat32_xor_bytewise_2_helper2 x x' t t';
()
let nat32_xor_bytewise_3 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s.lo0 == s'.lo0 /\ s.lo1 == s'.lo1 /\ s.hi2 == s'.hi2
)
(ensures t.lo0 == t'.lo0 /\ t.lo1 == t'.lo1 /\ t.hi2 == t'.hi2)
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
nat32_xor_bytewise_3_helper3 k k' s s';
lemma_ishl_32 k 8;
lemma_ishl_32 k' 8;
lemma_ishl_32 x 8;
lemma_ishl_32 x' 8;
lemma_ishl_ixor_32 k m 8;
lemma_ishl_ixor_32 k' m 8;
nat32_xor_bytewise_3_helper2 x x' t t';
()
#reset-options "--z3rlimit 50 --smtencoding.nl_arith_repr boxwrap --smtencoding.l_arith_repr boxwrap"
let nat32_xor_bytewise_4 (k k' x x' m:nat32) (s s' t t':four nat8) : Lemma
(requires
k == four_to_nat 8 s /\
k' == four_to_nat 8 s' /\
x == four_to_nat 8 t /\
x' == four_to_nat 8 t' /\
ixor k m == x /\
ixor k' m == x' /\
s == s'
)
(ensures t == t')
=
let Mkfour s0 s1 s2 s3 = s in
let Mkfour s0' s1' s2' s3' = s' in
let Mkfour t0 t1 t2 t3 = t in
let Mkfour t0' t1' t2' t3' = t' in
assert_norm (four_to_nat 8 t' == four_to_nat_unfold 8 t');
assert_norm (four_to_nat 8 t == four_to_nat_unfold 8 t );
()
#reset-options
let nat32_xor_bytewise (k k' m:nat32) (s s' t t':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
k == four_to_nat 8 (seq_to_four_LE s) /\
k' == four_to_nat 8 (seq_to_four_LE s') /\
ixor k m == four_to_nat 8 (seq_to_four_LE t) /\
ixor k' m == four_to_nat 8 (seq_to_four_LE t') /\
equal (slice s 0 n) (slice s' 0 n)
)
// (ensures equal (slice t 0 n) (slice t' 0 n))
(ensures (forall (i:nat).{:pattern (index t i) \/ (index t' i)} i < n ==> index t i == index t' i))
=
assert (n > 0 ==> index (slice s 0 n) 0 == index (slice s' 0 n) 0);
assert (n > 1 ==> index (slice s 0 n) 1 == index (slice s' 0 n) 1);
assert (n > 2 ==> index (slice s 0 n) 2 == index (slice s' 0 n) 2);
assert (n > 3 ==> index (slice s 0 n) 3 == index (slice s' 0 n) 3);
let x = ixor k m in
let x' = ixor k' m in
if n = 1 then nat32_xor_bytewise_1 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 2 then nat32_xor_bytewise_2 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 3 then nat32_xor_bytewise_3 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
if n = 4 then nat32_xor_bytewise_4 k k' x x' m (seq_to_four_LE s) (seq_to_four_LE s') (seq_to_four_LE t) (seq_to_four_LE t');
assert (equal (slice t 0 n) (slice t' 0 n));
lemma_slice_orig_index t t' 0 n;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Poly1305.Bitvectors.fsti.checked",
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.TypesNative_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_s.fst.checked",
"Vale.AES.GCM_helpers.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCTR.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Properties",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCM_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
q: Vale.Def.Types_s.quad32 ->
q': Vale.Def.Types_s.quad32 ->
r: Vale.Def.Types_s.quad32 ->
n: Prims.nat{n <= 16}
-> FStar.Pervasives.Lemma
(requires
(let q_bytes = Vale.Def.Types_s.le_quad32_to_bytes q in
let q'_bytes = Vale.Def.Types_s.le_quad32_to_bytes q' in
FStar.Seq.Base.slice q_bytes 0 n == FStar.Seq.Base.slice q'_bytes 0 n))
(ensures
(let q_bytes = Vale.Def.Types_s.le_quad32_to_bytes q in
let q'_bytes = Vale.Def.Types_s.le_quad32_to_bytes q' in
let qr_bytes = Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.quad32_xor q r) in
let q'r_bytes = Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.quad32_xor q' r) in
FStar.Seq.Base.slice qr_bytes 0 n == FStar.Seq.Base.slice q'r_bytes 0 n)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Types_s.nat8",
"FStar.Seq.Base.slice",
"Prims.op_LessThan",
"Vale.AES.GCTR.nat32_xor_bytewise",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Types_s.nat32",
"Prims.bool",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Prims.op_Subtraction",
"Vale.Def.Words_s.__proj__Mkfour__item__hi2",
"Vale.Def.Words_s.__proj__Mkfour__item__hi3",
"Vale.Def.Types_s.reverse_bytes_nat32_reveal",
"Vale.Def.Types_s.quad32_xor_reveal",
"Vale.AES.GCTR.lemma_slice_orig_index",
"Vale.AES.Types_helpers.lemma_slices_le_quad32_to_bytes",
"Vale.Def.Types_s.quad32_xor",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Vale.Def.Types_s.le_quad32_to_bytes",
"Prims.eq2",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let quad32_xor_bytewise (q q' r: quad32) (n: nat{n <= 16})
: Lemma
(requires
(let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
slice q_bytes 0 n == slice q'_bytes 0 n))
(ensures
(let q_bytes = le_quad32_to_bytes q in
let q'_bytes = le_quad32_to_bytes q' in
let qr_bytes = le_quad32_to_bytes (quad32_xor q r) in
let q'r_bytes = le_quad32_to_bytes (quad32_xor q' r) in
slice qr_bytes 0 n == slice q'r_bytes 0 n)) =
| let s = le_quad32_to_bytes q in
let s' = le_quad32_to_bytes q' in
let t = le_quad32_to_bytes (quad32_xor q r) in
let t' = le_quad32_to_bytes (quad32_xor q' r) in
lemma_slices_le_quad32_to_bytes q;
lemma_slices_le_quad32_to_bytes q';
lemma_slices_le_quad32_to_bytes (quad32_xor q r);
lemma_slices_le_quad32_to_bytes (quad32_xor q' r);
lemma_slice_orig_index s s' 0 n;
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
if n < 4
then
nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) n
else
(nat32_xor_bytewise q.lo0 q'.lo0 r.lo0 (slice s 0 4) (slice s' 0 4) (slice t 0 4) (slice t' 0 4) 4;
if n < 8
then
nat32_xor_bytewise q.lo1
q'.lo1
r.lo1
(slice s 4 8)
(slice s' 4 8)
(slice t 4 8)
(slice t' 4 8)
(n - 4)
else
(nat32_xor_bytewise q.lo1
q'.lo1
r.lo1
(slice s 4 8)
(slice s' 4 8)
(slice t 4 8)
(slice t' 4 8)
4;
if n < 12
then
nat32_xor_bytewise q.hi2
q'.hi2
r.hi2
(slice s 8 12)
(slice s' 8 12)
(slice t 8 12)
(slice t' 8 12)
(n - 8)
else
(nat32_xor_bytewise q.hi2
q'.hi2
r.hi2
(slice s 8 12)
(slice s' 8 12)
(slice t 8 12)
(slice t' 8 12)
4;
nat32_xor_bytewise q.hi3
q'.hi3
r.hi3
(slice s 12 16)
(slice s' 12 16)
(slice t 12 16)
(slice t' 12 16)
(n - 12);
())));
assert (equal (slice t 0 n) (slice t' 0 n));
() | false |
Steel.ST.GhostReference.fst | Steel.ST.GhostReference.pts_to_injective_eq | val pts_to_injective_eq (#a:_)
(#u:_)
(#p #q:_)
(#v0 #v1:a)
(r:ref a)
: STGhost unit u
(pts_to r p v0 `star` pts_to r q v1)
(fun _ -> pts_to r p v0 `star` pts_to r q v0)
(requires True)
(ensures fun _ -> v0 == v1) | val pts_to_injective_eq (#a:_)
(#u:_)
(#p #q:_)
(#v0 #v1:a)
(r:ref a)
: STGhost unit u
(pts_to r p v0 `star` pts_to r q v1)
(fun _ -> pts_to r p v0 `star` pts_to r q v0)
(requires True)
(ensures fun _ -> v0 == v1) | let pts_to_injective_eq (#a:_)
(#u:_)
(#p #q:_)
(#v0 #v1:a)
(r:ref a)
: STGhost unit u
(pts_to r p v0 `star` pts_to r q v1)
(fun _ -> pts_to r p v0 `star` pts_to r q v0)
(requires True)
(ensures fun _ -> v0 == v1)
= coerce_ghost
(fun _ -> R.ghost_pts_to_injective_eq #a #u #p #q r (hide v0) (hide v1)) | {
"file_name": "lib/steel/Steel.ST.GhostReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 76,
"end_line": 47,
"start_col": 0,
"start_line": 36
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.ST.GhostReference
open FStar.Ghost
open Steel.ST.Util
open Steel.ST.Coercions
module R = Steel.Reference
[@@ erasable]
let ref (a:Type u#0)
: Type u#0
= R.ghost_ref a
let dummy_ref a = R.dummy_ghost_ref a
let pts_to (#a:_)
(r:ref a)
(p:perm)
([@@@smt_fallback] v:a)
: vprop
= R.ghost_pts_to r p v | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.Coercions.fsti.checked",
"Steel.Reference.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.ST.GhostReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Steel.ST.Coercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.ST.GhostReference.ref a -> Steel.ST.Effect.Ghost.STGhost Prims.unit | Steel.ST.Effect.Ghost.STGhost | [] | [] | [
"Steel.Memory.inames",
"Steel.FractionalPermission.perm",
"Steel.ST.GhostReference.ref",
"Steel.ST.Coercions.coerce_ghost",
"Prims.unit",
"Steel.Effect.Common.star",
"Steel.Reference.ghost_pts_to",
"FStar.Ghost.reveal",
"FStar.Ghost.hide",
"Steel.Effect.Common.vprop",
"Prims.l_True",
"Prims.eq2",
"FStar.Ghost.erased",
"Steel.Reference.ghost_pts_to_injective_eq",
"Steel.ST.GhostReference.pts_to"
] | [] | false | true | false | false | false | let pts_to_injective_eq (#a #u #p #q: _) (#v0 #v1: a) (r: ref a)
: STGhost unit
u
((pts_to r p v0) `star` (pts_to r q v1))
(fun _ -> (pts_to r p v0) `star` (pts_to r q v0))
(requires True)
(ensures fun _ -> v0 == v1) =
| coerce_ghost (fun _ -> R.ghost_pts_to_injective_eq #a #u #p #q r (hide v0) (hide v1)) | false |
FStar.FiniteSet.Base.fst | FStar.FiniteSet.Base.cardinality_matches_difference_plus_intersection_lemma | val cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1 s2: set a)
: Lemma
(ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) | val cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1 s2: set a)
: Lemma
(ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) | let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2))) | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 65,
"end_line": 326,
"start_col": 0,
"start_line": 323
} | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s1: FStar.FiniteSet.Base.set a -> s2: FStar.FiniteSet.Base.set a
-> FStar.Pervasives.Lemma
(ensures
FStar.FiniteSet.Base.cardinality s1 =
FStar.FiniteSet.Base.cardinality (FStar.FiniteSet.Base.difference s1 s2) +
FStar.FiniteSet.Base.cardinality (FStar.FiniteSet.Base.intersection s1 s2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims._assert",
"FStar.FunctionalExtensionality.feq",
"Prims.bool",
"FStar.FiniteSet.Base.union",
"FStar.FiniteSet.Base.difference",
"FStar.FiniteSet.Base.intersection",
"Prims.unit",
"FStar.FiniteSet.Base.union_of_disjoint_sets_cardinality_lemma",
"Prims.l_True",
"Prims.squash",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.FiniteSet.Base.cardinality",
"Prims.op_Addition",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1 s2: set a)
: Lemma
(ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
| union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2))) | false |
FStar.FiniteSet.Base.fst | FStar.FiniteSet.Base.union_idempotent_left_lemma | val union_idempotent_left_lemma: Prims.unit -> Lemma (union_idempotent_left_fact) | val union_idempotent_left_lemma: Prims.unit -> Lemma (union_idempotent_left_fact) | let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2)) | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 58,
"end_line": 288,
"start_col": 0,
"start_line": 285
} | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.FiniteSet.Base.union_idempotent_left_fact) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"FStar.Classical.Sugar.forall_intro",
"Prims.eqtype",
"Prims.l_Forall",
"FStar.FiniteSet.Base.set",
"Prims.eq2",
"FStar.FiniteSet.Base.union",
"Prims._assert",
"FStar.FunctionalExtensionality.feq",
"Prims.bool",
"Prims.squash",
"Prims.l_True",
"FStar.FiniteSet.Base.union_idempotent_left_fact",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let union_idempotent_left_lemma () : Lemma (union_idempotent_left_fact) =
| introduce forall (a: eqtype) (s1: set a) (s2: set a) . union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2)) | false |
FStar.FiniteSet.Base.fst | FStar.FiniteSet.Base.insert_remove_helper | val insert_remove_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s) (ensures insert x (remove x s) == s) | val insert_remove_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s) (ensures insert x (remove x s) == s) | let insert_remove_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s)
(ensures insert x (remove x s) == s) =
assert (feq s (insert x (remove x s))) | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 413,
"start_col": 0,
"start_line": 410
} | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2)))
let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)))
let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) =
cardinality_matches_difference_plus_intersection_lemma s1 s2;
cardinality_matches_difference_plus_intersection_lemma s2 s1;
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
assert (feq (intersection s1 s2) (intersection s2 s1))
let intersection_cardinality_lemma ()
: Lemma (intersection_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
with
intersection_cardinality_helper a s1 s2
let difference_contains_lemma ()
: Lemma (difference_contains_fact) =
()
let difference_doesnt_include_lemma ()
: Lemma (difference_doesnt_include_fact) =
()
let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) =
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
cardinality_matches_difference_plus_intersection_lemma s1 s2
let difference_cardinality_lemma ()
: Lemma (difference_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (difference s1 s2) + cardinality (difference s2 s1) +
cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
with
difference_cardinality_helper a s1 s2
let subset_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) =
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2
with _.
introduce forall x. s1 x = true ==> s2 x = true
with assert (mem x s1 = s1 x)
let subset_lemma ()
: Lemma (subset_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
with subset_helper a s1 s2
let equal_lemma ()
: Lemma (equal_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2
with _.
introduce forall x. s1 x = true <==> s2 x = true
with assert (mem x s1 = s1 x /\ mem x s2 = s2 x)
)
let equal_extensionality_lemma ()
: Lemma (equal_extensionality_fact) =
()
let disjoint_lemma ()
: Lemma (disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2))
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) ==> disjoint s1 s2
with _. (
introduce forall x. not (s1 x && s2 x)
with assert (not (mem x s1) \/ not (mem x s2))
)
) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.eqtype -> x: a -> s: FStar.FiniteSet.Base.set a
-> FStar.Pervasives.Lemma (requires FStar.FiniteSet.Base.mem x s)
(ensures FStar.FiniteSet.Base.insert x (FStar.FiniteSet.Base.remove x s) == s) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims._assert",
"FStar.FunctionalExtensionality.feq",
"Prims.bool",
"FStar.FiniteSet.Base.insert",
"FStar.FiniteSet.Base.remove",
"Prims.unit",
"Prims.b2t",
"FStar.FiniteSet.Base.mem",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let insert_remove_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s) (ensures insert x (remove x s) == s) =
| assert (feq s (insert x (remove x s))) | false |
Steel.ST.GhostReference.fst | Steel.ST.GhostReference.read | val read (#a:Type)
(#u:_)
(#p:perm)
(#v:erased a)
(r:ref a)
: STGhost (erased a) u
(pts_to r p v)
(fun x -> pts_to r p x)
(requires True)
(ensures fun x -> x == v) | val read (#a:Type)
(#u:_)
(#p:perm)
(#v:erased a)
(r:ref a)
: STGhost (erased a) u
(pts_to r p v)
(fun x -> pts_to r p x)
(requires True)
(ensures fun x -> x == v) | let read (#a:Type)
(#u:_)
(#p:perm)
(#v:erased a)
(r:ref a)
: STGhost (erased a) u
(pts_to r p v)
(fun x -> pts_to r p x)
(requires True)
(ensures fun x -> x == v)
= let y = coerce_ghost (fun _ -> R.ghost_read_pt r) in
y | {
"file_name": "lib/steel/Steel.ST.GhostReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 70,
"start_col": 0,
"start_line": 59
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.ST.GhostReference
open FStar.Ghost
open Steel.ST.Util
open Steel.ST.Coercions
module R = Steel.Reference
[@@ erasable]
let ref (a:Type u#0)
: Type u#0
= R.ghost_ref a
let dummy_ref a = R.dummy_ghost_ref a
let pts_to (#a:_)
(r:ref a)
(p:perm)
([@@@smt_fallback] v:a)
: vprop
= R.ghost_pts_to r p v
let pts_to_injective_eq (#a:_)
(#u:_)
(#p #q:_)
(#v0 #v1:a)
(r:ref a)
: STGhost unit u
(pts_to r p v0 `star` pts_to r q v1)
(fun _ -> pts_to r p v0 `star` pts_to r q v0)
(requires True)
(ensures fun _ -> v0 == v1)
= coerce_ghost
(fun _ -> R.ghost_pts_to_injective_eq #a #u #p #q r (hide v0) (hide v1))
let pts_to_perm r = coerce_ghost (fun _ -> R.ghost_pts_to_perm r)
let alloc (#a:Type)
(#u:_)
(x:erased a)
: STGhostT (ref a) u
emp
(fun r -> pts_to r full_perm x)
= coerce_ghost (fun _ -> R.ghost_alloc_pt x) | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.Coercions.fsti.checked",
"Steel.Reference.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.ST.GhostReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Steel.ST.Coercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.ST.GhostReference.ref a -> Steel.ST.Effect.Ghost.STGhost (FStar.Ghost.erased a) | Steel.ST.Effect.Ghost.STGhost | [] | [] | [
"Steel.Memory.inames",
"Steel.FractionalPermission.perm",
"FStar.Ghost.erased",
"Steel.ST.GhostReference.ref",
"Steel.ST.Coercions.coerce_ghost",
"Steel.Reference.ghost_pts_to",
"FStar.Ghost.reveal",
"Steel.Effect.Common.vprop",
"Prims.l_True",
"Prims.eq2",
"Prims.unit",
"Steel.Reference.ghost_read_pt",
"Steel.ST.GhostReference.pts_to"
] | [] | false | true | false | false | false | let read (#a: Type) (#u: _) (#p: perm) (#v: erased a) (r: ref a)
: STGhost (erased a)
u
(pts_to r p v)
(fun x -> pts_to r p x)
(requires True)
(ensures fun x -> x == v) =
| let y = coerce_ghost (fun _ -> R.ghost_read_pt r) in
y | false |
FStar.FiniteSet.Base.fst | FStar.FiniteSet.Base.remove_insert_helper | val remove_insert_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s = false) (ensures remove x (insert x s) == s) | val remove_insert_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s = false) (ensures remove x (insert x s) == s) | let remove_insert_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s = false)
(ensures remove x (insert x s) == s) =
assert (feq s (remove x (insert x s))) | {
"file_name": "ulib/FStar.FiniteSet.Base.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 425,
"start_col": 0,
"start_line": 422
} | (*
Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers,
Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to
the Dafny Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Includes material from the Dafny project
(https://github.com/dafny-lang/dafny) which carries this license
information:
Created 9 February 2008 by Rustan Leino.
Converted to Boogie 2 on 28 June 2008.
Edited sequence axioms 20 October 2009 by Alex Summers.
Modified 2014 by Dan Rosen.
Copyright (c) 2008-2014, Microsoft.
Copyright by the contributors to the Dafny Project
SPDX-License-Identifier: MIT
*)
(**
This module declares a type and functions used for modeling
finite sets as they're modeled in Dafny.
@summary Type and functions for modeling finite sets
*)
module FStar.FiniteSet.Base
module FLT = FStar.List.Tot
open FStar.FunctionalExtensionality
let has_elements (#a: eqtype) (f: a ^-> bool) (xs: list a): prop =
forall x. f x == x `FLT.mem` xs
// Finite sets
type set (a: eqtype) = f:(a ^-> bool){exists xs. f `has_elements` xs}
/// We represent the Dafny function [] on sets with `mem`:
let mem (#a: eqtype) (x: a) (s: set a) : bool =
s x
/// We represent the Dafny function `Set#Card` with `cardinality`:
///
/// function Set#Card<T>(Set T): int;
let rec remove_repeats (#a: eqtype) (xs: list a)
: (ys: list a{list_nonrepeating ys /\ (forall y. FLT.mem y ys <==> FLT.mem y xs)}) =
match xs with
| [] -> []
| hd :: tl -> let tl' = remove_repeats tl in if FLT.mem hd tl then tl' else hd :: tl'
let set_as_list (#a: eqtype) (s: set a): GTot (xs: list a{list_nonrepeating xs /\ (forall x. FLT.mem x xs = mem x s)}) =
remove_repeats (FStar.IndefiniteDescription.indefinite_description_ghost (list a) (fun xs -> forall x. FLT.mem x xs = mem x s))
[@"opaque_to_smt"]
let cardinality (#a: eqtype) (s: set a) : GTot nat =
FLT.length (set_as_list s)
let intro_set (#a: eqtype) (f: a ^-> bool) (xs: Ghost.erased (list a))
: Pure (set a)
(requires f `has_elements` xs)
(ensures fun _ -> True)
= Classical.exists_intro (fun xs -> f `has_elements` xs) xs;
f
/// We represent the Dafny function `Set#Empty` with `empty`:
let emptyset (#a: eqtype): set a = intro_set (on_dom a (fun _ -> false)) []
/// We represent the Dafny function `Set#UnionOne` with `insert`:
///
/// function Set#UnionOne<T>(Set T, T): Set T;
let insert (#a: eqtype) (x: a) (s: set a): set a =
intro_set (on_dom _ (fun x' -> x = x' || s x')) (x :: set_as_list s)
/// We represent the Dafny function `Set#Singleton` with `singleton`:
///
/// function Set#Singleton<T>(T): Set T;
let singleton (#a: eqtype) (x: a) : set a =
insert x emptyset
/// We represent the Dafny function `Set#Union` with `union`:
///
/// function Set#Union<T>(Set T, Set T): Set T;
let rec union_lists (#a: eqtype) (xs: list a) (ys: list a) : (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs \/ FLT.mem z ys}) =
match xs with
| [] -> ys
| hd :: tl -> hd :: union_lists tl ys
let union (#a: eqtype) (s1: set a) (s2: set a) : (set a) =
intro_set (on_dom a (fun x -> s1 x || s2 x)) (union_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Intersection` with `intersection`:
///
/// function Set#Intersection<T>(Set T, Set T): Set T;
let rec intersect_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ FLT.mem z ys}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = intersect_lists tl ys in if FLT.mem hd ys then hd :: zs' else zs'
let intersection (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && s2 x)) (intersect_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Difference` with `difference`:
///
/// function Set#Difference<T>(Set T, Set T): Set T;
let rec difference_lists (#a: eqtype) (xs: list a) (ys: list a)
: (zs: list a{forall z. FLT.mem z zs <==> FLT.mem z xs /\ ~(FLT.mem z ys)}) =
match xs with
| [] -> []
| hd :: tl -> let zs' = difference_lists tl ys in if FLT.mem hd ys then zs' else hd :: zs'
let difference (#a: eqtype) (s1: set a) (s2: set a) : set a =
intro_set (on_dom a (fun x -> s1 x && not (s2 x))) (difference_lists (set_as_list s1) (set_as_list s2))
/// We represent the Dafny function `Set#Subset` with `subset`:
///
/// function Set#Subset<T>(Set T, Set T): bool;
let subset (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. (s1 x = true) ==> (s2 x = true)
/// We represent the Dafny function `Set#Equal` with `equal`:
///
/// function Set#Equal<T>(Set T, Set T): bool;
let equal (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
feq s1 s2
/// We represent the Dafny function `Set#Disjoint` with `disjoint`:
///
/// function Set#Disjoint<T>(Set T, Set T): bool;
let disjoint (#a: eqtype) (s1: set a) (s2: set a) : Type0 =
forall x. not (s1 x && s2 x)
/// We represent the Dafny choice operator by `choose`:
///
/// var x: T :| x in s;
let choose (#a: eqtype) (s: set a{exists x. mem x s}) : GTot (x: a{mem x s}) =
Cons?.hd (set_as_list s)
/// We now prove each of the facts that comprise `all_finite_set_facts`.
/// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that
/// requires a helper lemma, which we call `xxx_helper`.
let empty_set_contains_no_elements_lemma ()
: Lemma (empty_set_contains_no_elements_fact) =
()
let length_zero_lemma ()
: Lemma (length_zero_fact) =
introduce forall (a: eqtype) (s: set a). (cardinality s = 0 <==> s == emptyset) /\ (cardinality s <> 0 <==> (exists x. mem x s))
with (
reveal_opaque (`%cardinality) (cardinality #a);
introduce cardinality s = 0 ==> s == emptyset
with _. assert (feq s emptyset);
introduce s == emptyset ==> cardinality s = 0
with _. assert (set_as_list s == []);
introduce cardinality s <> 0 ==> _
with _. introduce exists x. mem x s
with (Cons?.hd (set_as_list s))
and ())
let singleton_contains_argument_lemma ()
: Lemma (singleton_contains_argument_fact) =
()
let singleton_contains_lemma ()
: Lemma (singleton_contains_fact) =
()
let rec singleton_cardinality_helper (#a: eqtype) (r: a) (xs: list a)
: Lemma (requires FLT.mem r xs /\ (forall x. FLT.mem x xs <==> x = r))
(ensures remove_repeats xs == [r]) =
match xs with
| [x] -> ()
| hd :: tl ->
assert (Cons?.hd tl = r);
singleton_cardinality_helper r tl
let singleton_cardinality_lemma ()
: Lemma (singleton_cardinality_fact) =
introduce forall (a: eqtype) (r: a). cardinality (singleton r) = 1
with (
reveal_opaque (`%cardinality) (cardinality #a);
singleton_cardinality_helper r (set_as_list (singleton r))
)
let insert_lemma ()
: Lemma (insert_fact) =
()
let insert_contains_argument_lemma ()
: Lemma (insert_contains_argument_fact) =
()
let insert_contains_lemma ()
: Lemma (insert_contains_fact) =
()
let rec remove_from_nonrepeating_list (#a: eqtype) (x: a) (xs: list a{FLT.mem x xs /\ list_nonrepeating xs})
: (xs': list a{ list_nonrepeating xs'
/\ FLT.length xs' = FLT.length xs - 1
/\ (forall y. FLT.mem y xs' <==> FLT.mem y xs /\ y <> x)}) =
match xs with
| hd :: tl -> if x = hd then tl else hd :: (remove_from_nonrepeating_list x tl)
let rec nonrepeating_lists_with_same_elements_have_same_length (#a: eqtype) (s1: list a) (s2: list a)
: Lemma (requires list_nonrepeating s1 /\ list_nonrepeating s2 /\ (forall x. FLT.mem x s1 <==> FLT.mem x s2))
(ensures FLT.length s1 = FLT.length s2) =
match s1 with
| [] -> ()
| hd :: tl -> nonrepeating_lists_with_same_elements_have_same_length tl (remove_from_nonrepeating_list hd s2)
let insert_member_cardinality_lemma ()
: Lemma (insert_member_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). mem x s ==> cardinality (insert x s) = cardinality s
with
introduce mem x s ==> cardinality (insert x s) = cardinality s
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (set_as_list s) (set_as_list (insert x s))
)
let insert_nonmember_cardinality_lemma ()
: Lemma (insert_nonmember_cardinality_fact) =
introduce forall (a: eqtype) (s: set a) (x: a). not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with
introduce not (mem x s) ==> cardinality (insert x s) = cardinality s + 1
with _. (
reveal_opaque (`%cardinality) (cardinality #a);
nonrepeating_lists_with_same_elements_have_same_length (x :: (set_as_list s)) (set_as_list (insert x s))
)
let union_contains_lemma ()
: Lemma (union_contains_fact) =
()
let union_contains_element_from_first_argument_lemma ()
: Lemma (union_contains_element_from_first_argument_fact) =
()
let union_contains_element_from_second_argument_lemma ()
: Lemma (union_contains_element_from_second_argument_fact) =
()
let union_of_disjoint_lemma ()
: Lemma (union_of_disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with
introduce disjoint s1 s2 ==> difference (union s1 s2) s1 == s2 /\ difference (union s1 s2) s2 == s1
with _. (
assert (feq (difference (union s1 s2) s1) s2);
assert (feq (difference (union s1 s2) s2) s1)
)
let intersection_contains_lemma ()
: Lemma (intersection_contains_fact) =
()
let union_idempotent_right_lemma ()
: Lemma (union_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union (union s1 s2) s2 == union s1 s2
with assert (feq (union (union s1 s2) s2) (union s1 s2))
let union_idempotent_left_lemma ()
: Lemma (union_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). union s1 (union s1 s2) == union s1 s2
with assert (feq (union s1 (union s1 s2)) (union s1 s2))
let intersection_idempotent_right_lemma ()
: Lemma (intersection_idempotent_right_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection (intersection s1 s2) s2 == intersection s1 s2
with assert (feq (intersection (intersection s1 s2) s2) (intersection s1 s2))
let intersection_idempotent_left_lemma ()
: Lemma (intersection_idempotent_left_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). intersection s1 (intersection s1 s2) == intersection s1 s2
with assert (feq (intersection s1 (intersection s1 s2)) (intersection s1 s2))
let rec union_of_disjoint_nonrepeating_lists_length_lemma (#a: eqtype) (xs1: list a) (xs2: list a) (xs3: list a)
: Lemma (requires list_nonrepeating xs1
/\ list_nonrepeating xs2
/\ list_nonrepeating xs3
/\ (forall x. ~(FLT.mem x xs1 /\ FLT.mem x xs2))
/\ (forall x. FLT.mem x xs3 <==> FLT.mem x xs1 \/ FLT.mem x xs2))
(ensures FLT.length xs3 = FLT.length xs1 + FLT.length xs2) =
match xs1 with
| [] -> nonrepeating_lists_with_same_elements_have_same_length xs2 xs3
| hd :: tl -> union_of_disjoint_nonrepeating_lists_length_lemma tl xs2 (remove_from_nonrepeating_list hd xs3)
let union_of_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (requires disjoint s1 s2)
(ensures cardinality (union s1 s2) = cardinality s1 + cardinality s2) =
reveal_opaque (`%cardinality) (cardinality #a);
union_of_disjoint_nonrepeating_lists_length_lemma (set_as_list s1) (set_as_list s2) (set_as_list (union s1 s2))
let union_of_three_disjoint_sets_cardinality_lemma (#a: eqtype) (s1: set a) (s2: set a) (s3: set a)
: Lemma (requires disjoint s1 s2 /\ disjoint s2 s3 /\ disjoint s1 s3)
(ensures cardinality (union (union s1 s2) s3) = cardinality s1 + cardinality s2 + cardinality s3) =
union_of_disjoint_sets_cardinality_lemma s1 s2;
union_of_disjoint_sets_cardinality_lemma (union s1 s2) s3
let cardinality_matches_difference_plus_intersection_lemma (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (ensures cardinality s1 = cardinality (difference s1 s2) + cardinality (intersection s1 s2)) =
union_of_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2);
assert (feq s1 (union (difference s1 s2) (intersection s1 s2)))
let union_is_differences_and_intersection (#a: eqtype) (s1: set a) (s2: set a)
: Lemma (union s1 s2 == union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)) =
assert (feq (union s1 s2) (union (union (difference s1 s2) (intersection s1 s2)) (difference s2 s1)))
let intersection_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2) =
cardinality_matches_difference_plus_intersection_lemma s1 s2;
cardinality_matches_difference_plus_intersection_lemma s2 s1;
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
assert (feq (intersection s1 s2) (intersection s2 s1))
let intersection_cardinality_lemma ()
: Lemma (intersection_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (union s1 s2) + cardinality (intersection s1 s2) = cardinality s1 + cardinality s2
with
intersection_cardinality_helper a s1 s2
let difference_contains_lemma ()
: Lemma (difference_contains_fact) =
()
let difference_doesnt_include_lemma ()
: Lemma (difference_doesnt_include_fact) =
()
let difference_cardinality_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma ( cardinality (difference s1 s2) + cardinality (difference s2 s1) + cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)) =
union_is_differences_and_intersection s1 s2;
union_of_three_disjoint_sets_cardinality_lemma (difference s1 s2) (intersection s1 s2) (difference s2 s1);
cardinality_matches_difference_plus_intersection_lemma s1 s2
let difference_cardinality_lemma ()
: Lemma (difference_cardinality_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
cardinality (difference s1 s2) + cardinality (difference s2 s1) +
cardinality (intersection s1 s2) = cardinality (union s1 s2)
/\ cardinality (difference s1 s2) = cardinality s1 - cardinality (intersection s1 s2)
with
difference_cardinality_helper a s1 s2
let subset_helper (a: eqtype) (s1: set a) (s2: set a)
: Lemma (subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)) =
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2) ==> subset s1 s2
with _.
introduce forall x. s1 x = true ==> s2 x = true
with assert (mem x s1 = s1 x)
let subset_lemma ()
: Lemma (subset_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a). subset s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 ==> mem o s2)
with subset_helper a s1 s2
let equal_lemma ()
: Lemma (equal_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
equal s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2)
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} mem o s1 <==> mem o s2) ==> equal s1 s2
with _.
introduce forall x. s1 x = true <==> s2 x = true
with assert (mem x s1 = s1 x /\ mem x s2 = s2 x)
)
let equal_extensionality_lemma ()
: Lemma (equal_extensionality_fact) =
()
let disjoint_lemma ()
: Lemma (disjoint_fact) =
introduce forall (a: eqtype) (s1: set a) (s2: set a).
disjoint s1 s2 <==> (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2))
with (
introduce (forall o.{:pattern mem o s1 \/ mem o s2} not (mem o s1) \/ not (mem o s2)) ==> disjoint s1 s2
with _. (
introduce forall x. not (s1 x && s2 x)
with assert (not (mem x s1) \/ not (mem x s2))
)
)
let insert_remove_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s)
(ensures insert x (remove x s) == s) =
assert (feq s (insert x (remove x s)))
let insert_remove_lemma ()
: Lemma (insert_remove_fact) =
introduce forall (a: eqtype) (x: a) (s: set a). mem x s = true ==> insert x (remove x s) == s
with
introduce mem x s = true ==> insert x (remove x s) == s
with _. insert_remove_helper a x s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked",
"FStar.Classical.Sugar.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.FiniteSet.Base.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "FLT"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.FiniteSet",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.eqtype -> x: a -> s: FStar.FiniteSet.Base.set a
-> FStar.Pervasives.Lemma (requires FStar.FiniteSet.Base.mem x s = false)
(ensures FStar.FiniteSet.Base.remove x (FStar.FiniteSet.Base.insert x s) == s) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.eqtype",
"FStar.FiniteSet.Base.set",
"Prims._assert",
"FStar.FunctionalExtensionality.feq",
"Prims.bool",
"FStar.FiniteSet.Base.remove",
"FStar.FiniteSet.Base.insert",
"Prims.unit",
"Prims.b2t",
"Prims.op_Equality",
"FStar.FiniteSet.Base.mem",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let remove_insert_helper (a: eqtype) (x: a) (s: set a)
: Lemma (requires mem x s = false) (ensures remove x (insert x s) == s) =
| assert (feq s (remove x (insert x s))) | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.pad_to_128_bits_upper | val pad_to_128_bits_upper (q:quad32) (num_bytes:int) : Lemma
(requires 1 <= num_bytes /\ num_bytes < 8)
(ensures (let new_hi = (((hi64 q) / pow2 ((8 - num_bytes) * 8)) * pow2 ((8 - num_bytes) * 8)) % pow2_64 in
(let q' = two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 new_hi)) in
q' == be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes))))) | val pad_to_128_bits_upper (q:quad32) (num_bytes:int) : Lemma
(requires 1 <= num_bytes /\ num_bytes < 8)
(ensures (let new_hi = (((hi64 q) / pow2 ((8 - num_bytes) * 8)) * pow2 ((8 - num_bytes) * 8)) % pow2_64 in
(let q' = two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 new_hi)) in
q' == be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes))))) | let pad_to_128_bits_upper (q:quad32) (num_bytes:int) =
let n = num_bytes in
let new_hi = ((hi64 q / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8)) % pow2_64 in
hi64_reveal ();
let f (n:nat{1 <= n /\ n < 8}) = (hi64_def q / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8) == ((hi64_def q / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8)) % pow2_64 in
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
assert_norm (f 5);
assert_norm (f 6);
assert_norm (f 7);
assert (((hi64 q) / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8) == (((hi64 q) / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8)) % pow2_64);
let s = be_quad32_to_bytes q in
let s' = slice s 0 n in
let q' = two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 new_hi)) in
let s'' = pad_to_128_bits s' in
let q'' = be_bytes_to_quad32 s'' in
let s0_4 = slice s 0 4 in
let s4_8 = slice s 4 8 in
let s8_12 = slice s 8 12 in
let s12_16 = slice s 12 16 in
let s0_4'' = slice s'' 0 4 in
let s4_8'' = slice s'' 4 8 in
let s8_12'' = slice s'' 8 12 in
let s12_16'' = slice s'' 12 16 in
if n < 4 then
(
lemma_div_n_8_upper1 q n;
lemma_64_32_hi1 q' (hi64 q) new_hi n;
lemma_pad_to_32_bits s0_4 s0_4'' n;
()
)
else
(
lemma_div_n_8_upper2 q (n - 4);
lemma_64_32_hi2 q' (hi64 q) new_hi (n - 4);
lemma_pad_to_32_bits s4_8 s4_8'' (n - 4);
()
);
lemma_slices_be_quad32_to_bytes q;
lemma_slices_be_bytes_to_quad32 s'';
lemma_four_zero ();
let zero_4 : seq nat8 = create 4 0 in
assert (n < 4 ==> equal s4_8'' zero_4);
assert (equal s8_12'' zero_4);
assert (equal s12_16'' zero_4);
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 320,
"start_col": 0,
"start_line": 269
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
)
let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
()
#reset-options "--smtencoding.elim_box true --z3rlimit 60 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1"
let lemma_pad_to_32_bits_helper (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 2 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
()
let lemma_pad_to_32_bits (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
if n <= 2 then lemma_pad_to_32_bits_helper s s'' n else
assert (n == 3 \/ n == 4);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (0 * 8) == 1);
assert_norm (pow2 (1 * 8) == 0x100);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 3 ==> x / pow2 (8 * (4 - n)) == x / 0x100);
assert (n == 4 ==> x / pow2 (8 * (4 - n)) == x / 0x1);
assert_norm (((x / pow2 (8 * 1)) * pow2 (8 * 1)) % pow2 (8 * 1) == 0);
assert_norm (((x / pow2 (8 * 0)) * pow2 (8 * 0)) % pow2 (8 * 0) == 0);
()
let lemma_div_n_8_upper1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = ((hi64_def q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 0);
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
()
let lemma_div_n_8_upper2_helper (q:quad32) (n:nat) : Lemma
(requires n <= 2)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 2);
assert_norm (f 1);
assert_norm (f 0);
()
let lemma_div_n_8_upper2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
if n <= 2 then lemma_div_n_8_upper2_helper q n else
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 4);
assert_norm (f 3);
()
let lemma_div_n_8_lower1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((lo64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.lo1 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper1 (Mkfour 0 0 q0 q1) n
let lemma_div_n_8_lower2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (lo64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.lo1 + (q.lo0 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper2 (Mkfour 0 0 q0 q1) n
let lemma_64_32_hi1 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' % pow2_32 == 0 /\ hi' / pow2_32 == q'.hi3 /\ q' == Mkfour 0 0 0 q'.hi3)
=
assert_norm (((hi / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm ((((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32) % pow2_32 ==
((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
()
let lemma_64_32_hi2 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' == 0x100000000 * q'.hi3 + q'.hi2 /\ q' == Mkfour 0 0 q'.hi2 q'.hi3)
=
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
()
let lemma_64_32_lo1 (q':quad32) (lo lo':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
lo' == (lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3)
)
(ensures lo' % pow2_32 == 0 /\ lo' / pow2_32 == q'.lo1 /\ q'.lo0 == 0)
=
assert_norm (((lo / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) / pow2_32) % pow2_32 ==
((lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 lo' == nat_to_two_unfold 32 lo');
()
let lemma_64_32_lo2 (q':quad32) (lo lo':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
lo' == (lo / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3)
)
(ensures lo' == q'.lo0 + 0x100000000 * q'.lo1)
=
assert_norm (nat_to_two 32 lo' == nat_to_two_unfold 32 lo');
()
let lemma_slices_be_bytes_to_quad32 (s:seq16 nat8) : Lemma
(ensures (
let q = be_bytes_to_quad32 s in
q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\
q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\
q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\
q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16))
))
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8);
be_bytes_to_quad32_reveal ();
()
let lemma_four_zero (_:unit) : Lemma
(ensures four_to_nat 8 (seq_to_four_BE (create 4 0)) == 0)
=
let s = create 4 0 in
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": true,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | q: Vale.Def.Types_s.quad32 -> num_bytes: Prims.int
-> FStar.Pervasives.Lemma (requires 1 <= num_bytes /\ num_bytes < 8)
(ensures
(let new_hi =
(Vale.Arch.Types.hi64 q / Prims.pow2 ((8 - num_bytes) * 8)) *
Prims.pow2 ((8 - num_bytes) * 8) %
Vale.Def.Words_s.pow2_64
in
let q' =
Vale.Def.Words.Four_s.two_two_to_four (Vale.Def.Words_s.Mktwo
(Vale.Def.Words.Two_s.nat_to_two 32 0) (Vale.Def.Words.Two_s.nat_to_two 32 new_hi)
)
in
q' ==
Vale.Def.Types_s.be_bytes_to_quad32 (Vale.AES.GCTR_BE_s.pad_to_128_bits (FStar.Seq.Base.slice
(Vale.Arch.Types.be_quad32_to_bytes q)
0
num_bytes)))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Prims.int",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Types_s.nat8",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"FStar.Seq.Base.create",
"Vale.AES.GCM_helpers_BE.lemma_four_zero",
"Vale.AES.GCM_helpers_BE.lemma_slices_be_bytes_to_quad32",
"Vale.AES.Types_helpers.lemma_slices_be_quad32_to_bytes",
"Vale.AES.GCM_helpers_BE.lemma_pad_to_32_bits",
"Vale.AES.GCM_helpers_BE.lemma_64_32_hi1",
"Vale.Arch.Types.hi64",
"Vale.AES.GCM_helpers_BE.lemma_div_n_8_upper1",
"Prims.bool",
"Prims.op_Subtraction",
"Vale.AES.GCM_helpers_BE.lemma_64_32_hi2",
"Vale.AES.GCM_helpers_BE.lemma_div_n_8_upper2",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.be_bytes_to_quad32",
"Vale.AES.GCTR_BE_s.pad_to_128_bits",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.nat32",
"Vale.Def.Words.Four_s.two_two_to_four",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.Mktwo",
"Vale.Def.Words_s.two",
"Vale.Def.Words.Two_s.nat_to_two",
"Vale.Def.Words.Seq_s.seq16",
"Vale.Arch.Types.be_quad32_to_bytes",
"Prims.eq2",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Prims.pow2",
"Prims.op_Modulus",
"Vale.Def.Words_s.pow2_64",
"FStar.Pervasives.assert_norm",
"Prims.nat",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.logical",
"Vale.Arch.Types.hi64_def",
"Vale.Arch.Types.hi64_reveal"
] | [] | false | false | true | false | false | let pad_to_128_bits_upper (q: quad32) (num_bytes: int) =
| let n = num_bytes in
let new_hi = ((hi64 q / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8)) % pow2_64 in
hi64_reveal ();
let f (n: nat{1 <= n /\ n < 8}) =
(hi64_def q / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8) ==
((hi64_def q / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8)) % pow2_64
in
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
assert_norm (f 5);
assert_norm (f 6);
assert_norm (f 7);
assert (((hi64 q) / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8) ==
(((hi64 q) / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8)) % pow2_64);
let s = be_quad32_to_bytes q in
let s' = slice s 0 n in
let q' = two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 new_hi)) in
let s'' = pad_to_128_bits s' in
let q'' = be_bytes_to_quad32 s'' in
let s0_4 = slice s 0 4 in
let s4_8 = slice s 4 8 in
let s8_12 = slice s 8 12 in
let s12_16 = slice s 12 16 in
let s0_4'' = slice s'' 0 4 in
let s4_8'' = slice s'' 4 8 in
let s8_12'' = slice s'' 8 12 in
let s12_16'' = slice s'' 12 16 in
if n < 4
then
(lemma_div_n_8_upper1 q n;
lemma_64_32_hi1 q' (hi64 q) new_hi n;
lemma_pad_to_32_bits s0_4 s0_4'' n;
())
else
(lemma_div_n_8_upper2 q (n - 4);
lemma_64_32_hi2 q' (hi64 q) new_hi (n - 4);
lemma_pad_to_32_bits s4_8 s4_8'' (n - 4);
());
lemma_slices_be_quad32_to_bytes q;
lemma_slices_be_bytes_to_quad32 s'';
lemma_four_zero ();
let zero_4:seq nat8 = create 4 0 in
assert (n < 4 ==> equal s4_8'' zero_4);
assert (equal s8_12'' zero_4);
assert (equal s12_16'' zero_4);
() | false |
Imp.fst | Imp.eval | val eval : prog -> rval | val eval : prog -> rval | let eval p = let rm = List.Tot.fold_left (fun r i -> eval' i r) (fun _ -> 0) p in rm (R 0) | {
"file_name": "examples/tactics/Imp.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 90,
"end_line": 76,
"start_col": 0,
"start_line": 76
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Imp
//#set-options "--debug Imp --debug_level SMTQuery"
open FStar.Mul
open FStar.Tactics.V2
open FStar.Tactics.CanonCommSemiring
open FStar.Algebra.CommMonoid
type rval = int
type reg = | R of n:nat{n < 10}
type regmap = reg -> rval
noeq
type inst =
| Add : reg -> reg -> reg -> inst
| Sub : reg -> reg -> reg -> inst
| Mul : reg -> reg -> reg -> inst
| Const : rval -> reg -> inst
//| If0 : reg -> prog -> prog -> inst
//| Seq : prog -> inst
and prog = list inst
module L = FStar.List.Tot
let rec size : inst -> pos = function
| Add _ _ _
| Sub _ _ _
| Mul _ _ _
| Const _ _ -> 1
//| If0 _ i j -> 1 + size_l i + size_l j
//| Seq i -> 1 + size_l i
and size_l : prog -> pos = function
| [] -> 1
| hd::tl -> size hd + size_l tl
val override : reg -> rval -> regmap -> regmap
let override r v rm =
fun r' ->
if r = r'
then v
else rm r'
let rec eval' (i:inst) (rm:regmap)
: Tot regmap (decreases (size i))
= match i with
| Add r1 r2 r3 -> override r3 (rm r1 + rm r2) rm
| Sub r1 r2 r3 -> override r3 (rm r1 - rm r2) rm
| Mul r1 r2 r3 -> override r3 (rm r1 * rm r2) rm
| Const v r -> override r v rm
//| Seq [] -> rm
// | Seq (p::ps) -> eval' (Seq ps) (eval' p rm)
// | If0 r p0 p1 ->
// if rm r = 0
// then eval' (Seq p0) rm
// else eval' (Seq p1) rm
(* Run in all zeros and get the 0th reg *)
val eval : prog -> rval | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Algebra.CommMonoid.fst.checked"
],
"interface_file": false,
"source_file": "Imp.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Imp.prog -> Imp.rval | Prims.Tot | [
"total"
] | [] | [
"Imp.prog",
"Imp.R",
"Imp.regmap",
"FStar.List.Tot.Base.fold_left",
"Imp.inst",
"Imp.eval'",
"Imp.reg",
"Imp.rval"
] | [] | false | false | false | true | false | let eval p =
| let rm = List.Tot.fold_left (fun r i -> eval' i r) (fun _ -> 0) p in
rm (R 0) | false |
Imp.fst | Imp.equiv | val equiv : p1: Imp.prog -> p2: Imp.prog -> Prims.logical | let equiv p1 p2 = eval p1 == eval p2 | {
"file_name": "examples/tactics/Imp.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 36,
"end_line": 78,
"start_col": 0,
"start_line": 78
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Imp
//#set-options "--debug Imp --debug_level SMTQuery"
open FStar.Mul
open FStar.Tactics.V2
open FStar.Tactics.CanonCommSemiring
open FStar.Algebra.CommMonoid
type rval = int
type reg = | R of n:nat{n < 10}
type regmap = reg -> rval
noeq
type inst =
| Add : reg -> reg -> reg -> inst
| Sub : reg -> reg -> reg -> inst
| Mul : reg -> reg -> reg -> inst
| Const : rval -> reg -> inst
//| If0 : reg -> prog -> prog -> inst
//| Seq : prog -> inst
and prog = list inst
module L = FStar.List.Tot
let rec size : inst -> pos = function
| Add _ _ _
| Sub _ _ _
| Mul _ _ _
| Const _ _ -> 1
//| If0 _ i j -> 1 + size_l i + size_l j
//| Seq i -> 1 + size_l i
and size_l : prog -> pos = function
| [] -> 1
| hd::tl -> size hd + size_l tl
val override : reg -> rval -> regmap -> regmap
let override r v rm =
fun r' ->
if r = r'
then v
else rm r'
let rec eval' (i:inst) (rm:regmap)
: Tot regmap (decreases (size i))
= match i with
| Add r1 r2 r3 -> override r3 (rm r1 + rm r2) rm
| Sub r1 r2 r3 -> override r3 (rm r1 - rm r2) rm
| Mul r1 r2 r3 -> override r3 (rm r1 * rm r2) rm
| Const v r -> override r v rm
//| Seq [] -> rm
// | Seq (p::ps) -> eval' (Seq ps) (eval' p rm)
// | If0 r p0 p1 ->
// if rm r = 0
// then eval' (Seq p0) rm
// else eval' (Seq p1) rm
(* Run in all zeros and get the 0th reg *)
val eval : prog -> rval
//let eval p = let rm = eval' (Seq p) (fun _ -> 0) in rm (R 0)
let eval p = let rm = List.Tot.fold_left (fun r i -> eval' i r) (fun _ -> 0) p in rm (R 0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Algebra.CommMonoid.fst.checked"
],
"interface_file": false,
"source_file": "Imp.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p1: Imp.prog -> p2: Imp.prog -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Imp.prog",
"Prims.eq2",
"Imp.rval",
"Imp.eval",
"Prims.logical"
] | [] | false | false | false | true | true | let equiv p1 p2 =
| eval p1 == eval p2 | false |
|
Imp.fst | Imp.mk42 | val mk42:prog | val mk42:prog | let mk42 : prog = [
Const 1 (R 0);
Add (R 0) (R 0) (R 1);
Add (R 1) (R 1) (R 0);
Add (R 0) (R 0) (R 1);
Add (R 1) (R 1) (R 0);
Add (R 0) (R 0) (R 1);
Add (R 1) (R 0) (R 0);
Const 6 (R 1);
Sub (R 0) (R 1) (R 0);
] | {
"file_name": "examples/tactics/Imp.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 1,
"end_line": 90,
"start_col": 0,
"start_line": 80
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Imp
//#set-options "--debug Imp --debug_level SMTQuery"
open FStar.Mul
open FStar.Tactics.V2
open FStar.Tactics.CanonCommSemiring
open FStar.Algebra.CommMonoid
type rval = int
type reg = | R of n:nat{n < 10}
type regmap = reg -> rval
noeq
type inst =
| Add : reg -> reg -> reg -> inst
| Sub : reg -> reg -> reg -> inst
| Mul : reg -> reg -> reg -> inst
| Const : rval -> reg -> inst
//| If0 : reg -> prog -> prog -> inst
//| Seq : prog -> inst
and prog = list inst
module L = FStar.List.Tot
let rec size : inst -> pos = function
| Add _ _ _
| Sub _ _ _
| Mul _ _ _
| Const _ _ -> 1
//| If0 _ i j -> 1 + size_l i + size_l j
//| Seq i -> 1 + size_l i
and size_l : prog -> pos = function
| [] -> 1
| hd::tl -> size hd + size_l tl
val override : reg -> rval -> regmap -> regmap
let override r v rm =
fun r' ->
if r = r'
then v
else rm r'
let rec eval' (i:inst) (rm:regmap)
: Tot regmap (decreases (size i))
= match i with
| Add r1 r2 r3 -> override r3 (rm r1 + rm r2) rm
| Sub r1 r2 r3 -> override r3 (rm r1 - rm r2) rm
| Mul r1 r2 r3 -> override r3 (rm r1 * rm r2) rm
| Const v r -> override r v rm
//| Seq [] -> rm
// | Seq (p::ps) -> eval' (Seq ps) (eval' p rm)
// | If0 r p0 p1 ->
// if rm r = 0
// then eval' (Seq p0) rm
// else eval' (Seq p1) rm
(* Run in all zeros and get the 0th reg *)
val eval : prog -> rval
//let eval p = let rm = eval' (Seq p) (fun _ -> 0) in rm (R 0)
let eval p = let rm = List.Tot.fold_left (fun r i -> eval' i r) (fun _ -> 0) p in rm (R 0)
let equiv p1 p2 = eval p1 == eval p2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Algebra.CommMonoid.fst.checked"
],
"interface_file": false,
"source_file": "Imp.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Imp.prog | Prims.Tot | [
"total"
] | [] | [
"Prims.Cons",
"Imp.inst",
"Imp.Const",
"Imp.R",
"Imp.Add",
"Imp.Sub",
"Prims.Nil"
] | [] | false | false | false | true | false | let mk42:prog =
| [
Const 1 (R 0);
Add (R 0) (R 0) (R 1);
Add (R 1) (R 1) (R 0);
Add (R 0) (R 0) (R 1);
Add (R 1) (R 1) (R 0);
Add (R 0) (R 0) (R 1);
Add (R 1) (R 0) (R 0);
Const 6 (R 1);
Sub (R 0) (R 1) (R 0)
] | false |
Vale.AES.GCM_helpers_BE.fst | Vale.AES.GCM_helpers_BE.pad_to_128_bits_lower | val pad_to_128_bits_lower (q:quad32) (num_bytes:int) : Lemma
(requires 8 <= num_bytes /\ num_bytes < 16)
(ensures (let new_lo = (((lo64 q) / pow2 ((16 - num_bytes) * 8)) * pow2 ((16 - num_bytes) * 8)) % pow2_64 in
(let q' = two_two_to_four (Mktwo (nat_to_two 32 new_lo) (nat_to_two 32 (hi64 q))) in
q' == be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes))))) | val pad_to_128_bits_lower (q:quad32) (num_bytes:int) : Lemma
(requires 8 <= num_bytes /\ num_bytes < 16)
(ensures (let new_lo = (((lo64 q) / pow2 ((16 - num_bytes) * 8)) * pow2 ((16 - num_bytes) * 8)) % pow2_64 in
(let q' = two_two_to_four (Mktwo (nat_to_two 32 new_lo) (nat_to_two 32 (hi64 q))) in
q' == be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes))))) | let pad_to_128_bits_lower (q:quad32) (num_bytes:int) =
let n = num_bytes in
let new_lo = (((lo64 q) / pow2 ((16 - n) * 8)) * pow2 ((16 - n) * 8)) % pow2_64 in
lo64_reveal ();
hi64_reveal ();
let f (n:nat{8 <= n /\ n < 16}) = (lo64_def q / pow2 ((16 - n) * 8)) * pow2 ((16 - n) * 8) == ((lo64_def q / pow2 ((16 - n) * 8)) * pow2 ((16 - n) * 8)) % pow2_64 in
assert_norm (f 8);
assert_norm (f 9);
assert_norm (f 10);
assert_norm (f 11);
assert_norm (f 12);
assert_norm (f 13);
assert_norm (f 14);
assert_norm (f 15);
assert (((lo64 q) / pow2 ((16 - n) * 8)) * pow2 ((16 - n) * 8) == (((lo64 q) / pow2 ((16 - n) * 8)) * pow2 ((16 - n) * 8)) % pow2_64);
let s = be_quad32_to_bytes q in
let s' = slice s 0 n in
let q' = two_two_to_four (Mktwo (nat_to_two 32 new_lo) (nat_to_two 32 (hi64 q))) in
let s'' = pad_to_128_bits s' in
let q'' = be_bytes_to_quad32 s'' in
let s0_4 = slice s 0 4 in
let s4_8 = slice s 4 8 in
let s8_12 = slice s 8 12 in
let s12_16 = slice s 12 16 in
let s0_4'' = slice s'' 0 4 in
let s4_8'' = slice s'' 4 8 in
let s8_12'' = slice s'' 8 12 in
let s12_16'' = slice s'' 12 16 in
let Mkfour q0 q1 q2 q3 = q in
let Mkfour q0' q1' q2' q3' = q' in
let Mkfour q0'' q1'' q2'' q3'' = q'' in
if n < 12 then
(
lemma_div_n_8_lower1 q (n - 8);
lemma_64_32_lo1 q' (lo64 q) new_lo (n - 8);
lemma_pad_to_32_bits s8_12 s8_12'' (n - 8);
()
)
else
(
lemma_div_n_8_lower2 q (n - 12);
lemma_64_32_lo2 q' (lo64 q) new_lo (n - 12);
lemma_pad_to_32_bits s12_16 s12_16'' (n - 12);
()
);
lemma_slices_be_quad32_to_bytes q;
lemma_slices_be_bytes_to_quad32 s'';
lemma_four_zero ();
let zero_4 : seq nat8 = create 4 0 in
assert (n < 12 ==> equal s12_16'' zero_4);
() | {
"file_name": "vale/code/crypto/aes/Vale.AES.GCM_helpers_BE.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 379,
"start_col": 0,
"start_line": 324
} | module Vale.AES.GCM_helpers_BE
open FStar.Tactics
open Vale.Def.Words_s
open Vale.Def.Words.Seq_s
open Vale.Def.Types_s
open Vale.Arch.Types
open FStar.Mul
open FStar.Seq
open Vale.Def.Opaque_s
open Vale.Def.Words.Two_s
open Vale.Def.Words.Four_s
open Vale.AES.AES_BE_s
open Vale.AES.GCTR_BE_s
open FStar.Math.Lemmas
open Vale.Lib.Seqs
open Vale.AES.Types_helpers
let no_extra_bytes_helper s num_bytes =
()
let be_seq_quad32_to_bytes_tail_prefix (s:seq quad32) (num_bytes:nat) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let final = index s num_blocks in
let x = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes in
let x' = slice (be_quad32_to_bytes final) 0 num_extra in
be_seq_quad32_to_bytes_of_singleton final;
assert (be_quad32_to_bytes final == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 final)));
assert (equal (create 1 final) (slice s num_blocks (length s)));
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s num_blocks (length s)))) 0 num_extra);
slice_commutes_be_seq_quad32_to_bytes s num_blocks (length s);
assert (x' == slice (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) (length s * 16)) 0 num_extra);
assert (x' == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (num_blocks * 16) num_bytes);
assert (equal x' x);
()
let pad_to_128_bits_multiples (b:seq nat8) : Lemma
(let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes)
=
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
if length b < 16 then (
assert (full_bytes == empty);
assert (partial_bytes == b);
append_empty_l(pad_to_128_bits partial_bytes);
()
) else (
assert (length full_bytes + length partial_bytes == length b);
assert (length full_bytes % 16 == 0);
let num_extra_bytes = length b % 16 in
assert (num_extra_bytes == (length partial_bytes) % 16);
if num_extra_bytes = 0 then (
lemma_split b full_blocks;
assert (b == full_bytes @| partial_bytes);
()
) else (
let pad = create (16 - num_extra_bytes) 0 in
assert (equal (b @| pad) (full_bytes @| (partial_bytes @| pad)));
()
);
()
)
let pad_to_128_bits_be_quad32_to_bytes (s:seq quad32) (num_bytes:int) =
let num_extra = num_bytes % 16 in
let num_blocks = num_bytes / 16 in
let full_quads,final_quads = split s num_blocks in
assert(length final_quads == 1);
let final_quad = index final_quads 0 in
let b = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes in
pad_to_128_bits_multiples b; // ==> pad_to_128_bits b == full_bytes @| pad_to_128_bits partial_bytes
let full_blocks = (length b) / 16 * 16 in
let full_bytes, partial_bytes = split b full_blocks in
slice_commutes_be_seq_quad32_to_bytes0 s num_blocks;
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes 0 full_blocks;
assert (full_bytes == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE full_quads));
slice_slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes full_blocks num_bytes;
be_seq_quad32_to_bytes_tail_prefix s num_bytes;
()
#reset-options "--smtencoding.elim_box true --z3rlimit 60 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1"
let lemma_pad_to_32_bits_helper (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 2 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
assert (n == 0 \/ n == 1 \/ n == 2);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (2 * 8) == 0x10000);
assert_norm (pow2 (3 * 8) == 0x1000000);
assert_norm (pow2 (4 * 8) == 0x100000000);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 0 ==> x / pow2 (8 * (4 - n)) == x / 0x100000000);
assert (n == 1 ==> x / pow2 (8 * (4 - n)) == x / 0x1000000);
assert (n == 2 ==> x / pow2 (8 * (4 - n)) == x / 0x10000);
assert_norm (((x / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2 (8 * 4) == 0);
assert_norm (((x / pow2 (8 * 3)) * pow2 (8 * 3)) % pow2 (8 * 3) == 0);
assert_norm (((x / pow2 (8 * 2)) * pow2 (8 * 2)) % pow2 (8 * 2) == 0);
()
let lemma_pad_to_32_bits (s s'':seq4 nat8) (n:nat) : Lemma
(requires
n <= 4 /\
(forall (i:nat).{:pattern (index s i) \/ (index s'' i)} i < 4 ==>
index s'' i == (if i < n then index s i else 0))
)
(ensures four_to_nat 8 (seq_to_four_BE s'') == (four_to_nat 8 (seq_to_four_BE s) / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
if n <= 2 then lemma_pad_to_32_bits_helper s s'' n else
assert (n == 3 \/ n == 4);
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
assert_norm (four_to_nat 8 (seq_to_four_BE s'') == four_to_nat_unfold 8 (seq_to_four_BE s''));
assert_norm (pow2 (0 * 8) == 1);
assert_norm (pow2 (1 * 8) == 0x100);
let x = four_to_nat 8 (seq_to_four_BE s'') in
assert (n == 3 ==> x / pow2 (8 * (4 - n)) == x / 0x100);
assert (n == 4 ==> x / pow2 (8 * (4 - n)) == x / 0x1);
assert_norm (((x / pow2 (8 * 1)) * pow2 (8 * 1)) % pow2 (8 * 1) == 0);
assert_norm (((x / pow2 (8 * 0)) * pow2 (8 * 0)) % pow2 (8 * 0) == 0);
()
let lemma_div_n_8_upper1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((hi64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = ((hi64_def q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.hi3 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 0);
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
()
let lemma_div_n_8_upper2_helper (q:quad32) (n:nat) : Lemma
(requires n <= 2)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 2);
assert_norm (f 1);
assert_norm (f 0);
()
let lemma_div_n_8_upper2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (hi64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
if n <= 2 then lemma_div_n_8_upper2_helper q n else
let Mkfour _ _ _ _ = q in // avoid ifuel
let f (n:nat{n <= 4}) = (hi64_def q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.hi3 + (q.hi2 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) in
assert_norm (f 4);
assert_norm (f 3);
()
let lemma_div_n_8_lower1 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures ((lo64 q / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32 == (q.lo1 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper1 (Mkfour 0 0 q0 q1) n
let lemma_div_n_8_lower2 (q:quad32) (n:nat) : Lemma
(requires n <= 4)
(ensures (lo64 q / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) == 0x100000000 * q.lo1 + (q.lo0 / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)))
=
hi64_reveal ();
lo64_reveal ();
let Mkfour q0 q1 _ _ = q in
lemma_div_n_8_upper2 (Mkfour 0 0 q0 q1) n
let lemma_64_32_hi1 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' % pow2_32 == 0 /\ hi' / pow2_32 == q'.hi3 /\ q' == Mkfour 0 0 0 q'.hi3)
=
assert_norm (((hi / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((hi / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm ((((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32) % pow2_32 ==
((hi / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
()
let lemma_64_32_hi2 (q':quad32) (hi hi':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
hi' == (hi / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 0) (nat_to_two 32 hi')
)
(ensures hi' == 0x100000000 * q'.hi3 + q'.hi2 /\ q' == Mkfour 0 0 q'.hi2 q'.hi3)
=
assert_norm (nat_to_two 32 hi' == nat_to_two_unfold 32 hi');
assert_norm (nat_to_two 32 0 == nat_to_two_unfold 32 0);
()
let lemma_64_32_lo1 (q':quad32) (lo lo':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
lo' == (lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3)
)
(ensures lo' % pow2_32 == 0 /\ lo' / pow2_32 == q'.lo1 /\ q'.lo0 == 0)
=
assert_norm (((lo / pow2 (8 * 4)) * pow2 (8 * 4)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 5)) * pow2 (8 * 5)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 6)) * pow2 (8 * 6)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 7)) * pow2 (8 * 7)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * 8)) * pow2 (8 * 8)) % pow2_32 == 0);
assert_norm (((lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n)) / pow2_32) % pow2_32 ==
((lo / pow2 (8 * (8 - n))) * pow2 (8 * (8 - n))) / pow2_32);
assert_norm (nat_to_two 32 lo' == nat_to_two_unfold 32 lo');
()
let lemma_64_32_lo2 (q':quad32) (lo lo':nat64) (n:nat) : Lemma
(requires
n <= 4 /\
lo' == (lo / pow2 (8 * (4 - n))) * pow2 (8 * (4 - n)) /\
four_to_two_two q' == Mktwo (nat_to_two 32 lo') (Mktwo q'.hi2 q'.hi3)
)
(ensures lo' == q'.lo0 + 0x100000000 * q'.lo1)
=
assert_norm (nat_to_two 32 lo' == nat_to_two_unfold 32 lo');
()
let lemma_slices_be_bytes_to_quad32 (s:seq16 nat8) : Lemma
(ensures (
let q = be_bytes_to_quad32 s in
q.hi3 == four_to_nat 8 (seq_to_four_BE (slice s 0 4)) /\
q.hi2 == four_to_nat 8 (seq_to_four_BE (slice s 4 8)) /\
q.lo1 == four_to_nat 8 (seq_to_four_BE (slice s 8 12)) /\
q.lo0 == four_to_nat 8 (seq_to_four_BE (slice s 12 16))
))
=
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8);
be_bytes_to_quad32_reveal ();
()
let lemma_four_zero (_:unit) : Lemma
(ensures four_to_nat 8 (seq_to_four_BE (create 4 0)) == 0)
=
let s = create 4 0 in
assert_norm (four_to_nat 8 (seq_to_four_BE s) == four_to_nat_unfold 8 (seq_to_four_BE s));
()
let pad_to_128_bits_upper (q:quad32) (num_bytes:int) =
let n = num_bytes in
let new_hi = ((hi64 q / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8)) % pow2_64 in
hi64_reveal ();
let f (n:nat{1 <= n /\ n < 8}) = (hi64_def q / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8) == ((hi64_def q / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8)) % pow2_64 in
assert_norm (f 1);
assert_norm (f 2);
assert_norm (f 3);
assert_norm (f 4);
assert_norm (f 5);
assert_norm (f 6);
assert_norm (f 7);
assert (((hi64 q) / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8) == (((hi64 q) / pow2 ((8 - n) * 8)) * pow2 ((8 - n) * 8)) % pow2_64);
let s = be_quad32_to_bytes q in
let s' = slice s 0 n in
let q' = two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 new_hi)) in
let s'' = pad_to_128_bits s' in
let q'' = be_bytes_to_quad32 s'' in
let s0_4 = slice s 0 4 in
let s4_8 = slice s 4 8 in
let s8_12 = slice s 8 12 in
let s12_16 = slice s 12 16 in
let s0_4'' = slice s'' 0 4 in
let s4_8'' = slice s'' 4 8 in
let s8_12'' = slice s'' 8 12 in
let s12_16'' = slice s'' 12 16 in
if n < 4 then
(
lemma_div_n_8_upper1 q n;
lemma_64_32_hi1 q' (hi64 q) new_hi n;
lemma_pad_to_32_bits s0_4 s0_4'' n;
()
)
else
(
lemma_div_n_8_upper2 q (n - 4);
lemma_64_32_hi2 q' (hi64 q) new_hi (n - 4);
lemma_pad_to_32_bits s4_8 s4_8'' (n - 4);
()
);
lemma_slices_be_quad32_to_bytes q;
lemma_slices_be_bytes_to_quad32 s'';
lemma_four_zero ();
let zero_4 : seq nat8 = create 4 0 in
assert (n < 4 ==> equal s4_8'' zero_4);
assert (equal s8_12'' zero_4);
assert (equal s12_16'' zero_4);
()
#reset-options "--smtencoding.elim_box true --z3rlimit 100 --z3refresh --initial_ifuel 0 --max_ifuel 1 --initial_fuel 1 --max_fuel 1" | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.Types_helpers.fsti.checked",
"Vale.AES.GCTR_BE_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": true,
"source_file": "Vale.AES.GCM_helpers_BE.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.Types_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GCTR_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": true,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | q: Vale.Def.Types_s.quad32 -> num_bytes: Prims.int
-> FStar.Pervasives.Lemma (requires 8 <= num_bytes /\ num_bytes < 16)
(ensures
(let new_lo =
(Vale.Arch.Types.lo64 q / Prims.pow2 ((16 - num_bytes) * 8)) *
Prims.pow2 ((16 - num_bytes) * 8) %
Vale.Def.Words_s.pow2_64
in
let q' =
Vale.Def.Words.Four_s.two_two_to_four (Vale.Def.Words_s.Mktwo
(Vale.Def.Words.Two_s.nat_to_two 32 new_lo)
(Vale.Def.Words.Two_s.nat_to_two 32 (Vale.Arch.Types.hi64 q)))
in
q' ==
Vale.Def.Types_s.be_bytes_to_quad32 (Vale.AES.GCTR_BE_s.pad_to_128_bits (FStar.Seq.Base.slice
(Vale.Arch.Types.be_quad32_to_bytes q)
0
num_bytes)))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Prims.int",
"Vale.Def.Types_s.nat32",
"Prims.unit",
"Prims._assert",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.equal",
"Vale.Def.Types_s.nat8",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"FStar.Seq.Base.create",
"Vale.AES.GCM_helpers_BE.lemma_four_zero",
"Vale.AES.GCM_helpers_BE.lemma_slices_be_bytes_to_quad32",
"Vale.AES.Types_helpers.lemma_slices_be_quad32_to_bytes",
"Vale.AES.GCM_helpers_BE.lemma_pad_to_32_bits",
"Prims.op_Subtraction",
"Vale.AES.GCM_helpers_BE.lemma_64_32_lo1",
"Vale.Arch.Types.lo64",
"Vale.AES.GCM_helpers_BE.lemma_div_n_8_lower1",
"Prims.bool",
"Vale.AES.GCM_helpers_BE.lemma_64_32_lo2",
"Vale.AES.GCM_helpers_BE.lemma_div_n_8_lower2",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.nat32",
"FStar.Seq.Base.slice",
"Vale.Def.Types_s.be_bytes_to_quad32",
"Vale.AES.GCTR_BE_s.pad_to_128_bits",
"Vale.Def.Words.Four_s.two_two_to_four",
"Vale.Def.Words_s.Mktwo",
"Vale.Def.Words_s.two",
"Vale.Def.Words.Two_s.nat_to_two",
"Vale.Arch.Types.hi64",
"Vale.Def.Words.Seq_s.seq16",
"Vale.Arch.Types.be_quad32_to_bytes",
"Prims.eq2",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Prims.pow2",
"Prims.op_Modulus",
"Vale.Def.Words_s.pow2_64",
"FStar.Pervasives.assert_norm",
"Prims.nat",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.logical",
"Vale.Arch.Types.lo64_def",
"Vale.Arch.Types.hi64_reveal",
"Vale.Arch.Types.lo64_reveal"
] | [] | false | false | true | false | false | let pad_to_128_bits_lower (q: quad32) (num_bytes: int) =
| let n = num_bytes in
let new_lo = (((lo64 q) / pow2 ((16 - n) * 8)) * pow2 ((16 - n) * 8)) % pow2_64 in
lo64_reveal ();
hi64_reveal ();
let f (n: nat{8 <= n /\ n < 16}) =
(lo64_def q / pow2 ((16 - n) * 8)) * pow2 ((16 - n) * 8) ==
((lo64_def q / pow2 ((16 - n) * 8)) * pow2 ((16 - n) * 8)) % pow2_64
in
assert_norm (f 8);
assert_norm (f 9);
assert_norm (f 10);
assert_norm (f 11);
assert_norm (f 12);
assert_norm (f 13);
assert_norm (f 14);
assert_norm (f 15);
assert (((lo64 q) / pow2 ((16 - n) * 8)) * pow2 ((16 - n) * 8) ==
(((lo64 q) / pow2 ((16 - n) * 8)) * pow2 ((16 - n) * 8)) % pow2_64);
let s = be_quad32_to_bytes q in
let s' = slice s 0 n in
let q' = two_two_to_four (Mktwo (nat_to_two 32 new_lo) (nat_to_two 32 (hi64 q))) in
let s'' = pad_to_128_bits s' in
let q'' = be_bytes_to_quad32 s'' in
let s0_4 = slice s 0 4 in
let s4_8 = slice s 4 8 in
let s8_12 = slice s 8 12 in
let s12_16 = slice s 12 16 in
let s0_4'' = slice s'' 0 4 in
let s4_8'' = slice s'' 4 8 in
let s8_12'' = slice s'' 8 12 in
let s12_16'' = slice s'' 12 16 in
let Mkfour q0 q1 q2 q3 = q in
let Mkfour q0' q1' q2' q3' = q' in
let Mkfour q0'' q1'' q2'' q3'' = q'' in
if n < 12
then
(lemma_div_n_8_lower1 q (n - 8);
lemma_64_32_lo1 q' (lo64 q) new_lo (n - 8);
lemma_pad_to_32_bits s8_12 s8_12'' (n - 8);
())
else
(lemma_div_n_8_lower2 q (n - 12);
lemma_64_32_lo2 q' (lo64 q) new_lo (n - 12);
lemma_pad_to_32_bits s12_16 s12_16'' (n - 12);
());
lemma_slices_be_quad32_to_bytes q;
lemma_slices_be_bytes_to_quad32 s'';
lemma_four_zero ();
let zero_4:seq nat8 = create 4 0 in
assert (n < 12 ==> equal s12_16'' zero_4);
() | false |
Imp.fst | Imp.override | val override : reg -> rval -> regmap -> regmap | val override : reg -> rval -> regmap -> regmap | let override r v rm =
fun r' ->
if r = r'
then v
else rm r' | {
"file_name": "examples/tactics/Imp.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 57,
"start_col": 0,
"start_line": 53
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Imp
//#set-options "--debug Imp --debug_level SMTQuery"
open FStar.Mul
open FStar.Tactics.V2
open FStar.Tactics.CanonCommSemiring
open FStar.Algebra.CommMonoid
type rval = int
type reg = | R of n:nat{n < 10}
type regmap = reg -> rval
noeq
type inst =
| Add : reg -> reg -> reg -> inst
| Sub : reg -> reg -> reg -> inst
| Mul : reg -> reg -> reg -> inst
| Const : rval -> reg -> inst
//| If0 : reg -> prog -> prog -> inst
//| Seq : prog -> inst
and prog = list inst
module L = FStar.List.Tot
let rec size : inst -> pos = function
| Add _ _ _
| Sub _ _ _
| Mul _ _ _
| Const _ _ -> 1
//| If0 _ i j -> 1 + size_l i + size_l j
//| Seq i -> 1 + size_l i
and size_l : prog -> pos = function
| [] -> 1
| hd::tl -> size hd + size_l tl | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Algebra.CommMonoid.fst.checked"
],
"interface_file": false,
"source_file": "Imp.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Imp.reg -> v: Imp.rval -> rm: Imp.regmap -> Imp.regmap | Prims.Tot | [
"total"
] | [] | [
"Imp.reg",
"Imp.rval",
"Imp.regmap",
"Prims.op_Equality",
"Prims.bool"
] | [] | false | false | false | true | false | let override r v rm =
| fun r' -> if r = r' then v else rm r' | false |
Imp.fst | Imp.size | val size: inst -> pos | val size: inst -> pos | let rec size : inst -> pos = function
| Add _ _ _
| Sub _ _ _
| Mul _ _ _
| Const _ _ -> 1
//| If0 _ i j -> 1 + size_l i + size_l j
//| Seq i -> 1 + size_l i
and size_l : prog -> pos = function
| [] -> 1
| hd::tl -> size hd + size_l tl | {
"file_name": "examples/tactics/Imp.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 51,
"start_col": 0,
"start_line": 41
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Imp
//#set-options "--debug Imp --debug_level SMTQuery"
open FStar.Mul
open FStar.Tactics.V2
open FStar.Tactics.CanonCommSemiring
open FStar.Algebra.CommMonoid
type rval = int
type reg = | R of n:nat{n < 10}
type regmap = reg -> rval
noeq
type inst =
| Add : reg -> reg -> reg -> inst
| Sub : reg -> reg -> reg -> inst
| Mul : reg -> reg -> reg -> inst
| Const : rval -> reg -> inst
//| If0 : reg -> prog -> prog -> inst
//| Seq : prog -> inst
and prog = list inst
module L = FStar.List.Tot | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Algebra.CommMonoid.fst.checked"
],
"interface_file": false,
"source_file": "Imp.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Imp.inst -> Prims.pos | Prims.Tot | [
"total"
] | [
"size",
"size_l"
] | [
"Imp.inst",
"Imp.reg",
"Imp.rval",
"Prims.pos"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec size: inst -> pos =
| function | Add _ _ _ | Sub _ _ _ | Mul _ _ _ | Const _ _ -> 1 | false |
Imp.fst | Imp.size_l | val size_l: prog -> pos | val size_l: prog -> pos | let rec size : inst -> pos = function
| Add _ _ _
| Sub _ _ _
| Mul _ _ _
| Const _ _ -> 1
//| If0 _ i j -> 1 + size_l i + size_l j
//| Seq i -> 1 + size_l i
and size_l : prog -> pos = function
| [] -> 1
| hd::tl -> size hd + size_l tl | {
"file_name": "examples/tactics/Imp.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 51,
"start_col": 0,
"start_line": 41
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Imp
//#set-options "--debug Imp --debug_level SMTQuery"
open FStar.Mul
open FStar.Tactics.V2
open FStar.Tactics.CanonCommSemiring
open FStar.Algebra.CommMonoid
type rval = int
type reg = | R of n:nat{n < 10}
type regmap = reg -> rval
noeq
type inst =
| Add : reg -> reg -> reg -> inst
| Sub : reg -> reg -> reg -> inst
| Mul : reg -> reg -> reg -> inst
| Const : rval -> reg -> inst
//| If0 : reg -> prog -> prog -> inst
//| Seq : prog -> inst
and prog = list inst
module L = FStar.List.Tot | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Algebra.CommMonoid.fst.checked"
],
"interface_file": false,
"source_file": "Imp.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Imp.prog -> Prims.pos | Prims.Tot | [
"total"
] | [
"size",
"size_l"
] | [
"Imp.prog",
"Imp.inst",
"Prims.list",
"Prims.op_Addition",
"Imp.size",
"Imp.size_l",
"Prims.pos"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec size_l: prog -> pos =
| function
| [] -> 1
| hd :: tl -> size hd + size_l tl | false |
Imp.fst | Imp.eval' | val eval' (i: inst) (rm: regmap) : Tot regmap (decreases (size i)) | val eval' (i: inst) (rm: regmap) : Tot regmap (decreases (size i)) | let rec eval' (i:inst) (rm:regmap)
: Tot regmap (decreases (size i))
= match i with
| Add r1 r2 r3 -> override r3 (rm r1 + rm r2) rm
| Sub r1 r2 r3 -> override r3 (rm r1 - rm r2) rm
| Mul r1 r2 r3 -> override r3 (rm r1 * rm r2) rm
| Const v r -> override r v rm | {
"file_name": "examples/tactics/Imp.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 39,
"end_line": 65,
"start_col": 0,
"start_line": 59
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Imp
//#set-options "--debug Imp --debug_level SMTQuery"
open FStar.Mul
open FStar.Tactics.V2
open FStar.Tactics.CanonCommSemiring
open FStar.Algebra.CommMonoid
type rval = int
type reg = | R of n:nat{n < 10}
type regmap = reg -> rval
noeq
type inst =
| Add : reg -> reg -> reg -> inst
| Sub : reg -> reg -> reg -> inst
| Mul : reg -> reg -> reg -> inst
| Const : rval -> reg -> inst
//| If0 : reg -> prog -> prog -> inst
//| Seq : prog -> inst
and prog = list inst
module L = FStar.List.Tot
let rec size : inst -> pos = function
| Add _ _ _
| Sub _ _ _
| Mul _ _ _
| Const _ _ -> 1
//| If0 _ i j -> 1 + size_l i + size_l j
//| Seq i -> 1 + size_l i
and size_l : prog -> pos = function
| [] -> 1
| hd::tl -> size hd + size_l tl
val override : reg -> rval -> regmap -> regmap
let override r v rm =
fun r' ->
if r = r'
then v
else rm r' | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Algebra.CommMonoid.fst.checked"
],
"interface_file": false,
"source_file": "Imp.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.Algebra.CommMonoid",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Imp.inst -> rm: Imp.regmap -> Prims.Tot Imp.regmap | Prims.Tot | [
"total",
""
] | [] | [
"Imp.inst",
"Imp.regmap",
"Imp.reg",
"Imp.override",
"Prims.op_Addition",
"Prims.op_Subtraction",
"FStar.Mul.op_Star",
"Imp.rval"
] | [
"recursion"
] | false | false | false | true | false | let rec eval' (i: inst) (rm: regmap) : Tot regmap (decreases (size i)) =
| match i with
| Add r1 r2 r3 -> override r3 (rm r1 + rm r2) rm
| Sub r1 r2 r3 -> override r3 (rm r1 - rm r2) rm
| Mul r1 r2 r3 -> override r3 (rm r1 * rm r2) rm
| Const v r -> override r v rm | false |
FStar.DM4F.IntST.fst | FStar.DM4F.IntST.state | val state : Prims.eqtype | let state = int | {
"file_name": "examples/dm4free/FStar.DM4F.IntST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 22,
"start_col": 0,
"start_line": 22
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.DM4F.IntST
open FStar.DM4F.ST
// A simple variant of state with a single integer as the state | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.ST.fst.checked"
],
"interface_file": false,
"source_file": "FStar.DM4F.IntST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.eqtype | Prims.Tot | [
"total"
] | [] | [
"Prims.int"
] | [] | false | false | false | true | false | let state =
| int | false |
|
FStar.DM4F.IntST.fst | FStar.DM4F.IntST.repr | val repr : a: Type -> wp_a: (_: Prims.int -> _: (_: (a * Prims.int) -> Type0) -> Type0) -> Type | let repr = STINT?.repr | {
"file_name": "examples/dm4free/FStar.DM4F.IntST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 22,
"end_line": 33,
"start_col": 0,
"start_line": 33
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.DM4F.IntST
open FStar.DM4F.ST
// A simple variant of state with a single integer as the state
// Here is where all the DM4F magic happens
let state = int
total reifiable reflectable new_effect {
STINT : a:Type -> Effect
with repr = st state
; bind = bind_st state
; return = return_st state
; get = get state
; put = put state
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.ST.fst.checked"
],
"interface_file": false,
"source_file": "FStar.DM4F.IntST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> wp_a: (_: Prims.int -> _: (_: (a * Prims.int) -> Type0) -> Type0) -> Type | Prims.Tot | [
"total"
] | [] | [
"FStar.DM4F.IntST._dm4f_STINT_repr"
] | [] | false | false | false | true | true | let repr =
| STINT?.repr | false |
|
FStar.DM4F.IntST.fst | FStar.DM4F.IntST.post | val post : a: Type -> Type | let post = STINT?.post | {
"file_name": "examples/dm4free/FStar.DM4F.IntST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 22,
"end_line": 34,
"start_col": 0,
"start_line": 34
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.DM4F.IntST
open FStar.DM4F.ST
// A simple variant of state with a single integer as the state
// Here is where all the DM4F magic happens
let state = int
total reifiable reflectable new_effect {
STINT : a:Type -> Effect
with repr = st state
; bind = bind_st state
; return = return_st state
; get = get state
; put = put state
}
// Some abbreviations | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.ST.fst.checked"
],
"interface_file": false,
"source_file": "FStar.DM4F.IntST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> Type | Prims.Tot | [
"total"
] | [] | [
"FStar.DM4F.IntST._dm4f_STINT_post"
] | [] | false | false | false | true | true | let post =
| STINT?.post | false |
|
FStar.DM4F.IntST.fst | FStar.DM4F.IntST.pre | val pre : Type | let pre = STINT?.pre | {
"file_name": "examples/dm4free/FStar.DM4F.IntST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 20,
"end_line": 35,
"start_col": 0,
"start_line": 35
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.DM4F.IntST
open FStar.DM4F.ST
// A simple variant of state with a single integer as the state
// Here is where all the DM4F magic happens
let state = int
total reifiable reflectable new_effect {
STINT : a:Type -> Effect
with repr = st state
; bind = bind_st state
; return = return_st state
; get = get state
; put = put state
}
// Some abbreviations
let repr = STINT?.repr | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.ST.fst.checked"
],
"interface_file": false,
"source_file": "FStar.DM4F.IntST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type | Prims.Tot | [
"total"
] | [] | [
"FStar.DM4F.IntST._dm4f_STINT_pre"
] | [] | false | false | false | true | true | let pre =
| STINT?.pre | false |
|
FStar.DM4F.IntST.fst | FStar.DM4F.IntST.wp | val wp : a: Type -> Type | let wp = STINT?.wp | {
"file_name": "examples/dm4free/FStar.DM4F.IntST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 36,
"start_col": 0,
"start_line": 36
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.DM4F.IntST
open FStar.DM4F.ST
// A simple variant of state with a single integer as the state
// Here is where all the DM4F magic happens
let state = int
total reifiable reflectable new_effect {
STINT : a:Type -> Effect
with repr = st state
; bind = bind_st state
; return = return_st state
; get = get state
; put = put state
}
// Some abbreviations
let repr = STINT?.repr
let post = STINT?.post | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.ST.fst.checked"
],
"interface_file": false,
"source_file": "FStar.DM4F.IntST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> Type | Prims.Tot | [
"total"
] | [] | [
"FStar.DM4F.IntST._dm4f_STINT_wp"
] | [] | false | false | false | true | true | let wp =
| STINT?.wp | false |
|
FStar.DM4F.IntST.fst | FStar.DM4F.IntST.lift_pure_stint | val lift_pure_stint : a: Type -> wp: Prims.pure_wp a -> n: Prims.int -> p: FStar.DM4F.IntST.post a -> Prims.pure_pre | let lift_pure_stint (a:Type) (wp:pure_wp a) (n:int) (p:post a) =
wp (fun a -> p (a, n)) | {
"file_name": "examples/dm4free/FStar.DM4F.IntST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 24,
"end_line": 44,
"start_col": 7,
"start_line": 43
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.DM4F.IntST
open FStar.DM4F.ST
// A simple variant of state with a single integer as the state
// Here is where all the DM4F magic happens
let state = int
total reifiable reflectable new_effect {
STINT : a:Type -> Effect
with repr = st state
; bind = bind_st state
; return = return_st state
; get = get state
; put = put state
}
// Some abbreviations
let repr = STINT?.repr
let post = STINT?.post
let pre = STINT?.pre
let wp = STINT?.wp
let get = STINT?.get
let put = STINT?.put
// We define a lift between PURE and STINT
// -- this is analogous to the return for the monad | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.ST.fst.checked"
],
"interface_file": false,
"source_file": "FStar.DM4F.IntST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> wp: Prims.pure_wp a -> n: Prims.int -> p: FStar.DM4F.IntST.post a -> Prims.pure_pre | Prims.Tot | [
"total"
] | [] | [
"Prims.pure_wp",
"Prims.int",
"FStar.DM4F.IntST.post",
"Prims.l_True",
"FStar.Pervasives.Native.Mktuple2",
"Prims.pure_pre"
] | [] | false | false | false | true | false | let lift_pure_stint (a: Type) (wp: pure_wp a) (n: int) (p: post a) =
| wp (fun a -> p (a, n)) | false |
|
FStar.DM4F.IntST.fst | FStar.DM4F.IntST.get' | val get' : unit -> STINT int (fun z post -> post (z, z)) | val get' : unit -> STINT int (fun z post -> post (z, z)) | let get' () = STINT?.reflect (action_get ()) | {
"file_name": "examples/dm4free/FStar.DM4F.IntST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 105,
"start_col": 0,
"start_line": 105
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.DM4F.IntST
open FStar.DM4F.ST
// A simple variant of state with a single integer as the state
// Here is where all the DM4F magic happens
let state = int
total reifiable reflectable new_effect {
STINT : a:Type -> Effect
with repr = st state
; bind = bind_st state
; return = return_st state
; get = get state
; put = put state
}
// Some abbreviations
let repr = STINT?.repr
let post = STINT?.post
let pre = STINT?.pre
let wp = STINT?.wp
let get = STINT?.get
let put = STINT?.put
// We define a lift between PURE and STINT
// -- this is analogous to the return for the monad
// -- but automatically wiring the return here is not done yet
unfold let lift_pure_stint (a:Type) (wp:pure_wp a) (n:int) (p:post a) =
wp (fun a -> p (a, n))
sub_effect PURE ~> STINT = lift_pure_stint
// We define an effect abbreviation for using pre-post conditions
effect StInt (a:Type) (pre: pre) (post: (int -> a -> int -> GTot Type0)) =
STINT a (fun n0 p -> pre n0 /\
(forall a n1. pre n0 /\ post n0 a n1 ==> p (a, n1)))
// Another effect abbreviation for the trivial pre-post conditions
effect StNull (a:Type) =
STINT a (fun (n0:int) (p:(a * int) -> Type0) -> forall (x:(a * int)). p x)
// We define an increment function that we verify intrinsically
val incr_intrinsic : unit -> StInt unit (requires (fun n -> True))
(ensures (fun n0 _ n1 -> n1 = n0 + 1))
let incr_intrinsic u =
let n = STINT?.get () in
STINT?.put (n + 1)
// Here is a weaker specification for increment
val incr_intrinsic' : unit -> STINT unit
(fun s0 post -> forall (s1:int). (s1 > s0) ==> post ((), s1))
let incr_intrinsic' u =
let n = STINT?.get () in
STINT?.put (n + 1)
// Or, we can give increment the weakest possible spec and prove
// properties extrinsically (after the fact) using reification
val incr : unit -> StNull unit
let incr u =
let n = STINT?.get() in
STINT?.put (n + 1)
let incr_increases (s0:int) = assert (snd (reify (incr ()) s0) = s0 + 1)
(* Using this extrinsic style we can also prove information-flow
control properties of increment and decrement *)
let decr () : StNull unit =
let n = STINT?.get () in
STINT?.put (n - 1)
let ifc (h:bool) : StNull int =
if h then (incr(); let y = STINT?.get() in decr(); y)
else STINT?.get() + 1
let ni_ifc = assert (forall h0 h1 s0. reify (ifc h0) s0 = reify (ifc h1) s0)
(* Although we have STINT?.get and STINT?.put now as actions, *)
(* we can also "rederive" them using reflection *)
val action_get: (u:unit) -> repr int (fun n post -> post (n, n))
let action_get () i = (i, i)
val action_put: x:int -> repr unit (fun n post -> post ((), x))
let action_put x i = ((), x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.ST.fst.checked"
],
"interface_file": false,
"source_file": "FStar.DM4F.IntST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.DM4F.IntST.STINT Prims.int | FStar.DM4F.IntST.STINT | [] | [] | [
"Prims.unit",
"FStar.DM4F.IntST.action_get",
"Prims.int",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2"
] | [] | false | true | false | false | false | let get' () =
| STINT?.reflect (action_get ()) | false |
FStar.DM4F.IntST.fst | FStar.DM4F.IntST.put' | val put': x:int -> STINT unit (fun z post -> post ((), x)) | val put': x:int -> STINT unit (fun z post -> post ((), x)) | let put' x = STINT?.reflect (action_put x) | {
"file_name": "examples/dm4free/FStar.DM4F.IntST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 42,
"end_line": 108,
"start_col": 0,
"start_line": 108
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.DM4F.IntST
open FStar.DM4F.ST
// A simple variant of state with a single integer as the state
// Here is where all the DM4F magic happens
let state = int
total reifiable reflectable new_effect {
STINT : a:Type -> Effect
with repr = st state
; bind = bind_st state
; return = return_st state
; get = get state
; put = put state
}
// Some abbreviations
let repr = STINT?.repr
let post = STINT?.post
let pre = STINT?.pre
let wp = STINT?.wp
let get = STINT?.get
let put = STINT?.put
// We define a lift between PURE and STINT
// -- this is analogous to the return for the monad
// -- but automatically wiring the return here is not done yet
unfold let lift_pure_stint (a:Type) (wp:pure_wp a) (n:int) (p:post a) =
wp (fun a -> p (a, n))
sub_effect PURE ~> STINT = lift_pure_stint
// We define an effect abbreviation for using pre-post conditions
effect StInt (a:Type) (pre: pre) (post: (int -> a -> int -> GTot Type0)) =
STINT a (fun n0 p -> pre n0 /\
(forall a n1. pre n0 /\ post n0 a n1 ==> p (a, n1)))
// Another effect abbreviation for the trivial pre-post conditions
effect StNull (a:Type) =
STINT a (fun (n0:int) (p:(a * int) -> Type0) -> forall (x:(a * int)). p x)
// We define an increment function that we verify intrinsically
val incr_intrinsic : unit -> StInt unit (requires (fun n -> True))
(ensures (fun n0 _ n1 -> n1 = n0 + 1))
let incr_intrinsic u =
let n = STINT?.get () in
STINT?.put (n + 1)
// Here is a weaker specification for increment
val incr_intrinsic' : unit -> STINT unit
(fun s0 post -> forall (s1:int). (s1 > s0) ==> post ((), s1))
let incr_intrinsic' u =
let n = STINT?.get () in
STINT?.put (n + 1)
// Or, we can give increment the weakest possible spec and prove
// properties extrinsically (after the fact) using reification
val incr : unit -> StNull unit
let incr u =
let n = STINT?.get() in
STINT?.put (n + 1)
let incr_increases (s0:int) = assert (snd (reify (incr ()) s0) = s0 + 1)
(* Using this extrinsic style we can also prove information-flow
control properties of increment and decrement *)
let decr () : StNull unit =
let n = STINT?.get () in
STINT?.put (n - 1)
let ifc (h:bool) : StNull int =
if h then (incr(); let y = STINT?.get() in decr(); y)
else STINT?.get() + 1
let ni_ifc = assert (forall h0 h1 s0. reify (ifc h0) s0 = reify (ifc h1) s0)
(* Although we have STINT?.get and STINT?.put now as actions, *)
(* we can also "rederive" them using reflection *)
val action_get: (u:unit) -> repr int (fun n post -> post (n, n))
let action_get () i = (i, i)
val action_put: x:int -> repr unit (fun n post -> post ((), x))
let action_put x i = ((), x)
val get' : unit -> STINT int (fun z post -> post (z, z))
let get' () = STINT?.reflect (action_get ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.ST.fst.checked"
],
"interface_file": false,
"source_file": "FStar.DM4F.IntST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> FStar.DM4F.IntST.STINT Prims.unit | FStar.DM4F.IntST.STINT | [] | [] | [
"Prims.int",
"FStar.DM4F.IntST.action_put",
"Prims.unit",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2"
] | [] | false | true | false | false | false | let put' x =
| STINT?.reflect (action_put x) | false |
OWGCounter.fst | OWGCounter.incr_ghost_contrib | val incr_ghost_contrib (#v1 #v2: G.erased int) (r: ghost_ref int)
: Steel unit
((ghost_pts_to r half_perm v1) `star` (ghost_pts_to r half_perm v2))
(fun _ -> (ghost_pts_to r half_perm (v1 + 1)) `star` (ghost_pts_to r half_perm (v2 + 1)))
(fun _ -> True)
(fun _ _ _ -> v1 == v2) | val incr_ghost_contrib (#v1 #v2: G.erased int) (r: ghost_ref int)
: Steel unit
((ghost_pts_to r half_perm v1) `star` (ghost_pts_to r half_perm v2))
(fun _ -> (ghost_pts_to r half_perm (v1 + 1)) `star` (ghost_pts_to r half_perm (v2 + 1)))
(fun _ -> True)
(fun _ _ _ -> v1 == v2) | let incr_ghost_contrib (#v1 #v2:G.erased int) (r:ghost_ref int)
: Steel unit
(ghost_pts_to r half_perm v1 `star`
ghost_pts_to r half_perm v2)
(fun _ -> ghost_pts_to r half_perm (v1+1) `star`
ghost_pts_to r half_perm (v2+1))
(fun _ -> True)
(fun _ _ _ -> v1 == v2)
= ghost_gather_pt #_ #_ #half_perm #half_perm #v1 #v2 r;
rewrite_perm r (sum_perm half_perm half_perm) full_perm;
ghost_write_pt r (v1+1);
ghost_share_pt r;
rewrite_slprop (ghost_pts_to r (P.half_perm P.full_perm) (v1+1) `star`
ghost_pts_to r (P.half_perm P.full_perm) (v1+1))
(ghost_pts_to r half_perm (v1+1) `star`
ghost_pts_to r half_perm (v2+1))
(fun _ -> ()) | {
"file_name": "share/steel/examples/steel/OWGCounter.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 31,
"end_line": 215,
"start_col": 0,
"start_line": 199
} | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(*
* An implementation of the parallel counter presented by Owicki and Gries
* "Verifying properties of parallel programs: An axiomatic approach.", CACM'76
*
* In this example, the main thread forks two worker thread that both
* increment a shared counter. The goal of the example is to show that
* after both the worker threads are done, the value of the counter is
* its original value + 2.
*
* See http://pm.inf.ethz.ch/publications/getpdf.php for an implementation
* of the OWG counters in the Chalice framework.
*)
module OWGCounter
module G = FStar.Ghost
open Steel.Memory
open Steel.FractionalPermission
open Steel.Reference
open Steel.SpinLock
open Steel.Effect.Atomic
open Steel.Effect
module R = Steel.Reference
module P = Steel.FractionalPermission
module A = Steel.Effect.Atomic
#set-options "--ide_id_info_off --using_facts_from '* -FStar.Tactics -FStar.Reflection' --fuel 0 --ifuel 0"
let half_perm = half_perm full_perm
(* Some basic wrappers to avoid issues with normalization.
TODO: The frame inference tactic should not normalize fst and snd*)
noextract
let fst = fst
noextract
let snd = snd
/// The core invariant of the Owicki-Gries counter, shared by the two parties.
/// The concrete counter [r] is shared, and the full permission is stored in the invariant.
/// Each party also has half permission to their own ghost counter [r1] or [r2], ensuring that
/// only them can modify it by retrieving the other half of the permission when accessing the invariant.
/// The `__reduce__` attribute indicates the frame inference tactic to unfold this predicate for frame inference only
[@@ __reduce__]
let lock_inv_slprop (r:ref int) (r1 r2:ghost_ref int) (w:int & int) =
ghost_pts_to r1 half_perm (fst w) `star`
ghost_pts_to r2 half_perm (snd w) `star`
pts_to r full_perm (fst w + snd w)
[@@ __reduce__]
let lock_inv_pred (r:ref int) (r1 r2:ghost_ref int) =
fun (x:int & int) -> lock_inv_slprop r r1 r2 x
/// The actual invariant, existentially quantifying over the values currently stored in the two ghost references
[@@ __reduce__]
let lock_inv (r:ref int) (r1 r2:ghost_ref int) : vprop =
h_exists (lock_inv_pred r r1 r2)
#push-options "--warn_error -271 --fuel 1 --ifuel 1"
/// A helper lemma to reason about the lock invariant
let lock_inv_equiv_lemma (r:ref int) (r1 r2:ghost_ref int)
: Lemma (lock_inv r r1 r2 `equiv` lock_inv r r2 r1)
=
let aux (r:ref int) (r1 r2:ghost_ref int) (m:mem)
: Lemma
(requires interp (hp_of (lock_inv r r1 r2)) m)
(ensures interp (hp_of (lock_inv r r2 r1)) m)
[SMTPat ()]
= assert (
Steel.Memory.h_exists #(int & int) (fun x -> hp_of (lock_inv_pred r r1 r2 x)) ==
h_exists_sl #(int & int) (lock_inv_pred r r1 r2))
by (FStar.Tactics.norm [delta_only [`%h_exists_sl]]);
let w : G.erased (int & int) = id_elim_exists (fun x -> hp_of (lock_inv_pred r r1 r2 x)) m in
assert ((ghost_pts_to r1 half_perm (snd (snd w, fst w)) `star`
ghost_pts_to r2 half_perm (fst (snd w, fst w)) `star`
pts_to r full_perm (fst (snd w, fst w) + snd (snd w, fst w))) `equiv`
(ghost_pts_to r2 half_perm (fst (snd w, fst w)) `star`
ghost_pts_to r1 half_perm (snd (snd w, fst w)) `star`
pts_to r full_perm (fst (snd w, fst w) + snd (snd w, fst w)))) by (FStar.Tactics.norm [delta_attr [`%__steel_reduce__]]; canon' false (`true_p) (`true_p));
reveal_equiv
(ghost_pts_to r1 half_perm (snd (snd w, fst w)) `star`
ghost_pts_to r2 half_perm (fst (snd w, fst w)) `star`
pts_to r full_perm (fst (snd w, fst w) + snd (snd w, fst w)))
(ghost_pts_to r2 half_perm (fst (snd w, fst w)) `star`
ghost_pts_to r1 half_perm (snd (snd w, fst w)) `star`
pts_to r full_perm (fst (snd w, fst w) + snd (snd w, fst w)));
assert (interp (hp_of (lock_inv_pred r r2 r1 (snd w, fst w))) m);
intro_h_exists (snd w, fst w) (fun x -> hp_of (lock_inv_pred r r2 r1 x)) m;
assert (interp (Steel.Memory.h_exists (fun x -> hp_of (lock_inv_pred r r2 r1 x))) m);
assert (
Steel.Memory.h_exists #(int & int) (fun x -> hp_of (lock_inv_pred r r2 r1 x)) ==
h_exists_sl #(int & int) (lock_inv_pred r r2 r1))
by (FStar.Tactics.norm [delta_only [`%h_exists_sl]])
in
reveal_equiv (lock_inv r r1 r2) (lock_inv r r2 r1)
#pop-options
/// Acquiring the shared lock invariant
inline_for_extraction noextract
let og_acquire (r:ref int) (r_mine r_other:ghost_ref int) (b:G.erased bool)
(l:lock (lock_inv r (if b then r_mine else r_other)
(if b then r_other else r_mine)))
: SteelT unit
emp
(fun _ -> lock_inv r r_mine r_other)
= acquire l;
if b then begin
rewrite_slprop (lock_inv r (if b then r_mine else r_other)
(if b then r_other else r_mine))
(lock_inv r r_mine r_other)
(fun _ -> ());
()
end
else begin
rewrite_slprop (lock_inv r (if b then r_mine else r_other)
(if b then r_other else r_mine))
(lock_inv r r_other r_mine)
(fun _ -> ());
lock_inv_equiv_lemma r r_other r_mine;
rewrite_slprop (lock_inv r r_other r_mine) (lock_inv r r_mine r_other) (fun _ -> reveal_equiv (lock_inv r r_other r_mine) (lock_inv r r_mine r_other))
end
/// Releasing the shared lock invariant
inline_for_extraction noextract
let og_release (r:ref int) (r_mine r_other:ghost_ref int) (b:G.erased bool)
(l:lock (lock_inv r (if b then r_mine else r_other)
(if b then r_other else r_mine)))
: SteelT unit
(lock_inv r r_mine r_other)
(fun _ -> emp)
= if b then begin
rewrite_slprop (lock_inv r r_mine r_other)
(lock_inv r (if b then r_mine else r_other)
(if b then r_other else r_mine))
(fun _ -> ());
()
end
else begin
lock_inv_equiv_lemma r r_mine r_other;
rewrite_slprop (lock_inv r r_mine r_other) (lock_inv r r_other r_mine) (fun _ -> reveal_equiv (lock_inv r r_mine r_other) (lock_inv r r_other r_mine));
rewrite_slprop (lock_inv r r_other r_mine)
(lock_inv r (if b then r_mine else r_other)
(if b then r_other else r_mine))
(fun _ -> ())
end;
release l
inline_for_extraction noextract
let incr_ctr (#v:G.erased int) (r:ref int)
: SteelT unit
(pts_to r full_perm v)
(fun _ -> pts_to r full_perm (v+1))
= let n = R.read_pt r in
R.write_pt r (n+1);
rewrite_slprop (pts_to r full_perm (n + 1))
(pts_to r full_perm (v+1))
(fun _ -> ())
inline_for_extraction noextract
let rewrite_perm(#a:Type) (#v:G.erased a) (r:ghost_ref a) (p1 p2:P.perm)
: Steel unit
(ghost_pts_to r p1 v)
(fun _ -> ghost_pts_to r p2 v)
(fun _ -> p1 == p2)
(fun _ _ _ -> True)
= rewrite_slprop (ghost_pts_to r p1 v)
(ghost_pts_to r p2 v)
(fun _ -> ()) | {
"checked_file": "/",
"dependencies": [
"Steel.SpinLock.fsti.checked",
"Steel.Reference.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "OWGCounter.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Effect.Atomic",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Steel.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.SpinLock",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.Reference.ghost_ref Prims.int -> Steel.Effect.Steel Prims.unit | Steel.Effect.Steel | [] | [] | [
"FStar.Ghost.erased",
"Prims.int",
"Steel.Reference.ghost_ref",
"Steel.Effect.Atomic.rewrite_slprop",
"FStar.Ghost.hide",
"FStar.Set.set",
"Steel.Memory.iname",
"FStar.Set.empty",
"Steel.Effect.Common.star",
"Steel.Reference.ghost_pts_to",
"Steel.FractionalPermission.half_perm",
"Steel.FractionalPermission.full_perm",
"Prims.op_Addition",
"FStar.Ghost.reveal",
"OWGCounter.half_perm",
"Steel.Memory.mem",
"Prims.unit",
"Steel.Reference.ghost_share_pt",
"Steel.Reference.ghost_write_pt",
"OWGCounter.rewrite_perm",
"Steel.FractionalPermission.sum_perm",
"Steel.Reference.ghost_gather_pt",
"Steel.Effect.Common.vprop",
"Steel.Effect.Common.rmem",
"Prims.l_True",
"Prims.eq2"
] | [] | false | true | false | false | false | let incr_ghost_contrib (#v1 #v2: G.erased int) (r: ghost_ref int)
: Steel unit
((ghost_pts_to r half_perm v1) `star` (ghost_pts_to r half_perm v2))
(fun _ -> (ghost_pts_to r half_perm (v1 + 1)) `star` (ghost_pts_to r half_perm (v2 + 1)))
(fun _ -> True)
(fun _ _ _ -> v1 == v2) =
| ghost_gather_pt #_ #_ #half_perm #half_perm #v1 #v2 r;
rewrite_perm r (sum_perm half_perm half_perm) full_perm;
ghost_write_pt r (v1 + 1);
ghost_share_pt r;
rewrite_slprop ((ghost_pts_to r (P.half_perm P.full_perm) (v1 + 1))
`star`
(ghost_pts_to r (P.half_perm P.full_perm) (v1 + 1)))
((ghost_pts_to r half_perm (v1 + 1)) `star` (ghost_pts_to r half_perm (v2 + 1)))
(fun _ -> ()) | false |
FStar.DM4F.IntST.fst | FStar.DM4F.IntST.ni_ifc | val ni_ifc : Prims.unit | let ni_ifc = assert (forall h0 h1 s0. reify (ifc h0) s0 = reify (ifc h1) s0) | {
"file_name": "examples/dm4free/FStar.DM4F.IntST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 76,
"end_line": 93,
"start_col": 0,
"start_line": 93
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.DM4F.IntST
open FStar.DM4F.ST
// A simple variant of state with a single integer as the state
// Here is where all the DM4F magic happens
let state = int
total reifiable reflectable new_effect {
STINT : a:Type -> Effect
with repr = st state
; bind = bind_st state
; return = return_st state
; get = get state
; put = put state
}
// Some abbreviations
let repr = STINT?.repr
let post = STINT?.post
let pre = STINT?.pre
let wp = STINT?.wp
let get = STINT?.get
let put = STINT?.put
// We define a lift between PURE and STINT
// -- this is analogous to the return for the monad
// -- but automatically wiring the return here is not done yet
unfold let lift_pure_stint (a:Type) (wp:pure_wp a) (n:int) (p:post a) =
wp (fun a -> p (a, n))
sub_effect PURE ~> STINT = lift_pure_stint
// We define an effect abbreviation for using pre-post conditions
effect StInt (a:Type) (pre: pre) (post: (int -> a -> int -> GTot Type0)) =
STINT a (fun n0 p -> pre n0 /\
(forall a n1. pre n0 /\ post n0 a n1 ==> p (a, n1)))
// Another effect abbreviation for the trivial pre-post conditions
effect StNull (a:Type) =
STINT a (fun (n0:int) (p:(a * int) -> Type0) -> forall (x:(a * int)). p x)
// We define an increment function that we verify intrinsically
val incr_intrinsic : unit -> StInt unit (requires (fun n -> True))
(ensures (fun n0 _ n1 -> n1 = n0 + 1))
let incr_intrinsic u =
let n = STINT?.get () in
STINT?.put (n + 1)
// Here is a weaker specification for increment
val incr_intrinsic' : unit -> STINT unit
(fun s0 post -> forall (s1:int). (s1 > s0) ==> post ((), s1))
let incr_intrinsic' u =
let n = STINT?.get () in
STINT?.put (n + 1)
// Or, we can give increment the weakest possible spec and prove
// properties extrinsically (after the fact) using reification
val incr : unit -> StNull unit
let incr u =
let n = STINT?.get() in
STINT?.put (n + 1)
let incr_increases (s0:int) = assert (snd (reify (incr ()) s0) = s0 + 1)
(* Using this extrinsic style we can also prove information-flow
control properties of increment and decrement *)
let decr () : StNull unit =
let n = STINT?.get () in
STINT?.put (n - 1)
let ifc (h:bool) : StNull int =
if h then (incr(); let y = STINT?.get() in decr(); y)
else STINT?.get() + 1 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.ST.fst.checked"
],
"interface_file": false,
"source_file": "FStar.DM4F.IntST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.unit | Prims.Tot | [
"total"
] | [] | [
"Prims._assert",
"Prims.l_Forall",
"Prims.bool",
"Prims.int",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Pervasives.Native.tuple2",
"FStar.DM4F.IntST.ifc"
] | [] | false | false | false | true | false | let ni_ifc =
| assert (forall h0 h1 s0. reify (ifc h0) s0 = reify (ifc h1) s0) | false |
|
FStar.DM4F.IntST.fst | FStar.DM4F.IntST.action_put | val action_put: x:int -> repr unit (fun n post -> post ((), x)) | val action_put: x:int -> repr unit (fun n post -> post ((), x)) | let action_put x i = ((), x) | {
"file_name": "examples/dm4free/FStar.DM4F.IntST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 102,
"start_col": 0,
"start_line": 102
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.DM4F.IntST
open FStar.DM4F.ST
// A simple variant of state with a single integer as the state
// Here is where all the DM4F magic happens
let state = int
total reifiable reflectable new_effect {
STINT : a:Type -> Effect
with repr = st state
; bind = bind_st state
; return = return_st state
; get = get state
; put = put state
}
// Some abbreviations
let repr = STINT?.repr
let post = STINT?.post
let pre = STINT?.pre
let wp = STINT?.wp
let get = STINT?.get
let put = STINT?.put
// We define a lift between PURE and STINT
// -- this is analogous to the return for the monad
// -- but automatically wiring the return here is not done yet
unfold let lift_pure_stint (a:Type) (wp:pure_wp a) (n:int) (p:post a) =
wp (fun a -> p (a, n))
sub_effect PURE ~> STINT = lift_pure_stint
// We define an effect abbreviation for using pre-post conditions
effect StInt (a:Type) (pre: pre) (post: (int -> a -> int -> GTot Type0)) =
STINT a (fun n0 p -> pre n0 /\
(forall a n1. pre n0 /\ post n0 a n1 ==> p (a, n1)))
// Another effect abbreviation for the trivial pre-post conditions
effect StNull (a:Type) =
STINT a (fun (n0:int) (p:(a * int) -> Type0) -> forall (x:(a * int)). p x)
// We define an increment function that we verify intrinsically
val incr_intrinsic : unit -> StInt unit (requires (fun n -> True))
(ensures (fun n0 _ n1 -> n1 = n0 + 1))
let incr_intrinsic u =
let n = STINT?.get () in
STINT?.put (n + 1)
// Here is a weaker specification for increment
val incr_intrinsic' : unit -> STINT unit
(fun s0 post -> forall (s1:int). (s1 > s0) ==> post ((), s1))
let incr_intrinsic' u =
let n = STINT?.get () in
STINT?.put (n + 1)
// Or, we can give increment the weakest possible spec and prove
// properties extrinsically (after the fact) using reification
val incr : unit -> StNull unit
let incr u =
let n = STINT?.get() in
STINT?.put (n + 1)
let incr_increases (s0:int) = assert (snd (reify (incr ()) s0) = s0 + 1)
(* Using this extrinsic style we can also prove information-flow
control properties of increment and decrement *)
let decr () : StNull unit =
let n = STINT?.get () in
STINT?.put (n - 1)
let ifc (h:bool) : StNull int =
if h then (incr(); let y = STINT?.get() in decr(); y)
else STINT?.get() + 1
let ni_ifc = assert (forall h0 h1 s0. reify (ifc h0) s0 = reify (ifc h1) s0)
(* Although we have STINT?.get and STINT?.put now as actions, *)
(* we can also "rederive" them using reflection *)
val action_get: (u:unit) -> repr int (fun n post -> post (n, n))
let action_get () i = (i, i) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.ST.fst.checked"
],
"interface_file": false,
"source_file": "FStar.DM4F.IntST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> FStar.DM4F.IntST.repr Prims.unit (fun _ post -> post ((), x)) | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"FStar.Pervasives.Native.Mktuple2",
"Prims.unit",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let action_put x i =
| ((), x) | false |
FStar.DM4F.IntST.fst | FStar.DM4F.IntST.incr_increases | val incr_increases : s0: Prims.int -> Prims.unit | let incr_increases (s0:int) = assert (snd (reify (incr ()) s0) = s0 + 1) | {
"file_name": "examples/dm4free/FStar.DM4F.IntST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 72,
"end_line": 80,
"start_col": 0,
"start_line": 80
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.DM4F.IntST
open FStar.DM4F.ST
// A simple variant of state with a single integer as the state
// Here is where all the DM4F magic happens
let state = int
total reifiable reflectable new_effect {
STINT : a:Type -> Effect
with repr = st state
; bind = bind_st state
; return = return_st state
; get = get state
; put = put state
}
// Some abbreviations
let repr = STINT?.repr
let post = STINT?.post
let pre = STINT?.pre
let wp = STINT?.wp
let get = STINT?.get
let put = STINT?.put
// We define a lift between PURE and STINT
// -- this is analogous to the return for the monad
// -- but automatically wiring the return here is not done yet
unfold let lift_pure_stint (a:Type) (wp:pure_wp a) (n:int) (p:post a) =
wp (fun a -> p (a, n))
sub_effect PURE ~> STINT = lift_pure_stint
// We define an effect abbreviation for using pre-post conditions
effect StInt (a:Type) (pre: pre) (post: (int -> a -> int -> GTot Type0)) =
STINT a (fun n0 p -> pre n0 /\
(forall a n1. pre n0 /\ post n0 a n1 ==> p (a, n1)))
// Another effect abbreviation for the trivial pre-post conditions
effect StNull (a:Type) =
STINT a (fun (n0:int) (p:(a * int) -> Type0) -> forall (x:(a * int)). p x)
// We define an increment function that we verify intrinsically
val incr_intrinsic : unit -> StInt unit (requires (fun n -> True))
(ensures (fun n0 _ n1 -> n1 = n0 + 1))
let incr_intrinsic u =
let n = STINT?.get () in
STINT?.put (n + 1)
// Here is a weaker specification for increment
val incr_intrinsic' : unit -> STINT unit
(fun s0 post -> forall (s1:int). (s1 > s0) ==> post ((), s1))
let incr_intrinsic' u =
let n = STINT?.get () in
STINT?.put (n + 1)
// Or, we can give increment the weakest possible spec and prove
// properties extrinsically (after the fact) using reification
val incr : unit -> StNull unit
let incr u =
let n = STINT?.get() in
STINT?.put (n + 1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.ST.fst.checked"
],
"interface_file": false,
"source_file": "FStar.DM4F.IntST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s0: Prims.int -> Prims.unit | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"Prims._assert",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Pervasives.Native.snd",
"Prims.unit",
"FStar.DM4F.IntST.incr",
"Prims.op_Addition"
] | [] | false | false | false | true | false | let incr_increases (s0: int) =
| assert (snd (reify (incr ()) s0) = s0 + 1) | false |
|
FStar.DM4F.IntST.fst | FStar.DM4F.IntST.action_get | val action_get: (u:unit) -> repr int (fun n post -> post (n, n)) | val action_get: (u:unit) -> repr int (fun n post -> post (n, n)) | let action_get () i = (i, i) | {
"file_name": "examples/dm4free/FStar.DM4F.IntST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 99,
"start_col": 0,
"start_line": 99
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.DM4F.IntST
open FStar.DM4F.ST
// A simple variant of state with a single integer as the state
// Here is where all the DM4F magic happens
let state = int
total reifiable reflectable new_effect {
STINT : a:Type -> Effect
with repr = st state
; bind = bind_st state
; return = return_st state
; get = get state
; put = put state
}
// Some abbreviations
let repr = STINT?.repr
let post = STINT?.post
let pre = STINT?.pre
let wp = STINT?.wp
let get = STINT?.get
let put = STINT?.put
// We define a lift between PURE and STINT
// -- this is analogous to the return for the monad
// -- but automatically wiring the return here is not done yet
unfold let lift_pure_stint (a:Type) (wp:pure_wp a) (n:int) (p:post a) =
wp (fun a -> p (a, n))
sub_effect PURE ~> STINT = lift_pure_stint
// We define an effect abbreviation for using pre-post conditions
effect StInt (a:Type) (pre: pre) (post: (int -> a -> int -> GTot Type0)) =
STINT a (fun n0 p -> pre n0 /\
(forall a n1. pre n0 /\ post n0 a n1 ==> p (a, n1)))
// Another effect abbreviation for the trivial pre-post conditions
effect StNull (a:Type) =
STINT a (fun (n0:int) (p:(a * int) -> Type0) -> forall (x:(a * int)). p x)
// We define an increment function that we verify intrinsically
val incr_intrinsic : unit -> StInt unit (requires (fun n -> True))
(ensures (fun n0 _ n1 -> n1 = n0 + 1))
let incr_intrinsic u =
let n = STINT?.get () in
STINT?.put (n + 1)
// Here is a weaker specification for increment
val incr_intrinsic' : unit -> STINT unit
(fun s0 post -> forall (s1:int). (s1 > s0) ==> post ((), s1))
let incr_intrinsic' u =
let n = STINT?.get () in
STINT?.put (n + 1)
// Or, we can give increment the weakest possible spec and prove
// properties extrinsically (after the fact) using reification
val incr : unit -> StNull unit
let incr u =
let n = STINT?.get() in
STINT?.put (n + 1)
let incr_increases (s0:int) = assert (snd (reify (incr ()) s0) = s0 + 1)
(* Using this extrinsic style we can also prove information-flow
control properties of increment and decrement *)
let decr () : StNull unit =
let n = STINT?.get () in
STINT?.put (n - 1)
let ifc (h:bool) : StNull int =
if h then (incr(); let y = STINT?.get() in decr(); y)
else STINT?.get() + 1
let ni_ifc = assert (forall h0 h1 s0. reify (ifc h0) s0 = reify (ifc h1) s0)
(* Although we have STINT?.get and STINT?.put now as actions, *)
(* we can also "rederive" them using reflection *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.ST.fst.checked"
],
"interface_file": false,
"source_file": "FStar.DM4F.IntST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | u266: Prims.unit -> FStar.DM4F.IntST.repr Prims.int (fun n post -> post (n, n)) | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"Prims.int",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let action_get () i =
| (i, i) | false |
Spec.Exponentiation.fst | Spec.Exponentiation.exp_mont_ladder_swap_lemma | val exp_mont_ladder_swap_lemma: #t:Type -> k:concrete_ops t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (k.to.refl (exp_mont_ladder_swap k a bBits b) == S.exp_mont_ladder_swap k.to.comm_monoid (k.to.refl a) bBits b) | val exp_mont_ladder_swap_lemma: #t:Type -> k:concrete_ops t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (k.to.refl (exp_mont_ladder_swap k a bBits b) == S.exp_mont_ladder_swap k.to.comm_monoid (k.to.refl a) bBits b) | let exp_mont_ladder_swap_lemma #t k a bBits b =
exp_mont_ladder_swap_lemma_loop #t k a bBits b bBits | {
"file_name": "specs/Spec.Exponentiation.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 54,
"end_line": 67,
"start_col": 0,
"start_line": 66
} | module Spec.Exponentiation
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module S = Lib.Exponentiation
module Loops = Lib.LoopCombinators
#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
val exp_rl_lemma_loop: #t:Type -> k:concrete_ops t
-> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} ->
Lemma (let one = k.one () in
let (accs, cs) = Loops.repeati i (S.exp_rl_f k.to.comm_monoid bBits b) (k.to.refl one, k.to.refl a) in
let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in
k.to.refl acc == accs /\ k.to.refl c == cs)
let rec exp_rl_lemma_loop #t k a bBits b i =
let one = k.one () in
let inp0 = (k.to.refl one, k.to.refl a) in
let inp1 = (one, a) in
let f0 = S.exp_rl_f k.to.comm_monoid bBits b in
let f1 = exp_rl_f k bBits b in
if i = 0 then begin
Loops.eq_repeati0 bBits f0 inp0;
Loops.eq_repeati0 bBits f1 inp1 end
else begin
exp_rl_lemma_loop #t k a bBits b (i - 1);
Loops.unfold_repeati bBits f0 inp0 (i - 1);
Loops.unfold_repeati bBits f1 inp1 (i - 1) end
let exp_rl_lemma #t k a bBits b =
exp_rl_lemma_loop #t k a bBits b bBits
val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:concrete_ops t
-> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} ->
Lemma (let one = k.one () in
let (r0s, r1s, sws) =
Loops.repeati i (S.exp_mont_ladder_swap_f k.to.comm_monoid bBits b) (k.to.refl one, k.to.refl a, 0) in
let (r0, r1, sw) =
Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
k.to.refl r0 == r0s /\ k.to.refl r1 == r1s /\ sw == sws)
let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b i =
let one = k.one () in
let inp0 = (k.to.refl one, k.to.refl a, 0) in
let inp1 = (one, a, 0) in
let f0 = S.exp_mont_ladder_swap_f k.to.comm_monoid bBits b in
let f1 = exp_mont_ladder_swap_f k bBits b in
if i = 0 then begin
Loops.eq_repeati0 bBits f0 inp0;
Loops.eq_repeati0 bBits f1 inp1 end
else begin
exp_mont_ladder_swap_lemma_loop #t k a bBits b (i - 1);
Loops.unfold_repeati bBits f0 inp0 (i - 1);
Loops.unfold_repeati bBits f1 inp1 (i - 1) end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Spec.Exponentiation.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Spec.Exponentiation.concrete_ops t ->
a: t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits}
-> FStar.Pervasives.Lemma
(ensures
Mkto_comm_monoid?.refl (Mkconcrete_ops?.to k)
(Spec.Exponentiation.exp_mont_ladder_swap k a bBits b) ==
Lib.Exponentiation.exp_mont_ladder_swap (Mkto_comm_monoid?.comm_monoid (Mkconcrete_ops?.to k))
(Mkto_comm_monoid?.refl (Mkconcrete_ops?.to k) a)
bBits
b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.Exponentiation.concrete_ops",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Spec.Exponentiation.exp_mont_ladder_swap_lemma_loop",
"Prims.unit"
] | [] | true | false | true | false | false | let exp_mont_ladder_swap_lemma #t k a bBits b =
| exp_mont_ladder_swap_lemma_loop #t k a bBits b bBits | false |
Lib.IntTypes.fst | Lib.IntTypes.pow2_3 | val pow2_3: n:nat -> Lemma (pow2 3 = 8) [SMTPat (pow2 n)] | val pow2_3: n:nat -> Lemma (pow2 3 = 8) [SMTPat (pow2 n)] | let pow2_3 _ = assert_norm (pow2 3 = 8) | {
"file_name": "lib/Lib.IntTypes.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 41,
"end_line": 8,
"start_col": 0,
"start_line": 8
} | module Lib.IntTypes
open FStar.Math.Lemmas
#push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.Cast.Full.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Int.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "Lib.IntTypes.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> FStar.Pervasives.Lemma (ensures Prims.pow2 3 = 8) [SMTPat (Prims.pow2 n)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.pow2",
"Prims.unit"
] | [] | true | false | true | false | false | let pow2_3 _ =
| assert_norm (pow2 3 = 8) | false |
Lib.IntTypes.fst | Lib.IntTypes.pow2_2 | val pow2_2: n:nat -> Lemma (pow2 2 = 4) [SMTPat (pow2 n)] | val pow2_2: n:nat -> Lemma (pow2 2 = 4) [SMTPat (pow2 n)] | let pow2_2 _ = assert_norm (pow2 2 = 4) | {
"file_name": "lib/Lib.IntTypes.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 41,
"end_line": 7,
"start_col": 0,
"start_line": 7
} | module Lib.IntTypes
open FStar.Math.Lemmas
#push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.Cast.Full.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Int.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "Lib.IntTypes.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> FStar.Pervasives.Lemma (ensures Prims.pow2 2 = 4) [SMTPat (Prims.pow2 n)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.pow2",
"Prims.unit"
] | [] | true | false | true | false | false | let pow2_2 _ =
| assert_norm (pow2 2 = 4) | false |
Lib.IntTypes.fst | Lib.IntTypes.pow2_4 | val pow2_4: n:nat -> Lemma (pow2 4 = 16) [SMTPat (pow2 n)] | val pow2_4: n:nat -> Lemma (pow2 4 = 16) [SMTPat (pow2 n)] | let pow2_4 _ = assert_norm (pow2 4 = 16) | {
"file_name": "lib/Lib.IntTypes.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 42,
"end_line": 9,
"start_col": 0,
"start_line": 9
} | module Lib.IntTypes
open FStar.Math.Lemmas
#push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200"
let pow2_2 _ = assert_norm (pow2 2 = 4) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.Cast.Full.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Int.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "Lib.IntTypes.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> FStar.Pervasives.Lemma (ensures Prims.pow2 4 = 16) [SMTPat (Prims.pow2 n)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.pow2",
"Prims.unit"
] | [] | true | false | true | false | false | let pow2_4 _ =
| assert_norm (pow2 4 = 16) | false |
Spec.Exponentiation.fst | Spec.Exponentiation.pow_lemma | val pow_lemma: #t:Type -> k:concrete_ops t -> a:t -> b:nat ->
Lemma (k.to.refl (pow k a b) == S.pow k.to.comm_monoid (k.to.refl a) b) | val pow_lemma: #t:Type -> k:concrete_ops t -> a:t -> b:nat ->
Lemma (k.to.refl (pow k a b) == S.pow k.to.comm_monoid (k.to.refl a) b) | let rec pow_lemma #t k a b =
if b = 0 then ()
else pow_lemma k a (b - 1) | {
"file_name": "specs/Spec.Exponentiation.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 96,
"start_col": 0,
"start_line": 94
} | module Spec.Exponentiation
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module S = Lib.Exponentiation
module Loops = Lib.LoopCombinators
#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
val exp_rl_lemma_loop: #t:Type -> k:concrete_ops t
-> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} ->
Lemma (let one = k.one () in
let (accs, cs) = Loops.repeati i (S.exp_rl_f k.to.comm_monoid bBits b) (k.to.refl one, k.to.refl a) in
let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in
k.to.refl acc == accs /\ k.to.refl c == cs)
let rec exp_rl_lemma_loop #t k a bBits b i =
let one = k.one () in
let inp0 = (k.to.refl one, k.to.refl a) in
let inp1 = (one, a) in
let f0 = S.exp_rl_f k.to.comm_monoid bBits b in
let f1 = exp_rl_f k bBits b in
if i = 0 then begin
Loops.eq_repeati0 bBits f0 inp0;
Loops.eq_repeati0 bBits f1 inp1 end
else begin
exp_rl_lemma_loop #t k a bBits b (i - 1);
Loops.unfold_repeati bBits f0 inp0 (i - 1);
Loops.unfold_repeati bBits f1 inp1 (i - 1) end
let exp_rl_lemma #t k a bBits b =
exp_rl_lemma_loop #t k a bBits b bBits
val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:concrete_ops t
-> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} ->
Lemma (let one = k.one () in
let (r0s, r1s, sws) =
Loops.repeati i (S.exp_mont_ladder_swap_f k.to.comm_monoid bBits b) (k.to.refl one, k.to.refl a, 0) in
let (r0, r1, sw) =
Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
k.to.refl r0 == r0s /\ k.to.refl r1 == r1s /\ sw == sws)
let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b i =
let one = k.one () in
let inp0 = (k.to.refl one, k.to.refl a, 0) in
let inp1 = (one, a, 0) in
let f0 = S.exp_mont_ladder_swap_f k.to.comm_monoid bBits b in
let f1 = exp_mont_ladder_swap_f k bBits b in
if i = 0 then begin
Loops.eq_repeati0 bBits f0 inp0;
Loops.eq_repeati0 bBits f1 inp1 end
else begin
exp_mont_ladder_swap_lemma_loop #t k a bBits b (i - 1);
Loops.unfold_repeati bBits f0 inp0 (i - 1);
Loops.unfold_repeati bBits f1 inp1 (i - 1) end
let exp_mont_ladder_swap_lemma #t k a bBits b =
exp_mont_ladder_swap_lemma_loop #t k a bBits b bBits
val exp_pow2_lemma_loop: #t:Type -> k:concrete_ops t -> a:t -> b:nat -> i:nat{i <= b} ->
Lemma (
let accs = Loops.repeat i (S.sqr k.to.comm_monoid) (k.to.refl a) in
let acc = Loops.repeat i k.sqr a in
k.to.refl acc == accs)
let rec exp_pow2_lemma_loop #t k a b i =
if i = 0 then begin
Loops.eq_repeat0 (S.sqr k.to.comm_monoid) (k.to.refl a);
Loops.eq_repeat0 k.sqr a end
else begin
exp_pow2_lemma_loop #t k a b (i - 1);
Loops.unfold_repeat b (S.sqr k.to.comm_monoid) (k.to.refl a) (i - 1);
Loops.unfold_repeat b k.sqr a (i - 1) end
let exp_pow2_lemma #t k a b =
exp_pow2_lemma_loop k a b b
#push-options "--fuel 1"
let pow_eq0 #t k a = ()
let pow_unfold #t k a i = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Spec.Exponentiation.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: Spec.Exponentiation.concrete_ops t -> a: t -> b: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Mkto_comm_monoid?.refl (Mkconcrete_ops?.to k) (Spec.Exponentiation.pow k a b) ==
Lib.Exponentiation.Definition.pow (Mkto_comm_monoid?.comm_monoid (Mkconcrete_ops?.to k))
(Mkto_comm_monoid?.refl (Mkconcrete_ops?.to k) a)
b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.Exponentiation.concrete_ops",
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Spec.Exponentiation.pow_lemma",
"Prims.op_Subtraction",
"Prims.unit"
] | [
"recursion"
] | false | false | true | false | false | let rec pow_lemma #t k a b =
| if b = 0 then () else pow_lemma k a (b - 1) | false |
Spec.Exponentiation.fst | Spec.Exponentiation.exp_rl_lemma | val exp_rl_lemma: #t:Type -> k:concrete_ops t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (k.to.refl (exp_rl k a bBits b) == S.exp_rl k.to.comm_monoid (k.to.refl a) bBits b) | val exp_rl_lemma: #t:Type -> k:concrete_ops t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (k.to.refl (exp_rl k a bBits b) == S.exp_rl k.to.comm_monoid (k.to.refl a) bBits b) | let exp_rl_lemma #t k a bBits b =
exp_rl_lemma_loop #t k a bBits b bBits | {
"file_name": "specs/Spec.Exponentiation.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 38,
"start_col": 0,
"start_line": 37
} | module Spec.Exponentiation
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module S = Lib.Exponentiation
module Loops = Lib.LoopCombinators
#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
val exp_rl_lemma_loop: #t:Type -> k:concrete_ops t
-> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} ->
Lemma (let one = k.one () in
let (accs, cs) = Loops.repeati i (S.exp_rl_f k.to.comm_monoid bBits b) (k.to.refl one, k.to.refl a) in
let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in
k.to.refl acc == accs /\ k.to.refl c == cs)
let rec exp_rl_lemma_loop #t k a bBits b i =
let one = k.one () in
let inp0 = (k.to.refl one, k.to.refl a) in
let inp1 = (one, a) in
let f0 = S.exp_rl_f k.to.comm_monoid bBits b in
let f1 = exp_rl_f k bBits b in
if i = 0 then begin
Loops.eq_repeati0 bBits f0 inp0;
Loops.eq_repeati0 bBits f1 inp1 end
else begin
exp_rl_lemma_loop #t k a bBits b (i - 1);
Loops.unfold_repeati bBits f0 inp0 (i - 1);
Loops.unfold_repeati bBits f1 inp1 (i - 1) end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Spec.Exponentiation.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Spec.Exponentiation.concrete_ops t ->
a: t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits}
-> FStar.Pervasives.Lemma
(ensures
Mkto_comm_monoid?.refl (Mkconcrete_ops?.to k) (Spec.Exponentiation.exp_rl k a bBits b) ==
Lib.Exponentiation.exp_rl (Mkto_comm_monoid?.comm_monoid (Mkconcrete_ops?.to k))
(Mkto_comm_monoid?.refl (Mkconcrete_ops?.to k) a)
bBits
b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.Exponentiation.concrete_ops",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Spec.Exponentiation.exp_rl_lemma_loop",
"Prims.unit"
] | [] | true | false | true | false | false | let exp_rl_lemma #t k a bBits b =
| exp_rl_lemma_loop #t k a bBits b bBits | false |
Lib.IntTypes.fst | Lib.IntTypes.sec_int_v | val sec_int_v: #t:inttype -> sec_int_t t -> range_t t | val sec_int_v: #t:inttype -> sec_int_t t -> range_t t | let sec_int_v #t u = pub_int_v u | {
"file_name": "lib/Lib.IntTypes.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 16,
"start_col": 0,
"start_line": 16
} | module Lib.IntTypes
open FStar.Math.Lemmas
#push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200"
let pow2_2 _ = assert_norm (pow2 2 = 4)
let pow2_3 _ = assert_norm (pow2 3 = 8)
let pow2_4 _ = assert_norm (pow2 4 = 16)
let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000)
let bits_numbytes t = ()
let sec_int_t t = pub_int_t t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.Cast.Full.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Int.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "Lib.IntTypes.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | u100: Lib.IntTypes.sec_int_t t -> Lib.IntTypes.range_t t | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Lib.IntTypes.sec_int_t",
"Lib.IntTypes.pub_int_v",
"Lib.IntTypes.range_t"
] | [] | false | false | false | false | false | let sec_int_v #t u =
| pub_int_v u | false |
Lib.IntTypes.fst | Lib.IntTypes.pow2_127 | val pow2_127: n:nat -> Lemma (pow2 127 = 0x80000000000000000000000000000000) [SMTPat (pow2 n)] | val pow2_127: n:nat -> Lemma (pow2 127 = 0x80000000000000000000000000000000) [SMTPat (pow2 n)] | let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) | {
"file_name": "lib/Lib.IntTypes.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 76,
"end_line": 10,
"start_col": 0,
"start_line": 10
} | module Lib.IntTypes
open FStar.Math.Lemmas
#push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200"
let pow2_2 _ = assert_norm (pow2 2 = 4)
let pow2_3 _ = assert_norm (pow2 3 = 8) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.Cast.Full.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Int.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "Lib.IntTypes.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat
-> FStar.Pervasives.Lemma (ensures Prims.pow2 127 = 0x80000000000000000000000000000000)
[SMTPat (Prims.pow2 n)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.pow2",
"Prims.unit"
] | [] | true | false | true | false | false | let pow2_127 _ =
| assert_norm (pow2 127 = 0x80000000000000000000000000000000) | false |
Spec.Exponentiation.fst | Spec.Exponentiation.exp_mont_ladder_swap_lemma_loop | val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:concrete_ops t
-> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} ->
Lemma (let one = k.one () in
let (r0s, r1s, sws) =
Loops.repeati i (S.exp_mont_ladder_swap_f k.to.comm_monoid bBits b) (k.to.refl one, k.to.refl a, 0) in
let (r0, r1, sw) =
Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
k.to.refl r0 == r0s /\ k.to.refl r1 == r1s /\ sw == sws) | val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:concrete_ops t
-> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} ->
Lemma (let one = k.one () in
let (r0s, r1s, sws) =
Loops.repeati i (S.exp_mont_ladder_swap_f k.to.comm_monoid bBits b) (k.to.refl one, k.to.refl a, 0) in
let (r0, r1, sw) =
Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
k.to.refl r0 == r0s /\ k.to.refl r1 == r1s /\ sw == sws) | let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b i =
let one = k.one () in
let inp0 = (k.to.refl one, k.to.refl a, 0) in
let inp1 = (one, a, 0) in
let f0 = S.exp_mont_ladder_swap_f k.to.comm_monoid bBits b in
let f1 = exp_mont_ladder_swap_f k bBits b in
if i = 0 then begin
Loops.eq_repeati0 bBits f0 inp0;
Loops.eq_repeati0 bBits f1 inp1 end
else begin
exp_mont_ladder_swap_lemma_loop #t k a bBits b (i - 1);
Loops.unfold_repeati bBits f0 inp0 (i - 1);
Loops.unfold_repeati bBits f1 inp1 (i - 1) end | {
"file_name": "specs/Spec.Exponentiation.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 50,
"end_line": 63,
"start_col": 0,
"start_line": 50
} | module Spec.Exponentiation
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module S = Lib.Exponentiation
module Loops = Lib.LoopCombinators
#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
val exp_rl_lemma_loop: #t:Type -> k:concrete_ops t
-> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} ->
Lemma (let one = k.one () in
let (accs, cs) = Loops.repeati i (S.exp_rl_f k.to.comm_monoid bBits b) (k.to.refl one, k.to.refl a) in
let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in
k.to.refl acc == accs /\ k.to.refl c == cs)
let rec exp_rl_lemma_loop #t k a bBits b i =
let one = k.one () in
let inp0 = (k.to.refl one, k.to.refl a) in
let inp1 = (one, a) in
let f0 = S.exp_rl_f k.to.comm_monoid bBits b in
let f1 = exp_rl_f k bBits b in
if i = 0 then begin
Loops.eq_repeati0 bBits f0 inp0;
Loops.eq_repeati0 bBits f1 inp1 end
else begin
exp_rl_lemma_loop #t k a bBits b (i - 1);
Loops.unfold_repeati bBits f0 inp0 (i - 1);
Loops.unfold_repeati bBits f1 inp1 (i - 1) end
let exp_rl_lemma #t k a bBits b =
exp_rl_lemma_loop #t k a bBits b bBits
val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:concrete_ops t
-> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} ->
Lemma (let one = k.one () in
let (r0s, r1s, sws) =
Loops.repeati i (S.exp_mont_ladder_swap_f k.to.comm_monoid bBits b) (k.to.refl one, k.to.refl a, 0) in
let (r0, r1, sw) =
Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
k.to.refl r0 == r0s /\ k.to.refl r1 == r1s /\ sw == sws) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Spec.Exponentiation.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Spec.Exponentiation.concrete_ops t ->
a: t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits} ->
i: Prims.nat{i <= bBits}
-> FStar.Pervasives.Lemma
(ensures
(let one = Mkconcrete_ops?.one k () in
let _ =
Lib.LoopCombinators.repeati i
(Lib.Exponentiation.exp_mont_ladder_swap_f (Mkto_comm_monoid?.comm_monoid (Mkconcrete_ops?.to
k))
bBits
b)
(Mkto_comm_monoid?.refl (Mkconcrete_ops?.to k) one,
Mkto_comm_monoid?.refl (Mkconcrete_ops?.to k) a,
0)
in
(let FStar.Pervasives.Native.Mktuple3 #_ #_ #_ r0s r1s sws = _ in
let _ =
Lib.LoopCombinators.repeati i
(Spec.Exponentiation.exp_mont_ladder_swap_f k bBits b)
(one,
a,
0)
in
(let FStar.Pervasives.Native.Mktuple3 #_ #_ #_ r0 r1 sw = _ in
Mkto_comm_monoid?.refl (Mkconcrete_ops?.to k) r0 == r0s /\
Mkto_comm_monoid?.refl (Mkconcrete_ops?.to k) r1 == r1s /\ sw == sws)
<:
Type0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.Exponentiation.concrete_ops",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_LessThanOrEqual",
"Prims.op_Equality",
"Prims.int",
"Lib.LoopCombinators.eq_repeati0",
"FStar.Pervasives.Native.tuple3",
"Prims.unit",
"Spec.Exponentiation.__proj__Mkto_comm_monoid__item__a_spec",
"Spec.Exponentiation.__proj__Mkconcrete_ops__item__to",
"Prims.bool",
"Lib.LoopCombinators.unfold_repeati",
"Prims.op_Subtraction",
"Spec.Exponentiation.exp_mont_ladder_swap_lemma_loop",
"Spec.Exponentiation.exp_mont_ladder_swap_f",
"Lib.Exponentiation.exp_mont_ladder_swap_f",
"Spec.Exponentiation.__proj__Mkto_comm_monoid__item__comm_monoid",
"FStar.Pervasives.Native.Mktuple3",
"Spec.Exponentiation.__proj__Mkto_comm_monoid__item__refl",
"Spec.Exponentiation.__proj__Mkconcrete_ops__item__one"
] | [
"recursion"
] | false | false | true | false | false | let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b i =
| let one = k.one () in
let inp0 = (k.to.refl one, k.to.refl a, 0) in
let inp1 = (one, a, 0) in
let f0 = S.exp_mont_ladder_swap_f k.to.comm_monoid bBits b in
let f1 = exp_mont_ladder_swap_f k bBits b in
if i = 0
then
(Loops.eq_repeati0 bBits f0 inp0;
Loops.eq_repeati0 bBits f1 inp1)
else
(exp_mont_ladder_swap_lemma_loop #t k a bBits b (i - 1);
Loops.unfold_repeati bBits f0 inp0 (i - 1);
Loops.unfold_repeati bBits f1 inp1 (i - 1)) | false |
Pulse.Soundness.WithLocal.fst | Pulse.Soundness.WithLocal.withlocal_soundness | val withlocal_soundness
(#g:stt_env)
(#t:st_term)
(#c:comp)
(d:st_typing g t c{T_WithLocal? d})
(soundness:soundness_t d)
: GTot (RT.tot_typing (elab_env g)
(elab_st_typing d)
(elab_comp c)) | val withlocal_soundness
(#g:stt_env)
(#t:st_term)
(#c:comp)
(d:st_typing g t c{T_WithLocal? d})
(soundness:soundness_t d)
: GTot (RT.tot_typing (elab_env g)
(elab_st_typing d)
(elab_comp c)) | let withlocal_soundness #g #t #c d soundness =
let T_WithLocal _ _ init body init_t c x init_typing init_t_typing c_typing body_typing = d in
let CT_ST _ st st_typing = c_typing in
let rg = elab_env g in
let ru = comp_u c in
let ra = elab_term init_t in
let rinit = elab_term init in
let rpre = elab_term (comp_pre c) in
let rret_t = elab_term (comp_res c) in
let rpost = elab_term (comp_post c) in
let rbody = elab_st_typing body_typing in
let a_typing = tot_typing_soundness init_t_typing in
let rinit_typing = tot_typing_soundness init_typing in
let cres_typing, cpre_typing, cpost_typing =
Pulse.Soundness.Comp.stc_soundness st_typing in
let pre_typing = cpre_typing in
let ret_t_typing = cres_typing in
let post_typing = cpost_typing in
elab_push_binding g x (mk_ref init_t);
let rbody_typing = soundness _ _ _ body_typing in
WT.with_local_typing
#rg
#ru
#ra
#rinit
#rpre
#rret_t
#rpost
#rbody
x
a_typing
rinit_typing
pre_typing
ret_t_typing
post_typing
rbody_typing | {
"file_name": "lib/steel/pulse/Pulse.Soundness.WithLocal.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 16,
"end_line": 69,
"start_col": 0,
"start_line": 29
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Soundness.WithLocal
open Pulse.Syntax
open Pulse.Reflection.Util
open Pulse.Typing
open Pulse.Elaborate.Core
open Pulse.Elaborate
open Pulse.Soundness.Common
module WT = Pulse.Steel.Wrapper.Typing | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Steel.Wrapper.Typing.fsti.checked",
"Pulse.Soundness.Comp.fsti.checked",
"Pulse.Soundness.Common.fst.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Elaborate.Core.fst.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Soundness.WithLocal.fst"
} | [
{
"abbrev": true,
"full_module": "Pulse.Steel.Wrapper.Typing",
"short_module": "WT"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Core",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 8,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 8,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | d: Pulse.Typing.st_typing g t c {T_WithLocal? d} -> soundness: Pulse.Soundness.Common.soundness_t d
-> Prims.GTot
(FStar.Reflection.Typing.tot_typing (Pulse.Typing.elab_env g)
(Pulse.Elaborate.Core.elab_st_typing d)
(Pulse.Elaborate.Pure.elab_comp c)) | Prims.GTot | [
"sometrivial"
] | [] | [
"Pulse.Soundness.Common.stt_env",
"Pulse.Syntax.Base.st_term",
"Pulse.Syntax.Base.comp",
"Pulse.Typing.st_typing",
"Prims.b2t",
"Pulse.Typing.uu___is_T_WithLocal",
"Pulse.Soundness.Common.soundness_t",
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.ppname",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.uu___is_C_ST",
"Pulse.Syntax.Base.var",
"Prims.l_and",
"FStar.Pervasives.Native.uu___is_None",
"Pulse.Syntax.Base.typ",
"Pulse.Typing.Env.lookup",
"Prims.l_not",
"FStar.Set.mem",
"Pulse.Syntax.Naming.freevars_st",
"Pulse.Typing.tot_typing",
"Pulse.Typing.universe_of",
"Pulse.Syntax.Pure.u0",
"Pulse.Typing.comp_typing_u",
"Pulse.Typing.Env.push_binding",
"Pulse.Syntax.Base.ppname_default",
"Pulse.Typing.mk_ref",
"Pulse.Syntax.Naming.open_st_term_nv",
"Pulse.Syntax.Base.v_as_nv",
"Pulse.Typing.comp_withlocal_body",
"Pulse.Syntax.Base.st_comp",
"Pulse.Typing.st_comp_typing",
"FStar.Reflection.Typing.tot_typing",
"Pulse.Typing.elab_env",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__res",
"FStar.Reflection.Typing.tm_type",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__u",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__pre",
"Pulse.Reflection.Util.vprop_tm",
"Pulse.Reflection.Util.mk_abs",
"FStar.Stubs.Reflection.V2.Data.Q_Explicit",
"Pulse.Syntax.Base.__proj__Mkst_comp__item__post",
"Pulse.Soundness.Common.post1_type_bind",
"Pulse.Steel.Wrapper.Typing.with_local_typing",
"Pulse.Elaborate.Core.elab_st_typing",
"Pulse.Elaborate.Pure.elab_comp",
"Prims.unit",
"Pulse.Typing.elab_push_binding",
"FStar.Pervasives.Native.tuple3",
"Pulse.Soundness.Comp.stc_soundness",
"Pulse.Soundness.Common.tot_typing_soundness",
"Pulse.Syntax.Pure.tm_type",
"FStar.Stubs.Reflection.Types.term",
"Pulse.Syntax.Base.comp_post",
"Pulse.Syntax.Base.comp_res",
"Pulse.Syntax.Base.comp_pre",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.comp_u",
"FStar.Stubs.Reflection.Types.env"
] | [] | false | false | false | false | false | let withlocal_soundness #g #t #c d soundness =
| let T_WithLocal _ _ init body init_t c x init_typing init_t_typing c_typing body_typing = d in
let CT_ST _ st st_typing = c_typing in
let rg = elab_env g in
let ru = comp_u c in
let ra = elab_term init_t in
let rinit = elab_term init in
let rpre = elab_term (comp_pre c) in
let rret_t = elab_term (comp_res c) in
let rpost = elab_term (comp_post c) in
let rbody = elab_st_typing body_typing in
let a_typing = tot_typing_soundness init_t_typing in
let rinit_typing = tot_typing_soundness init_typing in
let cres_typing, cpre_typing, cpost_typing = Pulse.Soundness.Comp.stc_soundness st_typing in
let pre_typing = cpre_typing in
let ret_t_typing = cres_typing in
let post_typing = cpost_typing in
elab_push_binding g x (mk_ref init_t);
let rbody_typing = soundness _ _ _ body_typing in
WT.with_local_typing #rg #ru #ra #rinit #rpre #rret_t #rpost #rbody x a_typing rinit_typing
pre_typing ret_t_typing post_typing rbody_typing | false |
Spec.Exponentiation.fst | Spec.Exponentiation.exp_pow2_lemma | val exp_pow2_lemma: #t:Type -> k:concrete_ops t -> a:t -> b:nat ->
Lemma (k.to.refl (exp_pow2 k a b) == S.exp_pow2 k.to.comm_monoid (k.to.refl a) b) | val exp_pow2_lemma: #t:Type -> k:concrete_ops t -> a:t -> b:nat ->
Lemma (k.to.refl (exp_pow2 k a b) == S.exp_pow2 k.to.comm_monoid (k.to.refl a) b) | let exp_pow2_lemma #t k a b =
exp_pow2_lemma_loop k a b b | {
"file_name": "specs/Spec.Exponentiation.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 87,
"start_col": 0,
"start_line": 86
} | module Spec.Exponentiation
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module S = Lib.Exponentiation
module Loops = Lib.LoopCombinators
#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
val exp_rl_lemma_loop: #t:Type -> k:concrete_ops t
-> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} ->
Lemma (let one = k.one () in
let (accs, cs) = Loops.repeati i (S.exp_rl_f k.to.comm_monoid bBits b) (k.to.refl one, k.to.refl a) in
let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in
k.to.refl acc == accs /\ k.to.refl c == cs)
let rec exp_rl_lemma_loop #t k a bBits b i =
let one = k.one () in
let inp0 = (k.to.refl one, k.to.refl a) in
let inp1 = (one, a) in
let f0 = S.exp_rl_f k.to.comm_monoid bBits b in
let f1 = exp_rl_f k bBits b in
if i = 0 then begin
Loops.eq_repeati0 bBits f0 inp0;
Loops.eq_repeati0 bBits f1 inp1 end
else begin
exp_rl_lemma_loop #t k a bBits b (i - 1);
Loops.unfold_repeati bBits f0 inp0 (i - 1);
Loops.unfold_repeati bBits f1 inp1 (i - 1) end
let exp_rl_lemma #t k a bBits b =
exp_rl_lemma_loop #t k a bBits b bBits
val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:concrete_ops t
-> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} ->
Lemma (let one = k.one () in
let (r0s, r1s, sws) =
Loops.repeati i (S.exp_mont_ladder_swap_f k.to.comm_monoid bBits b) (k.to.refl one, k.to.refl a, 0) in
let (r0, r1, sw) =
Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
k.to.refl r0 == r0s /\ k.to.refl r1 == r1s /\ sw == sws)
let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b i =
let one = k.one () in
let inp0 = (k.to.refl one, k.to.refl a, 0) in
let inp1 = (one, a, 0) in
let f0 = S.exp_mont_ladder_swap_f k.to.comm_monoid bBits b in
let f1 = exp_mont_ladder_swap_f k bBits b in
if i = 0 then begin
Loops.eq_repeati0 bBits f0 inp0;
Loops.eq_repeati0 bBits f1 inp1 end
else begin
exp_mont_ladder_swap_lemma_loop #t k a bBits b (i - 1);
Loops.unfold_repeati bBits f0 inp0 (i - 1);
Loops.unfold_repeati bBits f1 inp1 (i - 1) end
let exp_mont_ladder_swap_lemma #t k a bBits b =
exp_mont_ladder_swap_lemma_loop #t k a bBits b bBits
val exp_pow2_lemma_loop: #t:Type -> k:concrete_ops t -> a:t -> b:nat -> i:nat{i <= b} ->
Lemma (
let accs = Loops.repeat i (S.sqr k.to.comm_monoid) (k.to.refl a) in
let acc = Loops.repeat i k.sqr a in
k.to.refl acc == accs)
let rec exp_pow2_lemma_loop #t k a b i =
if i = 0 then begin
Loops.eq_repeat0 (S.sqr k.to.comm_monoid) (k.to.refl a);
Loops.eq_repeat0 k.sqr a end
else begin
exp_pow2_lemma_loop #t k a b (i - 1);
Loops.unfold_repeat b (S.sqr k.to.comm_monoid) (k.to.refl a) (i - 1);
Loops.unfold_repeat b k.sqr a (i - 1) end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Spec.Exponentiation.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: Spec.Exponentiation.concrete_ops t -> a: t -> b: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Mkto_comm_monoid?.refl (Mkconcrete_ops?.to k) (Spec.Exponentiation.exp_pow2 k a b) ==
Lib.Exponentiation.exp_pow2 (Mkto_comm_monoid?.comm_monoid (Mkconcrete_ops?.to k))
(Mkto_comm_monoid?.refl (Mkconcrete_ops?.to k) a)
b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.Exponentiation.concrete_ops",
"Prims.nat",
"Spec.Exponentiation.exp_pow2_lemma_loop",
"Prims.unit"
] | [] | true | false | true | false | false | let exp_pow2_lemma #t k a b =
| exp_pow2_lemma_loop k a b b | false |
Vale.AES.X64.AES256.fsti | Vale.AES.X64.AES256.va_wp_AES256EncryptBlock | val va_wp_AES256EncryptBlock
(input: quad32)
(key: (seq nat32))
(round_keys: (seq quad32))
(keys_buffer: buffer128)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0 | val va_wp_AES256EncryptBlock
(input: quad32)
(key: (seq nat32))
(round_keys: (seq quad32))
(keys_buffer: buffer128)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0 | let va_wp_AES256EncryptBlock (input:quad32) (key:(seq nat32)) (round_keys:(seq quad32))
(keys_buffer:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\
FStar.Seq.Base.length #quad32 round_keys == 15 /\ round_keys ==
Vale.AES.AES_s.key_to_round_keys_LE AES_256 key /\ va_get_xmm 0 va_s0 == input /\ va_get_reg64
rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer
(va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0)
(va_get_reg64 rR8 va_s0) keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i:nat) . i
< 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) ==
FStar.Seq.Base.index #quad32 round_keys i) /\ (forall (va_x_xmm0:quad32) (va_x_xmm2:quad32)
(va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 2 va_x_xmm2
(va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ va_get_xmm 0 va_sM ==
Vale.AES.AES_s.aes_encrypt_LE AES_256 key input ==> va_k va_sM (()))) | {
"file_name": "obj/Vale.AES.X64.AES256.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 73,
"end_line": 156,
"start_col": 0,
"start_line": 144
} | module Vale.AES.X64.AES256
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open FStar.Seq
open Vale.AES.AES_s
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.InsAes
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.Arch.Types
open Vale.AES.AES256_helpers
open Vale.X64.CPU_Features_s
#reset-options "--z3rlimit 20"
//-- KeyExpansion256Stdcall
val va_code_KeyExpansion256Stdcall : win:bool -> Tot va_code
val va_codegen_success_KeyExpansion256Stdcall : win:bool -> Tot va_pbool
val va_lemma_KeyExpansion256Stdcall : va_b0:va_code -> va_s0:va_state -> win:bool ->
input_key_b:buffer128 -> output_key_expansion_b:buffer128
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_KeyExpansion256Stdcall win) va_s0 /\ va_get_ok va_s0
/\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0
else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615))
= (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let
(key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key
(Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0))
(Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\
avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0)
key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128
(va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout
va_s0) Secret)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0
else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615))
= (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let
(key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key
(Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0))
(Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\
avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM)
key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.validDstAddrs128
(va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout
va_sM) Secret) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then
va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0
18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in
let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key
(Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0))
(Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in
Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0)
(va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read
output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==>
Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) ==
FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key)
j)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM
(va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64
rRdx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))
[@ va_qattr]
let va_wp_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128)
(output_key_expansion_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ ->
va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let
(key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64
rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq
Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key
(Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0))
(Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\
avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0)
key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128
(va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout
va_s0) Secret) /\ (forall (va_x_mem:vale_heap) (va_x_rdx:nat64) (va_x_heap1:vale_heap)
(va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32)
(va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 4 va_x_xmm4
(va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1
va_x_heap1 (va_upd_reg64 rRdx va_x_rdx (va_upd_mem va_x_mem va_s0))))))) in va_get_ok va_sM /\
(let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx
va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0
18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64
rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) =
Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0
(va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet
0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128
(va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\
Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr
output_key_expansion_b 15 (va_get_mem_layout va_sM) Secret) /\ (let (key_ptr:(va_int_range 0
18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64
rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _
-> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq
Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key
(Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0))
(Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in
Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0)
(va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read
output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==>
Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) ==
FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key)
j)) ==> va_k va_sM (())))
val va_wpProof_KeyExpansion256Stdcall : win:bool -> input_key_b:buffer128 ->
output_key_expansion_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_KeyExpansion256Stdcall win input_key_b
output_key_expansion_b va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansion256Stdcall win)
([va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1;
va_Mod_reg64 rRdx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g))))
[@ "opaque_to_smt" va_qattr]
let va_quick_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128)
(output_key_expansion_b:buffer128) : (va_quickCode unit (va_code_KeyExpansion256Stdcall win)) =
(va_QProc (va_code_KeyExpansion256Stdcall win) ([va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3;
va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem])
(va_wp_KeyExpansion256Stdcall win input_key_b output_key_expansion_b)
(va_wpProof_KeyExpansion256Stdcall win input_key_b output_key_expansion_b))
//--
//-- AES256EncryptBlock
val va_code_AES256EncryptBlock : va_dummy:unit -> Tot va_code
val va_codegen_success_AES256EncryptBlock : va_dummy:unit -> Tot va_pbool
val va_lemma_AES256EncryptBlock : va_b0:va_code -> va_s0:va_state -> input:quad32 -> key:(seq
nat32) -> round_keys:(seq quad32) -> keys_buffer:buffer128
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_AES256EncryptBlock ()) va_s0 /\ va_get_ok va_s0 /\
(aesni_enabled /\ sse_enabled) /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\
FStar.Seq.Base.length #quad32 round_keys == 15 /\ round_keys ==
Vale.AES.AES_s.key_to_round_keys_LE AES_256 key /\ va_get_xmm 0 va_s0 == input /\ va_get_reg64
rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer
(va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0)
(va_get_reg64 rR8 va_s0) keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i:nat) . i
< 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) ==
FStar.Seq.Base.index #quad32 round_keys i)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_get_xmm 0 va_sM == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input /\ va_state_eq va_sM
(va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM
va_s0)))))) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.InsAes.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"Vale.AES.AES256_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.X64.AES256.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES256_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsAes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES256_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsAes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
input: Vale.X64.Decls.quad32 ->
key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 ->
round_keys: FStar.Seq.Base.seq Vale.X64.Decls.quad32 ->
keys_buffer: Vale.X64.Memory.buffer128 ->
va_s0: Vale.X64.Decls.va_state ->
va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0)
-> Type0 | Prims.Tot | [
"total"
] | [] | [
"Vale.X64.Decls.quad32",
"FStar.Seq.Base.seq",
"Vale.X64.Memory.nat32",
"Vale.X64.Memory.buffer128",
"Vale.X64.Decls.va_state",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Vale.X64.Decls.va_get_ok",
"Vale.X64.CPU_Features_s.aesni_enabled",
"Vale.X64.CPU_Features_s.sse_enabled",
"Vale.AES.AES_s.is_aes_key_LE",
"Vale.AES.AES_common_s.AES_256",
"Prims.eq2",
"Prims.int",
"FStar.Seq.Base.length",
"Vale.AES.AES_s.key_to_round_keys_LE",
"Vale.X64.Decls.va_get_xmm",
"Vale.X64.Decls.va_get_reg64",
"Vale.X64.Machine_s.rR8",
"Vale.X64.Memory.buffer_addr",
"Vale.X64.Memory.vuint128",
"Vale.X64.Decls.va_get_mem_heaplet",
"Vale.X64.Decls.validSrcAddrs128",
"Vale.X64.Decls.va_get_mem_layout",
"Vale.Arch.HeapTypes_s.Secret",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_imp",
"Prims.op_LessThan",
"Vale.X64.Decls.buffer128_read",
"FStar.Seq.Base.index",
"Vale.X64.Flags.t",
"Vale.Def.Types_s.quad32",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_upd_flags",
"Vale.X64.Decls.va_upd_xmm"
] | [] | false | false | false | true | true | let va_wp_AES256EncryptBlock
(input: quad32)
(key: (seq nat32))
(round_keys: (seq quad32))
(keys_buffer: buffer128)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0 =
| (va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\
FStar.Seq.Base.length #quad32 round_keys == 15 /\
round_keys == Vale.AES.AES_s.key_to_round_keys_LE AES_256 key /\ va_get_xmm 0 va_s0 == input /\
va_get_reg64 rR8 va_s0 ==
Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer (va_get_mem_heaplet 0 va_s0) /\
Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0)
(va_get_reg64 rR8 va_s0)
keys_buffer
15
(va_get_mem_layout va_s0)
Secret /\
(forall (i: nat).
i < 15 ==>
Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) ==
FStar.Seq.Base.index #quad32 round_keys i) /\
(forall (va_x_xmm0: quad32) (va_x_xmm2: quad32) (va_x_efl: Vale.X64.Flags.t).
let va_sM = va_upd_flags va_x_efl (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 0 va_x_xmm0 va_s0)) in
va_get_ok va_sM /\ va_get_xmm 0 va_sM == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input ==>
va_k va_sM (()))) | false |
Spec.Exponentiation.fst | Spec.Exponentiation.exp_pow2_lemma_loop | val exp_pow2_lemma_loop: #t:Type -> k:concrete_ops t -> a:t -> b:nat -> i:nat{i <= b} ->
Lemma (
let accs = Loops.repeat i (S.sqr k.to.comm_monoid) (k.to.refl a) in
let acc = Loops.repeat i k.sqr a in
k.to.refl acc == accs) | val exp_pow2_lemma_loop: #t:Type -> k:concrete_ops t -> a:t -> b:nat -> i:nat{i <= b} ->
Lemma (
let accs = Loops.repeat i (S.sqr k.to.comm_monoid) (k.to.refl a) in
let acc = Loops.repeat i k.sqr a in
k.to.refl acc == accs) | let rec exp_pow2_lemma_loop #t k a b i =
if i = 0 then begin
Loops.eq_repeat0 (S.sqr k.to.comm_monoid) (k.to.refl a);
Loops.eq_repeat0 k.sqr a end
else begin
exp_pow2_lemma_loop #t k a b (i - 1);
Loops.unfold_repeat b (S.sqr k.to.comm_monoid) (k.to.refl a) (i - 1);
Loops.unfold_repeat b k.sqr a (i - 1) end | {
"file_name": "specs/Spec.Exponentiation.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 45,
"end_line": 83,
"start_col": 0,
"start_line": 76
} | module Spec.Exponentiation
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module S = Lib.Exponentiation
module Loops = Lib.LoopCombinators
#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
val exp_rl_lemma_loop: #t:Type -> k:concrete_ops t
-> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} ->
Lemma (let one = k.one () in
let (accs, cs) = Loops.repeati i (S.exp_rl_f k.to.comm_monoid bBits b) (k.to.refl one, k.to.refl a) in
let (acc, c) = Loops.repeati i (exp_rl_f k bBits b) (one, a) in
k.to.refl acc == accs /\ k.to.refl c == cs)
let rec exp_rl_lemma_loop #t k a bBits b i =
let one = k.one () in
let inp0 = (k.to.refl one, k.to.refl a) in
let inp1 = (one, a) in
let f0 = S.exp_rl_f k.to.comm_monoid bBits b in
let f1 = exp_rl_f k bBits b in
if i = 0 then begin
Loops.eq_repeati0 bBits f0 inp0;
Loops.eq_repeati0 bBits f1 inp1 end
else begin
exp_rl_lemma_loop #t k a bBits b (i - 1);
Loops.unfold_repeati bBits f0 inp0 (i - 1);
Loops.unfold_repeati bBits f1 inp1 (i - 1) end
let exp_rl_lemma #t k a bBits b =
exp_rl_lemma_loop #t k a bBits b bBits
val exp_mont_ladder_swap_lemma_loop: #t:Type -> k:concrete_ops t
-> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> i:nat{i <= bBits} ->
Lemma (let one = k.one () in
let (r0s, r1s, sws) =
Loops.repeati i (S.exp_mont_ladder_swap_f k.to.comm_monoid bBits b) (k.to.refl one, k.to.refl a, 0) in
let (r0, r1, sw) =
Loops.repeati i (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
k.to.refl r0 == r0s /\ k.to.refl r1 == r1s /\ sw == sws)
let rec exp_mont_ladder_swap_lemma_loop #t k a bBits b i =
let one = k.one () in
let inp0 = (k.to.refl one, k.to.refl a, 0) in
let inp1 = (one, a, 0) in
let f0 = S.exp_mont_ladder_swap_f k.to.comm_monoid bBits b in
let f1 = exp_mont_ladder_swap_f k bBits b in
if i = 0 then begin
Loops.eq_repeati0 bBits f0 inp0;
Loops.eq_repeati0 bBits f1 inp1 end
else begin
exp_mont_ladder_swap_lemma_loop #t k a bBits b (i - 1);
Loops.unfold_repeati bBits f0 inp0 (i - 1);
Loops.unfold_repeati bBits f1 inp1 (i - 1) end
let exp_mont_ladder_swap_lemma #t k a bBits b =
exp_mont_ladder_swap_lemma_loop #t k a bBits b bBits
val exp_pow2_lemma_loop: #t:Type -> k:concrete_ops t -> a:t -> b:nat -> i:nat{i <= b} ->
Lemma (
let accs = Loops.repeat i (S.sqr k.to.comm_monoid) (k.to.refl a) in
let acc = Loops.repeat i k.sqr a in
k.to.refl acc == accs) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Spec.Exponentiation.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: Spec.Exponentiation.concrete_ops t -> a: t -> b: Prims.nat -> i: Prims.nat{i <= b}
-> FStar.Pervasives.Lemma
(ensures
(let accs =
Lib.LoopCombinators.repeat i
(Lib.Exponentiation.Definition.sqr (Mkto_comm_monoid?.comm_monoid (Mkconcrete_ops?.to k)
))
(Mkto_comm_monoid?.refl (Mkconcrete_ops?.to k) a)
in
let acc = Lib.LoopCombinators.repeat i (Mkconcrete_ops?.sqr k) a in
Mkto_comm_monoid?.refl (Mkconcrete_ops?.to k) acc == accs)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.Exponentiation.concrete_ops",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Equality",
"Prims.int",
"Lib.LoopCombinators.eq_repeat0",
"Spec.Exponentiation.__proj__Mkconcrete_ops__item__sqr",
"Prims.unit",
"Spec.Exponentiation.__proj__Mkto_comm_monoid__item__a_spec",
"Spec.Exponentiation.__proj__Mkconcrete_ops__item__to",
"Lib.Exponentiation.Definition.sqr",
"Spec.Exponentiation.__proj__Mkto_comm_monoid__item__comm_monoid",
"Spec.Exponentiation.__proj__Mkto_comm_monoid__item__refl",
"Prims.bool",
"Lib.LoopCombinators.unfold_repeat",
"Prims.op_Subtraction",
"Spec.Exponentiation.exp_pow2_lemma_loop"
] | [
"recursion"
] | false | false | true | false | false | let rec exp_pow2_lemma_loop #t k a b i =
| if i = 0
then
(Loops.eq_repeat0 (S.sqr k.to.comm_monoid) (k.to.refl a);
Loops.eq_repeat0 k.sqr a)
else
(exp_pow2_lemma_loop #t k a b (i - 1);
Loops.unfold_repeat b (S.sqr k.to.comm_monoid) (k.to.refl a) (i - 1);
Loops.unfold_repeat b k.sqr a (i - 1)) | false |
Lib.IntTypes.fst | Lib.IntTypes.sec_int_t | val sec_int_t: inttype -> Type0 | val sec_int_t: inttype -> Type0 | let sec_int_t t = pub_int_t t | {
"file_name": "lib/Lib.IntTypes.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 14,
"start_col": 0,
"start_line": 14
} | module Lib.IntTypes
open FStar.Math.Lemmas
#push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200"
let pow2_2 _ = assert_norm (pow2 2 = 4)
let pow2_3 _ = assert_norm (pow2 3 = 8)
let pow2_4 _ = assert_norm (pow2 4 = 16)
let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000)
let bits_numbytes t = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.Cast.Full.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Int.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "Lib.IntTypes.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Lib.IntTypes.inttype -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Lib.IntTypes.pub_int_t"
] | [] | false | false | false | true | true | let sec_int_t t =
| pub_int_t t | false |
Vale.AES.X64.AES256.fsti | Vale.AES.X64.AES256.va_quick_AES256EncryptBlock | val va_quick_AES256EncryptBlock
(input: quad32)
(key: (seq nat32))
(round_keys: (seq quad32))
(keys_buffer: buffer128)
: (va_quickCode unit (va_code_AES256EncryptBlock ())) | val va_quick_AES256EncryptBlock
(input: quad32)
(key: (seq nat32))
(round_keys: (seq quad32))
(keys_buffer: buffer128)
: (va_quickCode unit (va_code_AES256EncryptBlock ())) | let va_quick_AES256EncryptBlock (input:quad32) (key:(seq nat32)) (round_keys:(seq quad32))
(keys_buffer:buffer128) : (va_quickCode unit (va_code_AES256EncryptBlock ())) =
(va_QProc (va_code_AES256EncryptBlock ()) ([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0])
(va_wp_AES256EncryptBlock input key round_keys keys_buffer) (va_wpProof_AES256EncryptBlock
input key round_keys keys_buffer)) | {
"file_name": "obj/Vale.AES.X64.AES256.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 38,
"end_line": 170,
"start_col": 0,
"start_line": 166
} | module Vale.AES.X64.AES256
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open FStar.Seq
open Vale.AES.AES_s
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.InsAes
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.Arch.Types
open Vale.AES.AES256_helpers
open Vale.X64.CPU_Features_s
#reset-options "--z3rlimit 20"
//-- KeyExpansion256Stdcall
val va_code_KeyExpansion256Stdcall : win:bool -> Tot va_code
val va_codegen_success_KeyExpansion256Stdcall : win:bool -> Tot va_pbool
val va_lemma_KeyExpansion256Stdcall : va_b0:va_code -> va_s0:va_state -> win:bool ->
input_key_b:buffer128 -> output_key_expansion_b:buffer128
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_KeyExpansion256Stdcall win) va_s0 /\ va_get_ok va_s0
/\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0
else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615))
= (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let
(key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key
(Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0))
(Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\
avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0)
key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128
(va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout
va_s0) Secret)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0
else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615))
= (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let
(key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key
(Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0))
(Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\
avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM)
key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.validDstAddrs128
(va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout
va_sM) Secret) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then
va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0
18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in
let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key
(Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0))
(Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in
Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0)
(va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read
output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==>
Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) ==
FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key)
j)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM
(va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64
rRdx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))
[@ va_qattr]
let va_wp_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128)
(output_key_expansion_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ ->
va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let
(key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64
rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq
Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key
(Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0))
(Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\
avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0)
key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128
(va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout
va_s0) Secret) /\ (forall (va_x_mem:vale_heap) (va_x_rdx:nat64) (va_x_heap1:vale_heap)
(va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32)
(va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 4 va_x_xmm4
(va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1
va_x_heap1 (va_upd_reg64 rRdx va_x_rdx (va_upd_mem va_x_mem va_s0))))))) in va_get_ok va_sM /\
(let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx
va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0
18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64
rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) =
Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0
(va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet
0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128
(va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\
Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr
output_key_expansion_b 15 (va_get_mem_layout va_sM) Secret) /\ (let (key_ptr:(va_int_range 0
18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64
rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _
-> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq
Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key
(Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0))
(Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in
Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0)
(va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read
output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==>
Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) ==
FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key)
j)) ==> va_k va_sM (())))
val va_wpProof_KeyExpansion256Stdcall : win:bool -> input_key_b:buffer128 ->
output_key_expansion_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_KeyExpansion256Stdcall win input_key_b
output_key_expansion_b va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansion256Stdcall win)
([va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1;
va_Mod_reg64 rRdx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g))))
[@ "opaque_to_smt" va_qattr]
let va_quick_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128)
(output_key_expansion_b:buffer128) : (va_quickCode unit (va_code_KeyExpansion256Stdcall win)) =
(va_QProc (va_code_KeyExpansion256Stdcall win) ([va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3;
va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem])
(va_wp_KeyExpansion256Stdcall win input_key_b output_key_expansion_b)
(va_wpProof_KeyExpansion256Stdcall win input_key_b output_key_expansion_b))
//--
//-- AES256EncryptBlock
val va_code_AES256EncryptBlock : va_dummy:unit -> Tot va_code
val va_codegen_success_AES256EncryptBlock : va_dummy:unit -> Tot va_pbool
val va_lemma_AES256EncryptBlock : va_b0:va_code -> va_s0:va_state -> input:quad32 -> key:(seq
nat32) -> round_keys:(seq quad32) -> keys_buffer:buffer128
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_AES256EncryptBlock ()) va_s0 /\ va_get_ok va_s0 /\
(aesni_enabled /\ sse_enabled) /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\
FStar.Seq.Base.length #quad32 round_keys == 15 /\ round_keys ==
Vale.AES.AES_s.key_to_round_keys_LE AES_256 key /\ va_get_xmm 0 va_s0 == input /\ va_get_reg64
rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer
(va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0)
(va_get_reg64 rR8 va_s0) keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i:nat) . i
< 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) ==
FStar.Seq.Base.index #quad32 round_keys i)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
va_get_xmm 0 va_sM == Vale.AES.AES_s.aes_encrypt_LE AES_256 key input /\ va_state_eq va_sM
(va_update_flags va_sM (va_update_xmm 2 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM
va_s0))))))
[@ va_qattr]
let va_wp_AES256EncryptBlock (input:quad32) (key:(seq nat32)) (round_keys:(seq quad32))
(keys_buffer:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (aesni_enabled /\ sse_enabled) /\ Vale.AES.AES_s.is_aes_key_LE AES_256 key /\
FStar.Seq.Base.length #quad32 round_keys == 15 /\ round_keys ==
Vale.AES.AES_s.key_to_round_keys_LE AES_256 key /\ va_get_xmm 0 va_s0 == input /\ va_get_reg64
rR8 va_s0 == Vale.X64.Memory.buffer_addr #Vale.X64.Memory.vuint128 keys_buffer
(va_get_mem_heaplet 0 va_s0) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0)
(va_get_reg64 rR8 va_s0) keys_buffer 15 (va_get_mem_layout va_s0) Secret /\ (forall (i:nat) . i
< 15 ==> Vale.X64.Decls.buffer128_read keys_buffer i (va_get_mem_heaplet 0 va_s0) ==
FStar.Seq.Base.index #quad32 round_keys i) /\ (forall (va_x_xmm0:quad32) (va_x_xmm2:quad32)
(va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 2 va_x_xmm2
(va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ va_get_xmm 0 va_sM ==
Vale.AES.AES_s.aes_encrypt_LE AES_256 key input ==> va_k va_sM (())))
val va_wpProof_AES256EncryptBlock : input:quad32 -> key:(seq nat32) -> round_keys:(seq quad32) ->
keys_buffer:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_AES256EncryptBlock input key round_keys keys_buffer va_s0
va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_AES256EncryptBlock ()) ([va_Mod_flags;
va_Mod_xmm 2; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.InsAes.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"Vale.AES.AES256_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.X64.AES256.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES256_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsAes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES256_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsAes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
input: Vale.X64.Decls.quad32 ->
key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 ->
round_keys: FStar.Seq.Base.seq Vale.X64.Decls.quad32 ->
keys_buffer: Vale.X64.Memory.buffer128
-> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.AES256.va_code_AES256EncryptBlock ()) | Prims.Tot | [
"total"
] | [] | [
"Vale.X64.Decls.quad32",
"FStar.Seq.Base.seq",
"Vale.X64.Memory.nat32",
"Vale.X64.Memory.buffer128",
"Vale.X64.QuickCode.va_QProc",
"Prims.unit",
"Vale.AES.X64.AES256.va_code_AES256EncryptBlock",
"Prims.Cons",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCode.va_Mod_flags",
"Vale.X64.QuickCode.va_Mod_xmm",
"Prims.Nil",
"Vale.AES.X64.AES256.va_wp_AES256EncryptBlock",
"Vale.AES.X64.AES256.va_wpProof_AES256EncryptBlock",
"Vale.X64.QuickCode.va_quickCode"
] | [] | false | false | false | false | false | let va_quick_AES256EncryptBlock
(input: quad32)
(key: (seq nat32))
(round_keys: (seq quad32))
(keys_buffer: buffer128)
: (va_quickCode unit (va_code_AES256EncryptBlock ())) =
| (va_QProc (va_code_AES256EncryptBlock ())
([va_Mod_flags; va_Mod_xmm 2; va_Mod_xmm 0])
(va_wp_AES256EncryptBlock input key round_keys keys_buffer)
(va_wpProof_AES256EncryptBlock input key round_keys keys_buffer)) | false |
Vale.AES.X64.AES256.fsti | Vale.AES.X64.AES256.va_quick_KeyExpansion256Stdcall | val va_quick_KeyExpansion256Stdcall (win: bool) (input_key_b output_key_expansion_b: buffer128)
: (va_quickCode unit (va_code_KeyExpansion256Stdcall win)) | val va_quick_KeyExpansion256Stdcall (win: bool) (input_key_b output_key_expansion_b: buffer128)
: (va_quickCode unit (va_code_KeyExpansion256Stdcall win)) | let va_quick_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128)
(output_key_expansion_b:buffer128) : (va_quickCode unit (va_code_KeyExpansion256Stdcall win)) =
(va_QProc (va_code_KeyExpansion256Stdcall win) ([va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3;
va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1; va_Mod_reg64 rRdx; va_Mod_mem])
(va_wp_KeyExpansion256Stdcall win input_key_b output_key_expansion_b)
(va_wpProof_KeyExpansion256Stdcall win input_key_b output_key_expansion_b)) | {
"file_name": "obj/Vale.AES.X64.AES256.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 79,
"end_line": 119,
"start_col": 0,
"start_line": 114
} | module Vale.AES.X64.AES256
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open FStar.Seq
open Vale.AES.AES_s
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.InsAes
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.Arch.Types
open Vale.AES.AES256_helpers
open Vale.X64.CPU_Features_s
#reset-options "--z3rlimit 20"
//-- KeyExpansion256Stdcall
val va_code_KeyExpansion256Stdcall : win:bool -> Tot va_code
val va_codegen_success_KeyExpansion256Stdcall : win:bool -> Tot va_pbool
val va_lemma_KeyExpansion256Stdcall : va_b0:va_code -> va_s0:va_state -> win:bool ->
input_key_b:buffer128 -> output_key_expansion_b:buffer128
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_KeyExpansion256Stdcall win) va_s0 /\ va_get_ok va_s0
/\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0
else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615))
= (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let
(key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key
(Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0))
(Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\
avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0)
key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128
(va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout
va_s0) Secret)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0
else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615))
= (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in let
(key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key
(Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0))
(Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\
avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_sM)
key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\ Vale.X64.Decls.validDstAddrs128
(va_get_mem_heaplet 1 va_sM) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout
va_sM) Secret) /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = (if win then
va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0
18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in
let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key
(Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0))
(Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in
Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0)
(va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read
output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==>
Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) ==
FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key)
j)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM
(va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64
rRdx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))
[@ va_qattr]
let va_wp_KeyExpansion256Stdcall (win:bool) (input_key_b:buffer128)
(output_key_expansion_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ ->
va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let
(key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64
rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq
Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key
(Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0))
(Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in aesni_enabled /\
avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0)
key_ptr input_key_b 2 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128
(va_get_mem_heaplet 1 va_s0) key_expansion_ptr output_key_expansion_b 15 (va_get_mem_layout
va_s0) Secret) /\ (forall (va_x_mem:vale_heap) (va_x_rdx:nat64) (va_x_heap1:vale_heap)
(va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32)
(va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 4 va_x_xmm4
(va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_mem_heaplet 1
va_x_heap1 (va_upd_reg64 rRdx va_x_rdx (va_upd_mem va_x_mem va_s0))))))) in va_get_ok va_sM /\
(let (key_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx
va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0
18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64
rRsi va_s0) in let (key:(FStar.Seq.Base.seq Vale.Def.Types_s.nat32)) =
Vale.AES.AES256_helpers.make_AES256_key (Vale.X64.Decls.buffer128_read input_key_b 0
(va_get_mem_heaplet 0 va_s0)) (Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet
0 va_s0)) in aesni_enabled /\ avx_enabled /\ sse_enabled /\ Vale.X64.Decls.validSrcAddrs128
(va_get_mem_heaplet 0 va_sM) key_ptr input_key_b 2 (va_get_mem_layout va_sM) Secret /\
Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_sM) key_expansion_ptr
output_key_expansion_b 15 (va_get_mem_layout va_sM) Secret) /\ (let (key_ptr:(va_int_range 0
18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64
rRdi va_s0) in let (key_expansion_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _
-> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in let (key:(FStar.Seq.Base.seq
Vale.Def.Types_s.nat32)) = Vale.AES.AES256_helpers.make_AES256_key
(Vale.X64.Decls.buffer128_read input_key_b 0 (va_get_mem_heaplet 0 va_s0))
(Vale.X64.Decls.buffer128_read input_key_b 1 (va_get_mem_heaplet 0 va_s0)) in
Vale.X64.Decls.modifies_buffer128 output_key_expansion_b (va_get_mem_heaplet 1 va_s0)
(va_get_mem_heaplet 1 va_sM) /\ (forall (j:nat) . {:pattern(buffer128_read
output_key_expansion_b j (va_get_mem_heaplet 1 va_sM))}j <= 14 ==>
Vale.X64.Decls.buffer128_read output_key_expansion_b j (va_get_mem_heaplet 1 va_sM) ==
FStar.Seq.Base.index #Vale.Def.Types_s.quad32 (Vale.AES.AES_s.key_to_round_keys_LE AES_256 key)
j)) ==> va_k va_sM (())))
val va_wpProof_KeyExpansion256Stdcall : win:bool -> input_key_b:buffer128 ->
output_key_expansion_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_KeyExpansion256Stdcall win input_key_b
output_key_expansion_b va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_KeyExpansion256Stdcall win)
([va_Mod_flags; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_mem_heaplet 1;
va_Mod_reg64 rRdx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.InsAes.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"Vale.AES.AES256_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.X64.AES256.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES256_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsAes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES256_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsAes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
win: Prims.bool ->
input_key_b: Vale.X64.Memory.buffer128 ->
output_key_expansion_b: Vale.X64.Memory.buffer128
-> Vale.X64.QuickCode.va_quickCode Prims.unit
(Vale.AES.X64.AES256.va_code_KeyExpansion256Stdcall win) | Prims.Tot | [
"total"
] | [] | [
"Prims.bool",
"Vale.X64.Memory.buffer128",
"Vale.X64.QuickCode.va_QProc",
"Prims.unit",
"Vale.AES.X64.AES256.va_code_KeyExpansion256Stdcall",
"Prims.Cons",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCode.va_Mod_flags",
"Vale.X64.QuickCode.va_Mod_xmm",
"Vale.X64.QuickCode.va_Mod_mem_heaplet",
"Vale.X64.QuickCode.va_Mod_reg64",
"Vale.X64.Machine_s.rRdx",
"Vale.X64.QuickCode.va_Mod_mem",
"Prims.Nil",
"Vale.AES.X64.AES256.va_wp_KeyExpansion256Stdcall",
"Vale.AES.X64.AES256.va_wpProof_KeyExpansion256Stdcall",
"Vale.X64.QuickCode.va_quickCode"
] | [] | false | false | false | false | false | let va_quick_KeyExpansion256Stdcall (win: bool) (input_key_b output_key_expansion_b: buffer128)
: (va_quickCode unit (va_code_KeyExpansion256Stdcall win)) =
| (va_QProc (va_code_KeyExpansion256Stdcall win)
([
va_Mod_flags;
va_Mod_xmm 4;
va_Mod_xmm 3;
va_Mod_xmm 2;
va_Mod_xmm 1;
va_Mod_mem_heaplet 1;
va_Mod_reg64 rRdx;
va_Mod_mem
])
(va_wp_KeyExpansion256Stdcall win input_key_b output_key_expansion_b)
(va_wpProof_KeyExpansion256Stdcall win input_key_b output_key_expansion_b)) | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.