file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
Lib.IntTypes.fst
Lib.IntTypes.mod
val mod: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> int_t t PUB
val mod: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> int_t t PUB
let mod #t x y = match t with | U1 -> UInt8.rem x y | U8 -> UInt8.rem x y | U16 -> UInt16.rem x y | U32 -> UInt32.rem x y | U64 -> UInt64.rem x y | S8 -> Int.pow2_values 8; Int8.rem x y | S16 -> Int.pow2_values 16; Int16.rem x y | S32 -> Int.pow2_values 32; Int32.rem x y | S64 -> Int.pow2_values 64; Int64.rem x y
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 1057, "start_col": 0, "start_line": 1047 }
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits) let cast_mod #t #l t' l' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else begin let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` mod_mask m) in cast t' l' b end #pop-options [@(strict_on_arguments [0])] let div #t x y = match t with | U1 -> UInt8.div x y | U8 -> UInt8.div x y | U16 -> UInt16.div x y | U32 -> UInt32.div x y | U64 -> UInt64.div x y | S8 -> Int.pow2_values 8; Int8.div x y | S16 -> Int.pow2_values 16; Int16.div x y | S32 -> Int.pow2_values 32; Int32.div x y | S64 -> Int.pow2_values 64; Int64.div x y let div_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> b: Lib.IntTypes.int_t t Lib.IntTypes.PUB { Lib.IntTypes.v b <> 0 /\ (Lib.IntTypes.unsigned t \/ Lib.IntTypes.range (Lib.IntTypes.v a / Lib.IntTypes.v b) t) } -> Lib.IntTypes.int_t t Lib.IntTypes.PUB
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.inttype", "Prims.l_and", "Prims.l_not", "Prims.b2t", "Lib.IntTypes.uu___is_U128", "Lib.IntTypes.uu___is_S128", "Lib.IntTypes.int_t", "Lib.IntTypes.PUB", "Prims.op_disEquality", "Prims.int", "Lib.IntTypes.v", "Prims.l_or", "Lib.IntTypes.unsigned", "Lib.IntTypes.range", "FStar.Int.op_Slash", "FStar.UInt8.rem", "FStar.UInt16.rem", "FStar.UInt32.rem", "FStar.UInt64.rem", "FStar.Int8.rem", "Prims.unit", "FStar.Int.pow2_values", "FStar.Int16.rem", "FStar.Int32.rem", "FStar.Int64.rem" ]
[]
false
false
false
false
false
let mod #t x y =
match t with | U1 -> UInt8.rem x y | U8 -> UInt8.rem x y | U16 -> UInt16.rem x y | U32 -> UInt32.rem x y | U64 -> UInt64.rem x y | S8 -> Int.pow2_values 8; Int8.rem x y | S16 -> Int.pow2_values 16; Int16.rem x y | S32 -> Int.pow2_values 32; Int32.rem x y | S64 -> Int.pow2_values 64; Int64.rem x y
false
Lib.IntTypes.fst
Lib.IntTypes.mod_lemma
val mod_lemma: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> Lemma (if signed t then v (mod a b) == FStar.Int.mod #(bits t) (v a) (v b) else v (mod a b) == FStar.UInt.mod #(bits t) (v a) (v b)) [SMTPat (v #t (mod #t a b))]
val mod_lemma: #t:inttype{~(U128? t) /\ ~(S128? t)} -> a:int_t t PUB -> b:int_t t PUB{v b <> 0 /\ (unsigned t \/ range FStar.Int.(v a / v b) t)} -> Lemma (if signed t then v (mod a b) == FStar.Int.mod #(bits t) (v a) (v b) else v (mod a b) == FStar.UInt.mod #(bits t) (v a) (v b)) [SMTPat (v #t (mod #t a b))]
let mod_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 1065, "start_col": 0, "start_line": 1059 }
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits) let cast_mod #t #l t' l' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else begin let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` mod_mask m) in cast t' l' b end #pop-options [@(strict_on_arguments [0])] let div #t x y = match t with | U1 -> UInt8.div x y | U8 -> UInt8.div x y | U16 -> UInt16.div x y | U32 -> UInt32.div x y | U64 -> UInt64.div x y | S8 -> Int.pow2_values 8; Int8.div x y | S16 -> Int.pow2_values 16; Int16.div x y | S32 -> Int.pow2_values 32; Int32.div x y | S64 -> Int.pow2_values 64; Int64.div x y let div_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let mod #t x y = match t with | U1 -> UInt8.rem x y | U8 -> UInt8.rem x y | U16 -> UInt16.rem x y | U32 -> UInt32.rem x y | U64 -> UInt64.rem x y | S8 -> Int.pow2_values 8; Int8.rem x y | S16 -> Int.pow2_values 16; Int16.rem x y | S32 -> Int.pow2_values 32; Int32.rem x y | S64 -> Int.pow2_values 64; Int64.rem x y
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> b: Lib.IntTypes.int_t t Lib.IntTypes.PUB { Lib.IntTypes.v b <> 0 /\ (Lib.IntTypes.unsigned t \/ Lib.IntTypes.range (Lib.IntTypes.v a / Lib.IntTypes.v b) t) } -> FStar.Pervasives.Lemma (ensures ((match Lib.IntTypes.signed t with | true -> Lib.IntTypes.v (Lib.IntTypes.mod a b) == FStar.Int.mod (Lib.IntTypes.v a) (Lib.IntTypes.v b) | _ -> Lib.IntTypes.v (Lib.IntTypes.mod a b) == FStar.UInt.mod (Lib.IntTypes.v a) (Lib.IntTypes.v b)) <: Type0)) [SMTPat (Lib.IntTypes.v (Lib.IntTypes.mod a b))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.inttype", "Prims.l_and", "Prims.l_not", "Prims.b2t", "Lib.IntTypes.uu___is_U128", "Lib.IntTypes.uu___is_S128", "Lib.IntTypes.int_t", "Lib.IntTypes.PUB", "Prims.op_disEquality", "Prims.int", "Lib.IntTypes.v", "Prims.l_or", "Lib.IntTypes.unsigned", "Lib.IntTypes.range", "FStar.Int.op_Slash", "FStar.Int.pow2_values", "Prims.unit" ]
[]
false
false
true
false
false
let mod_lemma #t a b =
match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64
false
Main.fst
Main.with_z3_thread_or
val with_z3_thread_or (batch: bool) (out_dir: string) (debug: bool) (transcript: option string) (f: (Z3.z3 -> ML unit)) : ML (option (unit -> ML unit))
val with_z3_thread_or (batch: bool) (out_dir: string) (debug: bool) (transcript: option string) (f: (Z3.z3 -> ML unit)) : ML (option (unit -> ML unit))
let with_z3_thread_or (batch: bool) (out_dir: string) (debug: bool) (transcript: option string) (f: (Z3.z3 -> ML unit)) : ML (option (unit -> ML unit)) = if batch then let thr = Z3.with_z3_thread debug transcript f in Some (fun _ -> Z3.wait_for_z3_thread thr; build_and_run_test_exe out_dir ) else begin Z3.with_z3 debug transcript f; None end
{ "file_name": "src/3d/Main.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 504, "start_col": 0, "start_line": 487 }
module Main open FStar.IO open FStar.All open Ast open ParserDriver module T = Target open FStar.ST #push-options "--z3rlimit_factor 2" let open_write_file (s:string) : ML FStar.IO.fd_write = FStar.IO.print_string (FStar.Printf.sprintf "Writing file %s\n" s); FStar.IO.open_write_file s let parse_prog (fn:string) : ML prog = let decls, type_refinement_opt = ParserDriver.parse fn in if decls |> List.tryFind is_entrypoint_or_export |> Some? then decls, type_refinement_opt else raise (Error (Printf.sprintf "File %s does not have an entry point or an exported definition, exiting\n" fn)) noeq type env = { binding_env : Binding.global_env; typesizes_env : TypeSizes.size_env; translate_env : (TranslateForInterpreter.translate_env & InterpreterTarget.env); } let initial_env () : ML env = { binding_env = Binding.initial_global_env (); typesizes_env = TypeSizes.initial_senv (); translate_env = (TranslateForInterpreter.initial_translate_env(), InterpreterTarget.create_env()); } let left (x:either 'a 'b) : ML 'a = match x with | Inl x -> x | _ -> failwith "Expected left" let right (x:either 'a 'b) : ML 'b = match x with | Inr x -> x | _ -> failwith "Expected right" type prune_actions = | PruneActions type opt_prune_actions = option prune_actions let parse_check_and_desugar (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Ast.decl & StaticAssertions.static_asserts & env) = Options.debug_print_string (FStar.Printf.sprintf "Processing file: %s\nModule name: %s\n" fn mname); let decls, refinement = let p = parse_prog fn in if pa = Some PruneActions then prog_prune_actions p else p in Options.debug_print_string "=============After parsing=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, refinement = Desugar.desugar en.binding_env mname (decls, refinement) in Options.debug_print_string "=============After desugaring=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, benv = Binding.bind_decls en.binding_env decls in Options.debug_print_string "=============After binding=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; if Options.get_json() then ( IO.print_string (JSON.prog_to_json (decls, refinement)); IO.print_string "\n" ); let decls = BitFields.eliminate_decls benv decls in Options.debug_print_string "=============After bitflds=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = TypeSizes.size_of_decls benv en.typesizes_env decls in Options.debug_print_string "=============Finished typesizes pass=============\n"; let static_asserts = StaticAssertions.compute_static_asserts benv en.typesizes_env refinement in Options.debug_print_string "=============Finished static asserts pass=============\n"; let decls = Simplify.simplify_prog benv en.typesizes_env decls in Options.debug_print_string "=============After simplify============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = InlineSingletonRecords.simplify_prog decls in Options.debug_print_string "=============After inline singletons============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let en = { en with binding_env = benv } in decls, static_asserts, en let translate_module (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Target.decl & list InterpreterTarget.decl & StaticAssertions.static_asserts & env) = let decls, static_asserts, en = parse_check_and_desugar pa en mname fn in let t_decls, i_decls, tenv = let env, env' = en.translate_env in let decls, env = TranslateForInterpreter.translate_decls en.binding_env en.typesizes_env env decls in let tds = InterpreterTarget.translate_decls env' decls in decls, tds, (env, env') in let en = { en with translate_env = tenv } in t_decls, i_decls, static_asserts, en let emit_fstar_code_for_interpreter (en:env) (modul:string) (tds:list T.decl) (itds:list InterpreterTarget.decl) (all_modules:list string) : ML unit = let _, en = en.translate_env in let impl, iface = InterpreterTarget.print_decls en modul itds in let has_external_types = T.has_output_types tds || T.has_extern_types tds in if has_external_types then begin let external_types_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalTypes.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_types_fsti_file (Target.print_external_types_fstar_interpreter modul tds); FStar.IO.close_write_file external_types_fsti_file end; let has_external_api = T.has_external_api tds in if has_external_api then begin let external_api_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalAPI.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_api_fsti_file (Target.print_external_api_fstar_interpreter modul tds); FStar.IO.close_write_file external_api_fsti_file end; let maybe_open_external_api = if has_external_api then Printf.sprintf "open %s.ExternalAPI" modul else "" in let module_prefix = FStar.Printf.sprintf "module %s\n\ open EverParse3d.Prelude\n\ open EverParse3d.Actions.All\n\ open EverParse3d.Interpreter\n\ %s\n\ module T = FStar.Tactics\n\ module A = EverParse3d.Actions.All\n\ module P = EverParse3d.Prelude\n\ #push-options \"--fuel 0 --ifuel 0\"\n\ #push-options \"--using_facts_from 'Prims FStar.UInt FStar.UInt8 \ FStar.UInt16 FStar.UInt32 FStar.UInt64 \ EverParse3d FStar.Int.Cast %s'\"\n" modul maybe_open_external_api (all_modules |> String.concat " ") in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir()) modul) in FStar.IO.write_string fst_file module_prefix; FStar.IO.write_string fst_file impl; FStar.IO.close_write_file fst_file; let fsti_file = open_write_file (Printf.sprintf "%s/%s.fsti" (Options.get_output_dir()) modul) in FStar.IO.write_string fsti_file module_prefix; FStar.IO.write_string fsti_file iface; FStar.IO.close_write_file fsti_file; () let emit_entrypoint (produce_ep_error: Target.opt_produce_everparse_error) (en:env) (modul:string) (t_decls:list Target.decl) (static_asserts:StaticAssertions.static_asserts) (emit_output_types_defs:bool) : ML unit = //print wrapper only if there is an entrypoint if List.tryFind (fun (d, _) -> let open Target in match d with | Type_decl td -> td.decl_name.td_entrypoint | _ -> false) t_decls |> Some? then begin let wrapper_header, wrapper_impl = Target.print_c_entry produce_ep_error modul en.binding_env t_decls in let c_file = open_write_file (Printf.sprintf "%s/%sWrapper.c" (Options.get_output_dir()) modul) in FStar.IO.write_string c_file wrapper_impl; FStar.IO.close_write_file c_file; let h_file = open_write_file (Printf.sprintf "%s/%sWrapper.h" (Options.get_output_dir()) modul) in FStar.IO.write_string h_file wrapper_header; FStar.IO.close_write_file h_file end; let has_output_types = T.has_output_types t_decls in let has_out_exprs = T.has_output_type_exprs t_decls in let has_extern_types = T.has_extern_types t_decls in (* * If there are output types in the module * and emit_output_types_defs flag is set, * then emit output type definitions in M_OutputTypesDefs.h *) if emit_output_types_defs then begin if has_output_types then begin let output_types_defs_file = open_write_file (Printf.sprintf "%s/%s_OutputTypesDefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_defs_file (Target.print_output_types_defs modul t_decls); FStar.IO.close_write_file output_types_defs_file end; (* * Optimization: If the module has no extern types, * then M_ExternalTypedefs.h, that we require the programmer to provide, * only contains output type defs * * So generate M_ExteralTypedefs.h, with #include of M_OutputTypesDefs.h *) if has_output_types && not has_extern_types then begin let extern_typedefs_file = open_write_file (Printf.sprintf "%s/%s_ExternalTypedefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string extern_typedefs_file (Printf.sprintf "#ifndef __%s_ExternalTypedefs_H\n\ #define __%s_ExternalTypedefs_H\n #if defined(__cplusplus)\n\ extern \"C\" {\n\ #endif\n\n\n\ %s#include \"%s_OutputTypesDefs.h\"\n\n\ #if defined(__cplusplus)\n\ }\n\ #endif\n\n\ #define __%s_ExternalTypedefs_H_DEFINED\n\ #endif\n" modul modul (Options.make_includes ()) modul modul); FStar.IO.close_write_file extern_typedefs_file end end; // (* // * Optimization: If M only has extern functions, and no types, // * then the external typedefs file is trivially empty // *) // if has_extern_fns && not (has_out_exprs || has_extern_types) // then begin // let extern_typedefs_file = open_write_file // (Printf.sprintf "%s/%s_ExternalTypedefs.h" // (Options.get_output_dir ()) // modul) in // FStar.IO.write_string extern_typedefs_file "\n"; // FStar.IO.close_write_file extern_typedefs_file // end; if has_out_exprs then begin let output_types_c_file = open_write_file (Printf.sprintf "%s/%s_OutputTypes.c" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_c_file (Target.print_out_exprs_c modul t_decls); FStar.IO.close_write_file output_types_c_file end; if StaticAssertions.has_static_asserts static_asserts then begin let c_static_asserts_file = open_write_file (Printf.sprintf "%s/%sStaticAssertions.c" (Options.get_output_dir()) modul) in FStar.IO.write_string c_static_asserts_file (StaticAssertions.print_static_asserts static_asserts); FStar.IO.close_write_file c_static_asserts_file end let process_file_gen (produce_ep_error: Target.opt_produce_everparse_error) (pa: opt_prune_actions) (en:env) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs:bool) (all_modules:list string) : ML (env & list InterpreterTarget.decl) = let t_decls, interpreter_decls, static_asserts, en = translate_module pa en modul fn in if emit_fstar then ( emit_fstar_code_for_interpreter en modul t_decls interpreter_decls all_modules; emit_entrypoint produce_ep_error en modul t_decls static_asserts emit_output_types_defs ) else IO.print_string (Printf.sprintf "Not emitting F* code for %s\n" fn); let ds = Binding.get_exported_decls en.binding_env modul in TypeSizes.finish_module en.typesizes_env modul ds; { en with binding_env = Binding.finish_module en.binding_env modul; translate_env = en.translate_env; }, interpreter_decls let process_file (en:env) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs: bool) (all_modules:list string) : ML env = fst (process_file_gen None None en fn modul emit_fstar emit_output_types_defs all_modules) let emit_config_as_fstar_module () : ML unit = match Deps.get_config () with | Some (cfg, config_module_name) -> let fst_file_contents = Config.emit_config_as_fstar_module config_module_name cfg in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir()) config_module_name) in FStar.IO.write_string fst_file fst_file_contents; FStar.IO.close_write_file fst_file | _ -> () let process_files_gen (#env: Type) (initial_env: unit -> ML env) (files_and_modules:list (string & string)) (emit_fstar:option (string -> ML bool)) (emit_output_types_defs:bool) (process_file: (env -> string -> string -> bool -> bool -> list string -> ML env)) : ML env = IO.print_string (Printf.sprintf "Processing files: %s\n" (List.map fst files_and_modules |> String.concat " ")); let all_modules = List.map snd files_and_modules in let env = initial_env () in if Some? emit_fstar then if Options.get_batch() then emit_config_as_fstar_module(); files_and_modules |> List.fold_left (fun env (fn, modul) -> process_file env fn modul (match emit_fstar with Some f -> f modul | _ -> false) emit_output_types_defs all_modules) env let process_files_t = (files_and_modules:list (string & string)) -> (emit_fstar:string -> ML bool) -> (emit_output_types_defs:bool) -> ML (option (unit -> ML unit)) let process_files : process_files_t = fun files_and_modules emit_fstar emit_output_types_defs -> process_files_gen initial_env files_and_modules (Some emit_fstar) emit_output_types_defs process_file |> ignore; (Some (fun _ -> ())) let process_file_for_z3 (out: string -> ML unit) (en_accu:(env & Z3TestGen.prog)) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs:bool) (all_modules:list string) : ML (env & Z3TestGen.prog) = let (en, accu) = en_accu in let (en, interpreter_decls) = process_file_gen (Some Target.ProduceEverParseError) (Some PruneActions) en fn modul emit_fstar emit_output_types_defs all_modules in let accu = Z3TestGen.produce_decls out accu interpreter_decls in (en, accu) let process_files_for_z3 (out: string -> ML unit) (files_and_modules:list (string & string)) (emit_fstar:option (string -> ML bool)) (emit_output_types_defs:bool) : ML Z3TestGen.prog = out Z3TestGen.prelude; process_files_gen (fun _ -> initial_env (), []) files_and_modules emit_fstar emit_output_types_defs (process_file_for_z3 out) |> snd let produce_z3 (files_and_modules:list (string & string)) : ML unit = ignore (process_files_for_z3 FStar.IO.print_string files_and_modules None false) let build_test_exe (out_dir: string) : ML unit = if not (Options.get_skip_c_makefiles ()) then begin OS.run_cmd "make" ["-C"; out_dir; "-f"; "Makefile.basic"; "USER_TARGET=test.exe"; "USER_CFLAGS=-Wno-type-limits"] end let build_and_run_test_exe (out_dir: string) : ML unit = if not (Options.get_skip_c_makefiles ()) then begin build_test_exe out_dir; OS.run_cmd (OS.concat out_dir "test.exe") [] end
{ "checked_file": "/", "dependencies": [ "Z3TestGen.fst.checked", "Z3.fsti.checked", "TypeSizes.fsti.checked", "TranslateForInterpreter.fsti.checked", "Target.fsti.checked", "StaticAssertions.fst.checked", "Simplify.fsti.checked", "prims.fst.checked", "ParserDriver.fsti.checked", "OS.fsti.checked", "Options.fsti.checked", "JSON.fsti.checked", "InterpreterTarget.fsti.checked", "InlineSingletonRecords.fst.checked", "HashingOptions.fst.checked", "GenMakefile.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked", "Desugar.fst.checked", "Deps.fsti.checked", "Config.fst.checked", "BitFields.fst.checked", "Binding.fsti.checked", "Batch.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "Main.fst" }
[ { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": true, "full_module": "Target", "short_module": "T" }, { "abbrev": false, "full_module": "ParserDriver", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
batch: Prims.bool -> out_dir: Prims.string -> debug: Prims.bool -> transcript: FStar.Pervasives.Native.option Prims.string -> f: (_: Z3.Base.z3 -> FStar.All.ML Prims.unit) -> FStar.All.ML (FStar.Pervasives.Native.option (_: Prims.unit -> FStar.All.ML Prims.unit))
FStar.All.ML
[ "ml" ]
[]
[ "Prims.bool", "Prims.string", "FStar.Pervasives.Native.option", "Z3.Base.z3", "Prims.unit", "FStar.Pervasives.Native.Some", "Main.build_and_run_test_exe", "Z3.wait_for_z3_thread", "Z3.z3_thread", "Z3.with_z3_thread", "FStar.Pervasives.Native.None", "Z3.with_z3" ]
[]
false
true
false
false
false
let with_z3_thread_or (batch: bool) (out_dir: string) (debug: bool) (transcript: option string) (f: (Z3.z3 -> ML unit)) : ML (option (unit -> ML unit)) =
if batch then let thr = Z3.with_z3_thread debug transcript f in Some (fun _ -> Z3.wait_for_z3_thread thr; build_and_run_test_exe out_dir) else (Z3.with_z3 debug transcript f; None)
false
Lib.IntTypes.fst
Lib.IntTypes.lte_mask_lemma
val lte_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a <= v b then v (lte_mask a b) == ones_v t else v (lte_mask a b) == 0) [SMTPat (lte_mask #t a b)]
val lte_mask_lemma: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a <= v b then v (lte_mask a b) == ones_v t else v (lte_mask a b) == 0) [SMTPat (lte_mask #t a b)]
let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b))
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 945, "start_col": 0, "start_line": 933 }
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> FStar.Pervasives.Lemma (ensures ((match Lib.IntTypes.v a <= Lib.IntTypes.v b with | true -> Lib.IntTypes.v (Lib.IntTypes.lte_mask a b) == Lib.IntTypes.ones_v t | _ -> Lib.IntTypes.v (Lib.IntTypes.lte_mask a b) == 0) <: Type0)) [SMTPat (Lib.IntTypes.lte_mask a b)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Lib.IntTypes.U1", "Lib.IntTypes.logor", "Lib.IntTypes.u1", "Prims.op_GreaterThan", "Lib.IntTypes.v", "FStar.UInt.logor_lemma_1", "Lib.IntTypes.bits", "Lib.IntTypes.lt_mask", "Prims.bool", "Prims.op_Equality", "Lib.IntTypes.range_t", "FStar.UInt.logor_lemma_2", "Prims.unit" ]
[]
false
false
true
false
false
let lte_mask_lemma #t a b =
match t with | U1 -> assert_norm (logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b))
false
Lib.IntTypes.fst
Lib.IntTypes.mod_mask_lemma
val mod_mask_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (a `logand` mod_mask m) == v a % pow2 (v m)) [SMTPat (a `logand` mod_mask #t m)]
val mod_mask_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (a `logand` mod_mask m) == v a % pow2 (v m)) [SMTPat (a `logand` mod_mask #t m)]
let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 7, "end_line": 976, "start_col": 0, "start_line": 958 }
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.IntTypes.int_t t l -> m: Lib.IntTypes.shiftval t {Prims.pow2 (Lib.IntTypes.uint_v m) <= Lib.IntTypes.maxint t} -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.logand a (Lib.IntTypes.mod_mask m)) == Lib.IntTypes.v a % Prims.pow2 (Lib.IntTypes.v m)) [SMTPat (Lib.IntTypes.logand a (Lib.IntTypes.mod_mask m))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Lib.IntTypes.shiftval", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.pow2", "Lib.IntTypes.uint_v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.maxint", "Prims.op_BarBar", "Lib.IntTypes.unsigned", "Lib.IntTypes.v", "Prims.op_Equality", "Prims.int", "FStar.UInt.logand_lemma_1", "Lib.IntTypes.bits", "Prims.bool", "FStar.UInt.logand_mask", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_plus", "Prims.op_Subtraction", "FStar.Math.Lemmas.pow2_le_compat", "FStar.Math.Lemmas.pow2_plus", "Prims.op_Addition", "Lib.IntTypes.range", "Lib.IntTypes.mod_mask_value" ]
[]
false
false
true
false
false
let mod_mask_lemma #t #l a m =
mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m)
false
Main.fst
Main.produce_z3_and_test
val produce_z3_and_test (batch: bool) (out_dir name: string) : Tot process_files_t
val produce_z3_and_test (batch: bool) (out_dir name: string) : Tot process_files_t
let produce_z3_and_test (batch: bool) (out_dir: string) (name: string) : Tot process_files_t = produce_z3_and_test_gen batch out_dir (fun out_file nbwitnesses prog z3 -> Z3TestGen.do_test out_dir out_file z3 prog name nbwitnesses (Options.get_z3_branch_depth ()) (Options.get_z3_pos_test ()) (Options.get_z3_neg_test ()) )
{ "file_name": "src/3d/Main.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 531, "start_col": 0, "start_line": 524 }
module Main open FStar.IO open FStar.All open Ast open ParserDriver module T = Target open FStar.ST #push-options "--z3rlimit_factor 2" let open_write_file (s:string) : ML FStar.IO.fd_write = FStar.IO.print_string (FStar.Printf.sprintf "Writing file %s\n" s); FStar.IO.open_write_file s let parse_prog (fn:string) : ML prog = let decls, type_refinement_opt = ParserDriver.parse fn in if decls |> List.tryFind is_entrypoint_or_export |> Some? then decls, type_refinement_opt else raise (Error (Printf.sprintf "File %s does not have an entry point or an exported definition, exiting\n" fn)) noeq type env = { binding_env : Binding.global_env; typesizes_env : TypeSizes.size_env; translate_env : (TranslateForInterpreter.translate_env & InterpreterTarget.env); } let initial_env () : ML env = { binding_env = Binding.initial_global_env (); typesizes_env = TypeSizes.initial_senv (); translate_env = (TranslateForInterpreter.initial_translate_env(), InterpreterTarget.create_env()); } let left (x:either 'a 'b) : ML 'a = match x with | Inl x -> x | _ -> failwith "Expected left" let right (x:either 'a 'b) : ML 'b = match x with | Inr x -> x | _ -> failwith "Expected right" type prune_actions = | PruneActions type opt_prune_actions = option prune_actions let parse_check_and_desugar (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Ast.decl & StaticAssertions.static_asserts & env) = Options.debug_print_string (FStar.Printf.sprintf "Processing file: %s\nModule name: %s\n" fn mname); let decls, refinement = let p = parse_prog fn in if pa = Some PruneActions then prog_prune_actions p else p in Options.debug_print_string "=============After parsing=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, refinement = Desugar.desugar en.binding_env mname (decls, refinement) in Options.debug_print_string "=============After desugaring=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, benv = Binding.bind_decls en.binding_env decls in Options.debug_print_string "=============After binding=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; if Options.get_json() then ( IO.print_string (JSON.prog_to_json (decls, refinement)); IO.print_string "\n" ); let decls = BitFields.eliminate_decls benv decls in Options.debug_print_string "=============After bitflds=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = TypeSizes.size_of_decls benv en.typesizes_env decls in Options.debug_print_string "=============Finished typesizes pass=============\n"; let static_asserts = StaticAssertions.compute_static_asserts benv en.typesizes_env refinement in Options.debug_print_string "=============Finished static asserts pass=============\n"; let decls = Simplify.simplify_prog benv en.typesizes_env decls in Options.debug_print_string "=============After simplify============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = InlineSingletonRecords.simplify_prog decls in Options.debug_print_string "=============After inline singletons============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let en = { en with binding_env = benv } in decls, static_asserts, en let translate_module (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Target.decl & list InterpreterTarget.decl & StaticAssertions.static_asserts & env) = let decls, static_asserts, en = parse_check_and_desugar pa en mname fn in let t_decls, i_decls, tenv = let env, env' = en.translate_env in let decls, env = TranslateForInterpreter.translate_decls en.binding_env en.typesizes_env env decls in let tds = InterpreterTarget.translate_decls env' decls in decls, tds, (env, env') in let en = { en with translate_env = tenv } in t_decls, i_decls, static_asserts, en let emit_fstar_code_for_interpreter (en:env) (modul:string) (tds:list T.decl) (itds:list InterpreterTarget.decl) (all_modules:list string) : ML unit = let _, en = en.translate_env in let impl, iface = InterpreterTarget.print_decls en modul itds in let has_external_types = T.has_output_types tds || T.has_extern_types tds in if has_external_types then begin let external_types_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalTypes.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_types_fsti_file (Target.print_external_types_fstar_interpreter modul tds); FStar.IO.close_write_file external_types_fsti_file end; let has_external_api = T.has_external_api tds in if has_external_api then begin let external_api_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalAPI.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_api_fsti_file (Target.print_external_api_fstar_interpreter modul tds); FStar.IO.close_write_file external_api_fsti_file end; let maybe_open_external_api = if has_external_api then Printf.sprintf "open %s.ExternalAPI" modul else "" in let module_prefix = FStar.Printf.sprintf "module %s\n\ open EverParse3d.Prelude\n\ open EverParse3d.Actions.All\n\ open EverParse3d.Interpreter\n\ %s\n\ module T = FStar.Tactics\n\ module A = EverParse3d.Actions.All\n\ module P = EverParse3d.Prelude\n\ #push-options \"--fuel 0 --ifuel 0\"\n\ #push-options \"--using_facts_from 'Prims FStar.UInt FStar.UInt8 \ FStar.UInt16 FStar.UInt32 FStar.UInt64 \ EverParse3d FStar.Int.Cast %s'\"\n" modul maybe_open_external_api (all_modules |> String.concat " ") in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir()) modul) in FStar.IO.write_string fst_file module_prefix; FStar.IO.write_string fst_file impl; FStar.IO.close_write_file fst_file; let fsti_file = open_write_file (Printf.sprintf "%s/%s.fsti" (Options.get_output_dir()) modul) in FStar.IO.write_string fsti_file module_prefix; FStar.IO.write_string fsti_file iface; FStar.IO.close_write_file fsti_file; () let emit_entrypoint (produce_ep_error: Target.opt_produce_everparse_error) (en:env) (modul:string) (t_decls:list Target.decl) (static_asserts:StaticAssertions.static_asserts) (emit_output_types_defs:bool) : ML unit = //print wrapper only if there is an entrypoint if List.tryFind (fun (d, _) -> let open Target in match d with | Type_decl td -> td.decl_name.td_entrypoint | _ -> false) t_decls |> Some? then begin let wrapper_header, wrapper_impl = Target.print_c_entry produce_ep_error modul en.binding_env t_decls in let c_file = open_write_file (Printf.sprintf "%s/%sWrapper.c" (Options.get_output_dir()) modul) in FStar.IO.write_string c_file wrapper_impl; FStar.IO.close_write_file c_file; let h_file = open_write_file (Printf.sprintf "%s/%sWrapper.h" (Options.get_output_dir()) modul) in FStar.IO.write_string h_file wrapper_header; FStar.IO.close_write_file h_file end; let has_output_types = T.has_output_types t_decls in let has_out_exprs = T.has_output_type_exprs t_decls in let has_extern_types = T.has_extern_types t_decls in (* * If there are output types in the module * and emit_output_types_defs flag is set, * then emit output type definitions in M_OutputTypesDefs.h *) if emit_output_types_defs then begin if has_output_types then begin let output_types_defs_file = open_write_file (Printf.sprintf "%s/%s_OutputTypesDefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_defs_file (Target.print_output_types_defs modul t_decls); FStar.IO.close_write_file output_types_defs_file end; (* * Optimization: If the module has no extern types, * then M_ExternalTypedefs.h, that we require the programmer to provide, * only contains output type defs * * So generate M_ExteralTypedefs.h, with #include of M_OutputTypesDefs.h *) if has_output_types && not has_extern_types then begin let extern_typedefs_file = open_write_file (Printf.sprintf "%s/%s_ExternalTypedefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string extern_typedefs_file (Printf.sprintf "#ifndef __%s_ExternalTypedefs_H\n\ #define __%s_ExternalTypedefs_H\n #if defined(__cplusplus)\n\ extern \"C\" {\n\ #endif\n\n\n\ %s#include \"%s_OutputTypesDefs.h\"\n\n\ #if defined(__cplusplus)\n\ }\n\ #endif\n\n\ #define __%s_ExternalTypedefs_H_DEFINED\n\ #endif\n" modul modul (Options.make_includes ()) modul modul); FStar.IO.close_write_file extern_typedefs_file end end; // (* // * Optimization: If M only has extern functions, and no types, // * then the external typedefs file is trivially empty // *) // if has_extern_fns && not (has_out_exprs || has_extern_types) // then begin // let extern_typedefs_file = open_write_file // (Printf.sprintf "%s/%s_ExternalTypedefs.h" // (Options.get_output_dir ()) // modul) in // FStar.IO.write_string extern_typedefs_file "\n"; // FStar.IO.close_write_file extern_typedefs_file // end; if has_out_exprs then begin let output_types_c_file = open_write_file (Printf.sprintf "%s/%s_OutputTypes.c" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_c_file (Target.print_out_exprs_c modul t_decls); FStar.IO.close_write_file output_types_c_file end; if StaticAssertions.has_static_asserts static_asserts then begin let c_static_asserts_file = open_write_file (Printf.sprintf "%s/%sStaticAssertions.c" (Options.get_output_dir()) modul) in FStar.IO.write_string c_static_asserts_file (StaticAssertions.print_static_asserts static_asserts); FStar.IO.close_write_file c_static_asserts_file end let process_file_gen (produce_ep_error: Target.opt_produce_everparse_error) (pa: opt_prune_actions) (en:env) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs:bool) (all_modules:list string) : ML (env & list InterpreterTarget.decl) = let t_decls, interpreter_decls, static_asserts, en = translate_module pa en modul fn in if emit_fstar then ( emit_fstar_code_for_interpreter en modul t_decls interpreter_decls all_modules; emit_entrypoint produce_ep_error en modul t_decls static_asserts emit_output_types_defs ) else IO.print_string (Printf.sprintf "Not emitting F* code for %s\n" fn); let ds = Binding.get_exported_decls en.binding_env modul in TypeSizes.finish_module en.typesizes_env modul ds; { en with binding_env = Binding.finish_module en.binding_env modul; translate_env = en.translate_env; }, interpreter_decls let process_file (en:env) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs: bool) (all_modules:list string) : ML env = fst (process_file_gen None None en fn modul emit_fstar emit_output_types_defs all_modules) let emit_config_as_fstar_module () : ML unit = match Deps.get_config () with | Some (cfg, config_module_name) -> let fst_file_contents = Config.emit_config_as_fstar_module config_module_name cfg in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir()) config_module_name) in FStar.IO.write_string fst_file fst_file_contents; FStar.IO.close_write_file fst_file | _ -> () let process_files_gen (#env: Type) (initial_env: unit -> ML env) (files_and_modules:list (string & string)) (emit_fstar:option (string -> ML bool)) (emit_output_types_defs:bool) (process_file: (env -> string -> string -> bool -> bool -> list string -> ML env)) : ML env = IO.print_string (Printf.sprintf "Processing files: %s\n" (List.map fst files_and_modules |> String.concat " ")); let all_modules = List.map snd files_and_modules in let env = initial_env () in if Some? emit_fstar then if Options.get_batch() then emit_config_as_fstar_module(); files_and_modules |> List.fold_left (fun env (fn, modul) -> process_file env fn modul (match emit_fstar with Some f -> f modul | _ -> false) emit_output_types_defs all_modules) env let process_files_t = (files_and_modules:list (string & string)) -> (emit_fstar:string -> ML bool) -> (emit_output_types_defs:bool) -> ML (option (unit -> ML unit)) let process_files : process_files_t = fun files_and_modules emit_fstar emit_output_types_defs -> process_files_gen initial_env files_and_modules (Some emit_fstar) emit_output_types_defs process_file |> ignore; (Some (fun _ -> ())) let process_file_for_z3 (out: string -> ML unit) (en_accu:(env & Z3TestGen.prog)) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs:bool) (all_modules:list string) : ML (env & Z3TestGen.prog) = let (en, accu) = en_accu in let (en, interpreter_decls) = process_file_gen (Some Target.ProduceEverParseError) (Some PruneActions) en fn modul emit_fstar emit_output_types_defs all_modules in let accu = Z3TestGen.produce_decls out accu interpreter_decls in (en, accu) let process_files_for_z3 (out: string -> ML unit) (files_and_modules:list (string & string)) (emit_fstar:option (string -> ML bool)) (emit_output_types_defs:bool) : ML Z3TestGen.prog = out Z3TestGen.prelude; process_files_gen (fun _ -> initial_env (), []) files_and_modules emit_fstar emit_output_types_defs (process_file_for_z3 out) |> snd let produce_z3 (files_and_modules:list (string & string)) : ML unit = ignore (process_files_for_z3 FStar.IO.print_string files_and_modules None false) let build_test_exe (out_dir: string) : ML unit = if not (Options.get_skip_c_makefiles ()) then begin OS.run_cmd "make" ["-C"; out_dir; "-f"; "Makefile.basic"; "USER_TARGET=test.exe"; "USER_CFLAGS=-Wno-type-limits"] end let build_and_run_test_exe (out_dir: string) : ML unit = if not (Options.get_skip_c_makefiles ()) then begin build_test_exe out_dir; OS.run_cmd (OS.concat out_dir "test.exe") [] end let with_z3_thread_or (batch: bool) (out_dir: string) (debug: bool) (transcript: option string) (f: (Z3.z3 -> ML unit)) : ML (option (unit -> ML unit)) = if batch then let thr = Z3.with_z3_thread debug transcript f in Some (fun _ -> Z3.wait_for_z3_thread thr; build_and_run_test_exe out_dir ) else begin Z3.with_z3 debug transcript f; None end let produce_z3_and_test_gen (batch: bool) (out_dir: string) (do_test: option string -> int -> Z3TestGen.prog -> Z3.z3 -> ML unit) : Tot process_files_t = fun (files_and_modules:list (string & string)) (emit_fstar:string -> ML bool) (emit_output_types_defs:bool) -> let nbwitnesses = Options.get_z3_witnesses () in let buf : ref string = alloc "" in let prog = process_files_for_z3 (fun s -> buf := !buf ^ s) files_and_modules (if batch then Some emit_fstar else None) emit_output_types_defs in with_z3_thread_or batch out_dir (Options.get_debug ()) (Options.get_save_z3_transcript ()) (fun z3 -> z3.to_z3 !buf; do_test (if batch then Some (OS.concat out_dir "testcases.c") else None) nbwitnesses prog z3 )
{ "checked_file": "/", "dependencies": [ "Z3TestGen.fst.checked", "Z3.fsti.checked", "TypeSizes.fsti.checked", "TranslateForInterpreter.fsti.checked", "Target.fsti.checked", "StaticAssertions.fst.checked", "Simplify.fsti.checked", "prims.fst.checked", "ParserDriver.fsti.checked", "OS.fsti.checked", "Options.fsti.checked", "JSON.fsti.checked", "InterpreterTarget.fsti.checked", "InlineSingletonRecords.fst.checked", "HashingOptions.fst.checked", "GenMakefile.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked", "Desugar.fst.checked", "Deps.fsti.checked", "Config.fst.checked", "BitFields.fst.checked", "Binding.fsti.checked", "Batch.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "Main.fst" }
[ { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": true, "full_module": "Target", "short_module": "T" }, { "abbrev": false, "full_module": "ParserDriver", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
batch: Prims.bool -> out_dir: Prims.string -> name: Prims.string -> Main.process_files_t
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Prims.string", "Main.produce_z3_and_test_gen", "FStar.Pervasives.Native.option", "Prims.int", "Z3TestGen.prog", "Z3.Base.z3", "Z3TestGen.do_test", "Prims.unit", "Options.get_z3_neg_test", "Options.get_z3_pos_test", "Prims.nat", "Options.get_z3_branch_depth", "Main.process_files_t" ]
[]
false
false
false
true
false
let produce_z3_and_test (batch: bool) (out_dir name: string) : Tot process_files_t =
produce_z3_and_test_gen batch out_dir (fun out_file nbwitnesses prog z3 -> Z3TestGen.do_test out_dir out_file z3 prog name nbwitnesses (Options.get_z3_branch_depth ()) (Options.get_z3_pos_test ()) (Options.get_z3_neg_test ()))
false
Lib.IntTypes.fst
Lib.IntTypes.gte
val gte: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
val gte: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
let gte #t x y = match t with | U1 -> UInt8.gte x y | U8 -> UInt8.gte x y | U16 -> UInt16.gte x y | U32 -> UInt32.gte x y | U64 -> UInt64.gte x y | U128 -> UInt128.gte x y | S8 -> Int8.gte x y | S16 -> Int16.gte x y | S32 -> Int32.gte x y | S64 -> Int64.gte x y | S128 -> Int128.gte x y
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 1136, "start_col": 0, "start_line": 1124 }
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits) let cast_mod #t #l t' l' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else begin let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` mod_mask m) in cast t' l' b end #pop-options [@(strict_on_arguments [0])] let div #t x y = match t with | U1 -> UInt8.div x y | U8 -> UInt8.div x y | U16 -> UInt16.div x y | U32 -> UInt32.div x y | U64 -> UInt64.div x y | S8 -> Int.pow2_values 8; Int8.div x y | S16 -> Int.pow2_values 16; Int16.div x y | S32 -> Int.pow2_values 32; Int32.div x y | S64 -> Int.pow2_values 64; Int64.div x y let div_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let mod #t x y = match t with | U1 -> UInt8.rem x y | U8 -> UInt8.rem x y | U16 -> UInt16.rem x y | U32 -> UInt32.rem x y | U64 -> UInt64.rem x y | S8 -> Int.pow2_values 8; Int8.rem x y | S16 -> Int.pow2_values 16; Int16.rem x y | S32 -> Int.pow2_values 32; Int32.rem x y | S64 -> Int.pow2_values 64; Int64.rem x y let mod_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let eq #t x y = x = y let eq_lemma #t x y = () let ne #t x y = not (eq x y) let ne_lemma #t x y = () let lt #t x y = match t with | U1 -> UInt8.lt x y | U8 -> UInt8.lt x y | U16 -> UInt16.lt x y | U32 -> UInt32.lt x y | U64 -> UInt64.lt x y | U128 -> UInt128.lt x y | S8 -> Int8.lt x y | S16 -> Int16.lt x y | S32 -> Int32.lt x y | S64 -> Int64.lt x y | S128 -> Int128.lt x y let lt_lemma #t x y = () let lte #t x y = match t with | U1 -> UInt8.lte x y | U8 -> UInt8.lte x y | U16 -> UInt16.lte x y | U32 -> UInt32.lte x y | U64 -> UInt64.lte x y | U128 -> UInt128.lte x y | S8 -> Int8.lte x y | S16 -> Int16.lte x y | S32 -> Int32.lte x y | S64 -> Int64.lte x y | S128 -> Int128.lte x y let lte_lemma #t x y = () let gt #t x y = match t with | U1 -> UInt8.gt x y | U8 -> UInt8.gt x y | U16 -> UInt16.gt x y | U32 -> UInt32.gt x y | U64 -> UInt64.gt x y | U128 -> UInt128.gt x y | S8 -> Int8.gt x y | S16 -> Int16.gt x y | S32 -> Int32.gt x y | S64 -> Int64.gt x y | S128 -> Int128.gt x y let gt_lemma #t x y = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> y: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.int_t", "Lib.IntTypes.PUB", "FStar.UInt8.gte", "FStar.UInt16.gte", "FStar.UInt32.gte", "FStar.UInt64.gte", "FStar.UInt128.gte", "FStar.Int8.gte", "FStar.Int16.gte", "FStar.Int32.gte", "FStar.Int64.gte", "FStar.Int128.gte", "Prims.bool" ]
[]
false
false
false
false
false
let gte #t x y =
match t with | U1 -> UInt8.gte x y | U8 -> UInt8.gte x y | U16 -> UInt16.gte x y | U32 -> UInt32.gte x y | U64 -> UInt64.gte x y | U128 -> UInt128.gte x y | S8 -> Int8.gte x y | S16 -> Int16.gte x y | S32 -> Int32.gte x y | S64 -> Int64.gte x y | S128 -> Int128.gte x y
false
Vale.Math.Poly2.Galois.Lemmas.fsti
Vale.Math.Poly2.Galois.Lemmas.fmul
val fmul : a: Spec.GaloisField.felem f -> b: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
let fmul (#f:G.field) (a b:G.felem f) = G.fmul #f a b
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.Lemmas.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 11, "start_col": 7, "start_line": 11 }
module Vale.Math.Poly2.Galois.Lemmas open FStar.Mul module I = Lib.IntTypes module G = Spec.GaloisField module P = Vale.Math.Poly2_s open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Galois
{ "checked_file": "/", "dependencies": [ "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Galois.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Galois.Lemmas.fsti" }
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Galois", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Math.Poly2_s", "short_module": "P" }, { "abbrev": true, "full_module": "Spec.GaloisField", "short_module": "G" }, { "abbrev": true, "full_module": "Lib.IntTypes", "short_module": "I" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Galois", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Galois", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.GaloisField.felem f -> b: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Spec.GaloisField.fmul" ]
[]
false
false
false
false
false
let fmul (#f: G.field) (a b: G.felem f) =
G.fmul #f a b
false
Lib.IntTypes.fst
Lib.IntTypes.lt
val lt: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
val lt: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
let lt #t x y = match t with | U1 -> UInt8.lt x y | U8 -> UInt8.lt x y | U16 -> UInt16.lt x y | U32 -> UInt32.lt x y | U64 -> UInt64.lt x y | U128 -> UInt128.lt x y | S8 -> Int8.lt x y | S16 -> Int16.lt x y | S32 -> Int32.lt x y | S64 -> Int64.lt x y | S128 -> Int128.lt x y
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 1088, "start_col": 0, "start_line": 1076 }
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits) let cast_mod #t #l t' l' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else begin let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` mod_mask m) in cast t' l' b end #pop-options [@(strict_on_arguments [0])] let div #t x y = match t with | U1 -> UInt8.div x y | U8 -> UInt8.div x y | U16 -> UInt16.div x y | U32 -> UInt32.div x y | U64 -> UInt64.div x y | S8 -> Int.pow2_values 8; Int8.div x y | S16 -> Int.pow2_values 16; Int16.div x y | S32 -> Int.pow2_values 32; Int32.div x y | S64 -> Int.pow2_values 64; Int64.div x y let div_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let mod #t x y = match t with | U1 -> UInt8.rem x y | U8 -> UInt8.rem x y | U16 -> UInt16.rem x y | U32 -> UInt32.rem x y | U64 -> UInt64.rem x y | S8 -> Int.pow2_values 8; Int8.rem x y | S16 -> Int.pow2_values 16; Int16.rem x y | S32 -> Int.pow2_values 32; Int32.rem x y | S64 -> Int.pow2_values 64; Int64.rem x y let mod_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let eq #t x y = x = y let eq_lemma #t x y = () let ne #t x y = not (eq x y) let ne_lemma #t x y = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> y: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.int_t", "Lib.IntTypes.PUB", "FStar.UInt8.lt", "FStar.UInt16.lt", "FStar.UInt32.lt", "FStar.UInt64.lt", "FStar.UInt128.lt", "FStar.Int8.lt", "FStar.Int16.lt", "FStar.Int32.lt", "FStar.Int64.lt", "FStar.Int128.lt", "Prims.bool" ]
[]
false
false
false
false
false
let lt #t x y =
match t with | U1 -> UInt8.lt x y | U8 -> UInt8.lt x y | U16 -> UInt16.lt x y | U32 -> UInt32.lt x y | U64 -> UInt64.lt x y | U128 -> UInt128.lt x y | S8 -> Int8.lt x y | S16 -> Int16.lt x y | S32 -> Int32.lt x y | S64 -> Int64.lt x y | S128 -> Int128.lt x y
false
Main.fst
Main.produce_and_postprocess_c
val produce_and_postprocess_c (out_dir file: string) : ML unit
val produce_and_postprocess_c (out_dir file: string) : ML unit
let produce_and_postprocess_c (out_dir: string) (file: string) : ML unit = let modul = Options.get_module_name file in let deps = Deps.collect_and_sort_dependencies [file] in let dep_files_and_modules = List.map (fun f -> (f, Options.get_module_name f)) deps in (* remove the current module from the deps *) let dep_files_and_modules = List.filter (fun (_, m) -> m <> modul) dep_files_and_modules in Batch.produce_and_postprocess_one_c (Options.get_input_stream_binding ()) (Options.get_emit_output_types_defs ()) (Options.get_add_include ()) (Options.get_clang_format ()) (Options.get_clang_format_executable ()) out_dir file modul dep_files_and_modules
{ "file_name": "src/3d/Main.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 25, "end_line": 580, "start_col": 0, "start_line": 561 }
module Main open FStar.IO open FStar.All open Ast open ParserDriver module T = Target open FStar.ST #push-options "--z3rlimit_factor 2" let open_write_file (s:string) : ML FStar.IO.fd_write = FStar.IO.print_string (FStar.Printf.sprintf "Writing file %s\n" s); FStar.IO.open_write_file s let parse_prog (fn:string) : ML prog = let decls, type_refinement_opt = ParserDriver.parse fn in if decls |> List.tryFind is_entrypoint_or_export |> Some? then decls, type_refinement_opt else raise (Error (Printf.sprintf "File %s does not have an entry point or an exported definition, exiting\n" fn)) noeq type env = { binding_env : Binding.global_env; typesizes_env : TypeSizes.size_env; translate_env : (TranslateForInterpreter.translate_env & InterpreterTarget.env); } let initial_env () : ML env = { binding_env = Binding.initial_global_env (); typesizes_env = TypeSizes.initial_senv (); translate_env = (TranslateForInterpreter.initial_translate_env(), InterpreterTarget.create_env()); } let left (x:either 'a 'b) : ML 'a = match x with | Inl x -> x | _ -> failwith "Expected left" let right (x:either 'a 'b) : ML 'b = match x with | Inr x -> x | _ -> failwith "Expected right" type prune_actions = | PruneActions type opt_prune_actions = option prune_actions let parse_check_and_desugar (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Ast.decl & StaticAssertions.static_asserts & env) = Options.debug_print_string (FStar.Printf.sprintf "Processing file: %s\nModule name: %s\n" fn mname); let decls, refinement = let p = parse_prog fn in if pa = Some PruneActions then prog_prune_actions p else p in Options.debug_print_string "=============After parsing=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, refinement = Desugar.desugar en.binding_env mname (decls, refinement) in Options.debug_print_string "=============After desugaring=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, benv = Binding.bind_decls en.binding_env decls in Options.debug_print_string "=============After binding=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; if Options.get_json() then ( IO.print_string (JSON.prog_to_json (decls, refinement)); IO.print_string "\n" ); let decls = BitFields.eliminate_decls benv decls in Options.debug_print_string "=============After bitflds=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = TypeSizes.size_of_decls benv en.typesizes_env decls in Options.debug_print_string "=============Finished typesizes pass=============\n"; let static_asserts = StaticAssertions.compute_static_asserts benv en.typesizes_env refinement in Options.debug_print_string "=============Finished static asserts pass=============\n"; let decls = Simplify.simplify_prog benv en.typesizes_env decls in Options.debug_print_string "=============After simplify============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = InlineSingletonRecords.simplify_prog decls in Options.debug_print_string "=============After inline singletons============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let en = { en with binding_env = benv } in decls, static_asserts, en let translate_module (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Target.decl & list InterpreterTarget.decl & StaticAssertions.static_asserts & env) = let decls, static_asserts, en = parse_check_and_desugar pa en mname fn in let t_decls, i_decls, tenv = let env, env' = en.translate_env in let decls, env = TranslateForInterpreter.translate_decls en.binding_env en.typesizes_env env decls in let tds = InterpreterTarget.translate_decls env' decls in decls, tds, (env, env') in let en = { en with translate_env = tenv } in t_decls, i_decls, static_asserts, en let emit_fstar_code_for_interpreter (en:env) (modul:string) (tds:list T.decl) (itds:list InterpreterTarget.decl) (all_modules:list string) : ML unit = let _, en = en.translate_env in let impl, iface = InterpreterTarget.print_decls en modul itds in let has_external_types = T.has_output_types tds || T.has_extern_types tds in if has_external_types then begin let external_types_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalTypes.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_types_fsti_file (Target.print_external_types_fstar_interpreter modul tds); FStar.IO.close_write_file external_types_fsti_file end; let has_external_api = T.has_external_api tds in if has_external_api then begin let external_api_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalAPI.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_api_fsti_file (Target.print_external_api_fstar_interpreter modul tds); FStar.IO.close_write_file external_api_fsti_file end; let maybe_open_external_api = if has_external_api then Printf.sprintf "open %s.ExternalAPI" modul else "" in let module_prefix = FStar.Printf.sprintf "module %s\n\ open EverParse3d.Prelude\n\ open EverParse3d.Actions.All\n\ open EverParse3d.Interpreter\n\ %s\n\ module T = FStar.Tactics\n\ module A = EverParse3d.Actions.All\n\ module P = EverParse3d.Prelude\n\ #push-options \"--fuel 0 --ifuel 0\"\n\ #push-options \"--using_facts_from 'Prims FStar.UInt FStar.UInt8 \ FStar.UInt16 FStar.UInt32 FStar.UInt64 \ EverParse3d FStar.Int.Cast %s'\"\n" modul maybe_open_external_api (all_modules |> String.concat " ") in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir()) modul) in FStar.IO.write_string fst_file module_prefix; FStar.IO.write_string fst_file impl; FStar.IO.close_write_file fst_file; let fsti_file = open_write_file (Printf.sprintf "%s/%s.fsti" (Options.get_output_dir()) modul) in FStar.IO.write_string fsti_file module_prefix; FStar.IO.write_string fsti_file iface; FStar.IO.close_write_file fsti_file; () let emit_entrypoint (produce_ep_error: Target.opt_produce_everparse_error) (en:env) (modul:string) (t_decls:list Target.decl) (static_asserts:StaticAssertions.static_asserts) (emit_output_types_defs:bool) : ML unit = //print wrapper only if there is an entrypoint if List.tryFind (fun (d, _) -> let open Target in match d with | Type_decl td -> td.decl_name.td_entrypoint | _ -> false) t_decls |> Some? then begin let wrapper_header, wrapper_impl = Target.print_c_entry produce_ep_error modul en.binding_env t_decls in let c_file = open_write_file (Printf.sprintf "%s/%sWrapper.c" (Options.get_output_dir()) modul) in FStar.IO.write_string c_file wrapper_impl; FStar.IO.close_write_file c_file; let h_file = open_write_file (Printf.sprintf "%s/%sWrapper.h" (Options.get_output_dir()) modul) in FStar.IO.write_string h_file wrapper_header; FStar.IO.close_write_file h_file end; let has_output_types = T.has_output_types t_decls in let has_out_exprs = T.has_output_type_exprs t_decls in let has_extern_types = T.has_extern_types t_decls in (* * If there are output types in the module * and emit_output_types_defs flag is set, * then emit output type definitions in M_OutputTypesDefs.h *) if emit_output_types_defs then begin if has_output_types then begin let output_types_defs_file = open_write_file (Printf.sprintf "%s/%s_OutputTypesDefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_defs_file (Target.print_output_types_defs modul t_decls); FStar.IO.close_write_file output_types_defs_file end; (* * Optimization: If the module has no extern types, * then M_ExternalTypedefs.h, that we require the programmer to provide, * only contains output type defs * * So generate M_ExteralTypedefs.h, with #include of M_OutputTypesDefs.h *) if has_output_types && not has_extern_types then begin let extern_typedefs_file = open_write_file (Printf.sprintf "%s/%s_ExternalTypedefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string extern_typedefs_file (Printf.sprintf "#ifndef __%s_ExternalTypedefs_H\n\ #define __%s_ExternalTypedefs_H\n #if defined(__cplusplus)\n\ extern \"C\" {\n\ #endif\n\n\n\ %s#include \"%s_OutputTypesDefs.h\"\n\n\ #if defined(__cplusplus)\n\ }\n\ #endif\n\n\ #define __%s_ExternalTypedefs_H_DEFINED\n\ #endif\n" modul modul (Options.make_includes ()) modul modul); FStar.IO.close_write_file extern_typedefs_file end end; // (* // * Optimization: If M only has extern functions, and no types, // * then the external typedefs file is trivially empty // *) // if has_extern_fns && not (has_out_exprs || has_extern_types) // then begin // let extern_typedefs_file = open_write_file // (Printf.sprintf "%s/%s_ExternalTypedefs.h" // (Options.get_output_dir ()) // modul) in // FStar.IO.write_string extern_typedefs_file "\n"; // FStar.IO.close_write_file extern_typedefs_file // end; if has_out_exprs then begin let output_types_c_file = open_write_file (Printf.sprintf "%s/%s_OutputTypes.c" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_c_file (Target.print_out_exprs_c modul t_decls); FStar.IO.close_write_file output_types_c_file end; if StaticAssertions.has_static_asserts static_asserts then begin let c_static_asserts_file = open_write_file (Printf.sprintf "%s/%sStaticAssertions.c" (Options.get_output_dir()) modul) in FStar.IO.write_string c_static_asserts_file (StaticAssertions.print_static_asserts static_asserts); FStar.IO.close_write_file c_static_asserts_file end let process_file_gen (produce_ep_error: Target.opt_produce_everparse_error) (pa: opt_prune_actions) (en:env) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs:bool) (all_modules:list string) : ML (env & list InterpreterTarget.decl) = let t_decls, interpreter_decls, static_asserts, en = translate_module pa en modul fn in if emit_fstar then ( emit_fstar_code_for_interpreter en modul t_decls interpreter_decls all_modules; emit_entrypoint produce_ep_error en modul t_decls static_asserts emit_output_types_defs ) else IO.print_string (Printf.sprintf "Not emitting F* code for %s\n" fn); let ds = Binding.get_exported_decls en.binding_env modul in TypeSizes.finish_module en.typesizes_env modul ds; { en with binding_env = Binding.finish_module en.binding_env modul; translate_env = en.translate_env; }, interpreter_decls let process_file (en:env) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs: bool) (all_modules:list string) : ML env = fst (process_file_gen None None en fn modul emit_fstar emit_output_types_defs all_modules) let emit_config_as_fstar_module () : ML unit = match Deps.get_config () with | Some (cfg, config_module_name) -> let fst_file_contents = Config.emit_config_as_fstar_module config_module_name cfg in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir()) config_module_name) in FStar.IO.write_string fst_file fst_file_contents; FStar.IO.close_write_file fst_file | _ -> () let process_files_gen (#env: Type) (initial_env: unit -> ML env) (files_and_modules:list (string & string)) (emit_fstar:option (string -> ML bool)) (emit_output_types_defs:bool) (process_file: (env -> string -> string -> bool -> bool -> list string -> ML env)) : ML env = IO.print_string (Printf.sprintf "Processing files: %s\n" (List.map fst files_and_modules |> String.concat " ")); let all_modules = List.map snd files_and_modules in let env = initial_env () in if Some? emit_fstar then if Options.get_batch() then emit_config_as_fstar_module(); files_and_modules |> List.fold_left (fun env (fn, modul) -> process_file env fn modul (match emit_fstar with Some f -> f modul | _ -> false) emit_output_types_defs all_modules) env let process_files_t = (files_and_modules:list (string & string)) -> (emit_fstar:string -> ML bool) -> (emit_output_types_defs:bool) -> ML (option (unit -> ML unit)) let process_files : process_files_t = fun files_and_modules emit_fstar emit_output_types_defs -> process_files_gen initial_env files_and_modules (Some emit_fstar) emit_output_types_defs process_file |> ignore; (Some (fun _ -> ())) let process_file_for_z3 (out: string -> ML unit) (en_accu:(env & Z3TestGen.prog)) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs:bool) (all_modules:list string) : ML (env & Z3TestGen.prog) = let (en, accu) = en_accu in let (en, interpreter_decls) = process_file_gen (Some Target.ProduceEverParseError) (Some PruneActions) en fn modul emit_fstar emit_output_types_defs all_modules in let accu = Z3TestGen.produce_decls out accu interpreter_decls in (en, accu) let process_files_for_z3 (out: string -> ML unit) (files_and_modules:list (string & string)) (emit_fstar:option (string -> ML bool)) (emit_output_types_defs:bool) : ML Z3TestGen.prog = out Z3TestGen.prelude; process_files_gen (fun _ -> initial_env (), []) files_and_modules emit_fstar emit_output_types_defs (process_file_for_z3 out) |> snd let produce_z3 (files_and_modules:list (string & string)) : ML unit = ignore (process_files_for_z3 FStar.IO.print_string files_and_modules None false) let build_test_exe (out_dir: string) : ML unit = if not (Options.get_skip_c_makefiles ()) then begin OS.run_cmd "make" ["-C"; out_dir; "-f"; "Makefile.basic"; "USER_TARGET=test.exe"; "USER_CFLAGS=-Wno-type-limits"] end let build_and_run_test_exe (out_dir: string) : ML unit = if not (Options.get_skip_c_makefiles ()) then begin build_test_exe out_dir; OS.run_cmd (OS.concat out_dir "test.exe") [] end let with_z3_thread_or (batch: bool) (out_dir: string) (debug: bool) (transcript: option string) (f: (Z3.z3 -> ML unit)) : ML (option (unit -> ML unit)) = if batch then let thr = Z3.with_z3_thread debug transcript f in Some (fun _ -> Z3.wait_for_z3_thread thr; build_and_run_test_exe out_dir ) else begin Z3.with_z3 debug transcript f; None end let produce_z3_and_test_gen (batch: bool) (out_dir: string) (do_test: option string -> int -> Z3TestGen.prog -> Z3.z3 -> ML unit) : Tot process_files_t = fun (files_and_modules:list (string & string)) (emit_fstar:string -> ML bool) (emit_output_types_defs:bool) -> let nbwitnesses = Options.get_z3_witnesses () in let buf : ref string = alloc "" in let prog = process_files_for_z3 (fun s -> buf := !buf ^ s) files_and_modules (if batch then Some emit_fstar else None) emit_output_types_defs in with_z3_thread_or batch out_dir (Options.get_debug ()) (Options.get_save_z3_transcript ()) (fun z3 -> z3.to_z3 !buf; do_test (if batch then Some (OS.concat out_dir "testcases.c") else None) nbwitnesses prog z3 ) let produce_z3_and_test (batch: bool) (out_dir: string) (name: string) : Tot process_files_t = produce_z3_and_test_gen batch out_dir (fun out_file nbwitnesses prog z3 -> Z3TestGen.do_test out_dir out_file z3 prog name nbwitnesses (Options.get_z3_branch_depth ()) (Options.get_z3_pos_test ()) (Options.get_z3_neg_test ()) ) let produce_z3_and_diff_test (batch: bool) (out_dir: string) (names: (string & string)) : Tot process_files_t = let (name1, name2) = names in produce_z3_and_test_gen batch out_dir (fun out_file nbwitnesses prog z3 -> Z3TestGen.do_diff_test out_dir out_file z3 prog name1 name2 nbwitnesses (Options.get_z3_branch_depth ()) ) let produce_test_checker_exe (batch: bool) (out_dir: string) (name1: string) : Tot process_files_t = fun (files_and_modules:list (string & string)) (emit_fstar:string -> ML bool) (emit_output_types_defs:bool) -> let prog = process_files_for_z3 (fun _ -> ()) files_and_modules (if batch then Some emit_fstar else None) emit_output_types_defs in Z3TestGen.produce_test_checker_exe (OS.concat out_dir "testcases.c") prog name1; Some (fun _ -> if batch then build_test_exe out_dir )
{ "checked_file": "/", "dependencies": [ "Z3TestGen.fst.checked", "Z3.fsti.checked", "TypeSizes.fsti.checked", "TranslateForInterpreter.fsti.checked", "Target.fsti.checked", "StaticAssertions.fst.checked", "Simplify.fsti.checked", "prims.fst.checked", "ParserDriver.fsti.checked", "OS.fsti.checked", "Options.fsti.checked", "JSON.fsti.checked", "InterpreterTarget.fsti.checked", "InlineSingletonRecords.fst.checked", "HashingOptions.fst.checked", "GenMakefile.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked", "Desugar.fst.checked", "Deps.fsti.checked", "Config.fst.checked", "BitFields.fst.checked", "Binding.fsti.checked", "Batch.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "Main.fst" }
[ { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": true, "full_module": "Target", "short_module": "T" }, { "abbrev": false, "full_module": "ParserDriver", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
out_dir: Prims.string -> file: Prims.string -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.string", "Batch.produce_and_postprocess_one_c", "Prims.unit", "Options.get_clang_format_executable", "Prims.bool", "Options.get_clang_format", "Prims.list", "Options.get_add_include", "Options.get_emit_output_types_defs", "HashingOptions.input_stream_binding_t", "Options.get_input_stream_binding", "FStar.Pervasives.Native.tuple2", "FStar.List.filter", "Prims.op_disEquality", "FStar.List.map", "FStar.Pervasives.Native.Mktuple2", "Options.get_module_name", "Deps.collect_and_sort_dependencies", "Prims.Cons", "Prims.Nil" ]
[]
false
true
false
false
false
let produce_and_postprocess_c (out_dir file: string) : ML unit =
let modul = Options.get_module_name file in let deps = Deps.collect_and_sort_dependencies [file] in let dep_files_and_modules = List.map (fun f -> (f, Options.get_module_name f)) deps in let dep_files_and_modules = List.filter (fun (_, m) -> m <> modul) dep_files_and_modules in Batch.produce_and_postprocess_one_c (Options.get_input_stream_binding ()) (Options.get_emit_output_types_defs ()) (Options.get_add_include ()) (Options.get_clang_format ()) (Options.get_clang_format_executable ()) out_dir file modul dep_files_and_modules
false
Vale.Math.Poly2.Galois.Lemmas.fsti
Vale.Math.Poly2.Galois.Lemmas.fadd
val fadd : a: Spec.GaloisField.felem f -> b: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
let fadd (#f:G.field) (a b:G.felem f) = G.fadd #f a b
{ "file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.Lemmas.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 10, "start_col": 7, "start_line": 10 }
module Vale.Math.Poly2.Galois.Lemmas open FStar.Mul module I = Lib.IntTypes module G = Spec.GaloisField module P = Vale.Math.Poly2_s open Vale.Math.Poly2_s open Vale.Math.Poly2 open Vale.Math.Poly2.Galois
{ "checked_file": "/", "dependencies": [ "Vale.Math.Poly2_s.fsti.checked", "Vale.Math.Poly2.Galois.fsti.checked", "Vale.Math.Poly2.fsti.checked", "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Math.Poly2.Galois.Lemmas.fsti" }
[ { "abbrev": false, "full_module": "Vale.Math.Poly2.Galois", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Math.Poly2_s", "short_module": "P" }, { "abbrev": true, "full_module": "Spec.GaloisField", "short_module": "G" }, { "abbrev": true, "full_module": "Lib.IntTypes", "short_module": "I" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Galois", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Galois", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.GaloisField.felem f -> b: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
Prims.Tot
[ "total" ]
[]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Spec.GaloisField.fadd" ]
[]
false
false
false
false
false
let fadd (#f: G.field) (a b: G.felem f) =
G.fadd #f a b
false
Main.fst
Main.produce_test_checker_exe
val produce_test_checker_exe (batch: bool) (out_dir name1: string) : Tot process_files_t
val produce_test_checker_exe (batch: bool) (out_dir name1: string) : Tot process_files_t
let produce_test_checker_exe (batch: bool) (out_dir: string) (name1: string) : Tot process_files_t = fun (files_and_modules:list (string & string)) (emit_fstar:string -> ML bool) (emit_output_types_defs:bool) -> let prog = process_files_for_z3 (fun _ -> ()) files_and_modules (if batch then Some emit_fstar else None) emit_output_types_defs in Z3TestGen.produce_test_checker_exe (OS.concat out_dir "testcases.c") prog name1; Some (fun _ -> if batch then build_test_exe out_dir )
{ "file_name": "src/3d/Main.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 559, "start_col": 0, "start_line": 544 }
module Main open FStar.IO open FStar.All open Ast open ParserDriver module T = Target open FStar.ST #push-options "--z3rlimit_factor 2" let open_write_file (s:string) : ML FStar.IO.fd_write = FStar.IO.print_string (FStar.Printf.sprintf "Writing file %s\n" s); FStar.IO.open_write_file s let parse_prog (fn:string) : ML prog = let decls, type_refinement_opt = ParserDriver.parse fn in if decls |> List.tryFind is_entrypoint_or_export |> Some? then decls, type_refinement_opt else raise (Error (Printf.sprintf "File %s does not have an entry point or an exported definition, exiting\n" fn)) noeq type env = { binding_env : Binding.global_env; typesizes_env : TypeSizes.size_env; translate_env : (TranslateForInterpreter.translate_env & InterpreterTarget.env); } let initial_env () : ML env = { binding_env = Binding.initial_global_env (); typesizes_env = TypeSizes.initial_senv (); translate_env = (TranslateForInterpreter.initial_translate_env(), InterpreterTarget.create_env()); } let left (x:either 'a 'b) : ML 'a = match x with | Inl x -> x | _ -> failwith "Expected left" let right (x:either 'a 'b) : ML 'b = match x with | Inr x -> x | _ -> failwith "Expected right" type prune_actions = | PruneActions type opt_prune_actions = option prune_actions let parse_check_and_desugar (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Ast.decl & StaticAssertions.static_asserts & env) = Options.debug_print_string (FStar.Printf.sprintf "Processing file: %s\nModule name: %s\n" fn mname); let decls, refinement = let p = parse_prog fn in if pa = Some PruneActions then prog_prune_actions p else p in Options.debug_print_string "=============After parsing=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, refinement = Desugar.desugar en.binding_env mname (decls, refinement) in Options.debug_print_string "=============After desugaring=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, benv = Binding.bind_decls en.binding_env decls in Options.debug_print_string "=============After binding=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; if Options.get_json() then ( IO.print_string (JSON.prog_to_json (decls, refinement)); IO.print_string "\n" ); let decls = BitFields.eliminate_decls benv decls in Options.debug_print_string "=============After bitflds=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = TypeSizes.size_of_decls benv en.typesizes_env decls in Options.debug_print_string "=============Finished typesizes pass=============\n"; let static_asserts = StaticAssertions.compute_static_asserts benv en.typesizes_env refinement in Options.debug_print_string "=============Finished static asserts pass=============\n"; let decls = Simplify.simplify_prog benv en.typesizes_env decls in Options.debug_print_string "=============After simplify============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = InlineSingletonRecords.simplify_prog decls in Options.debug_print_string "=============After inline singletons============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let en = { en with binding_env = benv } in decls, static_asserts, en let translate_module (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Target.decl & list InterpreterTarget.decl & StaticAssertions.static_asserts & env) = let decls, static_asserts, en = parse_check_and_desugar pa en mname fn in let t_decls, i_decls, tenv = let env, env' = en.translate_env in let decls, env = TranslateForInterpreter.translate_decls en.binding_env en.typesizes_env env decls in let tds = InterpreterTarget.translate_decls env' decls in decls, tds, (env, env') in let en = { en with translate_env = tenv } in t_decls, i_decls, static_asserts, en let emit_fstar_code_for_interpreter (en:env) (modul:string) (tds:list T.decl) (itds:list InterpreterTarget.decl) (all_modules:list string) : ML unit = let _, en = en.translate_env in let impl, iface = InterpreterTarget.print_decls en modul itds in let has_external_types = T.has_output_types tds || T.has_extern_types tds in if has_external_types then begin let external_types_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalTypes.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_types_fsti_file (Target.print_external_types_fstar_interpreter modul tds); FStar.IO.close_write_file external_types_fsti_file end; let has_external_api = T.has_external_api tds in if has_external_api then begin let external_api_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalAPI.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_api_fsti_file (Target.print_external_api_fstar_interpreter modul tds); FStar.IO.close_write_file external_api_fsti_file end; let maybe_open_external_api = if has_external_api then Printf.sprintf "open %s.ExternalAPI" modul else "" in let module_prefix = FStar.Printf.sprintf "module %s\n\ open EverParse3d.Prelude\n\ open EverParse3d.Actions.All\n\ open EverParse3d.Interpreter\n\ %s\n\ module T = FStar.Tactics\n\ module A = EverParse3d.Actions.All\n\ module P = EverParse3d.Prelude\n\ #push-options \"--fuel 0 --ifuel 0\"\n\ #push-options \"--using_facts_from 'Prims FStar.UInt FStar.UInt8 \ FStar.UInt16 FStar.UInt32 FStar.UInt64 \ EverParse3d FStar.Int.Cast %s'\"\n" modul maybe_open_external_api (all_modules |> String.concat " ") in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir()) modul) in FStar.IO.write_string fst_file module_prefix; FStar.IO.write_string fst_file impl; FStar.IO.close_write_file fst_file; let fsti_file = open_write_file (Printf.sprintf "%s/%s.fsti" (Options.get_output_dir()) modul) in FStar.IO.write_string fsti_file module_prefix; FStar.IO.write_string fsti_file iface; FStar.IO.close_write_file fsti_file; () let emit_entrypoint (produce_ep_error: Target.opt_produce_everparse_error) (en:env) (modul:string) (t_decls:list Target.decl) (static_asserts:StaticAssertions.static_asserts) (emit_output_types_defs:bool) : ML unit = //print wrapper only if there is an entrypoint if List.tryFind (fun (d, _) -> let open Target in match d with | Type_decl td -> td.decl_name.td_entrypoint | _ -> false) t_decls |> Some? then begin let wrapper_header, wrapper_impl = Target.print_c_entry produce_ep_error modul en.binding_env t_decls in let c_file = open_write_file (Printf.sprintf "%s/%sWrapper.c" (Options.get_output_dir()) modul) in FStar.IO.write_string c_file wrapper_impl; FStar.IO.close_write_file c_file; let h_file = open_write_file (Printf.sprintf "%s/%sWrapper.h" (Options.get_output_dir()) modul) in FStar.IO.write_string h_file wrapper_header; FStar.IO.close_write_file h_file end; let has_output_types = T.has_output_types t_decls in let has_out_exprs = T.has_output_type_exprs t_decls in let has_extern_types = T.has_extern_types t_decls in (* * If there are output types in the module * and emit_output_types_defs flag is set, * then emit output type definitions in M_OutputTypesDefs.h *) if emit_output_types_defs then begin if has_output_types then begin let output_types_defs_file = open_write_file (Printf.sprintf "%s/%s_OutputTypesDefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_defs_file (Target.print_output_types_defs modul t_decls); FStar.IO.close_write_file output_types_defs_file end; (* * Optimization: If the module has no extern types, * then M_ExternalTypedefs.h, that we require the programmer to provide, * only contains output type defs * * So generate M_ExteralTypedefs.h, with #include of M_OutputTypesDefs.h *) if has_output_types && not has_extern_types then begin let extern_typedefs_file = open_write_file (Printf.sprintf "%s/%s_ExternalTypedefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string extern_typedefs_file (Printf.sprintf "#ifndef __%s_ExternalTypedefs_H\n\ #define __%s_ExternalTypedefs_H\n #if defined(__cplusplus)\n\ extern \"C\" {\n\ #endif\n\n\n\ %s#include \"%s_OutputTypesDefs.h\"\n\n\ #if defined(__cplusplus)\n\ }\n\ #endif\n\n\ #define __%s_ExternalTypedefs_H_DEFINED\n\ #endif\n" modul modul (Options.make_includes ()) modul modul); FStar.IO.close_write_file extern_typedefs_file end end; // (* // * Optimization: If M only has extern functions, and no types, // * then the external typedefs file is trivially empty // *) // if has_extern_fns && not (has_out_exprs || has_extern_types) // then begin // let extern_typedefs_file = open_write_file // (Printf.sprintf "%s/%s_ExternalTypedefs.h" // (Options.get_output_dir ()) // modul) in // FStar.IO.write_string extern_typedefs_file "\n"; // FStar.IO.close_write_file extern_typedefs_file // end; if has_out_exprs then begin let output_types_c_file = open_write_file (Printf.sprintf "%s/%s_OutputTypes.c" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_c_file (Target.print_out_exprs_c modul t_decls); FStar.IO.close_write_file output_types_c_file end; if StaticAssertions.has_static_asserts static_asserts then begin let c_static_asserts_file = open_write_file (Printf.sprintf "%s/%sStaticAssertions.c" (Options.get_output_dir()) modul) in FStar.IO.write_string c_static_asserts_file (StaticAssertions.print_static_asserts static_asserts); FStar.IO.close_write_file c_static_asserts_file end let process_file_gen (produce_ep_error: Target.opt_produce_everparse_error) (pa: opt_prune_actions) (en:env) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs:bool) (all_modules:list string) : ML (env & list InterpreterTarget.decl) = let t_decls, interpreter_decls, static_asserts, en = translate_module pa en modul fn in if emit_fstar then ( emit_fstar_code_for_interpreter en modul t_decls interpreter_decls all_modules; emit_entrypoint produce_ep_error en modul t_decls static_asserts emit_output_types_defs ) else IO.print_string (Printf.sprintf "Not emitting F* code for %s\n" fn); let ds = Binding.get_exported_decls en.binding_env modul in TypeSizes.finish_module en.typesizes_env modul ds; { en with binding_env = Binding.finish_module en.binding_env modul; translate_env = en.translate_env; }, interpreter_decls let process_file (en:env) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs: bool) (all_modules:list string) : ML env = fst (process_file_gen None None en fn modul emit_fstar emit_output_types_defs all_modules) let emit_config_as_fstar_module () : ML unit = match Deps.get_config () with | Some (cfg, config_module_name) -> let fst_file_contents = Config.emit_config_as_fstar_module config_module_name cfg in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir()) config_module_name) in FStar.IO.write_string fst_file fst_file_contents; FStar.IO.close_write_file fst_file | _ -> () let process_files_gen (#env: Type) (initial_env: unit -> ML env) (files_and_modules:list (string & string)) (emit_fstar:option (string -> ML bool)) (emit_output_types_defs:bool) (process_file: (env -> string -> string -> bool -> bool -> list string -> ML env)) : ML env = IO.print_string (Printf.sprintf "Processing files: %s\n" (List.map fst files_and_modules |> String.concat " ")); let all_modules = List.map snd files_and_modules in let env = initial_env () in if Some? emit_fstar then if Options.get_batch() then emit_config_as_fstar_module(); files_and_modules |> List.fold_left (fun env (fn, modul) -> process_file env fn modul (match emit_fstar with Some f -> f modul | _ -> false) emit_output_types_defs all_modules) env let process_files_t = (files_and_modules:list (string & string)) -> (emit_fstar:string -> ML bool) -> (emit_output_types_defs:bool) -> ML (option (unit -> ML unit)) let process_files : process_files_t = fun files_and_modules emit_fstar emit_output_types_defs -> process_files_gen initial_env files_and_modules (Some emit_fstar) emit_output_types_defs process_file |> ignore; (Some (fun _ -> ())) let process_file_for_z3 (out: string -> ML unit) (en_accu:(env & Z3TestGen.prog)) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs:bool) (all_modules:list string) : ML (env & Z3TestGen.prog) = let (en, accu) = en_accu in let (en, interpreter_decls) = process_file_gen (Some Target.ProduceEverParseError) (Some PruneActions) en fn modul emit_fstar emit_output_types_defs all_modules in let accu = Z3TestGen.produce_decls out accu interpreter_decls in (en, accu) let process_files_for_z3 (out: string -> ML unit) (files_and_modules:list (string & string)) (emit_fstar:option (string -> ML bool)) (emit_output_types_defs:bool) : ML Z3TestGen.prog = out Z3TestGen.prelude; process_files_gen (fun _ -> initial_env (), []) files_and_modules emit_fstar emit_output_types_defs (process_file_for_z3 out) |> snd let produce_z3 (files_and_modules:list (string & string)) : ML unit = ignore (process_files_for_z3 FStar.IO.print_string files_and_modules None false) let build_test_exe (out_dir: string) : ML unit = if not (Options.get_skip_c_makefiles ()) then begin OS.run_cmd "make" ["-C"; out_dir; "-f"; "Makefile.basic"; "USER_TARGET=test.exe"; "USER_CFLAGS=-Wno-type-limits"] end let build_and_run_test_exe (out_dir: string) : ML unit = if not (Options.get_skip_c_makefiles ()) then begin build_test_exe out_dir; OS.run_cmd (OS.concat out_dir "test.exe") [] end let with_z3_thread_or (batch: bool) (out_dir: string) (debug: bool) (transcript: option string) (f: (Z3.z3 -> ML unit)) : ML (option (unit -> ML unit)) = if batch then let thr = Z3.with_z3_thread debug transcript f in Some (fun _ -> Z3.wait_for_z3_thread thr; build_and_run_test_exe out_dir ) else begin Z3.with_z3 debug transcript f; None end let produce_z3_and_test_gen (batch: bool) (out_dir: string) (do_test: option string -> int -> Z3TestGen.prog -> Z3.z3 -> ML unit) : Tot process_files_t = fun (files_and_modules:list (string & string)) (emit_fstar:string -> ML bool) (emit_output_types_defs:bool) -> let nbwitnesses = Options.get_z3_witnesses () in let buf : ref string = alloc "" in let prog = process_files_for_z3 (fun s -> buf := !buf ^ s) files_and_modules (if batch then Some emit_fstar else None) emit_output_types_defs in with_z3_thread_or batch out_dir (Options.get_debug ()) (Options.get_save_z3_transcript ()) (fun z3 -> z3.to_z3 !buf; do_test (if batch then Some (OS.concat out_dir "testcases.c") else None) nbwitnesses prog z3 ) let produce_z3_and_test (batch: bool) (out_dir: string) (name: string) : Tot process_files_t = produce_z3_and_test_gen batch out_dir (fun out_file nbwitnesses prog z3 -> Z3TestGen.do_test out_dir out_file z3 prog name nbwitnesses (Options.get_z3_branch_depth ()) (Options.get_z3_pos_test ()) (Options.get_z3_neg_test ()) ) let produce_z3_and_diff_test (batch: bool) (out_dir: string) (names: (string & string)) : Tot process_files_t = let (name1, name2) = names in produce_z3_and_test_gen batch out_dir (fun out_file nbwitnesses prog z3 -> Z3TestGen.do_diff_test out_dir out_file z3 prog name1 name2 nbwitnesses (Options.get_z3_branch_depth ()) )
{ "checked_file": "/", "dependencies": [ "Z3TestGen.fst.checked", "Z3.fsti.checked", "TypeSizes.fsti.checked", "TranslateForInterpreter.fsti.checked", "Target.fsti.checked", "StaticAssertions.fst.checked", "Simplify.fsti.checked", "prims.fst.checked", "ParserDriver.fsti.checked", "OS.fsti.checked", "Options.fsti.checked", "JSON.fsti.checked", "InterpreterTarget.fsti.checked", "InlineSingletonRecords.fst.checked", "HashingOptions.fst.checked", "GenMakefile.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked", "Desugar.fst.checked", "Deps.fsti.checked", "Config.fst.checked", "BitFields.fst.checked", "Binding.fsti.checked", "Batch.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "Main.fst" }
[ { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": true, "full_module": "Target", "short_module": "T" }, { "abbrev": false, "full_module": "ParserDriver", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
batch: Prims.bool -> out_dir: Prims.string -> name1: Prims.string -> Main.process_files_t
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Prims.string", "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Some", "Prims.unit", "Main.build_test_exe", "FStar.Pervasives.Native.option", "Z3TestGen.produce_test_checker_exe", "OS.concat", "Z3TestGen.prog", "Main.process_files_for_z3", "FStar.Pervasives.Native.None", "Main.process_files_t" ]
[]
false
false
false
true
false
let produce_test_checker_exe (batch: bool) (out_dir name1: string) : Tot process_files_t =
fun (files_and_modules: list (string & string)) (emit_fstar: (string -> ML bool)) (emit_output_types_defs: bool) -> let prog = process_files_for_z3 (fun _ -> ()) files_and_modules (if batch then Some emit_fstar else None) emit_output_types_defs in Z3TestGen.produce_test_checker_exe (OS.concat out_dir "testcases.c") prog name1; Some (fun _ -> if batch then build_test_exe out_dir)
false
Lib.IntTypes.fst
Lib.IntTypes.neq_mask_lemma
val neq_mask_lemma: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (neq_mask a b) == 0 else v (neq_mask a b) == ones_v t) [SMTPat (neq_mask #t a b)]
val neq_mask_lemma: #t:inttype{~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (neq_mask a b) == 0 else v (neq_mask a b) == ones_v t) [SMTPat (neq_mask #t a b)]
let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 884, "start_col": 0, "start_line": 879 }
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> b: Lib.IntTypes.int_t t Lib.IntTypes.SEC -> FStar.Pervasives.Lemma (ensures ((match Lib.IntTypes.v a = Lib.IntTypes.v b with | true -> Lib.IntTypes.v (Lib.IntTypes.neq_mask a b) == 0 | _ -> Lib.IntTypes.v (Lib.IntTypes.neq_mask a b) == Lib.IntTypes.ones_v t) <: Type0)) [SMTPat (Lib.IntTypes.neq_mask a b)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.inttype", "Prims.l_not", "Prims.b2t", "Lib.IntTypes.uu___is_S128", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "FStar.Pervasives.assert_norm", "Prims.l_and", "Prims.eq2", "Lib.IntTypes.U1", "Lib.IntTypes.lognot", "Lib.IntTypes.u1", "FStar.UInt.lognot_self", "Lib.IntTypes.bits", "Prims.unit", "FStar.UInt.lognot_lemma_1" ]
[]
false
false
true
false
false
let neq_mask_lemma #t a b =
match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0
false
Lib.IntTypes.fst
Lib.IntTypes.gt
val gt: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
val gt: #t:inttype -> int_t t PUB -> int_t t PUB -> bool
let gt #t x y = match t with | U1 -> UInt8.gt x y | U8 -> UInt8.gt x y | U16 -> UInt16.gt x y | U32 -> UInt32.gt x y | U64 -> UInt64.gt x y | U128 -> UInt128.gt x y | S8 -> Int8.gt x y | S16 -> Int16.gt x y | S32 -> Int32.gt x y | S64 -> Int64.gt x y | S128 -> Int128.gt x y
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 1120, "start_col": 0, "start_line": 1108 }
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1) let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t)) let mod_mask_lemma #t #l a m = mod_mask_value #t #l m; if unsigned t || 0 <= v a then if v m = 0 then UInt.logand_lemma_1 #(bits t) (v a) else UInt.logand_mask #(bits t) (v a) (v m) else begin let a1 = v a in let a2 = v a + pow2 (bits t) in pow2_plus (bits t - v m) (v m); pow2_le_compat (bits t - 1) (v m); lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m)); if v m = 0 then UInt.logand_lemma_1 #(bits t) a2 else UInt.logand_mask #(bits t) a2 (v m) end #pop-options #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000" (** Conditionally subtracts 2^(bits t') from a in constant-time, so that the result fits in t'; i.e. b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a *) inline_for_extraction val conditional_subtract: #t:inttype{signed t} -> #l:secrecy_level -> t':inttype{signed t' /\ bits t' < bits t} -> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} -> b:int_t t l{v b = v a @%. t'} let conditional_subtract #t #l t' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in shift_left_lemma #t #l (mk_int 1) (size (bits t')); let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1)); // assert (v pow2_bits == pow2 (bits t')); // assert (v pow2_bits_minus_one == pow2 (bits t' - 1)); let a2 = a `sub` pow2_bits_minus_one in let mask = shift_right a2 (size (bits t - 1)) in shift_right_lemma a2 (size (bits t - 1)); // assert (if v a2 < 0 then v mask = -1 else v mask = 0); let a3 = a `sub` pow2_bits in logand_lemma mask pow2_bits; a3 `add` (mask `logand` pow2_bits) let cast_mod #t #l t' l' a = assert_norm (pow2 7 = 128); assert_norm (pow2 15 = 32768); if bits t' >= bits t then cast t' l' a else begin let m = size (bits t') in mod_mask_lemma a m; let b = conditional_subtract t' (a `logand` mod_mask m) in cast t' l' b end #pop-options [@(strict_on_arguments [0])] let div #t x y = match t with | U1 -> UInt8.div x y | U8 -> UInt8.div x y | U16 -> UInt16.div x y | U32 -> UInt32.div x y | U64 -> UInt64.div x y | S8 -> Int.pow2_values 8; Int8.div x y | S16 -> Int.pow2_values 16; Int16.div x y | S32 -> Int.pow2_values 32; Int32.div x y | S64 -> Int.pow2_values 64; Int64.div x y let div_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let mod #t x y = match t with | U1 -> UInt8.rem x y | U8 -> UInt8.rem x y | U16 -> UInt16.rem x y | U32 -> UInt32.rem x y | U64 -> UInt64.rem x y | S8 -> Int.pow2_values 8; Int8.rem x y | S16 -> Int.pow2_values 16; Int16.rem x y | S32 -> Int.pow2_values 32; Int32.rem x y | S64 -> Int.pow2_values 64; Int64.rem x y let mod_lemma #t a b = match t with | U1 | U8 | U16 | U32 | U64 -> () | S8 -> Int.pow2_values 8 | S16 -> Int.pow2_values 16 | S32 -> Int.pow2_values 32 | S64 -> Int.pow2_values 64 let eq #t x y = x = y let eq_lemma #t x y = () let ne #t x y = not (eq x y) let ne_lemma #t x y = () let lt #t x y = match t with | U1 -> UInt8.lt x y | U8 -> UInt8.lt x y | U16 -> UInt16.lt x y | U32 -> UInt32.lt x y | U64 -> UInt64.lt x y | U128 -> UInt128.lt x y | S8 -> Int8.lt x y | S16 -> Int16.lt x y | S32 -> Int32.lt x y | S64 -> Int64.lt x y | S128 -> Int128.lt x y let lt_lemma #t x y = () let lte #t x y = match t with | U1 -> UInt8.lte x y | U8 -> UInt8.lte x y | U16 -> UInt16.lte x y | U32 -> UInt32.lte x y | U64 -> UInt64.lte x y | U128 -> UInt128.lte x y | S8 -> Int8.lte x y | S16 -> Int16.lte x y | S32 -> Int32.lte x y | S64 -> Int64.lte x y | S128 -> Int128.lte x y let lte_lemma #t x y = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> y: Lib.IntTypes.int_t t Lib.IntTypes.PUB -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.int_t", "Lib.IntTypes.PUB", "FStar.UInt8.gt", "FStar.UInt16.gt", "FStar.UInt32.gt", "FStar.UInt64.gt", "FStar.UInt128.gt", "FStar.Int8.gt", "FStar.Int16.gt", "FStar.Int32.gt", "FStar.Int64.gt", "FStar.Int128.gt", "Prims.bool" ]
[]
false
false
false
false
false
let gt #t x y =
match t with | U1 -> UInt8.gt x y | U8 -> UInt8.gt x y | U16 -> UInt16.gt x y | U32 -> UInt32.gt x y | U64 -> UInt64.gt x y | U128 -> UInt128.gt x y | S8 -> Int8.gt x y | S16 -> Int16.gt x y | S32 -> Int32.gt x y | S64 -> Int64.gt x y | S128 -> Int128.gt x y
false
Main.fst
Main.emit_entrypoint
val emit_entrypoint (produce_ep_error: Target.opt_produce_everparse_error) (en: env) (modul: string) (t_decls: list Target.decl) (static_asserts: StaticAssertions.static_asserts) (emit_output_types_defs: bool) : ML unit
val emit_entrypoint (produce_ep_error: Target.opt_produce_everparse_error) (en: env) (modul: string) (t_decls: list Target.decl) (static_asserts: StaticAssertions.static_asserts) (emit_output_types_defs: bool) : ML unit
let emit_entrypoint (produce_ep_error: Target.opt_produce_everparse_error) (en:env) (modul:string) (t_decls:list Target.decl) (static_asserts:StaticAssertions.static_asserts) (emit_output_types_defs:bool) : ML unit = //print wrapper only if there is an entrypoint if List.tryFind (fun (d, _) -> let open Target in match d with | Type_decl td -> td.decl_name.td_entrypoint | _ -> false) t_decls |> Some? then begin let wrapper_header, wrapper_impl = Target.print_c_entry produce_ep_error modul en.binding_env t_decls in let c_file = open_write_file (Printf.sprintf "%s/%sWrapper.c" (Options.get_output_dir()) modul) in FStar.IO.write_string c_file wrapper_impl; FStar.IO.close_write_file c_file; let h_file = open_write_file (Printf.sprintf "%s/%sWrapper.h" (Options.get_output_dir()) modul) in FStar.IO.write_string h_file wrapper_header; FStar.IO.close_write_file h_file end; let has_output_types = T.has_output_types t_decls in let has_out_exprs = T.has_output_type_exprs t_decls in let has_extern_types = T.has_extern_types t_decls in (* * If there are output types in the module * and emit_output_types_defs flag is set, * then emit output type definitions in M_OutputTypesDefs.h *) if emit_output_types_defs then begin if has_output_types then begin let output_types_defs_file = open_write_file (Printf.sprintf "%s/%s_OutputTypesDefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_defs_file (Target.print_output_types_defs modul t_decls); FStar.IO.close_write_file output_types_defs_file end; (* * Optimization: If the module has no extern types, * then M_ExternalTypedefs.h, that we require the programmer to provide, * only contains output type defs * * So generate M_ExteralTypedefs.h, with #include of M_OutputTypesDefs.h *) if has_output_types && not has_extern_types then begin let extern_typedefs_file = open_write_file (Printf.sprintf "%s/%s_ExternalTypedefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string extern_typedefs_file (Printf.sprintf "#ifndef __%s_ExternalTypedefs_H\n\ #define __%s_ExternalTypedefs_H\n #if defined(__cplusplus)\n\ extern \"C\" {\n\ #endif\n\n\n\ %s#include \"%s_OutputTypesDefs.h\"\n\n\ #if defined(__cplusplus)\n\ }\n\ #endif\n\n\ #define __%s_ExternalTypedefs_H_DEFINED\n\ #endif\n" modul modul (Options.make_includes ()) modul modul); FStar.IO.close_write_file extern_typedefs_file end end; // (* // * Optimization: If M only has extern functions, and no types, // * then the external typedefs file is trivially empty // *) // if has_extern_fns && not (has_out_exprs || has_extern_types) // then begin // let extern_typedefs_file = open_write_file // (Printf.sprintf "%s/%s_ExternalTypedefs.h" // (Options.get_output_dir ()) // modul) in // FStar.IO.write_string extern_typedefs_file "\n"; // FStar.IO.close_write_file extern_typedefs_file // end; if has_out_exprs then begin let output_types_c_file = open_write_file (Printf.sprintf "%s/%s_OutputTypes.c" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_c_file (Target.print_out_exprs_c modul t_decls); FStar.IO.close_write_file output_types_c_file end; if StaticAssertions.has_static_asserts static_asserts then begin let c_static_asserts_file = open_write_file (Printf.sprintf "%s/%sStaticAssertions.c" (Options.get_output_dir()) modul) in FStar.IO.write_string c_static_asserts_file (StaticAssertions.print_static_asserts static_asserts); FStar.IO.close_write_file c_static_asserts_file end
{ "file_name": "src/3d/Main.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 342, "start_col": 0, "start_line": 219 }
module Main open FStar.IO open FStar.All open Ast open ParserDriver module T = Target open FStar.ST #push-options "--z3rlimit_factor 2" let open_write_file (s:string) : ML FStar.IO.fd_write = FStar.IO.print_string (FStar.Printf.sprintf "Writing file %s\n" s); FStar.IO.open_write_file s let parse_prog (fn:string) : ML prog = let decls, type_refinement_opt = ParserDriver.parse fn in if decls |> List.tryFind is_entrypoint_or_export |> Some? then decls, type_refinement_opt else raise (Error (Printf.sprintf "File %s does not have an entry point or an exported definition, exiting\n" fn)) noeq type env = { binding_env : Binding.global_env; typesizes_env : TypeSizes.size_env; translate_env : (TranslateForInterpreter.translate_env & InterpreterTarget.env); } let initial_env () : ML env = { binding_env = Binding.initial_global_env (); typesizes_env = TypeSizes.initial_senv (); translate_env = (TranslateForInterpreter.initial_translate_env(), InterpreterTarget.create_env()); } let left (x:either 'a 'b) : ML 'a = match x with | Inl x -> x | _ -> failwith "Expected left" let right (x:either 'a 'b) : ML 'b = match x with | Inr x -> x | _ -> failwith "Expected right" type prune_actions = | PruneActions type opt_prune_actions = option prune_actions let parse_check_and_desugar (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Ast.decl & StaticAssertions.static_asserts & env) = Options.debug_print_string (FStar.Printf.sprintf "Processing file: %s\nModule name: %s\n" fn mname); let decls, refinement = let p = parse_prog fn in if pa = Some PruneActions then prog_prune_actions p else p in Options.debug_print_string "=============After parsing=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, refinement = Desugar.desugar en.binding_env mname (decls, refinement) in Options.debug_print_string "=============After desugaring=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, benv = Binding.bind_decls en.binding_env decls in Options.debug_print_string "=============After binding=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; if Options.get_json() then ( IO.print_string (JSON.prog_to_json (decls, refinement)); IO.print_string "\n" ); let decls = BitFields.eliminate_decls benv decls in Options.debug_print_string "=============After bitflds=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = TypeSizes.size_of_decls benv en.typesizes_env decls in Options.debug_print_string "=============Finished typesizes pass=============\n"; let static_asserts = StaticAssertions.compute_static_asserts benv en.typesizes_env refinement in Options.debug_print_string "=============Finished static asserts pass=============\n"; let decls = Simplify.simplify_prog benv en.typesizes_env decls in Options.debug_print_string "=============After simplify============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = InlineSingletonRecords.simplify_prog decls in Options.debug_print_string "=============After inline singletons============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let en = { en with binding_env = benv } in decls, static_asserts, en let translate_module (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Target.decl & list InterpreterTarget.decl & StaticAssertions.static_asserts & env) = let decls, static_asserts, en = parse_check_and_desugar pa en mname fn in let t_decls, i_decls, tenv = let env, env' = en.translate_env in let decls, env = TranslateForInterpreter.translate_decls en.binding_env en.typesizes_env env decls in let tds = InterpreterTarget.translate_decls env' decls in decls, tds, (env, env') in let en = { en with translate_env = tenv } in t_decls, i_decls, static_asserts, en let emit_fstar_code_for_interpreter (en:env) (modul:string) (tds:list T.decl) (itds:list InterpreterTarget.decl) (all_modules:list string) : ML unit = let _, en = en.translate_env in let impl, iface = InterpreterTarget.print_decls en modul itds in let has_external_types = T.has_output_types tds || T.has_extern_types tds in if has_external_types then begin let external_types_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalTypes.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_types_fsti_file (Target.print_external_types_fstar_interpreter modul tds); FStar.IO.close_write_file external_types_fsti_file end; let has_external_api = T.has_external_api tds in if has_external_api then begin let external_api_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalAPI.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_api_fsti_file (Target.print_external_api_fstar_interpreter modul tds); FStar.IO.close_write_file external_api_fsti_file end; let maybe_open_external_api = if has_external_api then Printf.sprintf "open %s.ExternalAPI" modul else "" in let module_prefix = FStar.Printf.sprintf "module %s\n\ open EverParse3d.Prelude\n\ open EverParse3d.Actions.All\n\ open EverParse3d.Interpreter\n\ %s\n\ module T = FStar.Tactics\n\ module A = EverParse3d.Actions.All\n\ module P = EverParse3d.Prelude\n\ #push-options \"--fuel 0 --ifuel 0\"\n\ #push-options \"--using_facts_from 'Prims FStar.UInt FStar.UInt8 \ FStar.UInt16 FStar.UInt32 FStar.UInt64 \ EverParse3d FStar.Int.Cast %s'\"\n" modul maybe_open_external_api (all_modules |> String.concat " ") in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir()) modul) in FStar.IO.write_string fst_file module_prefix; FStar.IO.write_string fst_file impl; FStar.IO.close_write_file fst_file; let fsti_file = open_write_file (Printf.sprintf "%s/%s.fsti" (Options.get_output_dir()) modul) in FStar.IO.write_string fsti_file module_prefix; FStar.IO.write_string fsti_file iface; FStar.IO.close_write_file fsti_file; ()
{ "checked_file": "/", "dependencies": [ "Z3TestGen.fst.checked", "Z3.fsti.checked", "TypeSizes.fsti.checked", "TranslateForInterpreter.fsti.checked", "Target.fsti.checked", "StaticAssertions.fst.checked", "Simplify.fsti.checked", "prims.fst.checked", "ParserDriver.fsti.checked", "OS.fsti.checked", "Options.fsti.checked", "JSON.fsti.checked", "InterpreterTarget.fsti.checked", "InlineSingletonRecords.fst.checked", "HashingOptions.fst.checked", "GenMakefile.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked", "Desugar.fst.checked", "Deps.fsti.checked", "Config.fst.checked", "BitFields.fst.checked", "Binding.fsti.checked", "Batch.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "Main.fst" }
[ { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": true, "full_module": "Target", "short_module": "T" }, { "abbrev": false, "full_module": "ParserDriver", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
produce_ep_error: Target.opt_produce_everparse_error -> en: Main.env -> modul: Prims.string -> t_decls: Prims.list Target.decl -> static_asserts: StaticAssertions.static_asserts -> emit_output_types_defs: Prims.bool -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Target.opt_produce_everparse_error", "Main.env", "Prims.string", "Prims.list", "Target.decl", "StaticAssertions.static_asserts", "Prims.bool", "StaticAssertions.has_static_asserts", "FStar.IO.close_write_file", "Prims.unit", "FStar.IO.write_string", "StaticAssertions.print_static_asserts", "FStar.IO.fd_write", "Main.open_write_file", "FStar.Printf.sprintf", "Options.get_output_dir", "Target.print_out_exprs_c", "Prims.op_AmpAmp", "Prims.op_Negation", "Options.make_includes", "Target.print_output_types_defs", "Target.has_extern_types", "Target.has_output_type_exprs", "Target.has_output_types", "FStar.Pervasives.Native.tuple2", "Target.print_c_entry", "Main.__proj__Mkenv__item__binding_env", "FStar.Pervasives.Native.uu___is_Some", "Target.decl'", "Target.decl_attributes", "FStar.Pervasives.Native.option", "FStar.List.tryFind", "Target.type_decl", "Target.__proj__Mktypedef_name__item__td_entrypoint", "Target.__proj__Mktype_decl__item__decl_name" ]
[]
false
true
false
false
false
let emit_entrypoint (produce_ep_error: Target.opt_produce_everparse_error) (en: env) (modul: string) (t_decls: list Target.decl) (static_asserts: StaticAssertions.static_asserts) (emit_output_types_defs: bool) : ML unit =
if List.tryFind (fun (d, _) -> let open Target in match d with | Type_decl td -> td.decl_name.td_entrypoint | _ -> false) t_decls |> Some? then (let wrapper_header, wrapper_impl = Target.print_c_entry produce_ep_error modul en.binding_env t_decls in let c_file = open_write_file (Printf.sprintf "%s/%sWrapper.c" (Options.get_output_dir ()) modul) in FStar.IO.write_string c_file wrapper_impl; FStar.IO.close_write_file c_file; let h_file = open_write_file (Printf.sprintf "%s/%sWrapper.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string h_file wrapper_header; FStar.IO.close_write_file h_file); let has_output_types = T.has_output_types t_decls in let has_out_exprs = T.has_output_type_exprs t_decls in let has_extern_types = T.has_extern_types t_decls in if emit_output_types_defs then (if has_output_types then (let output_types_defs_file = open_write_file (Printf.sprintf "%s/%s_OutputTypesDefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_defs_file (Target.print_output_types_defs modul t_decls); FStar.IO.close_write_file output_types_defs_file); if has_output_types && not has_extern_types then let extern_typedefs_file = open_write_file (Printf.sprintf "%s/%s_ExternalTypedefs.h" (Options.get_output_dir ()) modul ) in FStar.IO.write_string extern_typedefs_file (Printf.sprintf "#ifndef __%s_ExternalTypedefs_H\n#define __%s_ExternalTypedefs_H\n\r\n #if defined(__cplusplus)\nextern \"C\" {\n#endif\n\n\n%s#include \"%s_OutputTypesDefs.h\"\n\n#if defined(__cplusplus)\n}\n#endif\n\n#define __%s_ExternalTypedefs_H_DEFINED\n#endif\n" modul modul (Options.make_includes ()) modul modul); FStar.IO.close_write_file extern_typedefs_file); if has_out_exprs then (let output_types_c_file = open_write_file (Printf.sprintf "%s/%s_OutputTypes.c" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_c_file (Target.print_out_exprs_c modul t_decls); FStar.IO.close_write_file output_types_c_file); if StaticAssertions.has_static_asserts static_asserts then let c_static_asserts_file = open_write_file (Printf.sprintf "%s/%sStaticAssertions.c" (Options.get_output_dir ()) modul) in FStar.IO.write_string c_static_asserts_file (StaticAssertions.print_static_asserts static_asserts); FStar.IO.close_write_file c_static_asserts_file
false
Lib.IntTypes.fst
Lib.IntTypes.mod_mask_value
val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1)
val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} -> Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1)
let mod_mask_value #t #l m = shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t))
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 55, "end_line": 956, "start_col": 0, "start_line": 951 }
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b) let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a let logxor_lemma1 #t #l a b = match v a, v b with | _, 0 -> UInt.logxor_lemma_1 #(bits t) (v a) | 0, _ -> UInt.logxor_commutative #(bits t) (v a) (v b); UInt.logxor_lemma_1 #(bits t) (v b) | 1, 1 -> v_extensionality a b; UInt.logxor_self #(bits t) (v a) let logxor_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1); assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0); assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1); assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0) | _ -> () #pop-options [@(strict_on_arguments [0])] let logand #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy); UInt8.logand a b | U8 -> UInt8.logand a b | U16 -> UInt16.logand a b | U32 -> UInt32.logand a b | U64 -> UInt64.logand a b | U128 -> UInt128.logand a b | S8 -> Int8.logand a b | S16 -> Int16.logand a b | S32 -> Int32.logand a b | S64 -> Int64.logand a b | S128 -> Int128.logand a b let logand_zeros #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a) let logand_ones #t #l a = match t with | U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a) let logand_lemma #t #l a b = logand_zeros #t #l b; logand_ones #t #l b; match t with | U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0); assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b) let logand_spec #t #l a b = match t with | U1 -> assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0); assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1); assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0); assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1) | _ -> () let logand_le #t #l a b = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b)) | U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b)) | U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b)) | U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b)) | U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b)) let logand_mask #t #l a b m = match t with | U1 -> assert_norm (UInt8.logand 0uy 0uy == 0uy); assert_norm (UInt8.logand 0uy 1uy == 0uy); assert_norm (UInt8.logand 1uy 0uy == 0uy); assert_norm (UInt8.logand 1uy 1uy == 1uy) | U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m | U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m | U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m | U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m | U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m [@(strict_on_arguments [0])] let logor #t #l a b = match t with | U1 -> assert_norm (UInt8.logor 0uy 0uy == 0uy); assert_norm (UInt8.logor 0uy 1uy == 1uy); assert_norm (UInt8.logor 1uy 0uy == 1uy); assert_norm (UInt8.logor 1uy 1uy == 1uy); UInt8.logor a b | U8 -> UInt8.logor a b | U16 -> UInt16.logor a b | U32 -> UInt32.logor a b | U64 -> UInt64.logor a b | U128 -> UInt128.logor a b | S8 -> Int8.logor a b | S16 -> Int16.logor a b | S32 -> Int32.logor a b | S64 -> Int64.logor a b | S128 -> Int128.logor a b #push-options "--max_fuel 1" let logor_disjoint #t #l a b m = if m > 0 then begin UInt.logor_disjoint #(bits t) (v b) (v a) m; UInt.logor_commutative #(bits t) (v b) (v a) end else begin UInt.logor_commutative #(bits t) (v a) (v b); UInt.logor_lemma_1 #(bits t) (v b) end #pop-options let logor_zeros #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a) let logor_ones #t #l a = match t with |U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t)) let logor_lemma #t #l a b = logor_zeros #t #l b; logor_ones #t #l b; match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1) | U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a)) let logor_spec #t #l a b = match t with | U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1); assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1); assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1); assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1) | _ -> () [@(strict_on_arguments [0])] let lognot #t #l a = match t with | U1 -> UInt8.rem (UInt8.lognot a) 2uy | U8 -> UInt8.lognot a | U16 -> UInt16.lognot a | U32 -> UInt32.lognot a | U64 -> UInt64.lognot a | U128 -> UInt128.lognot a | S8 -> Int8.lognot a | S16 -> Int16.lognot a | S32 -> Int32.lognot a | S64 -> Int64.lognot a | S128 -> Int128.lognot a let lognot_lemma #t #l a = match t with |U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0) | U8 | U16 | U32 | U64 | U128 -> FStar.UInt.lognot_lemma_1 #(bits t); UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t)) | S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t)); Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t)) let lognot_spec #t #l a = match t with | U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0); assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0) | _ -> () [@(strict_on_arguments [0])] let shift_right #t #l a b = match t with | U1 -> UInt8.shift_right a b | U8 -> UInt8.shift_right a b | U16 -> UInt16.shift_right a b | U32 -> UInt32.shift_right a b | U64 -> UInt64.shift_right a b | U128 -> UInt128.shift_right a b | S8 -> Int8.shift_arithmetic_right a b | S16 -> Int16.shift_arithmetic_right a b | S32 -> Int32.shift_arithmetic_right a b | S64 -> Int64.shift_arithmetic_right a b | S128 -> Int128.shift_arithmetic_right a b val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} -> Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s) let shift_right_value_aux_1 #n a s = pow2_le_compat s n; if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a #push-options "--z3rlimit 200" val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n -> Lemma (Int.shift_arithmetic_right #n a 1 = a / 2) let shift_right_value_aux_2 #n a = if a >= 0 then begin Int.sign_bit_positive a; UInt.shift_right_value_aux_3 #n a 1 end else begin Int.sign_bit_negative a; let a1 = Int.to_vec a in let au = Int.to_uint a in let sar = Int.shift_arithmetic_right #n a 1 in let sar1 = Int.to_vec sar in let sr = UInt.shift_right #n au 1 in let sr1 = UInt.to_vec sr in assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n)); assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n))); UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n); assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n)); UInt.slice_left_lemma a1 (n-1); assert (sar + pow2 n = pow2 (n-1) + (au / 2)); pow2_double_sum (n-1); assert (sar + pow2 (n-1) = (a + pow2 n) / 2); pow2_double_mult (n-1); lemma_div_plus a (pow2 (n-1)) 2; assert (sar = a / 2) end val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} -> Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s) (decreases s) let rec shift_right_value_aux_3 #n a s = if s = 1 then shift_right_value_aux_2 #n a else begin let a1 = Int.to_vec a in assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s) (BitVector.shift_arithmetic_right_vec #n (BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1)); assert (Int.shift_arithmetic_right #n a s = Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1); shift_right_value_aux_3 #n a (s-1); shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1)); assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2); pow2_double_mult (s-1); division_multiplication_lemma a (pow2 (s-1)) 2 end let shift_right_lemma #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> () | S8 | S16 | S32 | S64 | S128 -> if v b = 0 then () else if v b >= bits t then shift_right_value_aux_1 #(bits t) (v a) (v b) else shift_right_value_aux_3 #(bits t) (v a) (v b) [@(strict_on_arguments [0])] let shift_left #t #l a b = match t with | U1 -> UInt8.shift_left a b | U8 -> UInt8.shift_left a b | U16 -> UInt16.shift_left a b | U32 -> UInt32.shift_left a b | U64 -> UInt64.shift_left a b | U128 -> UInt128.shift_left a b | S8 -> Int8.shift_left a b | S16 -> Int16.shift_left a b | S32 -> Int32.shift_left a b | S64 -> Int64.shift_left a b | S128 -> Int128.shift_left a b #push-options "--max_fuel 1" let shift_left_lemma #t #l a b = () let rotate_right #t #l a b = logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b)) let rotate_left #t #l a b = logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b)) [@(strict_on_arguments [0])] let ct_abs #t #l a = match t with | S8 -> Int8.ct_abs a | S16 -> Int16.ct_abs a | S32 -> Int32.ct_abs a | S64 -> Int64.ct_abs a #pop-options [@(strict_on_arguments [0])] let eq_mask #t a b = match t with | U1 -> lognot (logxor a b) | U8 -> UInt8.eq_mask a b | U16 -> UInt16.eq_mask a b | U32 -> UInt32.eq_mask a b | U64 -> UInt64.eq_mask a b | U128 -> UInt128.eq_mask a b | S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b)) | S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b)) | S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b)) | S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b)) val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_unsigned #t a b = match t with | U1 -> assert_norm ( logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\ logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> () #push-options "--z3rlimit 200" val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma (if v a = v b then v (eq_mask a b) == ones_v t else v (eq_mask a b) == 0) let eq_mask_lemma_signed #t a b = match t with | S8 -> begin assert_norm (pow2 8 = 2 * pow2 7); if 0 <= v a then modulo_lemma (v a) (pow2 8) else begin modulo_addition_lemma (v a) 1 (pow2 8); modulo_lemma (v a + pow2 8) (pow2 8) end end | S16 -> begin assert_norm (pow2 16 = 2 * pow2 15); if 0 <= v a then modulo_lemma (v a) (pow2 16) else begin modulo_addition_lemma (v a) 1 (pow2 16); modulo_lemma (v a + pow2 16) (pow2 16) end end | S32 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 32) else begin modulo_addition_lemma (v a) 1 (pow2 32); modulo_lemma (v a + pow2 32) (pow2 32) end end | S64 -> begin if 0 <= v a then modulo_lemma (v a) (pow2 64) else begin modulo_addition_lemma (v a) 1 (pow2 64); modulo_lemma (v a + pow2 64) (pow2 64) end end #pop-options let eq_mask_lemma #t a b = if signed t then eq_mask_lemma_signed a b else eq_mask_lemma_unsigned a b let eq_mask_logand_lemma #t a b c = eq_mask_lemma a b; logand_zeros c; logand_ones c; match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c) | S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c) [@(strict_on_arguments [0])] let neq_mask #t a b = lognot (eq_mask #t a b) let neq_mask_lemma #t a b = match t with | U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 [@(strict_on_arguments [0])] let gte_mask #t a b = match t with | U1 -> logor a (lognot b) | U8 -> UInt8.gte_mask a b | U16 -> UInt16.gte_mask a b | U32 -> UInt32.gte_mask a b | U64 -> UInt64.gte_mask a b | U128 -> UInt128.gte_mask a b let gte_mask_lemma #t a b = match t with | U1 -> begin assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) end | _ -> () let gte_mask_logand_lemma #t a b c = logand_zeros c; logand_ones c; match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\ lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1) | _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c) let lt_mask #t a b = lognot (gte_mask a b) let lt_mask_lemma #t a b = assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1); UInt.lognot_lemma_1 #(bits t); UInt.lognot_self #(bits t) 0 let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b) let gt_mask_lemma #t a b = logand_zeros (gte_mask a b); logand_ones (gte_mask a b) let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b) let lte_mask_lemma #t a b = match t with | U1 -> assert_norm ( logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\ logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1) | U8 | U16 | U32 | U64 | U128 -> if v a > v b then UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) else if v a = v b then UInt.logor_lemma_2 #(bits t) (v (lt_mask a b)) else UInt.logor_lemma_1 #(bits t) (v (lt_mask a b)) #push-options "--max_fuel 1" val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Lib.IntTypes.shiftval t {Prims.pow2 (Lib.IntTypes.uint_v m) <= Lib.IntTypes.maxint t} -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.mod_mask m) == Prims.pow2 (Lib.IntTypes.v m) - 1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.shiftval", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.pow2", "Lib.IntTypes.uint_v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.maxint", "FStar.Math.Lemmas.small_modulo_lemma_1", "Prims.op_Subtraction", "Lib.IntTypes.v", "Lib.IntTypes.bits", "Prims.unit", "FStar.Math.Lemmas.pow2_lt_compat", "FStar.Math.Lemmas.pow2_double_mult", "Lib.IntTypes.shift_left_lemma", "Lib.IntTypes.mk_int" ]
[]
true
false
true
false
false
let mod_mask_value #t #l m =
shift_left_lemma (mk_int #t #l 1) m; pow2_double_mult (bits t - 1); pow2_lt_compat (bits t) (v m); small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t)); small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t))
false
Main.fst
Main.parse_check_and_desugar
val parse_check_and_desugar (pa: opt_prune_actions) (en: env) (mname fn: string) : ML (list Ast.decl & StaticAssertions.static_asserts & env)
val parse_check_and_desugar (pa: opt_prune_actions) (en: env) (mname fn: string) : ML (list Ast.decl & StaticAssertions.static_asserts & env)
let parse_check_and_desugar (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Ast.decl & StaticAssertions.static_asserts & env) = Options.debug_print_string (FStar.Printf.sprintf "Processing file: %s\nModule name: %s\n" fn mname); let decls, refinement = let p = parse_prog fn in if pa = Some PruneActions then prog_prune_actions p else p in Options.debug_print_string "=============After parsing=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, refinement = Desugar.desugar en.binding_env mname (decls, refinement) in Options.debug_print_string "=============After desugaring=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, benv = Binding.bind_decls en.binding_env decls in Options.debug_print_string "=============After binding=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; if Options.get_json() then ( IO.print_string (JSON.prog_to_json (decls, refinement)); IO.print_string "\n" ); let decls = BitFields.eliminate_decls benv decls in Options.debug_print_string "=============After bitflds=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = TypeSizes.size_of_decls benv en.typesizes_env decls in Options.debug_print_string "=============Finished typesizes pass=============\n"; let static_asserts = StaticAssertions.compute_static_asserts benv en.typesizes_env refinement in Options.debug_print_string "=============Finished static asserts pass=============\n"; let decls = Simplify.simplify_prog benv en.typesizes_env decls in Options.debug_print_string "=============After simplify============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = InlineSingletonRecords.simplify_prog decls in Options.debug_print_string "=============After inline singletons============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let en = { en with binding_env = benv } in decls, static_asserts, en
{ "file_name": "src/3d/Main.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 4, "end_line": 117, "start_col": 0, "start_line": 51 }
module Main open FStar.IO open FStar.All open Ast open ParserDriver module T = Target open FStar.ST #push-options "--z3rlimit_factor 2" let open_write_file (s:string) : ML FStar.IO.fd_write = FStar.IO.print_string (FStar.Printf.sprintf "Writing file %s\n" s); FStar.IO.open_write_file s let parse_prog (fn:string) : ML prog = let decls, type_refinement_opt = ParserDriver.parse fn in if decls |> List.tryFind is_entrypoint_or_export |> Some? then decls, type_refinement_opt else raise (Error (Printf.sprintf "File %s does not have an entry point or an exported definition, exiting\n" fn)) noeq type env = { binding_env : Binding.global_env; typesizes_env : TypeSizes.size_env; translate_env : (TranslateForInterpreter.translate_env & InterpreterTarget.env); } let initial_env () : ML env = { binding_env = Binding.initial_global_env (); typesizes_env = TypeSizes.initial_senv (); translate_env = (TranslateForInterpreter.initial_translate_env(), InterpreterTarget.create_env()); } let left (x:either 'a 'b) : ML 'a = match x with | Inl x -> x | _ -> failwith "Expected left" let right (x:either 'a 'b) : ML 'b = match x with | Inr x -> x | _ -> failwith "Expected right" type prune_actions = | PruneActions type opt_prune_actions = option prune_actions
{ "checked_file": "/", "dependencies": [ "Z3TestGen.fst.checked", "Z3.fsti.checked", "TypeSizes.fsti.checked", "TranslateForInterpreter.fsti.checked", "Target.fsti.checked", "StaticAssertions.fst.checked", "Simplify.fsti.checked", "prims.fst.checked", "ParserDriver.fsti.checked", "OS.fsti.checked", "Options.fsti.checked", "JSON.fsti.checked", "InterpreterTarget.fsti.checked", "InlineSingletonRecords.fst.checked", "HashingOptions.fst.checked", "GenMakefile.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked", "Desugar.fst.checked", "Deps.fsti.checked", "Config.fst.checked", "BitFields.fst.checked", "Binding.fsti.checked", "Batch.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "Main.fst" }
[ { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": true, "full_module": "Target", "short_module": "T" }, { "abbrev": false, "full_module": "ParserDriver", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
pa: Main.opt_prune_actions -> en: Main.env -> mname: Prims.string -> fn: Prims.string -> FStar.All.ML ((Prims.list Ast.decl * StaticAssertions.static_asserts) * Main.env)
FStar.All.ML
[ "ml" ]
[]
[ "Main.opt_prune_actions", "Main.env", "Prims.string", "Prims.list", "Ast.decl", "FStar.Pervasives.Native.option", "Ast.type_refinement", "GlobalEnv.global_env", "FStar.Pervasives.Native.Mktuple3", "StaticAssertions.static_asserts", "Main.Mkenv", "Main.__proj__Mkenv__item__typesizes_env", "Main.__proj__Mkenv__item__translate_env", "FStar.Pervasives.Native.tuple3", "Prims.unit", "Options.debug_print_string", "Ast.print_decls", "InlineSingletonRecords.simplify_prog", "Simplify.simplify_prog", "StaticAssertions.compute_static_asserts", "TypeSizes.size_of_decls", "BitFields.eliminate_decls", "FStar.IO.print_string", "JSON.prog_to_json", "FStar.Pervasives.Native.Mktuple2", "Prims.bool", "Options.get_json", "FStar.Pervasives.Native.tuple2", "Binding.bind_decls", "Main.__proj__Mkenv__item__binding_env", "Ast.prog", "Desugar.desugar", "Prims.op_Equality", "Main.prune_actions", "FStar.Pervasives.Native.Some", "Main.PruneActions", "Ast.prog_prune_actions", "Main.parse_prog", "FStar.Printf.sprintf" ]
[]
false
true
false
false
false
let parse_check_and_desugar (pa: opt_prune_actions) (en: env) (mname fn: string) : ML (list Ast.decl & StaticAssertions.static_asserts & env) =
Options.debug_print_string (FStar.Printf.sprintf "Processing file: %s\nModule name: %s\n" fn mname); let decls, refinement = let p = parse_prog fn in if pa = Some PruneActions then prog_prune_actions p else p in Options.debug_print_string "=============After parsing=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, refinement = Desugar.desugar en.binding_env mname (decls, refinement) in Options.debug_print_string "=============After desugaring=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, benv = Binding.bind_decls en.binding_env decls in Options.debug_print_string "=============After binding=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; if Options.get_json () then (IO.print_string (JSON.prog_to_json (decls, refinement)); IO.print_string "\n"); let decls = BitFields.eliminate_decls benv decls in Options.debug_print_string "=============After bitflds=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = TypeSizes.size_of_decls benv en.typesizes_env decls in Options.debug_print_string "=============Finished typesizes pass=============\n"; let static_asserts = StaticAssertions.compute_static_asserts benv en.typesizes_env refinement in Options.debug_print_string "=============Finished static asserts pass=============\n"; let decls = Simplify.simplify_prog benv en.typesizes_env decls in Options.debug_print_string "=============After simplify============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = InlineSingletonRecords.simplify_prog decls in Options.debug_print_string "=============After inline singletons============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let en = { en with binding_env = benv } in decls, static_asserts, en
false
Hacl.Impl.K256.Verify.fst
Hacl.Impl.K256.Verify.lbytes
val lbytes : len: Lib.IntTypes.size_t -> Type0
let lbytes len = lbuffer uint8 len
{ "file_name": "code/k256/Hacl.Impl.K256.Verify.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 34, "end_line": 28, "start_col": 0, "start_line": 28 }
module Hacl.Impl.K256.Verify open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module KL = Spec.K256.Lemmas open Hacl.K256.Field open Hacl.Impl.K256.Point open Hacl.Impl.K256.PointMul open Hacl.Impl.K256.GLV module QA = Hacl.K256.Scalar module QI = Hacl.Impl.K256.Qinv module BL = Hacl.Spec.K256.Field52.Lemmas module BSeq = Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Field52.Lemmas.fsti.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Qinv.fst.checked", "Hacl.Impl.K256.PointMul.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "Hacl.Impl.K256.GLV.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Verify.fst" }
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Lemmas", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Impl.K256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.K256.Scalar", "short_module": "QA" }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "KL" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_t -> Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8" ]
[]
false
false
false
true
true
let lbytes len =
lbuffer uint8 len
false
FStar.Int.fst
FStar.Int.pow2_values
val pow2_values: x:nat -> Lemma (let p = pow2 x in match x with | 0 -> p=1 | 1 -> p=2 | 8 -> p=256 | 16 -> p=65536 | 31 -> p=2147483648 | 32 -> p=4294967296 | 63 -> p=9223372036854775808 | 64 -> p=18446744073709551616 | _ -> True) [SMTPat (pow2 x)]
val pow2_values: x:nat -> Lemma (let p = pow2 x in match x with | 0 -> p=1 | 1 -> p=2 | 8 -> p=256 | 16 -> p=65536 | 31 -> p=2147483648 | 32 -> p=4294967296 | 63 -> p=9223372036854775808 | 64 -> p=18446744073709551616 | _ -> True) [SMTPat (pow2 x)]
let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> ()
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 13, "end_line": 35, "start_col": 0, "start_line": 25 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat -> FStar.Pervasives.Lemma (ensures (let p = Prims.pow2 x in (match x with | 0 -> p = 1 | 1 -> p = 2 | 8 -> p = 256 | 16 -> p = 65536 | 31 -> p = 2147483648 | 32 -> p = 4294967296 | 63 -> p = 9223372036854775808 | 64 -> p = 18446744073709551616 | _ -> Prims.l_True) <: Type0)) [SMTPat (Prims.pow2 x)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Prims.pow2", "Prims.unit" ]
[]
false
false
true
false
false
let pow2_values x =
match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> ()
false
FStar.Int.fst
FStar.Int.mul_underspec
val mul_underspec: #n:pos -> a:int_t n -> b:int_t n -> Pure (int_t n) (requires True) (ensures (fun c -> size (a * b) n ==> a * b = c))
val mul_underspec: #n:pos -> a:int_t n -> b:int_t n -> Pure (int_t n) (requires True) (ensures (fun c -> size (a * b) n ==> a * b = c))
let mul_underspec #n a b = if fits (a*b) n then a * b else 0
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 50, "start_col": 0, "start_line": 49 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> Prims.Pure (FStar.Int.int_t n)
Prims.Pure
[]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.fits", "FStar.Mul.op_Star", "Prims.bool" ]
[]
false
false
false
false
false
let mul_underspec #n a b =
if fits (a * b) n then a * b else 0
false
FStar.Int.fst
FStar.Int.incr_underspec
val incr_underspec: #n:pos -> a:int_t n -> Pure (int_t n) (requires (b2t (a < max_int n))) (ensures (fun b -> a + 1 = b))
val incr_underspec: #n:pos -> a:int_t n -> Pure (int_t n) (requires (b2t (a < max_int n))) (ensures (fun b -> a + 1 = b))
let incr_underspec #n a = if a < max_int n then a + 1 else 0
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 38, "start_col": 0, "start_line": 37 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> Prims.Pure (FStar.Int.int_t n)
Prims.Pure
[]
[]
[ "Prims.pos", "FStar.Int.int_t", "Prims.op_LessThan", "FStar.Int.max_int", "Prims.op_Addition", "Prims.bool" ]
[]
false
false
false
false
false
let incr_underspec #n a =
if a < max_int n then a + 1 else 0
false
Main.fst
Main.produce_z3_and_test_gen
val produce_z3_and_test_gen (batch: bool) (out_dir: string) (do_test: (option string -> int -> Z3TestGen.prog -> Z3.z3 -> ML unit)) : Tot process_files_t
val produce_z3_and_test_gen (batch: bool) (out_dir: string) (do_test: (option string -> int -> Z3TestGen.prog -> Z3.z3 -> ML unit)) : Tot process_files_t
let produce_z3_and_test_gen (batch: bool) (out_dir: string) (do_test: option string -> int -> Z3TestGen.prog -> Z3.z3 -> ML unit) : Tot process_files_t = fun (files_and_modules:list (string & string)) (emit_fstar:string -> ML bool) (emit_output_types_defs:bool) -> let nbwitnesses = Options.get_z3_witnesses () in let buf : ref string = alloc "" in let prog = process_files_for_z3 (fun s -> buf := !buf ^ s) files_and_modules (if batch then Some emit_fstar else None) emit_output_types_defs in with_z3_thread_or batch out_dir (Options.get_debug ()) (Options.get_save_z3_transcript ()) (fun z3 -> z3.to_z3 !buf; do_test (if batch then Some (OS.concat out_dir "testcases.c") else None) nbwitnesses prog z3 )
{ "file_name": "src/3d/Main.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 522, "start_col": 0, "start_line": 506 }
module Main open FStar.IO open FStar.All open Ast open ParserDriver module T = Target open FStar.ST #push-options "--z3rlimit_factor 2" let open_write_file (s:string) : ML FStar.IO.fd_write = FStar.IO.print_string (FStar.Printf.sprintf "Writing file %s\n" s); FStar.IO.open_write_file s let parse_prog (fn:string) : ML prog = let decls, type_refinement_opt = ParserDriver.parse fn in if decls |> List.tryFind is_entrypoint_or_export |> Some? then decls, type_refinement_opt else raise (Error (Printf.sprintf "File %s does not have an entry point or an exported definition, exiting\n" fn)) noeq type env = { binding_env : Binding.global_env; typesizes_env : TypeSizes.size_env; translate_env : (TranslateForInterpreter.translate_env & InterpreterTarget.env); } let initial_env () : ML env = { binding_env = Binding.initial_global_env (); typesizes_env = TypeSizes.initial_senv (); translate_env = (TranslateForInterpreter.initial_translate_env(), InterpreterTarget.create_env()); } let left (x:either 'a 'b) : ML 'a = match x with | Inl x -> x | _ -> failwith "Expected left" let right (x:either 'a 'b) : ML 'b = match x with | Inr x -> x | _ -> failwith "Expected right" type prune_actions = | PruneActions type opt_prune_actions = option prune_actions let parse_check_and_desugar (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Ast.decl & StaticAssertions.static_asserts & env) = Options.debug_print_string (FStar.Printf.sprintf "Processing file: %s\nModule name: %s\n" fn mname); let decls, refinement = let p = parse_prog fn in if pa = Some PruneActions then prog_prune_actions p else p in Options.debug_print_string "=============After parsing=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, refinement = Desugar.desugar en.binding_env mname (decls, refinement) in Options.debug_print_string "=============After desugaring=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, benv = Binding.bind_decls en.binding_env decls in Options.debug_print_string "=============After binding=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; if Options.get_json() then ( IO.print_string (JSON.prog_to_json (decls, refinement)); IO.print_string "\n" ); let decls = BitFields.eliminate_decls benv decls in Options.debug_print_string "=============After bitflds=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = TypeSizes.size_of_decls benv en.typesizes_env decls in Options.debug_print_string "=============Finished typesizes pass=============\n"; let static_asserts = StaticAssertions.compute_static_asserts benv en.typesizes_env refinement in Options.debug_print_string "=============Finished static asserts pass=============\n"; let decls = Simplify.simplify_prog benv en.typesizes_env decls in Options.debug_print_string "=============After simplify============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = InlineSingletonRecords.simplify_prog decls in Options.debug_print_string "=============After inline singletons============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let en = { en with binding_env = benv } in decls, static_asserts, en let translate_module (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Target.decl & list InterpreterTarget.decl & StaticAssertions.static_asserts & env) = let decls, static_asserts, en = parse_check_and_desugar pa en mname fn in let t_decls, i_decls, tenv = let env, env' = en.translate_env in let decls, env = TranslateForInterpreter.translate_decls en.binding_env en.typesizes_env env decls in let tds = InterpreterTarget.translate_decls env' decls in decls, tds, (env, env') in let en = { en with translate_env = tenv } in t_decls, i_decls, static_asserts, en let emit_fstar_code_for_interpreter (en:env) (modul:string) (tds:list T.decl) (itds:list InterpreterTarget.decl) (all_modules:list string) : ML unit = let _, en = en.translate_env in let impl, iface = InterpreterTarget.print_decls en modul itds in let has_external_types = T.has_output_types tds || T.has_extern_types tds in if has_external_types then begin let external_types_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalTypes.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_types_fsti_file (Target.print_external_types_fstar_interpreter modul tds); FStar.IO.close_write_file external_types_fsti_file end; let has_external_api = T.has_external_api tds in if has_external_api then begin let external_api_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalAPI.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_api_fsti_file (Target.print_external_api_fstar_interpreter modul tds); FStar.IO.close_write_file external_api_fsti_file end; let maybe_open_external_api = if has_external_api then Printf.sprintf "open %s.ExternalAPI" modul else "" in let module_prefix = FStar.Printf.sprintf "module %s\n\ open EverParse3d.Prelude\n\ open EverParse3d.Actions.All\n\ open EverParse3d.Interpreter\n\ %s\n\ module T = FStar.Tactics\n\ module A = EverParse3d.Actions.All\n\ module P = EverParse3d.Prelude\n\ #push-options \"--fuel 0 --ifuel 0\"\n\ #push-options \"--using_facts_from 'Prims FStar.UInt FStar.UInt8 \ FStar.UInt16 FStar.UInt32 FStar.UInt64 \ EverParse3d FStar.Int.Cast %s'\"\n" modul maybe_open_external_api (all_modules |> String.concat " ") in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir()) modul) in FStar.IO.write_string fst_file module_prefix; FStar.IO.write_string fst_file impl; FStar.IO.close_write_file fst_file; let fsti_file = open_write_file (Printf.sprintf "%s/%s.fsti" (Options.get_output_dir()) modul) in FStar.IO.write_string fsti_file module_prefix; FStar.IO.write_string fsti_file iface; FStar.IO.close_write_file fsti_file; () let emit_entrypoint (produce_ep_error: Target.opt_produce_everparse_error) (en:env) (modul:string) (t_decls:list Target.decl) (static_asserts:StaticAssertions.static_asserts) (emit_output_types_defs:bool) : ML unit = //print wrapper only if there is an entrypoint if List.tryFind (fun (d, _) -> let open Target in match d with | Type_decl td -> td.decl_name.td_entrypoint | _ -> false) t_decls |> Some? then begin let wrapper_header, wrapper_impl = Target.print_c_entry produce_ep_error modul en.binding_env t_decls in let c_file = open_write_file (Printf.sprintf "%s/%sWrapper.c" (Options.get_output_dir()) modul) in FStar.IO.write_string c_file wrapper_impl; FStar.IO.close_write_file c_file; let h_file = open_write_file (Printf.sprintf "%s/%sWrapper.h" (Options.get_output_dir()) modul) in FStar.IO.write_string h_file wrapper_header; FStar.IO.close_write_file h_file end; let has_output_types = T.has_output_types t_decls in let has_out_exprs = T.has_output_type_exprs t_decls in let has_extern_types = T.has_extern_types t_decls in (* * If there are output types in the module * and emit_output_types_defs flag is set, * then emit output type definitions in M_OutputTypesDefs.h *) if emit_output_types_defs then begin if has_output_types then begin let output_types_defs_file = open_write_file (Printf.sprintf "%s/%s_OutputTypesDefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_defs_file (Target.print_output_types_defs modul t_decls); FStar.IO.close_write_file output_types_defs_file end; (* * Optimization: If the module has no extern types, * then M_ExternalTypedefs.h, that we require the programmer to provide, * only contains output type defs * * So generate M_ExteralTypedefs.h, with #include of M_OutputTypesDefs.h *) if has_output_types && not has_extern_types then begin let extern_typedefs_file = open_write_file (Printf.sprintf "%s/%s_ExternalTypedefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string extern_typedefs_file (Printf.sprintf "#ifndef __%s_ExternalTypedefs_H\n\ #define __%s_ExternalTypedefs_H\n #if defined(__cplusplus)\n\ extern \"C\" {\n\ #endif\n\n\n\ %s#include \"%s_OutputTypesDefs.h\"\n\n\ #if defined(__cplusplus)\n\ }\n\ #endif\n\n\ #define __%s_ExternalTypedefs_H_DEFINED\n\ #endif\n" modul modul (Options.make_includes ()) modul modul); FStar.IO.close_write_file extern_typedefs_file end end; // (* // * Optimization: If M only has extern functions, and no types, // * then the external typedefs file is trivially empty // *) // if has_extern_fns && not (has_out_exprs || has_extern_types) // then begin // let extern_typedefs_file = open_write_file // (Printf.sprintf "%s/%s_ExternalTypedefs.h" // (Options.get_output_dir ()) // modul) in // FStar.IO.write_string extern_typedefs_file "\n"; // FStar.IO.close_write_file extern_typedefs_file // end; if has_out_exprs then begin let output_types_c_file = open_write_file (Printf.sprintf "%s/%s_OutputTypes.c" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_c_file (Target.print_out_exprs_c modul t_decls); FStar.IO.close_write_file output_types_c_file end; if StaticAssertions.has_static_asserts static_asserts then begin let c_static_asserts_file = open_write_file (Printf.sprintf "%s/%sStaticAssertions.c" (Options.get_output_dir()) modul) in FStar.IO.write_string c_static_asserts_file (StaticAssertions.print_static_asserts static_asserts); FStar.IO.close_write_file c_static_asserts_file end let process_file_gen (produce_ep_error: Target.opt_produce_everparse_error) (pa: opt_prune_actions) (en:env) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs:bool) (all_modules:list string) : ML (env & list InterpreterTarget.decl) = let t_decls, interpreter_decls, static_asserts, en = translate_module pa en modul fn in if emit_fstar then ( emit_fstar_code_for_interpreter en modul t_decls interpreter_decls all_modules; emit_entrypoint produce_ep_error en modul t_decls static_asserts emit_output_types_defs ) else IO.print_string (Printf.sprintf "Not emitting F* code for %s\n" fn); let ds = Binding.get_exported_decls en.binding_env modul in TypeSizes.finish_module en.typesizes_env modul ds; { en with binding_env = Binding.finish_module en.binding_env modul; translate_env = en.translate_env; }, interpreter_decls let process_file (en:env) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs: bool) (all_modules:list string) : ML env = fst (process_file_gen None None en fn modul emit_fstar emit_output_types_defs all_modules) let emit_config_as_fstar_module () : ML unit = match Deps.get_config () with | Some (cfg, config_module_name) -> let fst_file_contents = Config.emit_config_as_fstar_module config_module_name cfg in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir()) config_module_name) in FStar.IO.write_string fst_file fst_file_contents; FStar.IO.close_write_file fst_file | _ -> () let process_files_gen (#env: Type) (initial_env: unit -> ML env) (files_and_modules:list (string & string)) (emit_fstar:option (string -> ML bool)) (emit_output_types_defs:bool) (process_file: (env -> string -> string -> bool -> bool -> list string -> ML env)) : ML env = IO.print_string (Printf.sprintf "Processing files: %s\n" (List.map fst files_and_modules |> String.concat " ")); let all_modules = List.map snd files_and_modules in let env = initial_env () in if Some? emit_fstar then if Options.get_batch() then emit_config_as_fstar_module(); files_and_modules |> List.fold_left (fun env (fn, modul) -> process_file env fn modul (match emit_fstar with Some f -> f modul | _ -> false) emit_output_types_defs all_modules) env let process_files_t = (files_and_modules:list (string & string)) -> (emit_fstar:string -> ML bool) -> (emit_output_types_defs:bool) -> ML (option (unit -> ML unit)) let process_files : process_files_t = fun files_and_modules emit_fstar emit_output_types_defs -> process_files_gen initial_env files_and_modules (Some emit_fstar) emit_output_types_defs process_file |> ignore; (Some (fun _ -> ())) let process_file_for_z3 (out: string -> ML unit) (en_accu:(env & Z3TestGen.prog)) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs:bool) (all_modules:list string) : ML (env & Z3TestGen.prog) = let (en, accu) = en_accu in let (en, interpreter_decls) = process_file_gen (Some Target.ProduceEverParseError) (Some PruneActions) en fn modul emit_fstar emit_output_types_defs all_modules in let accu = Z3TestGen.produce_decls out accu interpreter_decls in (en, accu) let process_files_for_z3 (out: string -> ML unit) (files_and_modules:list (string & string)) (emit_fstar:option (string -> ML bool)) (emit_output_types_defs:bool) : ML Z3TestGen.prog = out Z3TestGen.prelude; process_files_gen (fun _ -> initial_env (), []) files_and_modules emit_fstar emit_output_types_defs (process_file_for_z3 out) |> snd let produce_z3 (files_and_modules:list (string & string)) : ML unit = ignore (process_files_for_z3 FStar.IO.print_string files_and_modules None false) let build_test_exe (out_dir: string) : ML unit = if not (Options.get_skip_c_makefiles ()) then begin OS.run_cmd "make" ["-C"; out_dir; "-f"; "Makefile.basic"; "USER_TARGET=test.exe"; "USER_CFLAGS=-Wno-type-limits"] end let build_and_run_test_exe (out_dir: string) : ML unit = if not (Options.get_skip_c_makefiles ()) then begin build_test_exe out_dir; OS.run_cmd (OS.concat out_dir "test.exe") [] end let with_z3_thread_or (batch: bool) (out_dir: string) (debug: bool) (transcript: option string) (f: (Z3.z3 -> ML unit)) : ML (option (unit -> ML unit)) = if batch then let thr = Z3.with_z3_thread debug transcript f in Some (fun _ -> Z3.wait_for_z3_thread thr; build_and_run_test_exe out_dir ) else begin Z3.with_z3 debug transcript f; None end
{ "checked_file": "/", "dependencies": [ "Z3TestGen.fst.checked", "Z3.fsti.checked", "TypeSizes.fsti.checked", "TranslateForInterpreter.fsti.checked", "Target.fsti.checked", "StaticAssertions.fst.checked", "Simplify.fsti.checked", "prims.fst.checked", "ParserDriver.fsti.checked", "OS.fsti.checked", "Options.fsti.checked", "JSON.fsti.checked", "InterpreterTarget.fsti.checked", "InlineSingletonRecords.fst.checked", "HashingOptions.fst.checked", "GenMakefile.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked", "Desugar.fst.checked", "Deps.fsti.checked", "Config.fst.checked", "BitFields.fst.checked", "Binding.fsti.checked", "Batch.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "Main.fst" }
[ { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": true, "full_module": "Target", "short_module": "T" }, { "abbrev": false, "full_module": "ParserDriver", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
batch: Prims.bool -> out_dir: Prims.string -> do_test: ( _: FStar.Pervasives.Native.option Prims.string -> _: Prims.int -> _: Z3TestGen.prog -> _: Z3.Base.z3 -> FStar.All.ML Prims.unit) -> Main.process_files_t
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Prims.string", "FStar.Pervasives.Native.option", "Prims.int", "Z3TestGen.prog", "Z3.Base.z3", "Prims.unit", "Prims.list", "FStar.Pervasives.Native.tuple2", "Main.with_z3_thread_or", "FStar.Pervasives.Native.Some", "OS.concat", "FStar.Pervasives.Native.None", "Z3.Base.__proj__Mkz3__item__to_z3", "FStar.ST.op_Bang", "FStar.Heap.trivial_preorder", "Options.get_save_z3_transcript", "Options.get_debug", "Main.process_files_for_z3", "FStar.ST.op_Colon_Equals", "Prims.op_Hat", "FStar.ST.ref", "FStar.ST.alloc", "FStar.ST.mref", "Prims.pos", "Options.get_z3_witnesses", "Main.process_files_t" ]
[]
false
false
false
false
false
let produce_z3_and_test_gen (batch: bool) (out_dir: string) (do_test: (option string -> int -> Z3TestGen.prog -> Z3.z3 -> ML unit)) : Tot process_files_t =
fun (files_and_modules: list (string & string)) (emit_fstar: (string -> ML bool)) (emit_output_types_defs: bool) -> let nbwitnesses = Options.get_z3_witnesses () in let buf:ref string = alloc "" in let prog = process_files_for_z3 (fun s -> buf := !buf ^ s) files_and_modules (if batch then Some emit_fstar else None) emit_output_types_defs in with_z3_thread_or batch out_dir (Options.get_debug ()) (Options.get_save_z3_transcript ()) (fun z3 -> z3.to_z3 !buf; do_test (if batch then Some (OS.concat out_dir "testcases.c") else None) nbwitnesses prog z3 )
false
FStar.Int.fst
FStar.Int.decr_underspec
val decr_underspec: #n:pos -> a:int_t n -> Pure (int_t n) (requires (b2t (a > min_int n))) (ensures (fun b -> a - 1 = b))
val decr_underspec: #n:pos -> a:int_t n -> Pure (int_t n) (requires (b2t (a > min_int n))) (ensures (fun b -> a - 1 = b))
let decr_underspec #n a = if a > min_int n then a - 1 else 0
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 41, "start_col": 0, "start_line": 40 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> Prims.Pure (FStar.Int.int_t n)
Prims.Pure
[]
[]
[ "Prims.pos", "FStar.Int.int_t", "Prims.op_GreaterThan", "FStar.Int.min_int", "Prims.op_Subtraction", "Prims.bool" ]
[]
false
false
false
false
false
let decr_underspec #n a =
if a > min_int n then a - 1 else 0
false
FStar.Int.fst
FStar.Int.div_underspec
val div_underspec: #n:pos -> a:int_t n -> b:int_t n{b <> 0} -> Pure (int_t n) (requires True) (ensures (fun c -> (b <> 0 /\ size (a / b) n) ==> a / b = c))
val div_underspec: #n:pos -> a:int_t n -> b:int_t n{b <> 0} -> Pure (int_t n) (requires True) (ensures (fun c -> (b <> 0 /\ size (a / b) n) ==> a / b = c))
let div_underspec #n a b = if fits (a / b) n then a / b else 0
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 53, "start_col": 0, "start_line": 52 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> b: FStar.Int.int_t n {b <> 0} -> Prims.Pure (FStar.Int.int_t n)
Prims.Pure
[]
[]
[ "Prims.pos", "FStar.Int.int_t", "Prims.b2t", "Prims.op_disEquality", "Prims.int", "FStar.Int.fits", "FStar.Int.op_Slash", "Prims.bool" ]
[]
false
false
false
false
false
let div_underspec #n a b =
if fits (a / b) n then a / b else 0
false
FStar.Int.fst
FStar.Int.add_underspec
val add_underspec: #n:pos -> a:int_t n -> b:int_t n -> Pure (int_t n) (requires True) (ensures (fun c -> size (a + b) n ==> a + b = c))
val add_underspec: #n:pos -> a:int_t n -> b:int_t n -> Pure (int_t n) (requires True) (ensures (fun c -> size (a + b) n ==> a + b = c))
let add_underspec #n a b = if fits (a+b) n then a + b else 0
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 44, "start_col": 0, "start_line": 43 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> Prims.Pure (FStar.Int.int_t n)
Prims.Pure
[]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.fits", "Prims.op_Addition", "Prims.bool" ]
[]
false
false
false
false
false
let add_underspec #n a b =
if fits (a + b) n then a + b else 0
false
Main.fst
Main.emit_fstar_code_for_interpreter
val emit_fstar_code_for_interpreter (en: env) (modul: string) (tds: list T.decl) (itds: list InterpreterTarget.decl) (all_modules: list string) : ML unit
val emit_fstar_code_for_interpreter (en: env) (modul: string) (tds: list T.decl) (itds: list InterpreterTarget.decl) (all_modules: list string) : ML unit
let emit_fstar_code_for_interpreter (en:env) (modul:string) (tds:list T.decl) (itds:list InterpreterTarget.decl) (all_modules:list string) : ML unit = let _, en = en.translate_env in let impl, iface = InterpreterTarget.print_decls en modul itds in let has_external_types = T.has_output_types tds || T.has_extern_types tds in if has_external_types then begin let external_types_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalTypes.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_types_fsti_file (Target.print_external_types_fstar_interpreter modul tds); FStar.IO.close_write_file external_types_fsti_file end; let has_external_api = T.has_external_api tds in if has_external_api then begin let external_api_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalAPI.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_api_fsti_file (Target.print_external_api_fstar_interpreter modul tds); FStar.IO.close_write_file external_api_fsti_file end; let maybe_open_external_api = if has_external_api then Printf.sprintf "open %s.ExternalAPI" modul else "" in let module_prefix = FStar.Printf.sprintf "module %s\n\ open EverParse3d.Prelude\n\ open EverParse3d.Actions.All\n\ open EverParse3d.Interpreter\n\ %s\n\ module T = FStar.Tactics\n\ module A = EverParse3d.Actions.All\n\ module P = EverParse3d.Prelude\n\ #push-options \"--fuel 0 --ifuel 0\"\n\ #push-options \"--using_facts_from 'Prims FStar.UInt FStar.UInt8 \ FStar.UInt16 FStar.UInt32 FStar.UInt64 \ EverParse3d FStar.Int.Cast %s'\"\n" modul maybe_open_external_api (all_modules |> String.concat " ") in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir()) modul) in FStar.IO.write_string fst_file module_prefix; FStar.IO.write_string fst_file impl; FStar.IO.close_write_file fst_file; let fsti_file = open_write_file (Printf.sprintf "%s/%s.fsti" (Options.get_output_dir()) modul) in FStar.IO.write_string fsti_file module_prefix; FStar.IO.write_string fsti_file iface; FStar.IO.close_write_file fsti_file; ()
{ "file_name": "src/3d/Main.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 6, "end_line": 217, "start_col": 0, "start_line": 143 }
module Main open FStar.IO open FStar.All open Ast open ParserDriver module T = Target open FStar.ST #push-options "--z3rlimit_factor 2" let open_write_file (s:string) : ML FStar.IO.fd_write = FStar.IO.print_string (FStar.Printf.sprintf "Writing file %s\n" s); FStar.IO.open_write_file s let parse_prog (fn:string) : ML prog = let decls, type_refinement_opt = ParserDriver.parse fn in if decls |> List.tryFind is_entrypoint_or_export |> Some? then decls, type_refinement_opt else raise (Error (Printf.sprintf "File %s does not have an entry point or an exported definition, exiting\n" fn)) noeq type env = { binding_env : Binding.global_env; typesizes_env : TypeSizes.size_env; translate_env : (TranslateForInterpreter.translate_env & InterpreterTarget.env); } let initial_env () : ML env = { binding_env = Binding.initial_global_env (); typesizes_env = TypeSizes.initial_senv (); translate_env = (TranslateForInterpreter.initial_translate_env(), InterpreterTarget.create_env()); } let left (x:either 'a 'b) : ML 'a = match x with | Inl x -> x | _ -> failwith "Expected left" let right (x:either 'a 'b) : ML 'b = match x with | Inr x -> x | _ -> failwith "Expected right" type prune_actions = | PruneActions type opt_prune_actions = option prune_actions let parse_check_and_desugar (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Ast.decl & StaticAssertions.static_asserts & env) = Options.debug_print_string (FStar.Printf.sprintf "Processing file: %s\nModule name: %s\n" fn mname); let decls, refinement = let p = parse_prog fn in if pa = Some PruneActions then prog_prune_actions p else p in Options.debug_print_string "=============After parsing=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, refinement = Desugar.desugar en.binding_env mname (decls, refinement) in Options.debug_print_string "=============After desugaring=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, benv = Binding.bind_decls en.binding_env decls in Options.debug_print_string "=============After binding=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; if Options.get_json() then ( IO.print_string (JSON.prog_to_json (decls, refinement)); IO.print_string "\n" ); let decls = BitFields.eliminate_decls benv decls in Options.debug_print_string "=============After bitflds=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = TypeSizes.size_of_decls benv en.typesizes_env decls in Options.debug_print_string "=============Finished typesizes pass=============\n"; let static_asserts = StaticAssertions.compute_static_asserts benv en.typesizes_env refinement in Options.debug_print_string "=============Finished static asserts pass=============\n"; let decls = Simplify.simplify_prog benv en.typesizes_env decls in Options.debug_print_string "=============After simplify============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = InlineSingletonRecords.simplify_prog decls in Options.debug_print_string "=============After inline singletons============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let en = { en with binding_env = benv } in decls, static_asserts, en let translate_module (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Target.decl & list InterpreterTarget.decl & StaticAssertions.static_asserts & env) = let decls, static_asserts, en = parse_check_and_desugar pa en mname fn in let t_decls, i_decls, tenv = let env, env' = en.translate_env in let decls, env = TranslateForInterpreter.translate_decls en.binding_env en.typesizes_env env decls in let tds = InterpreterTarget.translate_decls env' decls in decls, tds, (env, env') in let en = { en with translate_env = tenv } in t_decls, i_decls, static_asserts, en
{ "checked_file": "/", "dependencies": [ "Z3TestGen.fst.checked", "Z3.fsti.checked", "TypeSizes.fsti.checked", "TranslateForInterpreter.fsti.checked", "Target.fsti.checked", "StaticAssertions.fst.checked", "Simplify.fsti.checked", "prims.fst.checked", "ParserDriver.fsti.checked", "OS.fsti.checked", "Options.fsti.checked", "JSON.fsti.checked", "InterpreterTarget.fsti.checked", "InlineSingletonRecords.fst.checked", "HashingOptions.fst.checked", "GenMakefile.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked", "Desugar.fst.checked", "Deps.fsti.checked", "Config.fst.checked", "BitFields.fst.checked", "Binding.fsti.checked", "Batch.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "Main.fst" }
[ { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": true, "full_module": "Target", "short_module": "T" }, { "abbrev": false, "full_module": "ParserDriver", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
en: Main.env -> modul: Prims.string -> tds: Prims.list Target.decl -> itds: Prims.list InterpreterTarget.decl -> all_modules: Prims.list Prims.string -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Main.env", "Prims.string", "Prims.list", "Target.decl", "InterpreterTarget.decl", "TranslateForInterpreter.translate_env", "InterpreterTarget.env", "Prims.unit", "FStar.IO.close_write_file", "FStar.IO.write_string", "FStar.IO.fd_write", "Main.open_write_file", "FStar.Printf.sprintf", "Options.get_output_dir", "FStar.String.concat", "Prims.bool", "Target.print_external_api_fstar_interpreter", "Target.has_external_api", "Target.print_external_types_fstar_interpreter", "Prims.op_BarBar", "Target.has_output_types", "Target.has_extern_types", "FStar.Pervasives.Native.tuple2", "InterpreterTarget.print_decls", "Main.__proj__Mkenv__item__translate_env" ]
[]
false
true
false
false
false
let emit_fstar_code_for_interpreter (en: env) (modul: string) (tds: list T.decl) (itds: list InterpreterTarget.decl) (all_modules: list string) : ML unit =
let _, en = en.translate_env in let impl, iface = InterpreterTarget.print_decls en modul itds in let has_external_types = T.has_output_types tds || T.has_extern_types tds in if has_external_types then (let external_types_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalTypes.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_types_fsti_file (Target.print_external_types_fstar_interpreter modul tds); FStar.IO.close_write_file external_types_fsti_file); let has_external_api = T.has_external_api tds in if has_external_api then (let external_api_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalAPI.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_api_fsti_file (Target.print_external_api_fstar_interpreter modul tds); FStar.IO.close_write_file external_api_fsti_file); let maybe_open_external_api = if has_external_api then Printf.sprintf "open %s.ExternalAPI" modul else "" in let module_prefix = FStar.Printf.sprintf "module %s\nopen EverParse3d.Prelude\nopen EverParse3d.Actions.All\nopen EverParse3d.Interpreter\n%s\nmodule T = FStar.Tactics\nmodule A = EverParse3d.Actions.All\nmodule P = EverParse3d.Prelude\n#push-options \"--fuel 0 --ifuel 0\"\n#push-options \"--using_facts_from 'Prims FStar.UInt FStar.UInt8 FStar.UInt16 FStar.UInt32 FStar.UInt64 EverParse3d FStar.Int.Cast %s'\"\n" modul maybe_open_external_api (all_modules |> String.concat " ") in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir ()) modul) in FStar.IO.write_string fst_file module_prefix; FStar.IO.write_string fst_file impl; FStar.IO.close_write_file fst_file; let fsti_file = open_write_file (Printf.sprintf "%s/%s.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string fsti_file module_prefix; FStar.IO.write_string fsti_file iface; FStar.IO.close_write_file fsti_file; ()
false
FStar.Int.fst
FStar.Int.sub_underspec
val sub_underspec: #n:pos -> a:int_t n -> b:int_t n -> Pure (int_t n) (requires True) (ensures (fun c -> size (a - b) n ==> a - b = c))
val sub_underspec: #n:pos -> a:int_t n -> b:int_t n -> Pure (int_t n) (requires True) (ensures (fun c -> size (a - b) n ==> a - b = c))
let sub_underspec #n a b = if fits (a-b) n then a - b else 0
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 47, "start_col": 0, "start_line": 46 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> Prims.Pure (FStar.Int.int_t n)
Prims.Pure
[]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.fits", "Prims.op_Subtraction", "Prims.bool" ]
[]
false
false
false
false
false
let sub_underspec #n a b =
if fits (a - b) n then a - b else 0
false
Pulse.Checker.AssertWithBinders.fst
Pulse.Checker.AssertWithBinders.is_host_term
val is_host_term : t: FStar.Stubs.Reflection.Types.term -> Prims.bool
let is_host_term (t:R.term) = not (R.Tv_Unknown? (R.inspect_ln t))
{ "file_name": "lib/steel/pulse/Pulse.Checker.AssertWithBinders.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 66, "end_line": 37, "start_col": 0, "start_line": 37 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.AssertWithBinders open Pulse.Syntax open Pulse.Typing open Pulse.Checker.Base open Pulse.Elaborate.Pure open Pulse.Typing.Env module L = FStar.List.Tot module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module PC = Pulse.Checker.Pure module P = Pulse.Syntax.Printer module N = Pulse.Syntax.Naming module PS = Pulse.Checker.Prover.Substs module Prover = Pulse.Checker.Prover module Env = Pulse.Typing.Env open Pulse.Show module RU = Pulse.RuntimeUtils
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.Naming.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.Show.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.PP.fst.checked", "Pulse.Elaborate.Pure.fst.checked", "Pulse.Checker.Pure.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.fsti.checked", "Pulse.Checker.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Pprint.fsti.checked", "FStar.String.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.AssertWithBinders.fst" }
[ { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Show", "short_module": null }, { "abbrev": true, "full_module": "Pulse.Typing.Env", "short_module": "Env" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover", "short_module": "Prover" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Naming", "short_module": "N" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Checker.Pure", "short_module": "PC" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse.Typing.Env", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Elaborate.Pure", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Stubs.Reflection.Types.term -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.term", "Prims.op_Negation", "FStar.Stubs.Reflection.V2.Data.uu___is_Tv_Unknown", "FStar.Stubs.Reflection.V2.Builtins.inspect_ln", "Prims.bool" ]
[]
false
false
false
true
false
let is_host_term (t: R.term) =
not (R.Tv_Unknown? (R.inspect_ln t))
false
FStar.Int.fst
FStar.Int.div_size
val div_size: #n:pos -> a:int_t n{min_int n < a} -> b:int_t n{b <> 0} -> Lemma (requires (size a n)) (ensures (size (a / b) n))
val div_size: #n:pos -> a:int_t n{min_int n < a} -> b:int_t n{b <> 0} -> Lemma (requires (size a n)) (ensures (size (a / b) n))
let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b)
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 56, "start_col": 0, "start_line": 55 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n {FStar.Int.min_int n < a} -> b: FStar.Int.int_t n {b <> 0} -> FStar.Pervasives.Lemma (requires FStar.Int.size a n) (ensures FStar.Int.size (a / b) n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "Prims.b2t", "Prims.op_LessThan", "FStar.Int.min_int", "Prims.op_disEquality", "Prims.int", "FStar.Math.Lib.slash_decr_axiom", "Prims.abs", "Prims.unit" ]
[]
true
false
true
false
false
let div_size #n a b =
FStar.Math.Lib.slash_decr_axiom (abs a) (abs b)
false
FStar.Int.fst
FStar.Int.to_vec_lemma_2
val to_vec_lemma_2: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires equal (to_vec a) (to_vec b)) (ensures a = b)
val to_vec_lemma_2: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires equal (to_vec a) (to_vec b)) (ensures a = b)
let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b)
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 48, "end_line": 65, "start_col": 0, "start_line": 64 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.equal (FStar.Int.to_vec a) (FStar.Int.to_vec b)) (ensures a = b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.UInt.to_vec_lemma_2", "FStar.Int.to_uint", "Prims.unit" ]
[]
true
false
true
false
false
let to_vec_lemma_2 #n a b =
UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b)
false
Pulse.Checker.AssertWithBinders.fst
Pulse.Checker.AssertWithBinders.debug_log
val debug_log : g: Pulse.Typing.Env.env -> f: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.string) -> FStar.Tactics.Effect.Tac Prims.unit
let debug_log = Pulse.Typing.debug_log "with_binders"
{ "file_name": "lib/steel/pulse/Pulse.Checker.AssertWithBinders.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 53, "end_line": 39, "start_col": 0, "start_line": 39 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.AssertWithBinders open Pulse.Syntax open Pulse.Typing open Pulse.Checker.Base open Pulse.Elaborate.Pure open Pulse.Typing.Env module L = FStar.List.Tot module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module PC = Pulse.Checker.Pure module P = Pulse.Syntax.Printer module N = Pulse.Syntax.Naming module PS = Pulse.Checker.Prover.Substs module Prover = Pulse.Checker.Prover module Env = Pulse.Typing.Env open Pulse.Show module RU = Pulse.RuntimeUtils let is_host_term (t:R.term) = not (R.Tv_Unknown? (R.inspect_ln t))
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.Naming.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.Show.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.PP.fst.checked", "Pulse.Elaborate.Pure.fst.checked", "Pulse.Checker.Pure.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.fsti.checked", "Pulse.Checker.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Pprint.fsti.checked", "FStar.String.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.AssertWithBinders.fst" }
[ { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Show", "short_module": null }, { "abbrev": true, "full_module": "Pulse.Typing.Env", "short_module": "Env" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover", "short_module": "Prover" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Naming", "short_module": "N" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Checker.Pure", "short_module": "PC" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse.Typing.Env", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Elaborate.Pure", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: Pulse.Typing.Env.env -> f: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.string) -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Pulse.Typing.debug_log" ]
[]
false
true
false
false
false
let debug_log =
Pulse.Typing.debug_log "with_binders"
false
Pulse.Checker.AssertWithBinders.fst
Pulse.Checker.AssertWithBinders.visit_and_rewrite_conjuncts
val visit_and_rewrite_conjuncts (p: (R.term & R.term)) (tms: list term) : T.Tac (list term)
val visit_and_rewrite_conjuncts (p: (R.term & R.term)) (tms: list term) : T.Tac (list term)
let visit_and_rewrite_conjuncts (p: (R.term & R.term)) (tms:list term) : T.Tac (list term) = T.map (visit_and_rewrite p) tms
{ "file_name": "lib/steel/pulse/Pulse.Checker.AssertWithBinders.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 33, "end_line": 198, "start_col": 0, "start_line": 197 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.AssertWithBinders open Pulse.Syntax open Pulse.Typing open Pulse.Checker.Base open Pulse.Elaborate.Pure open Pulse.Typing.Env module L = FStar.List.Tot module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module PC = Pulse.Checker.Pure module P = Pulse.Syntax.Printer module N = Pulse.Syntax.Naming module PS = Pulse.Checker.Prover.Substs module Prover = Pulse.Checker.Prover module Env = Pulse.Typing.Env open Pulse.Show module RU = Pulse.RuntimeUtils let is_host_term (t:R.term) = not (R.Tv_Unknown? (R.inspect_ln t)) let debug_log = Pulse.Typing.debug_log "with_binders" let option_must (f:option 'a) (msg:string) : T.Tac 'a = match f with | Some x -> x | None -> T.fail msg let rec refl_abs_binders (t:R.term) (acc:list binder) : T.Tac (list binder) = let open R in match inspect_ln t with | Tv_Abs b body -> let {sort; ppname} = R.inspect_binder b in let sort = option_must (readback_ty sort) (Printf.sprintf "Failed to readback elaborated binder sort %s in refl_abs_binders" (T.term_to_string sort)) in refl_abs_binders body ((mk_binder_ppname sort (mk_ppname ppname (RU.range_of_term t)))::acc) | _ -> L.rev acc let infer_binder_types (g:env) (bs:list binder) (v:vprop) : T.Tac (list binder) = match bs with | [] -> [] | _ -> let g = push_context g "infer_binder_types" v.range in let tv = elab_term v in if not (is_host_term tv) then fail g (Some v.range) (Printf.sprintf "assert.infer_binder_types: elaborated %s to %s, which failed the host term check" (P.term_to_string v) (T.term_to_string tv)); let as_binder (b:binder) : R.binder = let open R in let bv : binder_view = { sort = elab_term b.binder_ty; ppname = b.binder_ppname.name; qual = Q_Explicit; attrs = [] } in pack_binder bv in let abstraction = L.fold_right (fun b (tv:host_term) -> let b = as_binder b in R.pack_ln (R.Tv_Abs b tv)) bs tv in let inst_abstraction, _ = PC.instantiate_term_implicits g (tm_fstar abstraction v.range) in match inst_abstraction.t with | Tm_FStar t -> refl_abs_binders t [] | _ -> T.fail "Impossible: instantiated abstraction is not embedded F* term, please file a bug-report" let rec open_binders (g:env) (bs:list binder) (uvs:env { disjoint uvs g }) (v:term) (body:st_term) : T.Tac (uvs:env { disjoint uvs g } & term & st_term) = match bs with | [] -> (| uvs, v, body |) | b::bs -> // these binders are only lax checked so far let _ = PC.check_universe (push_env g uvs) b.binder_ty in let x = fresh (push_env g uvs) in let ss = [ DT 0 (tm_var {nm_index=x;nm_ppname=b.binder_ppname}) ] in let bs = L.mapi (fun i b -> assume (i >= 0); subst_binder b (shift_subst_n i ss)) bs in let v = subst_term v (shift_subst_n (L.length bs) ss) in let body = subst_st_term body (shift_subst_n (L.length bs) ss) in open_binders g bs (push_binding uvs x b.binder_ppname b.binder_ty) v body let closing (bs:list (ppname & var & typ)) : subst = L.fold_right (fun (_, x, _) (n, ss) -> n+1, (ND x n)::ss ) bs (0, []) |> snd let rec close_binders (bs:list (ppname & var & typ)) : Tot (list binder) (decreases L.length bs) = match bs with | [] -> [] | (name, x, t)::bs -> let bss = L.mapi (fun n (n1, x1, t1) -> assume (n >= 0); n1, x1, subst_term t1 [ND x n]) bs in let b = mk_binder_ppname t name in assume (L.length bss == L.length bs); b::(close_binders bss) let unfold_defs (g:env) (defs:option (list string)) (t:term) : T.Tac term = let t = elab_term t in let head, _ = T.collect_app t in match R.inspect_ln head with | R.Tv_FVar fv | R.Tv_UInst fv _ -> ( let head = String.concat "." (R.inspect_fv fv) in let fully = match defs with | Some defs -> defs | None -> [] in let rt = RU.unfold_def (fstar_env g) head fully t in let rt = option_must rt (Printf.sprintf "unfolding %s returned None" (T.term_to_string t)) in let ty = option_must (readback_ty rt) (Printf.sprintf "error in reading back the unfolded term %s" (T.term_to_string rt)) in debug_log g (fun _ -> Printf.sprintf "Unfolded %s to F* term %s and readback as %s" (T.term_to_string t) (T.term_to_string rt) (P.term_to_string ty)); ty ) | _ -> fail g (Some (RU.range_of_term t)) (Printf.sprintf "Cannot unfold %s, the head is not an fvar" (T.term_to_string t)) let check_unfoldable g (v:term) : T.Tac unit = match v.t with | Tm_FStar _ -> () | _ -> fail g (Some v.range) (Printf.sprintf "`fold` and `unfold` expect a single user-defined predicate as an argument, \ but %s is a primitive term that cannot be folded or unfolded" (P.term_to_string v)) let visit_and_rewrite (p: (R.term & R.term)) (t:term) : T.Tac term = let open FStar.Reflection.V2.TermEq in let lhs, rhs = p in let visitor (t:R.term) : T.Tac R.term = if term_eq t lhs then rhs else t in match R.inspect_ln lhs with | R.Tv_Var n -> ( let nv = R.inspect_namedv n in assume (is_host_term rhs); subst_term t [NT nv.uniq { t = Tm_FStar rhs; range = t.range }] ) | _ -> let rec aux (t:term) : T.Tac term = match t.t with | Tm_Emp | Tm_VProp | Tm_Inames | Tm_EmpInames | Tm_Inames | Tm_Unknown -> t | Tm_Inv i -> { t with t = Tm_Inv (aux i) } | Tm_AddInv i is -> { t with t = Tm_AddInv (aux i) (aux is) } | Tm_Pure p -> { t with t = Tm_Pure (aux p) } | Tm_Star l r -> { t with t = Tm_Star (aux l) (aux r) } | Tm_ExistsSL u b body -> { t with t = Tm_ExistsSL u { b with binder_ty=aux b.binder_ty} (aux body) } | Tm_ForallSL u b body -> { t with t = Tm_ForallSL u { b with binder_ty=aux b.binder_ty} (aux body) } | Tm_FStar h -> let h = FStar.Tactics.Visit.visit_tm visitor h in assume (is_host_term h); { t with t=Tm_FStar h } in aux t
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.Naming.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.Show.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.PP.fst.checked", "Pulse.Elaborate.Pure.fst.checked", "Pulse.Checker.Pure.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.fsti.checked", "Pulse.Checker.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Pprint.fsti.checked", "FStar.String.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.AssertWithBinders.fst" }
[ { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Show", "short_module": null }, { "abbrev": true, "full_module": "Pulse.Typing.Env", "short_module": "Env" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover", "short_module": "Prover" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Naming", "short_module": "N" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Checker.Pure", "short_module": "PC" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse.Typing.Env", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Elaborate.Pure", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: (FStar.Stubs.Reflection.Types.term * FStar.Stubs.Reflection.Types.term) -> tms: Prims.list Pulse.Syntax.Base.term -> FStar.Tactics.Effect.Tac (Prims.list Pulse.Syntax.Base.term)
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Pervasives.Native.tuple2", "FStar.Stubs.Reflection.Types.term", "Prims.list", "Pulse.Syntax.Base.term", "FStar.Tactics.Util.map", "Pulse.Checker.AssertWithBinders.visit_and_rewrite" ]
[]
false
true
false
false
false
let visit_and_rewrite_conjuncts (p: (R.term & R.term)) (tms: list term) : T.Tac (list term) =
T.map (visit_and_rewrite p) tms
false
Main.fst
Main.produce_z3_and_diff_test
val produce_z3_and_diff_test (batch: bool) (out_dir: string) (names: (string & string)) : Tot process_files_t
val produce_z3_and_diff_test (batch: bool) (out_dir: string) (names: (string & string)) : Tot process_files_t
let produce_z3_and_diff_test (batch: bool) (out_dir: string) (names: (string & string)) : Tot process_files_t = let (name1, name2) = names in produce_z3_and_test_gen batch out_dir (fun out_file nbwitnesses prog z3 -> Z3TestGen.do_diff_test out_dir out_file z3 prog name1 name2 nbwitnesses (Options.get_z3_branch_depth ()) )
{ "file_name": "src/3d/Main.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 542, "start_col": 0, "start_line": 533 }
module Main open FStar.IO open FStar.All open Ast open ParserDriver module T = Target open FStar.ST #push-options "--z3rlimit_factor 2" let open_write_file (s:string) : ML FStar.IO.fd_write = FStar.IO.print_string (FStar.Printf.sprintf "Writing file %s\n" s); FStar.IO.open_write_file s let parse_prog (fn:string) : ML prog = let decls, type_refinement_opt = ParserDriver.parse fn in if decls |> List.tryFind is_entrypoint_or_export |> Some? then decls, type_refinement_opt else raise (Error (Printf.sprintf "File %s does not have an entry point or an exported definition, exiting\n" fn)) noeq type env = { binding_env : Binding.global_env; typesizes_env : TypeSizes.size_env; translate_env : (TranslateForInterpreter.translate_env & InterpreterTarget.env); } let initial_env () : ML env = { binding_env = Binding.initial_global_env (); typesizes_env = TypeSizes.initial_senv (); translate_env = (TranslateForInterpreter.initial_translate_env(), InterpreterTarget.create_env()); } let left (x:either 'a 'b) : ML 'a = match x with | Inl x -> x | _ -> failwith "Expected left" let right (x:either 'a 'b) : ML 'b = match x with | Inr x -> x | _ -> failwith "Expected right" type prune_actions = | PruneActions type opt_prune_actions = option prune_actions let parse_check_and_desugar (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Ast.decl & StaticAssertions.static_asserts & env) = Options.debug_print_string (FStar.Printf.sprintf "Processing file: %s\nModule name: %s\n" fn mname); let decls, refinement = let p = parse_prog fn in if pa = Some PruneActions then prog_prune_actions p else p in Options.debug_print_string "=============After parsing=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, refinement = Desugar.desugar en.binding_env mname (decls, refinement) in Options.debug_print_string "=============After desugaring=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, benv = Binding.bind_decls en.binding_env decls in Options.debug_print_string "=============After binding=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; if Options.get_json() then ( IO.print_string (JSON.prog_to_json (decls, refinement)); IO.print_string "\n" ); let decls = BitFields.eliminate_decls benv decls in Options.debug_print_string "=============After bitflds=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = TypeSizes.size_of_decls benv en.typesizes_env decls in Options.debug_print_string "=============Finished typesizes pass=============\n"; let static_asserts = StaticAssertions.compute_static_asserts benv en.typesizes_env refinement in Options.debug_print_string "=============Finished static asserts pass=============\n"; let decls = Simplify.simplify_prog benv en.typesizes_env decls in Options.debug_print_string "=============After simplify============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = InlineSingletonRecords.simplify_prog decls in Options.debug_print_string "=============After inline singletons============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let en = { en with binding_env = benv } in decls, static_asserts, en let translate_module (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Target.decl & list InterpreterTarget.decl & StaticAssertions.static_asserts & env) = let decls, static_asserts, en = parse_check_and_desugar pa en mname fn in let t_decls, i_decls, tenv = let env, env' = en.translate_env in let decls, env = TranslateForInterpreter.translate_decls en.binding_env en.typesizes_env env decls in let tds = InterpreterTarget.translate_decls env' decls in decls, tds, (env, env') in let en = { en with translate_env = tenv } in t_decls, i_decls, static_asserts, en let emit_fstar_code_for_interpreter (en:env) (modul:string) (tds:list T.decl) (itds:list InterpreterTarget.decl) (all_modules:list string) : ML unit = let _, en = en.translate_env in let impl, iface = InterpreterTarget.print_decls en modul itds in let has_external_types = T.has_output_types tds || T.has_extern_types tds in if has_external_types then begin let external_types_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalTypes.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_types_fsti_file (Target.print_external_types_fstar_interpreter modul tds); FStar.IO.close_write_file external_types_fsti_file end; let has_external_api = T.has_external_api tds in if has_external_api then begin let external_api_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalAPI.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_api_fsti_file (Target.print_external_api_fstar_interpreter modul tds); FStar.IO.close_write_file external_api_fsti_file end; let maybe_open_external_api = if has_external_api then Printf.sprintf "open %s.ExternalAPI" modul else "" in let module_prefix = FStar.Printf.sprintf "module %s\n\ open EverParse3d.Prelude\n\ open EverParse3d.Actions.All\n\ open EverParse3d.Interpreter\n\ %s\n\ module T = FStar.Tactics\n\ module A = EverParse3d.Actions.All\n\ module P = EverParse3d.Prelude\n\ #push-options \"--fuel 0 --ifuel 0\"\n\ #push-options \"--using_facts_from 'Prims FStar.UInt FStar.UInt8 \ FStar.UInt16 FStar.UInt32 FStar.UInt64 \ EverParse3d FStar.Int.Cast %s'\"\n" modul maybe_open_external_api (all_modules |> String.concat " ") in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir()) modul) in FStar.IO.write_string fst_file module_prefix; FStar.IO.write_string fst_file impl; FStar.IO.close_write_file fst_file; let fsti_file = open_write_file (Printf.sprintf "%s/%s.fsti" (Options.get_output_dir()) modul) in FStar.IO.write_string fsti_file module_prefix; FStar.IO.write_string fsti_file iface; FStar.IO.close_write_file fsti_file; () let emit_entrypoint (produce_ep_error: Target.opt_produce_everparse_error) (en:env) (modul:string) (t_decls:list Target.decl) (static_asserts:StaticAssertions.static_asserts) (emit_output_types_defs:bool) : ML unit = //print wrapper only if there is an entrypoint if List.tryFind (fun (d, _) -> let open Target in match d with | Type_decl td -> td.decl_name.td_entrypoint | _ -> false) t_decls |> Some? then begin let wrapper_header, wrapper_impl = Target.print_c_entry produce_ep_error modul en.binding_env t_decls in let c_file = open_write_file (Printf.sprintf "%s/%sWrapper.c" (Options.get_output_dir()) modul) in FStar.IO.write_string c_file wrapper_impl; FStar.IO.close_write_file c_file; let h_file = open_write_file (Printf.sprintf "%s/%sWrapper.h" (Options.get_output_dir()) modul) in FStar.IO.write_string h_file wrapper_header; FStar.IO.close_write_file h_file end; let has_output_types = T.has_output_types t_decls in let has_out_exprs = T.has_output_type_exprs t_decls in let has_extern_types = T.has_extern_types t_decls in (* * If there are output types in the module * and emit_output_types_defs flag is set, * then emit output type definitions in M_OutputTypesDefs.h *) if emit_output_types_defs then begin if has_output_types then begin let output_types_defs_file = open_write_file (Printf.sprintf "%s/%s_OutputTypesDefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_defs_file (Target.print_output_types_defs modul t_decls); FStar.IO.close_write_file output_types_defs_file end; (* * Optimization: If the module has no extern types, * then M_ExternalTypedefs.h, that we require the programmer to provide, * only contains output type defs * * So generate M_ExteralTypedefs.h, with #include of M_OutputTypesDefs.h *) if has_output_types && not has_extern_types then begin let extern_typedefs_file = open_write_file (Printf.sprintf "%s/%s_ExternalTypedefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string extern_typedefs_file (Printf.sprintf "#ifndef __%s_ExternalTypedefs_H\n\ #define __%s_ExternalTypedefs_H\n #if defined(__cplusplus)\n\ extern \"C\" {\n\ #endif\n\n\n\ %s#include \"%s_OutputTypesDefs.h\"\n\n\ #if defined(__cplusplus)\n\ }\n\ #endif\n\n\ #define __%s_ExternalTypedefs_H_DEFINED\n\ #endif\n" modul modul (Options.make_includes ()) modul modul); FStar.IO.close_write_file extern_typedefs_file end end; // (* // * Optimization: If M only has extern functions, and no types, // * then the external typedefs file is trivially empty // *) // if has_extern_fns && not (has_out_exprs || has_extern_types) // then begin // let extern_typedefs_file = open_write_file // (Printf.sprintf "%s/%s_ExternalTypedefs.h" // (Options.get_output_dir ()) // modul) in // FStar.IO.write_string extern_typedefs_file "\n"; // FStar.IO.close_write_file extern_typedefs_file // end; if has_out_exprs then begin let output_types_c_file = open_write_file (Printf.sprintf "%s/%s_OutputTypes.c" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_c_file (Target.print_out_exprs_c modul t_decls); FStar.IO.close_write_file output_types_c_file end; if StaticAssertions.has_static_asserts static_asserts then begin let c_static_asserts_file = open_write_file (Printf.sprintf "%s/%sStaticAssertions.c" (Options.get_output_dir()) modul) in FStar.IO.write_string c_static_asserts_file (StaticAssertions.print_static_asserts static_asserts); FStar.IO.close_write_file c_static_asserts_file end let process_file_gen (produce_ep_error: Target.opt_produce_everparse_error) (pa: opt_prune_actions) (en:env) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs:bool) (all_modules:list string) : ML (env & list InterpreterTarget.decl) = let t_decls, interpreter_decls, static_asserts, en = translate_module pa en modul fn in if emit_fstar then ( emit_fstar_code_for_interpreter en modul t_decls interpreter_decls all_modules; emit_entrypoint produce_ep_error en modul t_decls static_asserts emit_output_types_defs ) else IO.print_string (Printf.sprintf "Not emitting F* code for %s\n" fn); let ds = Binding.get_exported_decls en.binding_env modul in TypeSizes.finish_module en.typesizes_env modul ds; { en with binding_env = Binding.finish_module en.binding_env modul; translate_env = en.translate_env; }, interpreter_decls let process_file (en:env) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs: bool) (all_modules:list string) : ML env = fst (process_file_gen None None en fn modul emit_fstar emit_output_types_defs all_modules) let emit_config_as_fstar_module () : ML unit = match Deps.get_config () with | Some (cfg, config_module_name) -> let fst_file_contents = Config.emit_config_as_fstar_module config_module_name cfg in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir()) config_module_name) in FStar.IO.write_string fst_file fst_file_contents; FStar.IO.close_write_file fst_file | _ -> () let process_files_gen (#env: Type) (initial_env: unit -> ML env) (files_and_modules:list (string & string)) (emit_fstar:option (string -> ML bool)) (emit_output_types_defs:bool) (process_file: (env -> string -> string -> bool -> bool -> list string -> ML env)) : ML env = IO.print_string (Printf.sprintf "Processing files: %s\n" (List.map fst files_and_modules |> String.concat " ")); let all_modules = List.map snd files_and_modules in let env = initial_env () in if Some? emit_fstar then if Options.get_batch() then emit_config_as_fstar_module(); files_and_modules |> List.fold_left (fun env (fn, modul) -> process_file env fn modul (match emit_fstar with Some f -> f modul | _ -> false) emit_output_types_defs all_modules) env let process_files_t = (files_and_modules:list (string & string)) -> (emit_fstar:string -> ML bool) -> (emit_output_types_defs:bool) -> ML (option (unit -> ML unit)) let process_files : process_files_t = fun files_and_modules emit_fstar emit_output_types_defs -> process_files_gen initial_env files_and_modules (Some emit_fstar) emit_output_types_defs process_file |> ignore; (Some (fun _ -> ())) let process_file_for_z3 (out: string -> ML unit) (en_accu:(env & Z3TestGen.prog)) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs:bool) (all_modules:list string) : ML (env & Z3TestGen.prog) = let (en, accu) = en_accu in let (en, interpreter_decls) = process_file_gen (Some Target.ProduceEverParseError) (Some PruneActions) en fn modul emit_fstar emit_output_types_defs all_modules in let accu = Z3TestGen.produce_decls out accu interpreter_decls in (en, accu) let process_files_for_z3 (out: string -> ML unit) (files_and_modules:list (string & string)) (emit_fstar:option (string -> ML bool)) (emit_output_types_defs:bool) : ML Z3TestGen.prog = out Z3TestGen.prelude; process_files_gen (fun _ -> initial_env (), []) files_and_modules emit_fstar emit_output_types_defs (process_file_for_z3 out) |> snd let produce_z3 (files_and_modules:list (string & string)) : ML unit = ignore (process_files_for_z3 FStar.IO.print_string files_and_modules None false) let build_test_exe (out_dir: string) : ML unit = if not (Options.get_skip_c_makefiles ()) then begin OS.run_cmd "make" ["-C"; out_dir; "-f"; "Makefile.basic"; "USER_TARGET=test.exe"; "USER_CFLAGS=-Wno-type-limits"] end let build_and_run_test_exe (out_dir: string) : ML unit = if not (Options.get_skip_c_makefiles ()) then begin build_test_exe out_dir; OS.run_cmd (OS.concat out_dir "test.exe") [] end let with_z3_thread_or (batch: bool) (out_dir: string) (debug: bool) (transcript: option string) (f: (Z3.z3 -> ML unit)) : ML (option (unit -> ML unit)) = if batch then let thr = Z3.with_z3_thread debug transcript f in Some (fun _ -> Z3.wait_for_z3_thread thr; build_and_run_test_exe out_dir ) else begin Z3.with_z3 debug transcript f; None end let produce_z3_and_test_gen (batch: bool) (out_dir: string) (do_test: option string -> int -> Z3TestGen.prog -> Z3.z3 -> ML unit) : Tot process_files_t = fun (files_and_modules:list (string & string)) (emit_fstar:string -> ML bool) (emit_output_types_defs:bool) -> let nbwitnesses = Options.get_z3_witnesses () in let buf : ref string = alloc "" in let prog = process_files_for_z3 (fun s -> buf := !buf ^ s) files_and_modules (if batch then Some emit_fstar else None) emit_output_types_defs in with_z3_thread_or batch out_dir (Options.get_debug ()) (Options.get_save_z3_transcript ()) (fun z3 -> z3.to_z3 !buf; do_test (if batch then Some (OS.concat out_dir "testcases.c") else None) nbwitnesses prog z3 ) let produce_z3_and_test (batch: bool) (out_dir: string) (name: string) : Tot process_files_t = produce_z3_and_test_gen batch out_dir (fun out_file nbwitnesses prog z3 -> Z3TestGen.do_test out_dir out_file z3 prog name nbwitnesses (Options.get_z3_branch_depth ()) (Options.get_z3_pos_test ()) (Options.get_z3_neg_test ()) )
{ "checked_file": "/", "dependencies": [ "Z3TestGen.fst.checked", "Z3.fsti.checked", "TypeSizes.fsti.checked", "TranslateForInterpreter.fsti.checked", "Target.fsti.checked", "StaticAssertions.fst.checked", "Simplify.fsti.checked", "prims.fst.checked", "ParserDriver.fsti.checked", "OS.fsti.checked", "Options.fsti.checked", "JSON.fsti.checked", "InterpreterTarget.fsti.checked", "InlineSingletonRecords.fst.checked", "HashingOptions.fst.checked", "GenMakefile.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked", "Desugar.fst.checked", "Deps.fsti.checked", "Config.fst.checked", "BitFields.fst.checked", "Binding.fsti.checked", "Batch.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "Main.fst" }
[ { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": true, "full_module": "Target", "short_module": "T" }, { "abbrev": false, "full_module": "ParserDriver", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
batch: Prims.bool -> out_dir: Prims.string -> names: (Prims.string * Prims.string) -> Main.process_files_t
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Prims.string", "FStar.Pervasives.Native.tuple2", "Main.produce_z3_and_test_gen", "FStar.Pervasives.Native.option", "Prims.int", "Z3TestGen.prog", "Z3.Base.z3", "Z3TestGen.do_diff_test", "Prims.unit", "Prims.nat", "Options.get_z3_branch_depth", "Main.process_files_t" ]
[]
false
false
false
true
false
let produce_z3_and_diff_test (batch: bool) (out_dir: string) (names: (string & string)) : Tot process_files_t =
let name1, name2 = names in produce_z3_and_test_gen batch out_dir (fun out_file nbwitnesses prog z3 -> Z3TestGen.do_diff_test out_dir out_file z3 prog name1 name2 nbwitnesses (Options.get_z3_branch_depth ()))
false
Lib.IntTypes.fst
Lib.IntTypes.logxor_lemma
val logxor_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (a `logxor` (a `logxor` b) == b /\ a `logxor` (b `logxor` a) == b /\ a `logxor` (mk_int #t #l 0) == a)
val logxor_lemma: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (a `logxor` (a `logxor` b) == b /\ a `logxor` (b `logxor` a) == b /\ a `logxor` (mk_int #t #l 0) == a)
let logxor_lemma #t #l a b = logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b) end; v_extensionality (logxor a (logxor b a)) b; begin match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a) end; v_extensionality (logxor a (mk_int #t #l 0)) a
{ "file_name": "lib/Lib.IntTypes.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 48, "end_line": 467, "start_col": 0, "start_line": 453 }
module Lib.IntTypes open FStar.Math.Lemmas #push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200" let pow2_2 _ = assert_norm (pow2 2 = 4) let pow2_3 _ = assert_norm (pow2 3 = 8) let pow2_4 _ = assert_norm (pow2 4 = 16) let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000) let bits_numbytes t = () let sec_int_t t = pub_int_t t let sec_int_v #t u = pub_int_v u let secret #t x = x [@(strict_on_arguments [0])] let mk_int #t #l x = match t with | U1 -> UInt8.uint_to_t x | U8 -> UInt8.uint_to_t x | U16 -> UInt16.uint_to_t x | U32 -> UInt32.uint_to_t x | U64 -> UInt64.uint_to_t x | U128 -> UInt128.uint_to_t x | S8 -> Int8.int_to_t x | S16 -> Int16.int_to_t x | S32 -> Int32.int_to_t x | S64 -> Int64.int_to_t x | S128 -> Int128.int_to_t x val v_extensionality: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (requires v a == v b) (ensures a == b) let v_extensionality #t #l a b = match t with | U1 -> () | U8 -> UInt8.v_inj a b | U16 -> UInt16.v_inj a b | U32 -> UInt32.v_inj a b | U64 -> UInt64.v_inj a b | U128 -> UInt128.v_inj a b | S8 -> Int8.v_inj a b | S16 -> Int16.v_inj a b | S32 -> Int32.v_inj a b | S64 -> Int64.v_inj a b | S128 -> Int128.v_inj a b let v_injective #t #l a = v_extensionality a (mk_int (v a)) let v_mk_int #t #l n = () let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n) // KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided // We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals let i128 n = assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1)); sint #S128 #SEC n let size_to_uint32 x = x let size_to_uint64 x = Int.Cast.uint32_to_uint64 x let byte_to_uint8 x = x let byte_to_int8 x = Int.Cast.uint8_to_int8 x let op_At_Percent = Int.op_At_Percent // FStar.UInt128 gets special treatment in KaRaMeL. There is no // equivalent for FStar.Int128 at the moment, so we use the three // assumed cast operators below. // // Using them will fail at runtime with an informative message. // The commented-out implementations show that they are realizable. // // When support for `FStar.Int128` is added KaRaMeL, these casts must // be added as special cases. When using builtin compiler support for // `int128_t`, they can be implemented directly as C casts without // undefined or implementation-defined behaviour. assume val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a} //let uint128_to_int128 a = Int128.int_to_t (v a) assume val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128} //let int128_to_uint128 a = mk_int (v a % pow2 128) assume val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a} //let int64_to_int128 a = Int128.int_to_t (v a) val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a} let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a) val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128} let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a) val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64} let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a) #push-options "--z3rlimit 1000" [@(strict_on_arguments [0;2])] let cast #t #l t' l' u = assert_norm (pow2 8 = 2 * pow2 7); assert_norm (pow2 16 = 2 * pow2 15); assert_norm (pow2 64 * pow2 64 = pow2 128); assert_norm (pow2 16 * pow2 48 = pow2 64); assert_norm (pow2 8 * pow2 56 = pow2 64); assert_norm (pow2 32 * pow2 32 = pow2 64); modulo_modulo_lemma (v u) (pow2 32) (pow2 32); modulo_modulo_lemma (v u) (pow2 64) (pow2 64); modulo_modulo_lemma (v u) (pow2 128) (pow2 64); modulo_modulo_lemma (v u) (pow2 16) (pow2 48); modulo_modulo_lemma (v u) (pow2 8) (pow2 56); let open FStar.Int.Cast in let open FStar.Int.Cast.Full in match t, t' with | U1, U1 -> u | U1, U8 -> u | U1, U16 -> uint8_to_uint16 u | U1, U32 -> uint8_to_uint32 u | U1, U64 -> uint8_to_uint64 u | U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U1, S8 -> uint8_to_int8 u | U1, S16 -> uint8_to_int16 u | U1, S32 -> uint8_to_int32 u | U1, S64 -> uint8_to_int64 u | U1, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U8, U1 -> UInt8.rem u 2uy | U8, U8 -> u | U8, U16 -> uint8_to_uint16 u | U8, U32 -> uint8_to_uint32 u | U8, U64 -> uint8_to_uint64 u | U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u) | U8, S8 -> uint8_to_int8 u | U8, S16 -> uint8_to_int16 u | U8, S32 -> uint8_to_int32 u | U8, S64 -> uint8_to_int64 u | U8, S128 -> uint64_to_int128 (uint8_to_uint64 u) | U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy | U16, U8 -> uint16_to_uint8 u | U16, U16 -> u | U16, U32 -> uint16_to_uint32 u | U16, U64 -> uint16_to_uint64 u | U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u) | U16, S8 -> uint16_to_int8 u | U16, S16 -> uint16_to_int16 u | U16, S32 -> uint16_to_int32 u | U16, S64 -> uint16_to_int64 u | U16, S128 -> uint64_to_int128 (uint16_to_uint64 u) | U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy | U32, U8 -> uint32_to_uint8 u | U32, U16 -> uint32_to_uint16 u | U32, U32 -> u | U32, U64 -> uint32_to_uint64 u | U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u) | U32, S8 -> uint32_to_int8 u | U32, S16 -> uint32_to_int16 u | U32, S32 -> uint32_to_int32 u | U32, S64 -> uint32_to_int64 u | U32, S128 -> uint64_to_int128 (uint32_to_uint64 u) | U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy | U64, U8 -> uint64_to_uint8 u | U64, U16 -> uint64_to_uint16 u | U64, U32 -> uint64_to_uint32 u | U64, U64 -> u | U64, U128 -> UInt128.uint64_to_uint128 u | U64, S8 -> uint64_to_int8 u | U64, S16 -> uint64_to_int16 u | U64, S32 -> uint64_to_int32 u | U64, S64 -> uint64_to_int64 u | U64, S128 -> uint64_to_int128 u | U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy | U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u) | U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u) | U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u) | U128, U64 -> UInt128.uint128_to_uint64 u | U128, U128 -> u | U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u) | U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u) | U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u) | U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u) | U128, S128 -> uint128_to_int128 u | S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy | S8, U8 -> int8_to_uint8 u | S8, U16 -> int8_to_uint16 u | S8, U32 -> int8_to_uint32 u | S8, U64 -> int8_to_uint64 u | S8, U128 -> int64_to_uint128 (int8_to_int64 u) | S8, S8 -> u | S8, S16 -> int8_to_int16 u | S8, S32 -> int8_to_int32 u | S8, S64 -> int8_to_int64 u | S8, S128 -> int64_to_int128 (int8_to_int64 u) | S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy | S16, U8 -> int16_to_uint8 u | S16, U16 -> int16_to_uint16 u | S16, U32 -> int16_to_uint32 u | S16, U64 -> int16_to_uint64 u | S16, U128 -> int64_to_uint128 (int16_to_int64 u) | S16, S8 -> int16_to_int8 u | S16, S16 -> u | S16, S32 -> int16_to_int32 u | S16, S64 -> int16_to_int64 u | S16, S128 -> int64_to_int128 (int16_to_int64 u) | S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy | S32, U8 -> int32_to_uint8 u | S32, U16 -> int32_to_uint16 u | S32, U32 -> int32_to_uint32 u | S32, U64 -> int32_to_uint64 u | S32, U128 -> int64_to_uint128 (int32_to_int64 u) | S32, S8 -> int32_to_int8 u | S32, S16 -> int32_to_int16 u | S32, S32 -> u | S32, S64 -> int32_to_int64 u | S32, S128 -> int64_to_int128 (int32_to_int64 u) | S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy | S64, U8 -> int64_to_uint8 u | S64, U16 -> int64_to_uint16 u | S64, U32 -> int64_to_uint32 u | S64, U64 -> int64_to_uint64 u | S64, U128 -> int64_to_uint128 u | S64, S8 -> int64_to_int8 u | S64, S16 -> int64_to_int16 u | S64, S32 -> int64_to_int32 u | S64, S64 -> u | S64, S128 -> int64_to_int128 u | S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy | S128, U8 -> uint64_to_uint8 (int128_to_uint64 u) | S128, U16 -> uint64_to_uint16 (int128_to_uint64 u) | S128, U32 -> uint64_to_uint32 (int128_to_uint64 u) | S128, U64 -> int128_to_uint64 u | S128, U128 -> int128_to_uint128 u | S128, S8 -> uint64_to_int8 (int128_to_uint64 u) | S128, S16 -> uint64_to_int16 (int128_to_uint64 u) | S128, S32 -> uint64_to_int32 (int128_to_uint64 u) | S128, S64 -> uint64_to_int64 (int128_to_uint64 u) | S128, S128 -> u #pop-options [@(strict_on_arguments [0])] let ones t l = match t with | U1 -> 0x1uy | U8 -> 0xFFuy | U16 -> 0xFFFFus | U32 -> 0xFFFFFFFFul | U64 -> 0xFFFFFFFFFFFFFFFFuL | U128 -> let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in let y = (UInt128.shift_left x 64ul) `UInt128.add` x in assert_norm (UInt128.v y == pow2 128 - 1); y | _ -> mk_int (-1) let zeros t l = mk_int 0 [@(strict_on_arguments [0])] let add_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.add_mod a b) 2uy | U8 -> UInt8.add_mod a b | U16 -> UInt16.add_mod a b | U32 -> UInt32.add_mod a b | U64 -> UInt64.add_mod a b | U128 -> UInt128.add_mod a b let add_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let add #t #l a b = match t with | U1 -> UInt8.add a b | U8 -> UInt8.add a b | U16 -> UInt16.add a b | U32 -> UInt32.add a b | U64 -> UInt64.add a b | U128 -> UInt128.add a b | S8 -> Int8.add a b | S16 -> Int16.add a b | S32 -> Int32.add a b | S64 -> Int64.add a b | S128 -> Int128.add a b let add_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let incr #t #l a = match t with | U1 -> UInt8.add a 1uy | U8 -> UInt8.add a 1uy | U16 -> UInt16.add a 1us | U32 -> UInt32.add a 1ul | U64 -> UInt64.add a 1uL | U128 -> UInt128.add a (UInt128.uint_to_t 1) | S8 -> Int8.add a 1y | S16 -> Int16.add a 1s | S32 -> Int32.add a 1l | S64 -> Int64.add a 1L | S128 -> Int128.add a (Int128.int_to_t 1) let incr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let mul_mod #t #l a b = match t with | U1 -> UInt8.mul_mod a b | U8 -> UInt8.mul_mod a b | U16 -> UInt16.mul_mod a b | U32 -> UInt32.mul_mod a b | U64 -> UInt64.mul_mod a b let mul_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let mul #t #l a b = match t with | U1 -> UInt8.mul a b | U8 -> UInt8.mul a b | U16 -> UInt16.mul a b | U32 -> UInt32.mul a b | U64 -> UInt64.mul a b | S8 -> Int8.mul a b | S16 -> Int16.mul a b | S32 -> Int32.mul a b | S64 -> Int64.mul a b let mul_lemma #t #l a b = () let mul64_wide a b = UInt128.mul_wide a b let mul64_wide_lemma a b = () let mul_s64_wide a b = Int128.mul_wide a b let mul_s64_wide_lemma a b = () [@(strict_on_arguments [0])] let sub_mod #t #l a b = match t with | U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy | U8 -> UInt8.sub_mod a b | U16 -> UInt16.sub_mod a b | U32 -> UInt32.sub_mod a b | U64 -> UInt64.sub_mod a b | U128 -> UInt128.sub_mod a b let sub_mod_lemma #t #l a b = () [@(strict_on_arguments [0])] let sub #t #l a b = match t with | U1 -> UInt8.sub a b | U8 -> UInt8.sub a b | U16 -> UInt16.sub a b | U32 -> UInt32.sub a b | U64 -> UInt64.sub a b | U128 -> UInt128.sub a b | S8 -> Int8.sub a b | S16 -> Int16.sub a b | S32 -> Int32.sub a b | S64 -> Int64.sub a b | S128 -> Int128.sub a b let sub_lemma #t #l a b = () #push-options "--max_fuel 1" [@(strict_on_arguments [0])] let decr #t #l a = match t with | U1 -> UInt8.sub a 1uy | U8 -> UInt8.sub a 1uy | U16 -> UInt16.sub a 1us | U32 -> UInt32.sub a 1ul | U64 -> UInt64.sub a 1uL | U128 -> UInt128.sub a (UInt128.uint_to_t 1) | S8 -> Int8.sub a 1y | S16 -> Int16.sub a 1s | S32 -> Int32.sub a 1l | S64 -> Int64.sub a 1L | S128 -> Int128.sub a (Int128.int_to_t 1) let decr_lemma #t #l a = () #pop-options [@(strict_on_arguments [0])] let logxor #t #l a b = match t with | U1 -> assert_norm (UInt8.logxor 0uy 0uy == 0uy); assert_norm (UInt8.logxor 0uy 1uy == 1uy); assert_norm (UInt8.logxor 1uy 0uy == 1uy); assert_norm (UInt8.logxor 1uy 1uy == 0uy); UInt8.logxor a b | U8 -> UInt8.logxor a b | U16 -> UInt16.logxor a b | U32 -> UInt32.logxor a b | U64 -> UInt64.logxor a b | U128 -> UInt128.logxor a b | S8 -> Int8.logxor a b | S16 -> Int16.logxor a b | S32 -> Int32.logxor a b | S64 -> Int64.logxor a b | S128 -> Int128.logxor a b #push-options "--max_fuel 1" val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma (v (a `logxor` (a `logxor` b)) == v b) let logxor_lemma_ #t #l a b = match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_associative #(bits t) (v a) (v a) (v b); UInt.logxor_self #(bits t) (v a); UInt.logxor_commutative #(bits t) 0 (v b); UInt.logxor_lemma_1 #(bits t) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_associative #(bits t) (v a) (v a) (v b); Int.logxor_self #(bits t) (v a); Int.logxor_commutative #(bits t) 0 (v b); Int.logxor_lemma_1 #(bits t) (v b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.Full.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "Lib.IntTypes.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.IntTypes.int_t t l -> b: Lib.IntTypes.int_t t l -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.logxor a (Lib.IntTypes.logxor a b) == b /\ Lib.IntTypes.logxor a (Lib.IntTypes.logxor b a) == b /\ Lib.IntTypes.logxor a (Lib.IntTypes.mk_int 0) == a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.inttype", "Lib.IntTypes.secrecy_level", "Lib.IntTypes.int_t", "Lib.IntTypes.v_extensionality", "Lib.IntTypes.logxor", "Lib.IntTypes.mk_int", "Prims.unit", "FStar.UInt.logxor_lemma_1", "Lib.IntTypes.bits", "Lib.IntTypes.v", "FStar.Int.logxor_lemma_1", "FStar.UInt.logxor_commutative", "FStar.Int.logxor_commutative", "Lib.IntTypes.logxor_lemma_" ]
[]
false
false
true
false
false
let logxor_lemma #t #l a b =
logxor_lemma_ #t a b; v_extensionality (logxor a (logxor a b)) b; (match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b)); v_extensionality (logxor a (logxor b a)) b; (match t with | U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a) | S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a)); v_extensionality (logxor a (mk_int #t #l 0)) a
false
FStar.Int.fst
FStar.Int.one_to_vec_lemma
val one_to_vec_lemma: #n:pos{1 < n} -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (one n)) i = index (elem_vec #n (n - 1)) i) [SMTPat (index (to_vec (one n)) i)]
val one_to_vec_lemma: #n:pos{1 < n} -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (one n)) i = index (elem_vec #n (n - 1)) i) [SMTPat (index (to_vec (one n)) i)]
let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 88, "start_col": 0, "start_line": 87 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Int.to_vec (FStar.Int.one n)) i = FStar.Seq.Base.index (FStar.BitVector.elem_vec (n - 1)) i) [SMTPat (FStar.Seq.Base.index (FStar.Int.to_vec (FStar.Int.one n)) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.bool", "FStar.Int.zero_to_vec_lemma", "Prims.unit" ]
[]
false
false
true
false
false
let one_to_vec_lemma #n i =
if i = n - 1 then () else zero_to_vec_lemma #n i
false
FStar.Int.fst
FStar.Int.from_vec_lemma_2
val from_vec_lemma_2: #n:pos -> a:bv_t n -> b:bv_t n -> Lemma (requires from_vec a = from_vec b) (ensures equal a b)
val from_vec_lemma_2: #n:pos -> a:bv_t n -> b:bv_t n -> Lemma (requires from_vec a = from_vec b) (ensures equal a b)
let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 70, "end_line": 80, "start_col": 0, "start_line": 80 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.BitVector.bv_t n -> b: FStar.BitVector.bv_t n -> FStar.Pervasives.Lemma (requires FStar.Int.from_vec a = FStar.Int.from_vec b) (ensures FStar.Seq.Base.equal a b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.BitVector.bv_t", "FStar.Int.inverse_vec_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let from_vec_lemma_2 #n a b =
inverse_vec_lemma a; inverse_vec_lemma b
false
FStar.Int.fst
FStar.Int.ones_from_vec_lemma
val ones_from_vec_lemma: #n:pos -> Lemma (requires True) (ensures from_vec (ones_vec #n) = ones n) [SMTPat (from_vec (ones_vec #n))]
val ones_from_vec_lemma: #n:pos -> Lemma (requires True) (ensures from_vec (ones_vec #n) = ones n) [SMTPat (from_vec (ones_vec #n))]
let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n)
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 103, "start_col": 0, "start_line": 102 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Pervasives.Lemma (ensures FStar.Int.from_vec FStar.BitVector.ones_vec = FStar.Int.ones n) [SMTPat (FStar.Int.from_vec FStar.BitVector.ones_vec)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.to_vec_lemma_2", "FStar.Int.from_vec", "FStar.BitVector.ones_vec", "FStar.Int.ones", "Prims.unit" ]
[]
true
false
true
false
false
let ones_from_vec_lemma #n =
to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n)
false
FStar.Int.fst
FStar.Int.zero_from_vec_lemma
val zero_from_vec_lemma: #n:pos -> Lemma (requires True) (ensures from_vec (zero_vec #n) = zero n) [SMTPat (from_vec (zero_vec #n))]
val zero_from_vec_lemma: #n:pos -> Lemma (requires True) (ensures from_vec (zero_vec #n) = zero n) [SMTPat (from_vec (zero_vec #n))]
let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n)
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 77, "end_line": 85, "start_col": 0, "start_line": 85 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Pervasives.Lemma (ensures FStar.Int.from_vec FStar.BitVector.zero_vec = FStar.Int.zero n) [SMTPat (FStar.Int.from_vec FStar.BitVector.zero_vec)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.to_vec_lemma_2", "FStar.Int.from_vec", "FStar.BitVector.zero_vec", "FStar.Int.zero", "Prims.unit" ]
[]
true
false
true
false
false
let zero_from_vec_lemma #n =
to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n)
false
Main.fst
Main.go
val go: Prims.unit -> ML unit
val go: Prims.unit -> ML unit
let go () : ML unit = (* Parse command-line options. This action is only accumulating values into globals, without any further action (other than --help and --version, which interrupt the execution.) *) let cmd_line_files = Options.parse_cmd_line() in let cfg_opt = Deps.get_config () in (* Special mode: --check_inplace_hashes *) let inplace_hashes = Options.get_check_inplace_hashes () in if Cons? inplace_hashes then Batch.check_inplace_hashes inplace_hashes else let micro_step = Options.get_micro_step () in if micro_step = Some HashingOptions.MicroStepEmitConfig then ( emit_config_as_fstar_module (); exit 0 ) else if micro_step = Some HashingOptions.MicroStepCopyClangFormat then (* Special mode: --__micro_step copy_clang_format *) let _ = Batch.copy_clang_format (Options.get_output_dir ()) in exit 0 else if micro_step = Some HashingOptions.MicroStepCopyEverParseH then (* Special mode: --__micro_step copy_everparse_h *) let _ = Batch.copy_everparse_h (Options.get_clang_format ()) (Options.get_clang_format_executable ()) (Options.get_input_stream_binding ()) (Options.get_output_dir ()) in exit 0 else (* for other modes, a nonempty list of files is needed on the command line, so if none are there, then we shall print the help message *) let input_stream_binding = Options.get_input_stream_binding () in if Nil? cmd_line_files then let _ = Options.display_usage () in exit 1 else let out_dir = Options.get_output_dir () in (* Special mode: --__micro_step *) match micro_step with | Some step -> let f = match step with | HashingOptions.MicroStepExtract -> Batch.extract_fst_file | HashingOptions.MicroStepVerify -> Batch.verify_fst_file in List.iter (f input_stream_binding out_dir) cmd_line_files | None -> (* Special mode: --makefile" *) match Options.get_makefile () with | Some t -> GenMakefile.write_makefile t input_stream_binding (not (Options.get_no_everparse_h ())) (Options.get_emit_output_types_defs ()) (Options.get_skip_o_rules ()) (Options.get_clang_format ()) cmd_line_files | None -> (* Special mode: --__produce_c_from_existing_krml *) if Options.get_produce_c_from_existing_krml () then let _ = List.iter (produce_and_postprocess_c out_dir) cmd_line_files in FStar.IO.print_string "EverParse succeeded!\n" else (* for other modes, the list of files provided on the command line is assumed to be a list of .3d files, and the list of all .3d files in dependency order has to be inferred from the list of .3d input files provided by the user, unless --__skip_deps is provided *) let all_files = if Options.get_skip_deps () then List.Tot.rev cmd_line_files (* files are accumulated in reverse on the command line *) else Deps.collect_and_sort_dependencies cmd_line_files in let all_files_and_modules = List.map (fun file -> (file, Options.get_module_name file)) all_files in (* Special mode: --check_hashes *) let check_hashes = Options.get_check_hashes () in if Some? check_hashes then Batch.check_all_hashes (Some?.v check_hashes) out_dir all_files_and_modules else (* Special mode: --emit_smt_encoding *) if Options.get_emit_smt_encoding () then produce_z3 all_files_and_modules else (* Default mode: process .3d files *) let batch = Options.get_batch () in let should_emit_fstar_code : string -> ML bool = let cmd_line_modules = List.map Options.get_module_name cmd_line_files in fun modul -> batch || List.Tot.mem modul cmd_line_modules in let process : process_files_t = (* Special mode: --test_checker *) let test_checker = Options.get_test_checker () in if Some? test_checker then produce_test_checker_exe batch out_dir (Some?.v test_checker) else (* Special mode: --z3_diff_test *) let z3_diff_test = Options.get_z3_diff_test () in if Some? z3_diff_test then produce_z3_and_diff_test batch out_dir (Some?.v z3_diff_test) else (* Special mode: --z3_test *) let z3_test = Options.get_z3_test () in if Some? z3_test then produce_z3_and_test batch out_dir (Some?.v z3_test) else process_files in match process all_files_and_modules should_emit_fstar_code (Options.get_emit_output_types_defs ()) with | None -> () | Some finalize -> (* we need to pretty-print source modules in all cases, regardless of --batch, because of the Makefile scenario *) (* * pretty print only the modules we emitted code for *) Batch.pretty_print_source_modules input_stream_binding out_dir (List.filter (fun (_, m) -> should_emit_fstar_code m) all_files_and_modules); (* Sub-mode of the default mode: --batch *) let _ = if batch then let _ = Batch.postprocess_fst input_stream_binding (Options.get_emit_output_types_defs ()) (Options.get_add_include ()) (Options.get_clang_format ()) (Options.get_clang_format_executable ()) (Options.get_skip_c_makefiles ()) (Options.get_cleanup ()) (Options.get_no_everparse_h ()) (Options.get_save_hashes ()) out_dir all_files_and_modules in FStar.IO.print_string "EverParse succeeded!\n" else (* If --batch is not set, then we also need to postprocess the wrappers and assertions (copyright header and clang-format) *) Batch.postprocess_wrappers input_stream_binding (Options.get_clang_format ()) (Options.get_clang_format_executable ()) out_dir all_files_and_modules in finalize ()
{ "file_name": "src/3d/Main.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 13, "end_line": 727, "start_col": 0, "start_line": 582 }
module Main open FStar.IO open FStar.All open Ast open ParserDriver module T = Target open FStar.ST #push-options "--z3rlimit_factor 2" let open_write_file (s:string) : ML FStar.IO.fd_write = FStar.IO.print_string (FStar.Printf.sprintf "Writing file %s\n" s); FStar.IO.open_write_file s let parse_prog (fn:string) : ML prog = let decls, type_refinement_opt = ParserDriver.parse fn in if decls |> List.tryFind is_entrypoint_or_export |> Some? then decls, type_refinement_opt else raise (Error (Printf.sprintf "File %s does not have an entry point or an exported definition, exiting\n" fn)) noeq type env = { binding_env : Binding.global_env; typesizes_env : TypeSizes.size_env; translate_env : (TranslateForInterpreter.translate_env & InterpreterTarget.env); } let initial_env () : ML env = { binding_env = Binding.initial_global_env (); typesizes_env = TypeSizes.initial_senv (); translate_env = (TranslateForInterpreter.initial_translate_env(), InterpreterTarget.create_env()); } let left (x:either 'a 'b) : ML 'a = match x with | Inl x -> x | _ -> failwith "Expected left" let right (x:either 'a 'b) : ML 'b = match x with | Inr x -> x | _ -> failwith "Expected right" type prune_actions = | PruneActions type opt_prune_actions = option prune_actions let parse_check_and_desugar (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Ast.decl & StaticAssertions.static_asserts & env) = Options.debug_print_string (FStar.Printf.sprintf "Processing file: %s\nModule name: %s\n" fn mname); let decls, refinement = let p = parse_prog fn in if pa = Some PruneActions then prog_prune_actions p else p in Options.debug_print_string "=============After parsing=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, refinement = Desugar.desugar en.binding_env mname (decls, refinement) in Options.debug_print_string "=============After desugaring=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls, benv = Binding.bind_decls en.binding_env decls in Options.debug_print_string "=============After binding=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; if Options.get_json() then ( IO.print_string (JSON.prog_to_json (decls, refinement)); IO.print_string "\n" ); let decls = BitFields.eliminate_decls benv decls in Options.debug_print_string "=============After bitflds=============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = TypeSizes.size_of_decls benv en.typesizes_env decls in Options.debug_print_string "=============Finished typesizes pass=============\n"; let static_asserts = StaticAssertions.compute_static_asserts benv en.typesizes_env refinement in Options.debug_print_string "=============Finished static asserts pass=============\n"; let decls = Simplify.simplify_prog benv en.typesizes_env decls in Options.debug_print_string "=============After simplify============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let decls = InlineSingletonRecords.simplify_prog decls in Options.debug_print_string "=============After inline singletons============\n"; Options.debug_print_string (print_decls decls); Options.debug_print_string "\n"; let en = { en with binding_env = benv } in decls, static_asserts, en let translate_module (pa: opt_prune_actions) (en:env) (mname:string) (fn:string) : ML (list Target.decl & list InterpreterTarget.decl & StaticAssertions.static_asserts & env) = let decls, static_asserts, en = parse_check_and_desugar pa en mname fn in let t_decls, i_decls, tenv = let env, env' = en.translate_env in let decls, env = TranslateForInterpreter.translate_decls en.binding_env en.typesizes_env env decls in let tds = InterpreterTarget.translate_decls env' decls in decls, tds, (env, env') in let en = { en with translate_env = tenv } in t_decls, i_decls, static_asserts, en let emit_fstar_code_for_interpreter (en:env) (modul:string) (tds:list T.decl) (itds:list InterpreterTarget.decl) (all_modules:list string) : ML unit = let _, en = en.translate_env in let impl, iface = InterpreterTarget.print_decls en modul itds in let has_external_types = T.has_output_types tds || T.has_extern_types tds in if has_external_types then begin let external_types_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalTypes.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_types_fsti_file (Target.print_external_types_fstar_interpreter modul tds); FStar.IO.close_write_file external_types_fsti_file end; let has_external_api = T.has_external_api tds in if has_external_api then begin let external_api_fsti_file = open_write_file (Printf.sprintf "%s/%s.ExternalAPI.fsti" (Options.get_output_dir ()) modul) in FStar.IO.write_string external_api_fsti_file (Target.print_external_api_fstar_interpreter modul tds); FStar.IO.close_write_file external_api_fsti_file end; let maybe_open_external_api = if has_external_api then Printf.sprintf "open %s.ExternalAPI" modul else "" in let module_prefix = FStar.Printf.sprintf "module %s\n\ open EverParse3d.Prelude\n\ open EverParse3d.Actions.All\n\ open EverParse3d.Interpreter\n\ %s\n\ module T = FStar.Tactics\n\ module A = EverParse3d.Actions.All\n\ module P = EverParse3d.Prelude\n\ #push-options \"--fuel 0 --ifuel 0\"\n\ #push-options \"--using_facts_from 'Prims FStar.UInt FStar.UInt8 \ FStar.UInt16 FStar.UInt32 FStar.UInt64 \ EverParse3d FStar.Int.Cast %s'\"\n" modul maybe_open_external_api (all_modules |> String.concat " ") in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir()) modul) in FStar.IO.write_string fst_file module_prefix; FStar.IO.write_string fst_file impl; FStar.IO.close_write_file fst_file; let fsti_file = open_write_file (Printf.sprintf "%s/%s.fsti" (Options.get_output_dir()) modul) in FStar.IO.write_string fsti_file module_prefix; FStar.IO.write_string fsti_file iface; FStar.IO.close_write_file fsti_file; () let emit_entrypoint (produce_ep_error: Target.opt_produce_everparse_error) (en:env) (modul:string) (t_decls:list Target.decl) (static_asserts:StaticAssertions.static_asserts) (emit_output_types_defs:bool) : ML unit = //print wrapper only if there is an entrypoint if List.tryFind (fun (d, _) -> let open Target in match d with | Type_decl td -> td.decl_name.td_entrypoint | _ -> false) t_decls |> Some? then begin let wrapper_header, wrapper_impl = Target.print_c_entry produce_ep_error modul en.binding_env t_decls in let c_file = open_write_file (Printf.sprintf "%s/%sWrapper.c" (Options.get_output_dir()) modul) in FStar.IO.write_string c_file wrapper_impl; FStar.IO.close_write_file c_file; let h_file = open_write_file (Printf.sprintf "%s/%sWrapper.h" (Options.get_output_dir()) modul) in FStar.IO.write_string h_file wrapper_header; FStar.IO.close_write_file h_file end; let has_output_types = T.has_output_types t_decls in let has_out_exprs = T.has_output_type_exprs t_decls in let has_extern_types = T.has_extern_types t_decls in (* * If there are output types in the module * and emit_output_types_defs flag is set, * then emit output type definitions in M_OutputTypesDefs.h *) if emit_output_types_defs then begin if has_output_types then begin let output_types_defs_file = open_write_file (Printf.sprintf "%s/%s_OutputTypesDefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_defs_file (Target.print_output_types_defs modul t_decls); FStar.IO.close_write_file output_types_defs_file end; (* * Optimization: If the module has no extern types, * then M_ExternalTypedefs.h, that we require the programmer to provide, * only contains output type defs * * So generate M_ExteralTypedefs.h, with #include of M_OutputTypesDefs.h *) if has_output_types && not has_extern_types then begin let extern_typedefs_file = open_write_file (Printf.sprintf "%s/%s_ExternalTypedefs.h" (Options.get_output_dir ()) modul) in FStar.IO.write_string extern_typedefs_file (Printf.sprintf "#ifndef __%s_ExternalTypedefs_H\n\ #define __%s_ExternalTypedefs_H\n #if defined(__cplusplus)\n\ extern \"C\" {\n\ #endif\n\n\n\ %s#include \"%s_OutputTypesDefs.h\"\n\n\ #if defined(__cplusplus)\n\ }\n\ #endif\n\n\ #define __%s_ExternalTypedefs_H_DEFINED\n\ #endif\n" modul modul (Options.make_includes ()) modul modul); FStar.IO.close_write_file extern_typedefs_file end end; // (* // * Optimization: If M only has extern functions, and no types, // * then the external typedefs file is trivially empty // *) // if has_extern_fns && not (has_out_exprs || has_extern_types) // then begin // let extern_typedefs_file = open_write_file // (Printf.sprintf "%s/%s_ExternalTypedefs.h" // (Options.get_output_dir ()) // modul) in // FStar.IO.write_string extern_typedefs_file "\n"; // FStar.IO.close_write_file extern_typedefs_file // end; if has_out_exprs then begin let output_types_c_file = open_write_file (Printf.sprintf "%s/%s_OutputTypes.c" (Options.get_output_dir ()) modul) in FStar.IO.write_string output_types_c_file (Target.print_out_exprs_c modul t_decls); FStar.IO.close_write_file output_types_c_file end; if StaticAssertions.has_static_asserts static_asserts then begin let c_static_asserts_file = open_write_file (Printf.sprintf "%s/%sStaticAssertions.c" (Options.get_output_dir()) modul) in FStar.IO.write_string c_static_asserts_file (StaticAssertions.print_static_asserts static_asserts); FStar.IO.close_write_file c_static_asserts_file end let process_file_gen (produce_ep_error: Target.opt_produce_everparse_error) (pa: opt_prune_actions) (en:env) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs:bool) (all_modules:list string) : ML (env & list InterpreterTarget.decl) = let t_decls, interpreter_decls, static_asserts, en = translate_module pa en modul fn in if emit_fstar then ( emit_fstar_code_for_interpreter en modul t_decls interpreter_decls all_modules; emit_entrypoint produce_ep_error en modul t_decls static_asserts emit_output_types_defs ) else IO.print_string (Printf.sprintf "Not emitting F* code for %s\n" fn); let ds = Binding.get_exported_decls en.binding_env modul in TypeSizes.finish_module en.typesizes_env modul ds; { en with binding_env = Binding.finish_module en.binding_env modul; translate_env = en.translate_env; }, interpreter_decls let process_file (en:env) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs: bool) (all_modules:list string) : ML env = fst (process_file_gen None None en fn modul emit_fstar emit_output_types_defs all_modules) let emit_config_as_fstar_module () : ML unit = match Deps.get_config () with | Some (cfg, config_module_name) -> let fst_file_contents = Config.emit_config_as_fstar_module config_module_name cfg in let fst_file = open_write_file (Printf.sprintf "%s/%s.fst" (Options.get_output_dir()) config_module_name) in FStar.IO.write_string fst_file fst_file_contents; FStar.IO.close_write_file fst_file | _ -> () let process_files_gen (#env: Type) (initial_env: unit -> ML env) (files_and_modules:list (string & string)) (emit_fstar:option (string -> ML bool)) (emit_output_types_defs:bool) (process_file: (env -> string -> string -> bool -> bool -> list string -> ML env)) : ML env = IO.print_string (Printf.sprintf "Processing files: %s\n" (List.map fst files_and_modules |> String.concat " ")); let all_modules = List.map snd files_and_modules in let env = initial_env () in if Some? emit_fstar then if Options.get_batch() then emit_config_as_fstar_module(); files_and_modules |> List.fold_left (fun env (fn, modul) -> process_file env fn modul (match emit_fstar with Some f -> f modul | _ -> false) emit_output_types_defs all_modules) env let process_files_t = (files_and_modules:list (string & string)) -> (emit_fstar:string -> ML bool) -> (emit_output_types_defs:bool) -> ML (option (unit -> ML unit)) let process_files : process_files_t = fun files_and_modules emit_fstar emit_output_types_defs -> process_files_gen initial_env files_and_modules (Some emit_fstar) emit_output_types_defs process_file |> ignore; (Some (fun _ -> ())) let process_file_for_z3 (out: string -> ML unit) (en_accu:(env & Z3TestGen.prog)) (fn:string) (modul:string) (emit_fstar:bool) (emit_output_types_defs:bool) (all_modules:list string) : ML (env & Z3TestGen.prog) = let (en, accu) = en_accu in let (en, interpreter_decls) = process_file_gen (Some Target.ProduceEverParseError) (Some PruneActions) en fn modul emit_fstar emit_output_types_defs all_modules in let accu = Z3TestGen.produce_decls out accu interpreter_decls in (en, accu) let process_files_for_z3 (out: string -> ML unit) (files_and_modules:list (string & string)) (emit_fstar:option (string -> ML bool)) (emit_output_types_defs:bool) : ML Z3TestGen.prog = out Z3TestGen.prelude; process_files_gen (fun _ -> initial_env (), []) files_and_modules emit_fstar emit_output_types_defs (process_file_for_z3 out) |> snd let produce_z3 (files_and_modules:list (string & string)) : ML unit = ignore (process_files_for_z3 FStar.IO.print_string files_and_modules None false) let build_test_exe (out_dir: string) : ML unit = if not (Options.get_skip_c_makefiles ()) then begin OS.run_cmd "make" ["-C"; out_dir; "-f"; "Makefile.basic"; "USER_TARGET=test.exe"; "USER_CFLAGS=-Wno-type-limits"] end let build_and_run_test_exe (out_dir: string) : ML unit = if not (Options.get_skip_c_makefiles ()) then begin build_test_exe out_dir; OS.run_cmd (OS.concat out_dir "test.exe") [] end let with_z3_thread_or (batch: bool) (out_dir: string) (debug: bool) (transcript: option string) (f: (Z3.z3 -> ML unit)) : ML (option (unit -> ML unit)) = if batch then let thr = Z3.with_z3_thread debug transcript f in Some (fun _ -> Z3.wait_for_z3_thread thr; build_and_run_test_exe out_dir ) else begin Z3.with_z3 debug transcript f; None end let produce_z3_and_test_gen (batch: bool) (out_dir: string) (do_test: option string -> int -> Z3TestGen.prog -> Z3.z3 -> ML unit) : Tot process_files_t = fun (files_and_modules:list (string & string)) (emit_fstar:string -> ML bool) (emit_output_types_defs:bool) -> let nbwitnesses = Options.get_z3_witnesses () in let buf : ref string = alloc "" in let prog = process_files_for_z3 (fun s -> buf := !buf ^ s) files_and_modules (if batch then Some emit_fstar else None) emit_output_types_defs in with_z3_thread_or batch out_dir (Options.get_debug ()) (Options.get_save_z3_transcript ()) (fun z3 -> z3.to_z3 !buf; do_test (if batch then Some (OS.concat out_dir "testcases.c") else None) nbwitnesses prog z3 ) let produce_z3_and_test (batch: bool) (out_dir: string) (name: string) : Tot process_files_t = produce_z3_and_test_gen batch out_dir (fun out_file nbwitnesses prog z3 -> Z3TestGen.do_test out_dir out_file z3 prog name nbwitnesses (Options.get_z3_branch_depth ()) (Options.get_z3_pos_test ()) (Options.get_z3_neg_test ()) ) let produce_z3_and_diff_test (batch: bool) (out_dir: string) (names: (string & string)) : Tot process_files_t = let (name1, name2) = names in produce_z3_and_test_gen batch out_dir (fun out_file nbwitnesses prog z3 -> Z3TestGen.do_diff_test out_dir out_file z3 prog name1 name2 nbwitnesses (Options.get_z3_branch_depth ()) ) let produce_test_checker_exe (batch: bool) (out_dir: string) (name1: string) : Tot process_files_t = fun (files_and_modules:list (string & string)) (emit_fstar:string -> ML bool) (emit_output_types_defs:bool) -> let prog = process_files_for_z3 (fun _ -> ()) files_and_modules (if batch then Some emit_fstar else None) emit_output_types_defs in Z3TestGen.produce_test_checker_exe (OS.concat out_dir "testcases.c") prog name1; Some (fun _ -> if batch then build_test_exe out_dir ) let produce_and_postprocess_c (out_dir: string) (file: string) : ML unit = let modul = Options.get_module_name file in let deps = Deps.collect_and_sort_dependencies [file] in let dep_files_and_modules = List.map (fun f -> (f, Options.get_module_name f)) deps in (* remove the current module from the deps *) let dep_files_and_modules = List.filter (fun (_, m) -> m <> modul) dep_files_and_modules in Batch.produce_and_postprocess_one_c (Options.get_input_stream_binding ()) (Options.get_emit_output_types_defs ()) (Options.get_add_include ()) (Options.get_clang_format ()) (Options.get_clang_format_executable ()) out_dir file modul dep_files_and_modules
{ "checked_file": "/", "dependencies": [ "Z3TestGen.fst.checked", "Z3.fsti.checked", "TypeSizes.fsti.checked", "TranslateForInterpreter.fsti.checked", "Target.fsti.checked", "StaticAssertions.fst.checked", "Simplify.fsti.checked", "prims.fst.checked", "ParserDriver.fsti.checked", "OS.fsti.checked", "Options.fsti.checked", "JSON.fsti.checked", "InterpreterTarget.fsti.checked", "InlineSingletonRecords.fst.checked", "HashingOptions.fst.checked", "GenMakefile.fsti.checked", "FStar.String.fsti.checked", "FStar.ST.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked", "Desugar.fst.checked", "Deps.fsti.checked", "Config.fst.checked", "BitFields.fst.checked", "Binding.fsti.checked", "Batch.fsti.checked", "Ast.fst.checked" ], "interface_file": false, "source_file": "Main.fst" }
[ { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": true, "full_module": "Target", "short_module": "T" }, { "abbrev": false, "full_module": "ParserDriver", "short_module": null }, { "abbrev": false, "full_module": "Ast", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.unit", "Prims.uu___is_Cons", "Prims.string", "Batch.check_inplace_hashes", "Prims.bool", "Prims.op_Equality", "FStar.Pervasives.Native.option", "HashingOptions.micro_step_t", "FStar.Pervasives.Native.Some", "HashingOptions.MicroStepEmitConfig", "FStar.All.exit", "Main.emit_config_as_fstar_module", "HashingOptions.MicroStepCopyClangFormat", "Batch.copy_clang_format", "Options.get_output_dir", "HashingOptions.MicroStepCopyEverParseH", "Batch.copy_everparse_h", "HashingOptions.input_stream_binding_t", "Options.get_input_stream_binding", "Options.get_clang_format_executable", "Options.get_clang_format", "Prims.uu___is_Nil", "Options.display_usage", "FStar.List.iter", "Batch.extract_fst_file", "Batch.verify_fst_file", "HashingOptions.makefile_type", "GenMakefile.write_makefile", "Options.get_skip_o_rules", "Options.get_emit_output_types_defs", "Prims.op_Negation", "Options.get_no_everparse_h", "FStar.IO.print_string", "Main.produce_and_postprocess_c", "FStar.Pervasives.Native.uu___is_Some", "HashingOptions.check_hashes_t", "Batch.check_all_hashes", "FStar.Pervasives.Native.__proj__Some__item__v", "Main.produce_z3", "Batch.postprocess_fst", "Options.get_save_hashes", "Options.get_cleanup", "Options.get_skip_c_makefiles", "Prims.list", "Options.get_add_include", "Batch.postprocess_wrappers", "Batch.pretty_print_source_modules", "FStar.Pervasives.Native.tuple2", "FStar.List.filter", "Main.process_files_t", "Main.produce_test_checker_exe", "Main.produce_z3_and_diff_test", "Main.produce_z3_and_test", "Main.process_files", "Options.get_z3_test", "Options.get_z3_diff_test", "Options.get_test_checker", "Prims.op_BarBar", "FStar.List.Tot.Base.mem", "FStar.List.map", "Options.get_module_name", "Options.get_batch", "Options.get_emit_smt_encoding", "Options.get_check_hashes", "FStar.Pervasives.Native.Mktuple2", "FStar.List.Tot.Base.rev", "Deps.collect_and_sort_dependencies", "Options.get_skip_deps", "Options.get_produce_c_from_existing_krml", "Options.get_makefile", "Options.get_micro_step", "Options.get_check_inplace_hashes", "Config.config", "Deps.get_config", "Options.parse_cmd_line" ]
[]
false
true
false
false
false
let go () : ML unit =
let cmd_line_files = Options.parse_cmd_line () in let cfg_opt = Deps.get_config () in let inplace_hashes = Options.get_check_inplace_hashes () in if Cons? inplace_hashes then Batch.check_inplace_hashes inplace_hashes else let micro_step = Options.get_micro_step () in if micro_step = Some HashingOptions.MicroStepEmitConfig then (emit_config_as_fstar_module (); exit 0) else if micro_step = Some HashingOptions.MicroStepCopyClangFormat then let _ = Batch.copy_clang_format (Options.get_output_dir ()) in exit 0 else if micro_step = Some HashingOptions.MicroStepCopyEverParseH then let _ = Batch.copy_everparse_h (Options.get_clang_format ()) (Options.get_clang_format_executable ()) (Options.get_input_stream_binding ()) (Options.get_output_dir ()) in exit 0 else let input_stream_binding = Options.get_input_stream_binding () in if Nil? cmd_line_files then let _ = Options.display_usage () in exit 1 else let out_dir = Options.get_output_dir () in match micro_step with | Some step -> let f = match step with | HashingOptions.MicroStepExtract -> Batch.extract_fst_file | HashingOptions.MicroStepVerify -> Batch.verify_fst_file in List.iter (f input_stream_binding out_dir) cmd_line_files | None -> match Options.get_makefile () with | Some t -> GenMakefile.write_makefile t input_stream_binding (not (Options.get_no_everparse_h ())) (Options.get_emit_output_types_defs ()) (Options.get_skip_o_rules ()) (Options.get_clang_format ()) cmd_line_files | None -> if Options.get_produce_c_from_existing_krml () then let _ = List.iter (produce_and_postprocess_c out_dir) cmd_line_files in FStar.IO.print_string "EverParse succeeded!\n" else let all_files = if Options.get_skip_deps () then List.Tot.rev cmd_line_files else Deps.collect_and_sort_dependencies cmd_line_files in let all_files_and_modules = List.map (fun file -> (file, Options.get_module_name file)) all_files in let check_hashes = Options.get_check_hashes () in if Some? check_hashes then Batch.check_all_hashes (Some?.v check_hashes) out_dir all_files_and_modules else if Options.get_emit_smt_encoding () then produce_z3 all_files_and_modules else let batch = Options.get_batch () in let should_emit_fstar_code: string -> ML bool = let cmd_line_modules = List.map Options.get_module_name cmd_line_files in fun modul -> batch || List.Tot.mem modul cmd_line_modules in let process:process_files_t = let test_checker = Options.get_test_checker () in if Some? test_checker then produce_test_checker_exe batch out_dir (Some?.v test_checker) else let z3_diff_test = Options.get_z3_diff_test () in if Some? z3_diff_test then produce_z3_and_diff_test batch out_dir (Some?.v z3_diff_test) else let z3_test = Options.get_z3_test () in if Some? z3_test then produce_z3_and_test batch out_dir (Some?.v z3_test) else process_files in match process all_files_and_modules should_emit_fstar_code (Options.get_emit_output_types_defs ()) with | None -> () | Some finalize -> Batch.pretty_print_source_modules input_stream_binding out_dir (List.filter (fun (_, m) -> should_emit_fstar_code m) all_files_and_modules); let _ = if batch then let _ = Batch.postprocess_fst input_stream_binding (Options.get_emit_output_types_defs ()) (Options.get_add_include ()) (Options.get_clang_format ()) (Options.get_clang_format_executable ()) (Options.get_skip_c_makefiles ()) (Options.get_cleanup ()) (Options.get_no_everparse_h ()) (Options.get_save_hashes ()) out_dir all_files_and_modules in FStar.IO.print_string "EverParse succeeded!\n" else Batch.postprocess_wrappers input_stream_binding (Options.get_clang_format ()) (Options.get_clang_format_executable ()) out_dir all_files_and_modules in finalize ()
false
FStar.Int.fst
FStar.Int.zero_to_vec_lemma
val zero_to_vec_lemma: #n:pos -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (zero n)) i = index (zero_vec #n) i) [SMTPat (index (to_vec (zero n)) i)]
val zero_to_vec_lemma: #n:pos -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (zero n)) i = index (zero_vec #n) i) [SMTPat (index (to_vec (zero n)) i)]
let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 83, "start_col": 0, "start_line": 82 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Int.to_vec (FStar.Int.zero n)) i = FStar.Seq.Base.index FStar.BitVector.zero_vec i) [SMTPat (FStar.Seq.Base.index (FStar.Int.to_vec (FStar.Int.zero n)) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.bool", "FStar.Int.zero_to_vec_lemma", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec zero_to_vec_lemma #n i =
if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i
false
FStar.Int.fst
FStar.Int.pow2_from_vec_lemma
val pow2_from_vec_lemma: #n:pos -> p:pos{p < n-1} -> Lemma (requires True) (ensures from_vec (elem_vec #n p) = pow2_n #n (n - p - 1)) [SMTPat (from_vec (elem_vec #n p))]
val pow2_from_vec_lemma: #n:pos -> p:pos{p < n-1} -> Lemma (requires True) (ensures from_vec (elem_vec #n p) = pow2_n #n (n - p - 1)) [SMTPat (from_vec (elem_vec #n p))]
let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1))
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 98, "start_col": 0, "start_line": 97 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.pos{p < n - 1} -> FStar.Pervasives.Lemma (ensures FStar.Int.from_vec (FStar.BitVector.elem_vec p) = FStar.Int.pow2_n (n - p - 1)) [SMTPat (FStar.Int.from_vec (FStar.BitVector.elem_vec p))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Int.to_vec_lemma_2", "FStar.Int.from_vec", "FStar.BitVector.elem_vec", "FStar.Int.pow2_n", "Prims.unit" ]
[]
true
false
true
false
false
let pow2_from_vec_lemma #n p =
to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1))
false
FStar.Int.fst
FStar.Int.nth_lemma
val nth_lemma: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires forall (i:nat{i < n}). nth a i = nth b i) (ensures a = b)
val nth_lemma: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires forall (i:nat{i < n}). nth a i = nth b i) (ensures a = b)
let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 20, "end_line": 107, "start_col": 0, "start_line": 105 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> FStar.Pervasives.Lemma (requires forall (i: Prims.nat{i < n}). FStar.Int.nth a i = FStar.Int.nth b i) (ensures a = b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.to_vec_lemma_2", "Prims.unit", "Prims._assert", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.bool", "FStar.Seq.Base.index", "FStar.Int.to_vec" ]
[]
false
false
true
false
false
let nth_lemma #n a b =
assert (forall (i: nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b
false
FStar.Int.fst
FStar.Int.inverse_aux
val inverse_aux: #n:nat -> vec:bv_t n -> i:nat{i < n} -> Lemma (requires True) (ensures index vec i = index (to_vec (from_vec vec)) i) [SMTPat (index (to_vec (from_vec vec)) i)]
val inverse_aux: #n:nat -> vec:bv_t n -> i:nat{i < n} -> Lemma (requires True) (ensures index vec i = index (to_vec (from_vec vec)) i) [SMTPat (index (to_vec (from_vec vec)) i)]
let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 51, "end_line": 71, "start_col": 0, "start_line": 68 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: FStar.BitVector.bv_t n -> i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index vec i = FStar.Seq.Base.index (FStar.Int.to_vec (FStar.Int.from_vec vec)) i) [SMTPat (FStar.Seq.Base.index (FStar.Int.to_vec (FStar.Int.from_vec vec)) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.BitVector.bv_t", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims._assert", "Prims.op_Modulus", "FStar.Int.from_vec", "FStar.Seq.Base.index", "Prims.bool", "FStar.Int.inverse_aux", "FStar.Seq.Base.slice", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec inverse_aux #n vec i =
if i = n - 1 then assert ((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i
false
FStar.Int.fst
FStar.Int.pow2_to_vec_lemma
val pow2_to_vec_lemma: #n:pos -> p:nat{p < n-1} -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (pow2_n #n p)) i = index (elem_vec #n (n - p - 1)) i) [SMTPat (index (to_vec (pow2_n #n p)) i)]
val pow2_to_vec_lemma: #n:pos -> p:nat{p < n-1} -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (pow2_n #n p)) i = index (elem_vec #n (n - p - 1)) i) [SMTPat (index (to_vec (pow2_n #n p)) i)]
let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 94, "start_col": 0, "start_line": 91 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.nat{p < n - 1} -> i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.Int.to_vec (FStar.Int.pow2_n p)) i = FStar.Seq.Base.index (FStar.BitVector.elem_vec (n - p - 1)) i) [SMTPat (FStar.Seq.Base.index (FStar.Int.to_vec (FStar.Int.pow2_n p)) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Int.one_to_vec_lemma", "FStar.Int.pow2_to_vec_lemma", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec pow2_to_vec_lemma #n p i =
if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i
false
FStar.Int.fst
FStar.Int.logand_associative
val logand_associative: #n:pos -> a:int_t n -> b:int_t n -> c:int_t n -> Lemma (logand #n (logand #n a b) c = logand #n a (logand #n b c))
val logand_associative: #n:pos -> a:int_t n -> b:int_t n -> c:int_t n -> Lemma (logand #n (logand #n a b) c = logand #n a (logand #n b c))
let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c))
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 74, "end_line": 126, "start_col": 0, "start_line": 125 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> c: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logand (FStar.Int.logand a b) c = FStar.Int.logand a (FStar.Int.logand b c))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logand", "Prims.unit" ]
[]
true
false
true
false
false
let logand_associative #n a b c =
nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c))
false
FStar.Int.fst
FStar.Int.logand_self
val logand_self: #n:pos -> a:int_t n -> Lemma (logand #n a a = a)
val logand_self: #n:pos -> a:int_t n -> Lemma (logand #n a a = a)
let logand_self #n a = nth_lemma #n (logand #n a a) a
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 128, "start_col": 0, "start_line": 128 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logand a a = a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logand", "Prims.unit" ]
[]
true
false
true
false
false
let logand_self #n a =
nth_lemma #n (logand #n a a) a
false
FStar.Int.fst
FStar.Int.logand_commutative
val logand_commutative: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires True) (ensures (logand #n a b = logand #n b a))
val logand_commutative: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires True) (ensures (logand #n a b = logand #n b a))
let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a)
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 76, "end_line": 123, "start_col": 0, "start_line": 123 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logand a b = FStar.Int.logand b a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logand", "Prims.unit" ]
[]
true
false
true
false
false
let logand_commutative #n a b =
nth_lemma #n (logand #n a b) (logand #n b a)
false
FStar.Int.fst
FStar.Int.logand_lemma_1
val logand_lemma_1: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logand #n a (zero n) = zero n))
val logand_lemma_1: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logand #n a (zero n) = zero n))
let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n)
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 46, "end_line": 131, "start_col": 0, "start_line": 130 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logand a (FStar.Int.zero n) = FStar.Int.zero n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logand", "FStar.Int.zero", "Prims.unit" ]
[]
true
false
true
false
false
let logand_lemma_1 #n a =
nth_lemma #n (logand #n a (zero n)) (zero n)
false
FStar.Int.fst
FStar.Int.logand_pos_le
val logand_pos_le: #n:pos{1 < n} -> a:int_t n{0 <= a} -> b:int_t n{0 <= b} -> Lemma (0 <= logand a b /\ logand a b <= a /\ logand a b <= b)
val logand_pos_le: #n:pos{1 < n} -> a:int_t n{0 <= a} -> b:int_t n{0 <= b} -> Lemma (0 <= logand a b /\ logand a b <= a /\ logand a b <= b)
let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b)
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 143, "start_col": 0, "start_line": 142 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n {0 <= a} -> b: FStar.Int.int_t n {0 <= b} -> FStar.Pervasives.Lemma (ensures 0 <= FStar.Int.logand a b /\ FStar.Int.logand a b <= a /\ FStar.Int.logand a b <= b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "FStar.Int.int_t", "Prims.op_LessThanOrEqual", "FStar.UInt.logand_le", "FStar.Int.to_uint", "Prims.unit" ]
[]
true
false
true
false
false
let logand_pos_le #n a b =
UInt.logand_le (to_uint a) (to_uint b)
false
FStar.Int.fst
FStar.Int.logand_lemma_2
val logand_lemma_2: #n:pos -> a:int_t n -> Lemma (logand #n a (ones n) = a)
val logand_lemma_2: #n:pos -> a:int_t n -> Lemma (logand #n a (ones n) = a)
let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 134, "start_col": 0, "start_line": 133 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logand a (FStar.Int.ones n) = a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logand", "FStar.Int.ones", "Prims.unit" ]
[]
true
false
true
false
false
let logand_lemma_2 #n a =
nth_lemma #n (logand #n a (ones n)) a
false
FStar.Int.fst
FStar.Int.logxor_self
val logxor_self: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logxor #n a a = zero n))
val logxor_self: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logxor #n a a = zero n))
let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n)
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 60, "end_line": 159, "start_col": 0, "start_line": 159 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logxor a a = FStar.Int.zero n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logxor", "FStar.Int.zero", "Prims.unit" ]
[]
true
false
true
false
false
let logxor_self #n a =
nth_lemma #n (logxor #n a a) (zero n)
false
FStar.Int.fst
FStar.Int.logand_pow2_minus_one
val logand_pow2_minus_one: #n:pos{1 < n} -> a:int_t n -> m:pos{m < n} -> Lemma (0 <= logand a (pow2_minus_one m) /\ logand a (pow2_minus_one m) <= pow2_minus_one #n m)
val logand_pow2_minus_one: #n:pos{1 < n} -> a:int_t n -> m:pos{m < n} -> Lemma (0 <= logand a (pow2_minus_one m) /\ logand a (pow2_minus_one m) <= pow2_minus_one #n m)
let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m))
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 60, "end_line": 146, "start_col": 0, "start_line": 145 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> m: Prims.pos{m < n} -> FStar.Pervasives.Lemma (ensures 0 <= FStar.Int.logand a (FStar.Int.pow2_minus_one m) /\ FStar.Int.logand a (FStar.Int.pow2_minus_one m) <= FStar.Int.pow2_minus_one m)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "FStar.Int.int_t", "FStar.UInt.logand_le", "FStar.Int.to_uint", "FStar.Int.pow2_minus_one", "Prims.unit" ]
[]
true
false
true
false
false
let logand_pow2_minus_one #n a m =
UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m))
false
FStar.Int.fst
FStar.Int.logxor_associative
val logxor_associative: #n:pos -> a:int_t n -> b:int_t n -> c:int_t n -> Lemma (requires True) (ensures (logxor #n (logxor #n a b) c = logxor #n a (logxor #n b c)))
val logxor_associative: #n:pos -> a:int_t n -> b:int_t n -> c:int_t n -> Lemma (requires True) (ensures (logxor #n (logxor #n a b) c = logxor #n a (logxor #n b c)))
let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c))
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 106, "end_line": 157, "start_col": 0, "start_line": 157 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> c: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logxor (FStar.Int.logxor a b) c = FStar.Int.logxor a (FStar.Int.logxor b c))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logxor", "Prims.unit" ]
[]
true
false
true
false
false
let logxor_associative #n a b c =
nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c))
false
FStar.Int.fst
FStar.Int.logxor_inv
val logxor_inv: #n:pos -> a:int_t n -> b:int_t n -> Lemma (a = logxor #n (logxor #n a b) b)
val logxor_inv: #n:pos -> a:int_t n -> b:int_t n -> Lemma (a = logxor #n (logxor #n a b) b)
let logxor_inv #n a b = UInt.logxor_inv (to_uint a) (to_uint b)
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 166, "start_col": 0, "start_line": 165 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures a = FStar.Int.logxor (FStar.Int.logxor a b) b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.UInt.logxor_inv", "FStar.Int.to_uint", "Prims.unit" ]
[]
true
false
true
false
false
let logxor_inv #n a b =
UInt.logxor_inv (to_uint a) (to_uint b)
false
FStar.Int.fst
FStar.Int.sign_bit_positive
val sign_bit_positive: #n:pos{1 < n} -> a:int_t n -> Lemma (nth a 0 = false <==> 0 <= a)
val sign_bit_positive: #n:pos{1 < n} -> a:int_t n -> Lemma (nth a 0 = false <==> 0 <= a)
let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 140, "start_col": 0, "start_line": 139 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.nth a 0 = false <==> 0 <= a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "FStar.Int.int_t", "FStar.UInt.from_vec_propriety", "FStar.Int.to_vec", "Prims.unit" ]
[]
true
false
true
false
false
let sign_bit_positive #n a =
UInt.from_vec_propriety #n (to_vec a) 1
false
FStar.Int.fst
FStar.Int.sign_bit_negative
val sign_bit_negative: #n:pos{1 < n} -> a:int_t n -> Lemma (nth a 0 = true <==> a < 0)
val sign_bit_negative: #n:pos{1 < n} -> a:int_t n -> Lemma (nth a 0 = true <==> a < 0)
let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 137, "start_col": 0, "start_line": 136 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.nth a 0 = true <==> a < 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "FStar.Int.int_t", "FStar.UInt.from_vec_propriety", "FStar.Int.to_vec", "Prims.unit" ]
[]
true
false
true
false
false
let sign_bit_negative #n a =
UInt.from_vec_propriety #n (to_vec a) 1
false
FStar.Int.fst
FStar.Int.logxor_commutative
val logxor_commutative: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires True) (ensures (logxor #n a b = logxor #n b a))
val logxor_commutative: #n:pos -> a:int_t n -> b:int_t n -> Lemma (requires True) (ensures (logxor #n a b = logxor #n b a))
let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a)
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 76, "end_line": 155, "start_col": 0, "start_line": 155 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logxor a b = FStar.Int.logxor b a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logxor", "Prims.unit" ]
[]
true
false
true
false
false
let logxor_commutative #n a b =
nth_lemma #n (logxor #n a b) (logxor #n b a)
false
FStar.Int.fst
FStar.Int.lognot_negative
val lognot_negative: #n:pos -> a:int_t n -> Lemma (requires a < 0) (ensures lognot a == UInt.lognot #n (a + pow2 n))
val lognot_negative: #n:pos -> a:int_t n -> Lemma (requires a < 0) (ensures lognot a == UInt.lognot #n (a + pow2 n))
let lognot_negative #n a = assert_norm (pow2 n = 2 * pow2 (n - 1)); UInt.lemma_lognot_value_mod #n (a + pow2 n)
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 173, "start_col": 0, "start_line": 171 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let logxor_inv #n a b = UInt.logxor_inv (to_uint a) (to_uint b) let logxor_neq_nonzero #n a b = UInt.logxor_neq_nonzero (to_uint a) (to_uint b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (requires a < 0) (ensures FStar.Int.lognot a == FStar.UInt.lognot (a + Prims.pow2 n))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.UInt.lemma_lognot_value_mod", "Prims.op_Addition", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Mul.op_Star", "Prims.op_Subtraction" ]
[]
true
false
true
false
false
let lognot_negative #n a =
assert_norm (pow2 n = 2 * pow2 (n - 1)); UInt.lemma_lognot_value_mod #n (a + pow2 n)
false
FStar.Int.fst
FStar.Int.logxor_lemma_1
val logxor_lemma_1: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logxor #n a (zero n) = a))
val logxor_lemma_1: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logxor #n a (zero n) = a))
let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 63, "end_line": 161, "start_col": 0, "start_line": 161 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logxor a (FStar.Int.zero n) = a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logxor", "FStar.Int.zero", "Prims.unit" ]
[]
true
false
true
false
false
let logxor_lemma_1 #n a =
nth_lemma #n (logxor #n a (zero n)) a
false
FStar.Int.fst
FStar.Int.logxor_lemma_2
val logxor_lemma_2: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logxor #n a (ones n) = lognot #n a))
val logxor_lemma_2: #n:pos -> a:int_t n -> Lemma (requires True) (ensures (logxor #n a (ones n) = lognot #n a))
let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a)
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 75, "end_line": 163, "start_col": 0, "start_line": 163 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures FStar.Int.logxor a (FStar.Int.ones n) = FStar.Int.lognot a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.Int.nth_lemma", "FStar.Int.logxor", "FStar.Int.ones", "FStar.Int.lognot", "Prims.unit" ]
[]
true
false
true
false
false
let logxor_lemma_2 #n a =
nth_lemma #n (logxor #n a (ones n)) (lognot #n a)
false
FStar.Int.fst
FStar.Int.logxor_neq_nonzero
val logxor_neq_nonzero: #n:pos -> a:int_t n -> b:int_t n -> Lemma (a <> b ==> logxor a b <> 0)
val logxor_neq_nonzero: #n:pos -> a:int_t n -> b:int_t n -> Lemma (a <> b ==> logxor a b <> 0)
let logxor_neq_nonzero #n a b = UInt.logxor_neq_nonzero (to_uint a) (to_uint b)
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 169, "start_col": 0, "start_line": 168 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let logxor_inv #n a b = UInt.logxor_inv (to_uint a) (to_uint b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n -> b: FStar.Int.int_t n -> FStar.Pervasives.Lemma (ensures a <> b ==> FStar.Int.logxor a b <> 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "FStar.UInt.logxor_neq_nonzero", "FStar.Int.to_uint", "Prims.unit" ]
[]
true
false
true
false
false
let logxor_neq_nonzero #n a b =
UInt.logxor_neq_nonzero (to_uint a) (to_uint b)
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.cur_formula
val cur_formula: Prims.unit -> Tac formula
val cur_formula: Prims.unit -> Tac formula
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 64, "end_line": 28, "start_col": 0, "start_line": 28 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Reflection.V2.Formula.formula
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Reflection.V2.Formula.term_as_formula", "FStar.Reflection.V2.Formula.formula", "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.cur_goal", "FStar.Stubs.Reflection.Types.typ" ]
[]
false
true
false
false
false
let cur_formula () : Tac formula =
term_as_formula (cur_goal ())
false
FStar.Int.fst
FStar.Int.shift_left_value_lemma
val shift_left_value_lemma: #n:pos -> a:int_t n{0 <= a} -> s:nat -> Lemma (requires True) (ensures shift_left #n a s = (a * pow2 s) @% pow2 n) [SMTPat (shift_left #n a s)]
val shift_left_value_lemma: #n:pos -> a:int_t n{0 <= a} -> s:nat -> Lemma (requires True) (ensures shift_left #n a s = (a * pow2 s) @% pow2 n) [SMTPat (shift_left #n a s)]
let shift_left_value_lemma #n a s = UInt.shift_left_value_lemma #n a s
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 180, "start_col": 0, "start_line": 179 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m)) #push-options "--z3rlimit_factor 2" let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n)) #pop-options let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let logxor_inv #n a b = UInt.logxor_inv (to_uint a) (to_uint b) let logxor_neq_nonzero #n a b = UInt.logxor_neq_nonzero (to_uint a) (to_uint b) let lognot_negative #n a = assert_norm (pow2 n = 2 * pow2 (n - 1)); UInt.lemma_lognot_value_mod #n (a + pow2 n) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n {0 <= a} -> s: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.Int.shift_left a s = a * Prims.pow2 s @% Prims.pow2 n) [SMTPat (FStar.Int.shift_left a s)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Int.int_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.nat", "FStar.UInt.shift_left_value_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let shift_left_value_lemma #n a s =
UInt.shift_left_value_lemma #n a s
false
Pulse.Checker.AssertWithBinders.fst
Pulse.Checker.AssertWithBinders.option_must
val option_must (f: option 'a) (msg: string) : T.Tac 'a
val option_must (f: option 'a) (msg: string) : T.Tac 'a
let option_must (f:option 'a) (msg:string) : T.Tac 'a = match f with | Some x -> x | None -> T.fail msg
{ "file_name": "lib/steel/pulse/Pulse.Checker.AssertWithBinders.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 22, "end_line": 44, "start_col": 0, "start_line": 41 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.AssertWithBinders open Pulse.Syntax open Pulse.Typing open Pulse.Checker.Base open Pulse.Elaborate.Pure open Pulse.Typing.Env module L = FStar.List.Tot module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module PC = Pulse.Checker.Pure module P = Pulse.Syntax.Printer module N = Pulse.Syntax.Naming module PS = Pulse.Checker.Prover.Substs module Prover = Pulse.Checker.Prover module Env = Pulse.Typing.Env open Pulse.Show module RU = Pulse.RuntimeUtils let is_host_term (t:R.term) = not (R.Tv_Unknown? (R.inspect_ln t)) let debug_log = Pulse.Typing.debug_log "with_binders"
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.Naming.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.Show.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.PP.fst.checked", "Pulse.Elaborate.Pure.fst.checked", "Pulse.Checker.Pure.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.fsti.checked", "Pulse.Checker.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Pprint.fsti.checked", "FStar.String.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.AssertWithBinders.fst" }
[ { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Show", "short_module": null }, { "abbrev": true, "full_module": "Pulse.Typing.Env", "short_module": "Env" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover", "short_module": "Prover" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Naming", "short_module": "N" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Checker.Pure", "short_module": "PC" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse.Typing.Env", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Elaborate.Pure", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: FStar.Pervasives.Native.option 'a -> msg: Prims.string -> FStar.Tactics.Effect.Tac 'a
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Pervasives.Native.option", "Prims.string", "FStar.Tactics.V2.Derived.fail" ]
[]
false
true
false
false
false
let option_must (f: option 'a) (msg: string) : T.Tac 'a =
match f with | Some x -> x | None -> T.fail msg
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.l_revert
val l_revert: Prims.unit -> Tac unit
val l_revert: Prims.unit -> Tac unit
let l_revert () : Tac unit = revert (); apply (`revert_squash)
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 38, "start_col": 0, "start_line": 36 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.apply", "FStar.Stubs.Tactics.V2.Builtins.revert" ]
[]
false
true
false
false
false
let l_revert () : Tac unit =
revert (); apply (`revert_squash)
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.fa_intro_lem
val fa_intro_lem (#a: Type) (#p: (a -> Type)) (f: (x: a -> squash (p x))) : Lemma (forall (x: a). p x)
val fa_intro_lem (#a: Type) (#p: (a -> Type)) (f: (x: a -> squash (p x))) : Lemma (forall (x: a). p x)
let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 85, "end_line": 48, "start_col": 8, "start_line": 46 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (x: a -> Prims.squash (p x)) -> FStar.Pervasives.Lemma (ensures forall (x: a). p x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.squash", "FStar.Classical.lemma_forall_intro_gtot", "FStar.IndefiniteDescription.elim_squash", "Prims.unit", "Prims.l_True", "Prims.l_Forall", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let fa_intro_lem (#a: Type) (#p: (a -> Type)) (f: (x: a -> squash (p x))) : Lemma (forall (x: a). p x) =
FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x: a -> GTot (p x)))
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.forall_intro
val forall_intro: Prims.unit -> Tac binding
val forall_intro: Prims.unit -> Tac binding
let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro ()
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 12, "end_line": 53, "start_col": 0, "start_line": 51 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Stubs.Tactics.V2.Builtins.intro", "FStar.Stubs.Reflection.V2.Data.binding", "FStar.Tactics.V2.Derived.apply_lemma", "FStar.Tactics.NamedView.binding" ]
[]
false
true
false
false
false
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem); intro ()
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.split
val split: Prims.unit -> Tac unit
val split: Prims.unit -> Tac unit
let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal"
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 70, "start_col": 0, "start_line": 68 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.try_with", "FStar.Tactics.V2.Derived.apply_lemma", "Prims.exn", "FStar.Tactics.V2.Derived.fail" ]
[]
false
true
false
false
false
let split () : Tac unit =
try apply_lemma (`split_lem) with | _ -> fail "Could not split goal"
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.forall_intros
val forall_intros: Prims.unit -> Tac (list binding)
val forall_intros: Prims.unit -> Tac (list binding)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 64, "end_line": 61, "start_col": 0, "start_line": 61 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.NamedView.binding)
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.repeat1", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.forall_intro", "Prims.list" ]
[]
false
true
false
false
false
let forall_intros () : Tac (list binding) =
repeat1 forall_intro
false
FStar.Int.fst
FStar.Int.logand_max
val logand_max: #n:pos{1 < n} -> a:int_t n{0 <= a} -> Lemma (0 <= logand a (max_int n) /\ a = logand a (max_int n))
val logand_max: #n:pos{1 < n} -> a:int_t n{0 <= a} -> Lemma (0 <= logand a (max_int n) /\ a = logand a (max_int n))
let logand_max #n a = sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n))
{ "file_name": "ulib/FStar.Int.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 152, "start_col": 0, "start_line": 149 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int (* NOTE: anything that you fix/update here should be reflected in [FStar.UInt.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 let div_underspec #n a b = if fits (a / b) n then a / b else 0 let div_size #n a b = FStar.Math.Lib.slash_decr_axiom (abs a) (abs b) let to_uint_injective #n x = () open FStar.Seq let to_vec_lemma_1 #n a b = () let to_vec_lemma_2 #n a b = UInt.to_vec_lemma_2 #n (to_uint a) (to_uint b) #push-options "--initial_fuel 1 --max_fuel 1" let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i #pop-options let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = () let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i #push-options "--smtencoding.elim_box true --smtencoding.l_arith_repr native" let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i #pop-options let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let ones_to_vec_lemma #n i = () let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let sign_bit_negative #n a = UInt.from_vec_propriety #n (to_vec a) 1 let sign_bit_positive #n a = UInt.from_vec_propriety #n (to_vec a) 1 let logand_pos_le #n a b = UInt.logand_le (to_uint a) (to_uint b) let logand_pow2_minus_one #n a m = UInt.logand_le (to_uint a) (to_uint (pow2_minus_one #n m))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.Int.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int.int_t n {0 <= a} -> FStar.Pervasives.Lemma (ensures 0 <= FStar.Int.logand a (FStar.Int.max_int n) /\ a = FStar.Int.logand a (FStar.Int.max_int n))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "FStar.Int.int_t", "Prims.op_LessThanOrEqual", "FStar.Int.nth_lemma", "FStar.Int.logand", "FStar.Int.max_int", "Prims.unit", "FStar.Int.sign_bit_positive" ]
[]
true
false
true
false
false
let logand_max #n a =
sign_bit_positive a; sign_bit_positive #n (max_int n); nth_lemma a (logand a (max_int n))
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.implies_intro
val implies_intro: Prims.unit -> Tac binding
val implies_intro: Prims.unit -> Tac binding
let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro ()
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 12, "end_line": 81, "start_col": 0, "start_line": 79 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Stubs.Tactics.V2.Builtins.intro", "FStar.Stubs.Reflection.V2.Data.binding", "FStar.Tactics.V2.Derived.apply_lemma", "FStar.Tactics.NamedView.binding" ]
[]
false
true
false
false
false
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem); intro ()
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.implies_intro_as
val implies_intro_as (s: string) : Tac binding
val implies_intro_as (s: string) : Tac binding
let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 14, "end_line": 85, "start_col": 0, "start_line": 83 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Prims.string -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.string", "FStar.Tactics.V2.Derived.intro_as", "FStar.Tactics.NamedView.binding", "Prims.unit", "FStar.Tactics.V2.Derived.apply_lemma" ]
[]
false
true
false
false
false
let implies_intro_as (s: string) : Tac binding =
apply_lemma (`imp_intro_lem); intro_as s
false
Pulse.Checker.AssertWithBinders.fst
Pulse.Checker.AssertWithBinders.closing
val closing (bs: list (ppname & var & typ)) : subst
val closing (bs: list (ppname & var & typ)) : subst
let closing (bs:list (ppname & var & typ)) : subst = L.fold_right (fun (_, x, _) (n, ss) -> n+1, (ND x n)::ss ) bs (0, []) |> snd
{ "file_name": "lib/steel/pulse/Pulse.Checker.AssertWithBinders.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 21, "end_line": 112, "start_col": 0, "start_line": 108 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.AssertWithBinders open Pulse.Syntax open Pulse.Typing open Pulse.Checker.Base open Pulse.Elaborate.Pure open Pulse.Typing.Env module L = FStar.List.Tot module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module PC = Pulse.Checker.Pure module P = Pulse.Syntax.Printer module N = Pulse.Syntax.Naming module PS = Pulse.Checker.Prover.Substs module Prover = Pulse.Checker.Prover module Env = Pulse.Typing.Env open Pulse.Show module RU = Pulse.RuntimeUtils let is_host_term (t:R.term) = not (R.Tv_Unknown? (R.inspect_ln t)) let debug_log = Pulse.Typing.debug_log "with_binders" let option_must (f:option 'a) (msg:string) : T.Tac 'a = match f with | Some x -> x | None -> T.fail msg let rec refl_abs_binders (t:R.term) (acc:list binder) : T.Tac (list binder) = let open R in match inspect_ln t with | Tv_Abs b body -> let {sort; ppname} = R.inspect_binder b in let sort = option_must (readback_ty sort) (Printf.sprintf "Failed to readback elaborated binder sort %s in refl_abs_binders" (T.term_to_string sort)) in refl_abs_binders body ((mk_binder_ppname sort (mk_ppname ppname (RU.range_of_term t)))::acc) | _ -> L.rev acc let infer_binder_types (g:env) (bs:list binder) (v:vprop) : T.Tac (list binder) = match bs with | [] -> [] | _ -> let g = push_context g "infer_binder_types" v.range in let tv = elab_term v in if not (is_host_term tv) then fail g (Some v.range) (Printf.sprintf "assert.infer_binder_types: elaborated %s to %s, which failed the host term check" (P.term_to_string v) (T.term_to_string tv)); let as_binder (b:binder) : R.binder = let open R in let bv : binder_view = { sort = elab_term b.binder_ty; ppname = b.binder_ppname.name; qual = Q_Explicit; attrs = [] } in pack_binder bv in let abstraction = L.fold_right (fun b (tv:host_term) -> let b = as_binder b in R.pack_ln (R.Tv_Abs b tv)) bs tv in let inst_abstraction, _ = PC.instantiate_term_implicits g (tm_fstar abstraction v.range) in match inst_abstraction.t with | Tm_FStar t -> refl_abs_binders t [] | _ -> T.fail "Impossible: instantiated abstraction is not embedded F* term, please file a bug-report" let rec open_binders (g:env) (bs:list binder) (uvs:env { disjoint uvs g }) (v:term) (body:st_term) : T.Tac (uvs:env { disjoint uvs g } & term & st_term) = match bs with | [] -> (| uvs, v, body |) | b::bs -> // these binders are only lax checked so far let _ = PC.check_universe (push_env g uvs) b.binder_ty in let x = fresh (push_env g uvs) in let ss = [ DT 0 (tm_var {nm_index=x;nm_ppname=b.binder_ppname}) ] in let bs = L.mapi (fun i b -> assume (i >= 0); subst_binder b (shift_subst_n i ss)) bs in let v = subst_term v (shift_subst_n (L.length bs) ss) in let body = subst_st_term body (shift_subst_n (L.length bs) ss) in open_binders g bs (push_binding uvs x b.binder_ppname b.binder_ty) v body
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.Naming.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.Show.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.PP.fst.checked", "Pulse.Elaborate.Pure.fst.checked", "Pulse.Checker.Pure.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.fsti.checked", "Pulse.Checker.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Pprint.fsti.checked", "FStar.String.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.AssertWithBinders.fst" }
[ { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Show", "short_module": null }, { "abbrev": true, "full_module": "Pulse.Typing.Env", "short_module": "Env" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover", "short_module": "Prover" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Naming", "short_module": "N" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Checker.Pure", "short_module": "PC" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse.Typing.Env", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Elaborate.Pure", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bs: Prims.list ((Pulse.Syntax.Base.ppname * Pulse.Syntax.Base.var) * Pulse.Syntax.Base.typ) -> Pulse.Syntax.Naming.subst
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "FStar.Pervasives.Native.tuple3", "Pulse.Syntax.Base.ppname", "Pulse.Syntax.Base.var", "Pulse.Syntax.Base.typ", "FStar.Pervasives.Native.snd", "Prims.int", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Pulse.Syntax.Naming.subst_elt", "FStar.List.Tot.Base.fold_right", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "Prims.op_Addition", "Prims.Cons", "Pulse.Syntax.Naming.ND", "Prims.Nil", "Pulse.Syntax.Naming.subst" ]
[]
false
false
false
true
false
let closing (bs: list (ppname & var & typ)) : subst =
L.fold_right (fun (_, x, _) (n, ss) -> n + 1, (ND x n) :: ss) bs (0, []) |> snd
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.l_intro
val l_intro : _: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding
let l_intro () = forall_intro `or_else` implies_intro
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 91, "start_col": 0, "start_line": 91 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.or_else", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.forall_intro", "FStar.Tactics.V2.Logic.implies_intro" ]
[]
false
true
false
false
false
let l_intro () =
forall_intro `or_else` implies_intro
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.squash_intro
val squash_intro: Prims.unit -> Tac unit
val squash_intro: Prims.unit -> Tac unit
let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash)
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 97, "start_col": 0, "start_line": 96 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.apply" ]
[]
false
true
false
false
false
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.forall_intro_as
val forall_intro_as (s: string) : Tac binding
val forall_intro_as (s: string) : Tac binding
let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 14, "end_line": 58, "start_col": 0, "start_line": 56 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Prims.string -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.string", "FStar.Tactics.V2.Derived.intro_as", "FStar.Tactics.NamedView.binding", "Prims.unit", "FStar.Tactics.V2.Derived.apply_lemma" ]
[]
false
true
false
false
false
let forall_intro_as (s: string) : Tac binding =
apply_lemma (`fa_intro_lem); intro_as s
false
Hacl.Impl.K256.Verify.fst
Hacl.Impl.K256.Verify.load_signature
val load_signature (r_q s_q:QA.qelem) (signature:lbytes 64ul) : Stack bool (requires fun h -> live h signature /\ live h r_q /\ live h s_q /\ disjoint r_q s_q /\ disjoint r_q signature /\ disjoint s_q signature) (ensures fun h0 res h1 -> modifies (loc r_q |+| loc s_q) h0 h1 /\ (let sign_r = gsub signature 0ul 32ul in let sign_s = gsub signature 32ul 32ul in let r_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_r) in let s_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_s) in QA.qas_nat h1 r_q = r_q_nat /\ QA.qas_nat h1 s_q = s_q_nat /\ res == (0 < r_q_nat && r_q_nat < S.q && 0 < s_q_nat && s_q_nat < S.q)))
val load_signature (r_q s_q:QA.qelem) (signature:lbytes 64ul) : Stack bool (requires fun h -> live h signature /\ live h r_q /\ live h s_q /\ disjoint r_q s_q /\ disjoint r_q signature /\ disjoint s_q signature) (ensures fun h0 res h1 -> modifies (loc r_q |+| loc s_q) h0 h1 /\ (let sign_r = gsub signature 0ul 32ul in let sign_s = gsub signature 32ul 32ul in let r_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_r) in let s_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_s) in QA.qas_nat h1 r_q = r_q_nat /\ QA.qas_nat h1 s_q = s_q_nat /\ res == (0 < r_q_nat && r_q_nat < S.q && 0 < s_q_nat && s_q_nat < S.q)))
let load_signature r_q s_q signature = let is_r_valid = QA.load_qelem_vartime r_q (sub signature 0ul 32ul) in let is_s_valid = QA.load_qelem_vartime s_q (sub signature 32ul 32ul) in is_r_valid && is_s_valid
{ "file_name": "code/k256/Hacl.Impl.K256.Verify.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 188, "start_col": 0, "start_line": 185 }
module Hacl.Impl.K256.Verify open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module KL = Spec.K256.Lemmas open Hacl.K256.Field open Hacl.Impl.K256.Point open Hacl.Impl.K256.PointMul open Hacl.Impl.K256.GLV module QA = Hacl.K256.Scalar module QI = Hacl.Impl.K256.Qinv module BL = Hacl.Spec.K256.Field52.Lemmas module BSeq = Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let lbytes len = lbuffer uint8 len inline_for_extraction noextract val ecdsa_verify_get_u12 (u1 u2 r s z: QA.qelem) : Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ QA.qas_nat h s < S.q /\ QA.qas_nat h z < S.q /\ QA.qas_nat h r < S.q) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (QA.qas_nat h0 s) in QA.qas_nat h1 u1 == QA.qas_nat h0 z * sinv % S.q /\ QA.qas_nat h1 u2 == QA.qas_nat h0 r * sinv % S.q)) let ecdsa_verify_get_u12 u1 u2 r s z = push_frame (); let sinv = QA.create_qelem () in QI.qinv sinv s; QA.qmul u1 z sinv; QA.qmul u2 r sinv; pop_frame () val fmul_eq_vartime (r z x: felem) : Stack bool (requires fun h -> live h r /\ live h z /\ live h x /\ eq_or_disjoint r z /\ felem_fits5 (as_felem5 h r) (2,2,2,2,2) /\ as_nat h r < S.prime /\ inv_lazy_reduced2 h z /\ inv_fully_reduced h x) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ b == (S.fmul (as_nat h0 r) (feval h0 z) = as_nat h0 x)) [@CInline] let fmul_eq_vartime r z x = push_frame (); let tmp = create_felem () in fmul tmp r z; let h1 = ST.get () in fnormalize tmp tmp; let h2 = ST.get () in BL.normalize5_lemma (1,1,1,1,2) (as_felem5 h1 tmp); assert (inv_fully_reduced h2 tmp); let b = is_felem_eq_vartime tmp x in pop_frame (); b inline_for_extraction noextract val ecdsa_verify_avoid_finv: p:point -> r:QA.qelem -> Stack bool (requires fun h -> live h p /\ live h r /\ disjoint p r /\ point_inv h p /\ QA.qe_lt_q h r /\ 0 < QA.qas_nat h r /\ not (S.is_proj_point_at_inf (point_eval h p))) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let (_X, _Y, _Z) = point_eval h0 p in b <==> (S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r))) let ecdsa_verify_avoid_finv p r = let h0 = ST.get () in let x, y, z = getx p, gety p, getz p in push_frame (); let r_bytes = create 32ul (u8 0) in let r_fe = create_felem () in let tmp_q = create_felem () in let tmp_x = create_felem () in QA.store_qelem r_bytes r; load_felem r_fe r_bytes; let h1 = ST.get () in assert (modifies (loc r_fe) h0 h1); //assert (inv_fully_reduced h1 r_fe); //assert (as_nat h1 r_fe == qas_nat h1 r); let h2 = ST.get () in fnormalize tmp_x x; let h3 = ST.get () in assert (modifies (loc tmp_x) h2 h3); BL.normalize5_lemma (1,1,1,1,2) (as_felem5 h2 x); //assert (inv_fully_reduced h3 tmp_x); //assert (inv_lazy_reduced2 h3 z); let is_rz_x = fmul_eq_vartime r_fe z tmp_x in //assert (is_rz_x == (S.fmul (as_nat h3 r_fe) (feval h3 z) = as_nat h3 tmp_x)); let res : bool = if not is_rz_x then begin let is_r_lt_p_m_q = is_felem_lt_prime_minus_order_vartime r_fe in if is_r_lt_p_m_q then begin assert (as_nat h1 r_fe < S.prime - S.q); make_u52_5 tmp_q (make_order_k256 ()); let h4 = ST.get () in BL.add5_lemma (1,1,1,1,1) (1,1,1,1,1) (as_felem5 h4 r_fe) (as_felem5 h4 tmp_q); fadd tmp_q r_fe tmp_q; fmul_eq_vartime tmp_q z tmp_x end //assert (is_rqz_x == (S.fmul (feval h5 tmp) (feval h5 z) = as_nat h5 tmp_x)); else false end else true in let h4 = ST.get () in assert (modifies (loc tmp_q) h3 h4); pop_frame (); KL.ecdsa_verify_avoid_finv (point_eval h0 p) (QA.qas_nat h0 r); assert (res <==> (S.fmul (feval h0 x) (S.finv (feval h0 z)) % S.q = QA.qas_nat h0 r)); let h5 = ST.get () in assert (modifies0 h0 h5); res inline_for_extraction noextract val ecdsa_verify_cmpr: r:QA.qelem -> pk:point -> u1:QA.qelem -> u2:QA.qelem -> Stack bool (requires fun h -> live h r /\ live h pk /\ live h u1 /\ live h u2 /\ disjoint r u1 /\ disjoint r u2 /\ disjoint r pk /\ disjoint pk u1 /\ disjoint pk u2 /\ point_inv h pk /\ QA.qas_nat h u1 < S.q /\ QA.qas_nat h u2 < S.q /\ 0 < QA.qas_nat h r /\ QA.qas_nat h r < S.q) (ensures fun h0 b h1 -> modifies0 h0 h1 /\ (let _X, _Y, _Z = S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk) in b <==> (if S.is_proj_point_at_inf (_X, _Y, _Z) then false else S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r))) let ecdsa_verify_cmpr r pk u1 u2 = push_frame (); let res = create_point () in let h0 = ST.get () in point_mul_g_double_split_lambda_vartime res u1 u2 pk; let h1 = ST.get () in assert (S.to_aff_point (point_eval h1 res) == S.to_aff_point (S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk))); KL.lemma_aff_is_point_at_inf (point_eval h1 res); KL.lemma_aff_is_point_at_inf (S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk)); let b = if is_proj_point_at_inf_vartime res then false else ecdsa_verify_avoid_finv res r in pop_frame (); b inline_for_extraction noextract val load_signature (r_q s_q:QA.qelem) (signature:lbytes 64ul) : Stack bool (requires fun h -> live h signature /\ live h r_q /\ live h s_q /\ disjoint r_q s_q /\ disjoint r_q signature /\ disjoint s_q signature) (ensures fun h0 res h1 -> modifies (loc r_q |+| loc s_q) h0 h1 /\ (let sign_r = gsub signature 0ul 32ul in let sign_s = gsub signature 32ul 32ul in let r_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_r) in let s_q_nat = BSeq.nat_from_bytes_be (as_seq h0 sign_s) in QA.qas_nat h1 r_q = r_q_nat /\ QA.qas_nat h1 s_q = s_q_nat /\ res == (0 < r_q_nat && r_q_nat < S.q && 0 < s_q_nat && s_q_nat < S.q)))
{ "checked_file": "/", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Field52.Lemmas.fsti.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Qinv.fst.checked", "Hacl.Impl.K256.PointMul.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "Hacl.Impl.K256.GLV.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Verify.fst" }
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Lemmas", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Impl.K256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.K256.Scalar", "short_module": "QA" }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "KL" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r_q: Hacl.K256.Scalar.qelem -> s_q: Hacl.K256.Scalar.qelem -> signature: Hacl.Impl.K256.Verify.lbytes 64ul -> FStar.HyperStack.ST.Stack Prims.bool
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Hacl.Impl.K256.Verify.lbytes", "FStar.UInt32.__uint_to_t", "Prims.op_AmpAmp", "Prims.bool", "Hacl.K256.Scalar.load_qelem_vartime", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "Lib.IntTypes.uint8" ]
[]
false
true
false
false
false
let load_signature r_q s_q signature =
let is_r_valid = QA.load_qelem_vartime r_q (sub signature 0ul 32ul) in let is_s_valid = QA.load_qelem_vartime s_q (sub signature 32ul 32ul) in is_r_valid && is_s_valid
false
Pulse.Checker.AssertWithBinders.fst
Pulse.Checker.AssertWithBinders.refl_abs_binders
val refl_abs_binders (t: R.term) (acc: list binder) : T.Tac (list binder)
val refl_abs_binders (t: R.term) (acc: list binder) : T.Tac (list binder)
let rec refl_abs_binders (t:R.term) (acc:list binder) : T.Tac (list binder) = let open R in match inspect_ln t with | Tv_Abs b body -> let {sort; ppname} = R.inspect_binder b in let sort = option_must (readback_ty sort) (Printf.sprintf "Failed to readback elaborated binder sort %s in refl_abs_binders" (T.term_to_string sort)) in refl_abs_binders body ((mk_binder_ppname sort (mk_ppname ppname (RU.range_of_term t)))::acc) | _ -> L.rev acc
{ "file_name": "lib/steel/pulse/Pulse.Checker.AssertWithBinders.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 18, "end_line": 56, "start_col": 0, "start_line": 46 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.AssertWithBinders open Pulse.Syntax open Pulse.Typing open Pulse.Checker.Base open Pulse.Elaborate.Pure open Pulse.Typing.Env module L = FStar.List.Tot module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module PC = Pulse.Checker.Pure module P = Pulse.Syntax.Printer module N = Pulse.Syntax.Naming module PS = Pulse.Checker.Prover.Substs module Prover = Pulse.Checker.Prover module Env = Pulse.Typing.Env open Pulse.Show module RU = Pulse.RuntimeUtils let is_host_term (t:R.term) = not (R.Tv_Unknown? (R.inspect_ln t)) let debug_log = Pulse.Typing.debug_log "with_binders" let option_must (f:option 'a) (msg:string) : T.Tac 'a = match f with | Some x -> x | None -> T.fail msg
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.Naming.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.Show.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.PP.fst.checked", "Pulse.Elaborate.Pure.fst.checked", "Pulse.Checker.Pure.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.fsti.checked", "Pulse.Checker.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Pprint.fsti.checked", "FStar.String.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.AssertWithBinders.fst" }
[ { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Show", "short_module": null }, { "abbrev": true, "full_module": "Pulse.Typing.Env", "short_module": "Env" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover", "short_module": "Prover" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Naming", "short_module": "N" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Checker.Pure", "short_module": "PC" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse.Typing.Env", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Elaborate.Pure", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Stubs.Reflection.Types.term -> acc: Prims.list Pulse.Syntax.Base.binder -> FStar.Tactics.Effect.Tac (Prims.list Pulse.Syntax.Base.binder)
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Stubs.Reflection.Types.term", "Prims.list", "Pulse.Syntax.Base.binder", "FStar.Stubs.Reflection.V2.Builtins.inspect_ln", "FStar.Stubs.Reflection.Types.binder", "FStar.Stubs.Reflection.Types.typ", "FStar.Stubs.Reflection.V2.Data.aqualv", "FStar.Stubs.Reflection.V2.Data.ppname_t", "Pulse.Checker.AssertWithBinders.refl_abs_binders", "Prims.Cons", "Pulse.Syntax.Base.mk_binder_ppname", "Pulse.Syntax.Base.mk_ppname", "Pulse.RuntimeUtils.range_of_term", "Pulse.Syntax.Base.term", "Prims.eq2", "Pulse.Elaborate.Pure.elab_term", "Pulse.Checker.AssertWithBinders.option_must", "Pulse.Readback.readback_ty", "Prims.string", "FStar.Printf.sprintf", "FStar.Stubs.Tactics.V2.Builtins.term_to_string", "FStar.Stubs.Reflection.V2.Data.binder_view", "Prims.precedes", "FStar.Stubs.Reflection.V2.Builtins.inspect_binder", "FStar.Stubs.Reflection.V2.Data.term_view", "FStar.List.Tot.Base.rev" ]
[ "recursion" ]
false
true
false
false
false
let rec refl_abs_binders (t: R.term) (acc: list binder) : T.Tac (list binder) =
let open R in match inspect_ln t with | Tv_Abs b body -> let { sort = sort ; ppname = ppname } = R.inspect_binder b in let sort = option_must (readback_ty sort) (Printf.sprintf "Failed to readback elaborated binder sort %s in refl_abs_binders" (T.term_to_string sort)) in refl_abs_binders body ((mk_binder_ppname sort (mk_ppname ppname (RU.range_of_term t))) :: acc) | _ -> L.rev acc
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.l_intros
val l_intros : _: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.NamedView.binding)
let l_intros () = repeat l_intro
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 94, "start_col": 0, "start_line": 94 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.NamedView.binding)
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.repeat", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.l_intro", "Prims.list" ]
[]
false
true
false
false
false
let l_intros () =
repeat l_intro
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.l_exact
val l_exact : t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t)
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 101, "start_col": 0, "start_line": 99 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.try_with", "Prims.unit", "FStar.Tactics.V2.Derived.exact", "Prims.exn", "FStar.Tactics.V2.Logic.squash_intro" ]
[]
false
true
false
false
false
let l_exact (t: term) =
try exact t with | _ -> (squash_intro (); exact t)
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.implies_intros
val implies_intros: Prims.unit -> Tac (list binding)
val implies_intros: Prims.unit -> Tac (list binding)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 66, "end_line": 88, "start_col": 0, "start_line": 88 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Tactics.NamedView.binding)
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.repeat1", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.implies_intro", "Prims.list" ]
[]
false
true
false
false
false
let implies_intros () : Tac (list binding) =
repeat1 implies_intro
false
Hacl.Impl.K256.Verify.fst
Hacl.Impl.K256.Verify.ecdsa_verify_get_u12
val ecdsa_verify_get_u12 (u1 u2 r s z: QA.qelem) : Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ QA.qas_nat h s < S.q /\ QA.qas_nat h z < S.q /\ QA.qas_nat h r < S.q) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (QA.qas_nat h0 s) in QA.qas_nat h1 u1 == QA.qas_nat h0 z * sinv % S.q /\ QA.qas_nat h1 u2 == QA.qas_nat h0 r * sinv % S.q))
val ecdsa_verify_get_u12 (u1 u2 r s z: QA.qelem) : Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ QA.qas_nat h s < S.q /\ QA.qas_nat h z < S.q /\ QA.qas_nat h r < S.q) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (QA.qas_nat h0 s) in QA.qas_nat h1 u1 == QA.qas_nat h0 z * sinv % S.q /\ QA.qas_nat h1 u2 == QA.qas_nat h0 r * sinv % S.q))
let ecdsa_verify_get_u12 u1 u2 r s z = push_frame (); let sinv = QA.create_qelem () in QI.qinv sinv s; QA.qmul u1 z sinv; QA.qmul u2 r sinv; pop_frame ()
{ "file_name": "code/k256/Hacl.Impl.K256.Verify.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 48, "start_col": 0, "start_line": 42 }
module Hacl.Impl.K256.Verify open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module S = Spec.K256 module KL = Spec.K256.Lemmas open Hacl.K256.Field open Hacl.Impl.K256.Point open Hacl.Impl.K256.PointMul open Hacl.Impl.K256.GLV module QA = Hacl.K256.Scalar module QI = Hacl.Impl.K256.Qinv module BL = Hacl.Spec.K256.Field52.Lemmas module BSeq = Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let lbytes len = lbuffer uint8 len inline_for_extraction noextract val ecdsa_verify_get_u12 (u1 u2 r s z: QA.qelem) : Stack unit (requires fun h -> live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\ disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\ disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\ QA.qas_nat h s < S.q /\ QA.qas_nat h z < S.q /\ QA.qas_nat h r < S.q) (ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\ (let sinv = S.qinv (QA.qas_nat h0 s) in QA.qas_nat h1 u1 == QA.qas_nat h0 z * sinv % S.q /\ QA.qas_nat h1 u2 == QA.qas_nat h0 r * sinv % S.q))
{ "checked_file": "/", "dependencies": [ "Spec.K256.Lemmas.fsti.checked", "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Field52.Lemmas.fsti.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.K256.Field.fsti.checked", "Hacl.Impl.K256.Qinv.fst.checked", "Hacl.Impl.K256.PointMul.fsti.checked", "Hacl.Impl.K256.Point.fsti.checked", "Hacl.Impl.K256.GLV.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Verify.fst" }
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Lemmas", "short_module": "BL" }, { "abbrev": true, "full_module": "Hacl.Impl.K256.Qinv", "short_module": "QI" }, { "abbrev": true, "full_module": "Hacl.K256.Scalar", "short_module": "QA" }, { "abbrev": false, "full_module": "Hacl.Impl.K256.GLV", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.PointMul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256.Point", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256.Field", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256.Lemmas", "short_module": "KL" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
u1: Hacl.K256.Scalar.qelem -> u2: Hacl.K256.Scalar.qelem -> r: Hacl.K256.Scalar.qelem -> s: Hacl.K256.Scalar.qelem -> z: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.K256.Scalar.qmul", "Hacl.Impl.K256.Qinv.qinv", "Hacl.K256.Scalar.create_qelem", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let ecdsa_verify_get_u12 u1 u2 r s z =
push_frame (); let sinv = QA.create_qelem () in QI.qinv sinv s; QA.qmul u1 z sinv; QA.qmul u2 r sinv; pop_frame ()
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.hyp
val hyp (x: namedv) : Tac unit
val hyp (x: namedv) : Tac unit
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 58, "end_line": 105, "start_col": 0, "start_line": 105 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general...
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Tactics.NamedView.namedv -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.namedv", "FStar.Tactics.V2.Logic.l_exact", "FStar.Tactics.V2.SyntaxCoercions.namedv_to_term", "Prims.unit" ]
[]
false
true
false
false
false
let hyp (x: namedv) : Tac unit =
l_exact (namedv_to_term x)
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.explode
val explode: Prims.unit -> Tac unit
val explode: Prims.unit -> Tac unit
let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))]))
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 64, "end_line": 135, "start_col": 0, "start_line": 132 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Pervasives.ignore", "FStar.Tactics.V2.Derived.repeatseq", "FStar.Tactics.V2.Derived.first", "Prims.Cons", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.l_intro", "FStar.Tactics.V2.Logic.split", "Prims.Nil" ]
[]
false
true
false
false
false
let explode () : Tac unit =
ignore (repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))]) )
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.pose_lemma
val pose_lemma (t: term) : Tac binding
val pose_lemma (t: term) : Tac binding
let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 130, "start_col": 0, "start_line": 111 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.term", "FStar.Stubs.Reflection.Types.term", "FStar.Tactics.V2.Derived.pose", "FStar.Tactics.NamedView.binding", "FStar.Reflection.V2.Formula.formula", "Prims.unit", "FStar.Pervasives.ignore", "FStar.Pervasives.Native.option", "FStar.Tactics.V2.Derived.trytac", "FStar.Tactics.V2.Derived.trivial", "FStar.Tactics.V2.Derived.flip", "FStar.Tactics.V2.SyntaxCoercions.binding_to_term", "FStar.Tactics.V2.Derived.tcut", "FStar.Reflection.V2.Formula.term_as_formula'", "FStar.Tactics.V2.Derived.norm_term", "Prims.Nil", "FStar.Pervasives.norm_step", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.Reflection.V2.Data.comp_view", "FStar.Tactics.V2.Derived.fail", "FStar.Tactics.NamedView.comp", "FStar.Tactics.NamedView.tcc", "FStar.Stubs.Reflection.Types.env", "FStar.Tactics.V2.Derived.cur_env" ]
[]
false
true
false
false
false
let pose_lemma (t: term) : Tac binding =
let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in let post = norm_term [] post in match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.cases_or
val cases_or (o: term) : Tac unit
val cases_or (o: term) : Tac unit
let cases_or (o:term) : Tac unit = apply_lemma (mk_e_app (`or_ind) [o])
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 219, "start_col": 0, "start_line": 218 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term *) let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b) private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p \/ q) -> (squash (p ==> phi)) -> (squash (q ==> phi)) -> Lemma phi let or_ind #p #q #phi o l r = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
o: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.apply_lemma", "FStar.Reflection.V2.Derived.mk_e_app", "Prims.Cons", "FStar.Stubs.Reflection.Types.term", "Prims.Nil", "Prims.unit" ]
[]
false
true
false
false
false
let cases_or (o: term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.rewrite_all_equalities
val rewrite_all_equalities: Prims.unit -> Tac unit
val rewrite_all_equalities: Prims.unit -> Tac unit
let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 170, "start_col": 0, "start_line": 169 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Logic.visit", "FStar.Tactics.V2.Logic.simplify_eq_implication" ]
[]
false
true
false
false
false
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.unsquash
val unsquash (t: term) : Tac term
val unsquash (t: term) : Tac term
let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b)
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 19, "end_line": 209, "start_col": 0, "start_line": 205 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.NamedView.pack", "FStar.Tactics.NamedView.Tv_Var", "FStar.Tactics.V2.SyntaxCoercions.binding_to_namedv", "FStar.Stubs.Reflection.V2.Data.binding", "FStar.Stubs.Tactics.V2.Builtins.intro", "Prims.unit", "FStar.Tactics.V2.Derived.apply_lemma", "FStar.Reflection.V2.Derived.mk_e_app", "Prims.Cons", "FStar.Stubs.Reflection.Types.term", "Prims.Nil" ]
[]
false
true
false
false
false
let unsquash (t: term) : Tac term =
let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b)
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.visit
val visit (callback: (unit -> Tac unit)) : Tac unit
val visit (callback: (unit -> Tac unit)) : Tac unit
let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) )
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 11, "end_line": 154, "start_col": 0, "start_line": 137 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))]))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
callback: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.focus", "FStar.Tactics.V2.Derived.or_else", "FStar.Tactics.NamedView.bv", "FStar.Stubs.Reflection.Types.typ", "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.seq", "FStar.Tactics.V2.Logic.visit", "FStar.Tactics.V2.Logic.l_revert_all", "Prims.list", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.forall_intros", "FStar.Tactics.V2.Logic.split", "FStar.Tactics.V2.Logic.l_revert", "FStar.Tactics.V2.Logic.implies_intro", "FStar.Reflection.V2.Formula.formula", "FStar.Reflection.V2.Formula.term_as_formula", "FStar.Tactics.V2.Derived.cur_goal" ]
[ "recursion" ]
false
true
false
false
false
let rec visit (callback: (unit -> Tac unit)) : Tac unit =
focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> ()))
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.cases_bool
val cases_bool (b: term) : Tac unit
val cases_bool (b: term) : Tac unit
let cases_bool (b:term) : Tac unit = let bi = `bool_ind in seq (fun () -> apply_lemma (mk_e_app bi [b])) (fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 104, "end_line": 229, "start_col": 0, "start_line": 226 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term *) let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b) private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p \/ q) -> (squash (p ==> phi)) -> (squash (q ==> phi)) -> Lemma phi let or_ind #p #q #phi o l r = () let cases_or (o:term) : Tac unit = apply_lemma (mk_e_app (`or_ind) [o]) private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) -> (squash (b == false ==> phi)) -> Lemma phi let bool_ind b phi l r = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.seq", "Prims.unit", "FStar.Tactics.V2.Derived.apply_lemma", "FStar.Reflection.V2.Derived.mk_e_app", "Prims.Cons", "FStar.Stubs.Reflection.Types.term", "Prims.Nil", "FStar.Pervasives.Native.option", "FStar.Tactics.V2.Derived.trytac", "FStar.Stubs.Tactics.V2.Builtins.clear_top", "FStar.Stubs.Tactics.V2.Builtins.rewrite", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.implies_intro" ]
[]
false
true
false
false
false
let cases_bool (b: term) : Tac unit =
let bi = `bool_ind in seq (fun () -> apply_lemma (mk_e_app bi [b])) (fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.left
val left: Prims.unit -> Tac unit
val left: Prims.unit -> Tac unit
let left () : Tac unit = apply_lemma (`or_intro_1)
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 238, "start_col": 0, "start_line": 237 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term *) let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b) private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p \/ q) -> (squash (p ==> phi)) -> (squash (q ==> phi)) -> Lemma phi let or_ind #p #q #phi o l r = () let cases_or (o:term) : Tac unit = apply_lemma (mk_e_app (`or_ind) [o]) private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) -> (squash (b == false ==> phi)) -> Lemma phi let bool_ind b phi l r = () let cases_bool (b:term) : Tac unit = let bi = `bool_ind in seq (fun () -> apply_lemma (mk_e_app bi [b])) (fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ()) private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q) let or_intro_1 #p #q _ = () private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q) let or_intro_2 #p #q _ = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.apply_lemma" ]
[]
false
true
false
false
false
let left () : Tac unit =
apply_lemma (`or_intro_1)
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.right
val right: Prims.unit -> Tac unit
val right: Prims.unit -> Tac unit
let right () : Tac unit = apply_lemma (`or_intro_2)
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 241, "start_col": 0, "start_line": 240 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term *) let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b) private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p \/ q) -> (squash (p ==> phi)) -> (squash (q ==> phi)) -> Lemma phi let or_ind #p #q #phi o l r = () let cases_or (o:term) : Tac unit = apply_lemma (mk_e_app (`or_ind) [o]) private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) -> (squash (b == false ==> phi)) -> Lemma phi let bool_ind b phi l r = () let cases_bool (b:term) : Tac unit = let bi = `bool_ind in seq (fun () -> apply_lemma (mk_e_app bi [b])) (fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ()) private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q) let or_intro_1 #p #q _ = () private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q) let or_intro_2 #p #q _ = () let left () : Tac unit = apply_lemma (`or_intro_1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.apply_lemma" ]
[]
false
true
false
false
false
let right () : Tac unit =
apply_lemma (`or_intro_2)
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.revert_squash
val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x)
val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 71, "end_line": 33, "start_col": 0, "start_line": 33 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Prims.squash (forall (x: a). b x) -> x: a -> Prims.squash (b x)
Prims.Tot
[ "total" ]
[]
[ "Prims.squash", "Prims.l_Forall", "Prims.unit" ]
[]
false
false
true
false
false
let revert_squash #a #b s x =
let x:(_: unit{forall x. b x}) = s in ()
false
Pulse.Checker.AssertWithBinders.fst
Pulse.Checker.AssertWithBinders.add_rem_uvs
val add_rem_uvs (g: env) (t: typ) (uvs: env{Env.disjoint g uvs}) (v: vprop) : T.Tac (uvs: env{Env.disjoint g uvs} & vprop)
val add_rem_uvs (g: env) (t: typ) (uvs: env{Env.disjoint g uvs}) (v: vprop) : T.Tac (uvs: env{Env.disjoint g uvs} & vprop)
let rec add_rem_uvs (g:env) (t:typ) (uvs:env { Env.disjoint g uvs }) (v:vprop) : T.Tac (uvs:env { Env.disjoint g uvs } & vprop) = match is_arrow t with | None -> (| uvs, v |) | Some (b, qopt, c) -> let x = fresh (push_env g uvs) in let ct = open_comp_nv c (b.binder_ppname, x) in let uvs = Env.push_binding uvs x b.binder_ppname b.binder_ty in let v = tm_pureapp v qopt (tm_var {nm_index = x; nm_ppname = b.binder_ppname}) in add_rem_uvs g (comp_res ct) uvs v
{ "file_name": "lib/steel/pulse/Pulse.Checker.AssertWithBinders.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 37, "end_line": 349, "start_col": 0, "start_line": 340 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.AssertWithBinders open Pulse.Syntax open Pulse.Typing open Pulse.Checker.Base open Pulse.Elaborate.Pure open Pulse.Typing.Env module L = FStar.List.Tot module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module PC = Pulse.Checker.Pure module P = Pulse.Syntax.Printer module N = Pulse.Syntax.Naming module PS = Pulse.Checker.Prover.Substs module Prover = Pulse.Checker.Prover module Env = Pulse.Typing.Env open Pulse.Show module RU = Pulse.RuntimeUtils let is_host_term (t:R.term) = not (R.Tv_Unknown? (R.inspect_ln t)) let debug_log = Pulse.Typing.debug_log "with_binders" let option_must (f:option 'a) (msg:string) : T.Tac 'a = match f with | Some x -> x | None -> T.fail msg let rec refl_abs_binders (t:R.term) (acc:list binder) : T.Tac (list binder) = let open R in match inspect_ln t with | Tv_Abs b body -> let {sort; ppname} = R.inspect_binder b in let sort = option_must (readback_ty sort) (Printf.sprintf "Failed to readback elaborated binder sort %s in refl_abs_binders" (T.term_to_string sort)) in refl_abs_binders body ((mk_binder_ppname sort (mk_ppname ppname (RU.range_of_term t)))::acc) | _ -> L.rev acc let infer_binder_types (g:env) (bs:list binder) (v:vprop) : T.Tac (list binder) = match bs with | [] -> [] | _ -> let g = push_context g "infer_binder_types" v.range in let tv = elab_term v in if not (is_host_term tv) then fail g (Some v.range) (Printf.sprintf "assert.infer_binder_types: elaborated %s to %s, which failed the host term check" (P.term_to_string v) (T.term_to_string tv)); let as_binder (b:binder) : R.binder = let open R in let bv : binder_view = { sort = elab_term b.binder_ty; ppname = b.binder_ppname.name; qual = Q_Explicit; attrs = [] } in pack_binder bv in let abstraction = L.fold_right (fun b (tv:host_term) -> let b = as_binder b in R.pack_ln (R.Tv_Abs b tv)) bs tv in let inst_abstraction, _ = PC.instantiate_term_implicits g (tm_fstar abstraction v.range) in match inst_abstraction.t with | Tm_FStar t -> refl_abs_binders t [] | _ -> T.fail "Impossible: instantiated abstraction is not embedded F* term, please file a bug-report" let rec open_binders (g:env) (bs:list binder) (uvs:env { disjoint uvs g }) (v:term) (body:st_term) : T.Tac (uvs:env { disjoint uvs g } & term & st_term) = match bs with | [] -> (| uvs, v, body |) | b::bs -> // these binders are only lax checked so far let _ = PC.check_universe (push_env g uvs) b.binder_ty in let x = fresh (push_env g uvs) in let ss = [ DT 0 (tm_var {nm_index=x;nm_ppname=b.binder_ppname}) ] in let bs = L.mapi (fun i b -> assume (i >= 0); subst_binder b (shift_subst_n i ss)) bs in let v = subst_term v (shift_subst_n (L.length bs) ss) in let body = subst_st_term body (shift_subst_n (L.length bs) ss) in open_binders g bs (push_binding uvs x b.binder_ppname b.binder_ty) v body let closing (bs:list (ppname & var & typ)) : subst = L.fold_right (fun (_, x, _) (n, ss) -> n+1, (ND x n)::ss ) bs (0, []) |> snd let rec close_binders (bs:list (ppname & var & typ)) : Tot (list binder) (decreases L.length bs) = match bs with | [] -> [] | (name, x, t)::bs -> let bss = L.mapi (fun n (n1, x1, t1) -> assume (n >= 0); n1, x1, subst_term t1 [ND x n]) bs in let b = mk_binder_ppname t name in assume (L.length bss == L.length bs); b::(close_binders bss) let unfold_defs (g:env) (defs:option (list string)) (t:term) : T.Tac term = let t = elab_term t in let head, _ = T.collect_app t in match R.inspect_ln head with | R.Tv_FVar fv | R.Tv_UInst fv _ -> ( let head = String.concat "." (R.inspect_fv fv) in let fully = match defs with | Some defs -> defs | None -> [] in let rt = RU.unfold_def (fstar_env g) head fully t in let rt = option_must rt (Printf.sprintf "unfolding %s returned None" (T.term_to_string t)) in let ty = option_must (readback_ty rt) (Printf.sprintf "error in reading back the unfolded term %s" (T.term_to_string rt)) in debug_log g (fun _ -> Printf.sprintf "Unfolded %s to F* term %s and readback as %s" (T.term_to_string t) (T.term_to_string rt) (P.term_to_string ty)); ty ) | _ -> fail g (Some (RU.range_of_term t)) (Printf.sprintf "Cannot unfold %s, the head is not an fvar" (T.term_to_string t)) let check_unfoldable g (v:term) : T.Tac unit = match v.t with | Tm_FStar _ -> () | _ -> fail g (Some v.range) (Printf.sprintf "`fold` and `unfold` expect a single user-defined predicate as an argument, \ but %s is a primitive term that cannot be folded or unfolded" (P.term_to_string v)) let visit_and_rewrite (p: (R.term & R.term)) (t:term) : T.Tac term = let open FStar.Reflection.V2.TermEq in let lhs, rhs = p in let visitor (t:R.term) : T.Tac R.term = if term_eq t lhs then rhs else t in match R.inspect_ln lhs with | R.Tv_Var n -> ( let nv = R.inspect_namedv n in assume (is_host_term rhs); subst_term t [NT nv.uniq { t = Tm_FStar rhs; range = t.range }] ) | _ -> let rec aux (t:term) : T.Tac term = match t.t with | Tm_Emp | Tm_VProp | Tm_Inames | Tm_EmpInames | Tm_Inames | Tm_Unknown -> t | Tm_Inv i -> { t with t = Tm_Inv (aux i) } | Tm_AddInv i is -> { t with t = Tm_AddInv (aux i) (aux is) } | Tm_Pure p -> { t with t = Tm_Pure (aux p) } | Tm_Star l r -> { t with t = Tm_Star (aux l) (aux r) } | Tm_ExistsSL u b body -> { t with t = Tm_ExistsSL u { b with binder_ty=aux b.binder_ty} (aux body) } | Tm_ForallSL u b body -> { t with t = Tm_ForallSL u { b with binder_ty=aux b.binder_ty} (aux body) } | Tm_FStar h -> let h = FStar.Tactics.Visit.visit_tm visitor h in assume (is_host_term h); { t with t=Tm_FStar h } in aux t let visit_and_rewrite_conjuncts (p: (R.term & R.term)) (tms:list term) : T.Tac (list term) = T.map (visit_and_rewrite p) tms let visit_and_rewrite_conjuncts_all (p: list (R.term & R.term)) (goal:term) : T.Tac (term & term) = let tms = Pulse.Typing.Combinators.vprop_as_list goal in let tms' = T.fold_left (fun tms p -> visit_and_rewrite_conjuncts p tms) tms p in assume (L.length tms' == L.length tms); let lhs, rhs = T.fold_left2 (fun (lhs, rhs) t t' -> if eq_tm t t' then lhs, rhs else (t::lhs, t'::rhs)) ([], []) tms tms' in Pulse.Typing.Combinators.list_as_vprop lhs, Pulse.Typing.Combinators.list_as_vprop rhs let disjoint (dom:list var) (cod:Set.set var) = L.for_all (fun d -> not (Set.mem d cod)) dom let rec as_subst (p : list (term & term)) (out:list subst_elt) (domain:list var) (codomain:Set.set var) : option (list subst_elt) = match p with | [] -> if disjoint domain codomain then Some out else None | (e1, e2)::p -> ( match e1.t with | Tm_FStar e1 -> ( match R.inspect_ln e1 with | R.Tv_Var n -> ( let nv = R.inspect_namedv n in as_subst p (NT nv.uniq e2::out) (nv.uniq ::domain ) (Set.union codomain (freevars e2)) ) | _ -> None ) | _ -> None ) let rewrite_all (g:env) (p: list (term & term)) (t:term) : T.Tac (term & term) = match as_subst p [] [] Set.empty with | Some s -> t, subst_term t s | _ -> let p : list (R.term & R.term) = T.map (fun (e1, e2) -> elab_term (fst (Pulse.Checker.Pure.instantiate_term_implicits g e1)), elab_term (fst (Pulse.Checker.Pure.instantiate_term_implicits g e2))) p in let lhs, rhs = visit_and_rewrite_conjuncts_all p t in debug_log g (fun _ -> Printf.sprintf "Rewrote %s to %s" (P.term_to_string lhs) (P.term_to_string rhs)); lhs, rhs let check_renaming (g:env) (pre:term) (st:st_term { match st.term with | Tm_ProofHintWithBinders { hint_type = RENAME _ } -> true | _ -> false }) : T.Tac st_term = let Tm_ProofHintWithBinders ht = st.term in let { hint_type=RENAME { pairs; goal }; binders=bs; t=body } = ht in match bs, goal with | _::_, None -> //if there are binders, we must have a goal fail g (Some st.range) "A renaming with binders must have a goal (with xs. rename ... in goal)" | _::_, Some goal -> //rewrite it as // with bs. assert goal; // rename [pairs] in goal; // ... let body = {st with term = Tm_ProofHintWithBinders { ht with binders = [] }} in { st with term = Tm_ProofHintWithBinders { hint_type=ASSERT { p = goal }; binders=bs; t=body } } | [], None -> // if there is no goal, take the goal to be the full current pre let lhs, rhs = rewrite_all g pairs pre in let t = { st with term = Tm_Rewrite { t1 = lhs; t2 = rhs } } in { st with term = Tm_Bind { binder = as_binder tm_unit; head = t; body } } | [], Some goal -> ( let goal, _ = PC.instantiate_term_implicits g goal in let lhs, rhs = rewrite_all g pairs goal in let t = { st with term = Tm_Rewrite { t1 = lhs; t2 = rhs } } in { st with term = Tm_Bind { binder = as_binder tm_unit; head = t; body } } ) let check_wild (g:env) (pre:term) (st:st_term { head_wild st }) : T.Tac st_term = let Tm_ProofHintWithBinders ht = st.term in let { binders=bs; t=body } = ht in match bs with | [] -> fail g (Some st.range) "A wildcard must have at least one binder" | _ -> let vprops = Pulse.Typing.Combinators.vprop_as_list pre in let ex, rest = List.Tot.partition (fun (v:vprop) -> Tm_ExistsSL? v.t) vprops in match ex with | [] | _::_::_ -> fail g (Some st.range) "Binding names with a wildcard requires exactly one existential quantifier in the goal" | [ex] -> let k = List.Tot.length bs in let rec peel_binders (n:nat) (t:term) : T.Tac st_term = if n = 0 then ( let ex_body = t in { st with term = Tm_ProofHintWithBinders { ht with hint_type = ASSERT { p = ex_body } }} ) else ( match t.t with | Tm_ExistsSL u b body -> peel_binders (n-1) body | _ -> fail g (Some st.range) (Printf.sprintf "Expected an existential quantifier with at least %d binders; but only found %s with %d binders" k (show ex) (k - n)) ) in peel_binders k ex // // v is a partially applied vprop with type t // add uvars for the remaining arguments
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.Naming.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.Show.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.PP.fst.checked", "Pulse.Elaborate.Pure.fst.checked", "Pulse.Checker.Pure.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.fsti.checked", "Pulse.Checker.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Pprint.fsti.checked", "FStar.String.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.AssertWithBinders.fst" }
[ { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Show", "short_module": null }, { "abbrev": true, "full_module": "Pulse.Typing.Env", "short_module": "Env" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover", "short_module": "Prover" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Naming", "short_module": "N" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Checker.Pure", "short_module": "PC" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse.Typing.Env", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Elaborate.Pure", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: Pulse.Typing.Env.env -> t: Pulse.Syntax.Base.typ -> uvs: Pulse.Typing.Env.env{Pulse.Typing.Env.disjoint g uvs} -> v: Pulse.Syntax.Base.vprop -> FStar.Tactics.Effect.Tac (Prims.dtuple2 (uvs: Pulse.Typing.Env.env{Pulse.Typing.Env.disjoint g uvs}) (fun _ -> Pulse.Syntax.Base.vprop))
FStar.Tactics.Effect.Tac
[]
[]
[ "Pulse.Typing.Env.env", "Pulse.Syntax.Base.typ", "Pulse.Typing.Env.disjoint", "Pulse.Syntax.Base.vprop", "Pulse.Syntax.Pure.is_arrow", "Prims.Mkdtuple2", "Prims.dtuple2", "Pulse.Syntax.Base.binder", "FStar.Pervasives.Native.option", "Pulse.Syntax.Base.qualifier", "Pulse.Syntax.Base.comp", "Pulse.Checker.AssertWithBinders.add_rem_uvs", "Pulse.Syntax.Base.comp_res", "Pulse.Syntax.Base.term", "Pulse.Syntax.Pure.tm_pureapp", "Pulse.Syntax.Pure.tm_var", "Pulse.Syntax.Base.Mknm", "Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ppname", "Prims.eq2", "FStar.Reflection.Typing.fstar_top_env", "Pulse.Typing.Env.fstar_env", "Pulse.Typing.Env.push_binding", "Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty", "Pulse.Syntax.Naming.open_comp_nv", "FStar.Pervasives.Native.Mktuple2", "Pulse.Syntax.Base.ppname", "Pulse.Syntax.Base.var", "Prims.l_not", "Prims.b2t", "FStar.Set.mem", "Pulse.Typing.Env.dom", "Pulse.Typing.Env.push_env", "Pulse.Typing.Env.fresh" ]
[ "recursion" ]
false
true
false
false
false
let rec add_rem_uvs (g: env) (t: typ) (uvs: env{Env.disjoint g uvs}) (v: vprop) : T.Tac (uvs: env{Env.disjoint g uvs} & vprop) =
match is_arrow t with | None -> (| uvs, v |) | Some (b, qopt, c) -> let x = fresh (push_env g uvs) in let ct = open_comp_nv c (b.binder_ppname, x) in let uvs = Env.push_binding uvs x b.binder_ppname b.binder_ty in let v = tm_pureapp v qopt (tm_var ({ nm_index = x; nm_ppname = b.binder_ppname })) in add_rem_uvs g (comp_res ct) uvs v
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.l_revert_all
val l_revert_all (bs: list binding) : Tac unit
val l_revert_all (bs: list binding) : Tac unit
let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 44, "start_col": 0, "start_line": 41 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bs: Prims.list FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.list", "FStar.Tactics.NamedView.binding", "Prims.unit", "FStar.Tactics.V2.Logic.l_revert_all", "FStar.Tactics.V2.Logic.l_revert" ]
[ "recursion" ]
false
true
false
false
false
let rec l_revert_all (bs: list binding) : Tac unit =
match bs with | [] -> () | _ :: tl -> l_revert (); l_revert_all tl
false
Pulse.Checker.AssertWithBinders.fst
Pulse.Checker.AssertWithBinders.rewrite_all
val rewrite_all (g: env) (p: list (term & term)) (t: term) : T.Tac (term & term)
val rewrite_all (g: env) (p: list (term & term)) (t: term) : T.Tac (term & term)
let rewrite_all (g:env) (p: list (term & term)) (t:term) : T.Tac (term & term) = match as_subst p [] [] Set.empty with | Some s -> t, subst_term t s | _ -> let p : list (R.term & R.term) = T.map (fun (e1, e2) -> elab_term (fst (Pulse.Checker.Pure.instantiate_term_implicits g e1)), elab_term (fst (Pulse.Checker.Pure.instantiate_term_implicits g e2))) p in let lhs, rhs = visit_and_rewrite_conjuncts_all p t in debug_log g (fun _ -> Printf.sprintf "Rewrote %s to %s" (P.term_to_string lhs) (P.term_to_string rhs)); lhs, rhs
{ "file_name": "lib/steel/pulse/Pulse.Checker.AssertWithBinders.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 12, "end_line": 260, "start_col": 0, "start_line": 246 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.AssertWithBinders open Pulse.Syntax open Pulse.Typing open Pulse.Checker.Base open Pulse.Elaborate.Pure open Pulse.Typing.Env module L = FStar.List.Tot module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module PC = Pulse.Checker.Pure module P = Pulse.Syntax.Printer module N = Pulse.Syntax.Naming module PS = Pulse.Checker.Prover.Substs module Prover = Pulse.Checker.Prover module Env = Pulse.Typing.Env open Pulse.Show module RU = Pulse.RuntimeUtils let is_host_term (t:R.term) = not (R.Tv_Unknown? (R.inspect_ln t)) let debug_log = Pulse.Typing.debug_log "with_binders" let option_must (f:option 'a) (msg:string) : T.Tac 'a = match f with | Some x -> x | None -> T.fail msg let rec refl_abs_binders (t:R.term) (acc:list binder) : T.Tac (list binder) = let open R in match inspect_ln t with | Tv_Abs b body -> let {sort; ppname} = R.inspect_binder b in let sort = option_must (readback_ty sort) (Printf.sprintf "Failed to readback elaborated binder sort %s in refl_abs_binders" (T.term_to_string sort)) in refl_abs_binders body ((mk_binder_ppname sort (mk_ppname ppname (RU.range_of_term t)))::acc) | _ -> L.rev acc let infer_binder_types (g:env) (bs:list binder) (v:vprop) : T.Tac (list binder) = match bs with | [] -> [] | _ -> let g = push_context g "infer_binder_types" v.range in let tv = elab_term v in if not (is_host_term tv) then fail g (Some v.range) (Printf.sprintf "assert.infer_binder_types: elaborated %s to %s, which failed the host term check" (P.term_to_string v) (T.term_to_string tv)); let as_binder (b:binder) : R.binder = let open R in let bv : binder_view = { sort = elab_term b.binder_ty; ppname = b.binder_ppname.name; qual = Q_Explicit; attrs = [] } in pack_binder bv in let abstraction = L.fold_right (fun b (tv:host_term) -> let b = as_binder b in R.pack_ln (R.Tv_Abs b tv)) bs tv in let inst_abstraction, _ = PC.instantiate_term_implicits g (tm_fstar abstraction v.range) in match inst_abstraction.t with | Tm_FStar t -> refl_abs_binders t [] | _ -> T.fail "Impossible: instantiated abstraction is not embedded F* term, please file a bug-report" let rec open_binders (g:env) (bs:list binder) (uvs:env { disjoint uvs g }) (v:term) (body:st_term) : T.Tac (uvs:env { disjoint uvs g } & term & st_term) = match bs with | [] -> (| uvs, v, body |) | b::bs -> // these binders are only lax checked so far let _ = PC.check_universe (push_env g uvs) b.binder_ty in let x = fresh (push_env g uvs) in let ss = [ DT 0 (tm_var {nm_index=x;nm_ppname=b.binder_ppname}) ] in let bs = L.mapi (fun i b -> assume (i >= 0); subst_binder b (shift_subst_n i ss)) bs in let v = subst_term v (shift_subst_n (L.length bs) ss) in let body = subst_st_term body (shift_subst_n (L.length bs) ss) in open_binders g bs (push_binding uvs x b.binder_ppname b.binder_ty) v body let closing (bs:list (ppname & var & typ)) : subst = L.fold_right (fun (_, x, _) (n, ss) -> n+1, (ND x n)::ss ) bs (0, []) |> snd let rec close_binders (bs:list (ppname & var & typ)) : Tot (list binder) (decreases L.length bs) = match bs with | [] -> [] | (name, x, t)::bs -> let bss = L.mapi (fun n (n1, x1, t1) -> assume (n >= 0); n1, x1, subst_term t1 [ND x n]) bs in let b = mk_binder_ppname t name in assume (L.length bss == L.length bs); b::(close_binders bss) let unfold_defs (g:env) (defs:option (list string)) (t:term) : T.Tac term = let t = elab_term t in let head, _ = T.collect_app t in match R.inspect_ln head with | R.Tv_FVar fv | R.Tv_UInst fv _ -> ( let head = String.concat "." (R.inspect_fv fv) in let fully = match defs with | Some defs -> defs | None -> [] in let rt = RU.unfold_def (fstar_env g) head fully t in let rt = option_must rt (Printf.sprintf "unfolding %s returned None" (T.term_to_string t)) in let ty = option_must (readback_ty rt) (Printf.sprintf "error in reading back the unfolded term %s" (T.term_to_string rt)) in debug_log g (fun _ -> Printf.sprintf "Unfolded %s to F* term %s and readback as %s" (T.term_to_string t) (T.term_to_string rt) (P.term_to_string ty)); ty ) | _ -> fail g (Some (RU.range_of_term t)) (Printf.sprintf "Cannot unfold %s, the head is not an fvar" (T.term_to_string t)) let check_unfoldable g (v:term) : T.Tac unit = match v.t with | Tm_FStar _ -> () | _ -> fail g (Some v.range) (Printf.sprintf "`fold` and `unfold` expect a single user-defined predicate as an argument, \ but %s is a primitive term that cannot be folded or unfolded" (P.term_to_string v)) let visit_and_rewrite (p: (R.term & R.term)) (t:term) : T.Tac term = let open FStar.Reflection.V2.TermEq in let lhs, rhs = p in let visitor (t:R.term) : T.Tac R.term = if term_eq t lhs then rhs else t in match R.inspect_ln lhs with | R.Tv_Var n -> ( let nv = R.inspect_namedv n in assume (is_host_term rhs); subst_term t [NT nv.uniq { t = Tm_FStar rhs; range = t.range }] ) | _ -> let rec aux (t:term) : T.Tac term = match t.t with | Tm_Emp | Tm_VProp | Tm_Inames | Tm_EmpInames | Tm_Inames | Tm_Unknown -> t | Tm_Inv i -> { t with t = Tm_Inv (aux i) } | Tm_AddInv i is -> { t with t = Tm_AddInv (aux i) (aux is) } | Tm_Pure p -> { t with t = Tm_Pure (aux p) } | Tm_Star l r -> { t with t = Tm_Star (aux l) (aux r) } | Tm_ExistsSL u b body -> { t with t = Tm_ExistsSL u { b with binder_ty=aux b.binder_ty} (aux body) } | Tm_ForallSL u b body -> { t with t = Tm_ForallSL u { b with binder_ty=aux b.binder_ty} (aux body) } | Tm_FStar h -> let h = FStar.Tactics.Visit.visit_tm visitor h in assume (is_host_term h); { t with t=Tm_FStar h } in aux t let visit_and_rewrite_conjuncts (p: (R.term & R.term)) (tms:list term) : T.Tac (list term) = T.map (visit_and_rewrite p) tms let visit_and_rewrite_conjuncts_all (p: list (R.term & R.term)) (goal:term) : T.Tac (term & term) = let tms = Pulse.Typing.Combinators.vprop_as_list goal in let tms' = T.fold_left (fun tms p -> visit_and_rewrite_conjuncts p tms) tms p in assume (L.length tms' == L.length tms); let lhs, rhs = T.fold_left2 (fun (lhs, rhs) t t' -> if eq_tm t t' then lhs, rhs else (t::lhs, t'::rhs)) ([], []) tms tms' in Pulse.Typing.Combinators.list_as_vprop lhs, Pulse.Typing.Combinators.list_as_vprop rhs let disjoint (dom:list var) (cod:Set.set var) = L.for_all (fun d -> not (Set.mem d cod)) dom let rec as_subst (p : list (term & term)) (out:list subst_elt) (domain:list var) (codomain:Set.set var) : option (list subst_elt) = match p with | [] -> if disjoint domain codomain then Some out else None | (e1, e2)::p -> ( match e1.t with | Tm_FStar e1 -> ( match R.inspect_ln e1 with | R.Tv_Var n -> ( let nv = R.inspect_namedv n in as_subst p (NT nv.uniq e2::out) (nv.uniq ::domain ) (Set.union codomain (freevars e2)) ) | _ -> None ) | _ -> None )
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.Naming.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.Show.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.PP.fst.checked", "Pulse.Elaborate.Pure.fst.checked", "Pulse.Checker.Pure.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.fsti.checked", "Pulse.Checker.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.Visit.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Stubs.Pprint.fsti.checked", "FStar.String.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.AssertWithBinders.fst" }
[ { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Show", "short_module": null }, { "abbrev": true, "full_module": "Pulse.Typing.Env", "short_module": "Env" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover", "short_module": "Prover" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Naming", "short_module": "N" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Checker.Pure", "short_module": "PC" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Pulse.Typing.Env", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Elaborate.Pure", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: Pulse.Typing.Env.env -> p: Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) -> t: Pulse.Syntax.Base.term -> FStar.Tactics.Effect.Tac (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term)
FStar.Tactics.Effect.Tac
[]
[]
[ "Pulse.Typing.Env.env", "Prims.list", "FStar.Pervasives.Native.tuple2", "Pulse.Syntax.Base.term", "Pulse.Checker.AssertWithBinders.as_subst", "Prims.Nil", "Pulse.Syntax.Naming.subst_elt", "Pulse.Syntax.Base.var", "FStar.Set.empty", "FStar.Pervasives.Native.Mktuple2", "Pulse.Syntax.Naming.subst_term", "FStar.Pervasives.Native.option", "Prims.unit", "Pulse.Checker.AssertWithBinders.debug_log", "Prims.string", "FStar.Printf.sprintf", "Pulse.Syntax.Printer.term_to_string", "Pulse.Checker.AssertWithBinders.visit_and_rewrite_conjuncts_all", "FStar.Stubs.Reflection.Types.term", "FStar.Tactics.Util.map", "Pulse.Elaborate.Pure.elab_term", "FStar.Pervasives.Native.fst", "Pulse.Checker.Pure.instantiate_term_implicits" ]
[]
false
true
false
false
false
let rewrite_all (g: env) (p: list (term & term)) (t: term) : T.Tac (term & term) =
match as_subst p [] [] Set.empty with | Some s -> t, subst_term t s | _ -> let p:list (R.term & R.term) = T.map (fun (e1, e2) -> elab_term (fst (Pulse.Checker.Pure.instantiate_term_implicits g e1)), elab_term (fst (Pulse.Checker.Pure.instantiate_term_implicits g e2))) p in let lhs, rhs = visit_and_rewrite_conjuncts_all p t in debug_log g (fun _ -> Printf.sprintf "Rewrote %s to %s" (P.term_to_string lhs) (P.term_to_string rhs)); lhs, rhs
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.witness
val witness (t: term) : Tac unit
val witness (t: term) : Tac unit
let witness (t : term) : Tac unit = apply_raw (`__witness); exact t
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 11, "end_line": 270, "start_col": 0, "start_line": 268 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term *) let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b) private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p \/ q) -> (squash (p ==> phi)) -> (squash (q ==> phi)) -> Lemma phi let or_ind #p #q #phi o l r = () let cases_or (o:term) : Tac unit = apply_lemma (mk_e_app (`or_ind) [o]) private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) -> (squash (b == false ==> phi)) -> Lemma phi let bool_ind b phi l r = () let cases_bool (b:term) : Tac unit = let bi = `bool_ind in seq (fun () -> apply_lemma (mk_e_app bi [b])) (fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ()) private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q) let or_intro_1 #p #q _ = () private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q) let or_intro_2 #p #q _ = () let left () : Tac unit = apply_lemma (`or_intro_1) let right () : Tac unit = apply_lemma (`or_intro_2) private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim #p #q #phi p_and_q f = () private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) -> squash (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim' #p #q #phi p_and_q f = () let and_elim (t : term) : Tac unit = begin try apply_lemma (`(__and_elim (`#t))) with | _ -> apply_lemma (`(__and_elim' (`#t))) end let destruct_and (t : term) : Tac (binding * binding) = and_elim t; (implies_intro (), implies_intro ()) private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x) private let __witness #a x #p _ = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.exact", "Prims.unit", "FStar.Tactics.V2.Derived.apply_raw" ]
[]
false
true
false
false
false
let witness (t: term) : Tac unit =
apply_raw (`__witness); exact t
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.and_elim
val and_elim (t: term) : Tac unit
val and_elim (t: term) : Tac unit
let and_elim (t : term) : Tac unit = begin try apply_lemma (`(__and_elim (`#t))) with | _ -> apply_lemma (`(__and_elim' (`#t))) end
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 259, "start_col": 0, "start_line": 255 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term *) let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b) private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p \/ q) -> (squash (p ==> phi)) -> (squash (q ==> phi)) -> Lemma phi let or_ind #p #q #phi o l r = () let cases_or (o:term) : Tac unit = apply_lemma (mk_e_app (`or_ind) [o]) private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) -> (squash (b == false ==> phi)) -> Lemma phi let bool_ind b phi l r = () let cases_bool (b:term) : Tac unit = let bi = `bool_ind in seq (fun () -> apply_lemma (mk_e_app bi [b])) (fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ()) private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q) let or_intro_1 #p #q _ = () private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q) let or_intro_2 #p #q _ = () let left () : Tac unit = apply_lemma (`or_intro_1) let right () : Tac unit = apply_lemma (`or_intro_2) private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim #p #q #phi p_and_q f = () private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) -> squash (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim' #p #q #phi p_and_q f = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.try_with", "Prims.unit", "FStar.Tactics.V2.Derived.apply_lemma", "Prims.exn" ]
[]
false
true
false
false
false
let and_elim (t: term) : Tac unit =
try apply_lemma (`(__and_elim (`#t))) with | _ -> apply_lemma (`(__and_elim' (`#t)))
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.destruct_and
val destruct_and (t: term) : Tac (binding * binding)
val destruct_and (t: term) : Tac (binding * binding)
let destruct_and (t : term) : Tac (binding * binding) = and_elim t; (implies_intro (), implies_intro ())
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 263, "start_col": 0, "start_line": 261 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b) let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) (** Introduce an implication. *) let implies_intro () : Tac binding = apply_lemma (`imp_intro_lem); intro () let implies_intro_as (s:string) : Tac binding = apply_lemma (`imp_intro_lem); intro_as s (** Repeated [implies_intro]. *) let implies_intros () : Tac (list binding) = repeat1 implies_intro (** "Logical" intro: introduce a forall or an implication. *) let l_intro () = forall_intro `or_else` implies_intro (** Repeated [l]. *) let l_intros () = repeat l_intro let squash_intro () : Tac unit = apply (`FStar.Squash.return_squash) let l_exact (t:term) = try exact t with | _ -> (squash_intro (); exact t) // FIXME: should this take a binding? It's less general... // but usually what we want. Coercions could help. let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) private let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens = h () let pose_lemma (t : term) : Tac binding = let c = tcc (cur_env ()) t in let pre, post = match c with | C_Lemma pre post _ -> pre, post | _ -> fail "" in let post = `((`#post) ()) in (* unthunk *) let post = norm_term [] post in (* If the precondition is trivial, do not cut by it *) match term_as_formula' pre with | True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t)))) | _ -> let reqb = tcut (`squash (`#pre)) in let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in flip (); ignore (trytac trivial); b let explode () : Tac unit = ignore ( repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])) let rec visit (callback:unit -> Tac unit) : Tac unit = focus (fun () -> or_else callback (fun () -> let g = cur_goal () in match term_as_formula g with | Forall _b _sort _phi -> let binders = forall_intros () in seq (fun () -> visit callback) (fun () -> l_revert_all binders) | And p q -> seq split (fun () -> visit callback) | Implies p q -> let _ = implies_intro () in seq (fun () -> visit callback) l_revert | _ -> () ) ) let rec simplify_eq_implication () : Tac unit = let e = cur_env () in let g = cur_goal () in let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in // G, eq_h:x=e |- P rewrite eq_h; // G, eq_h:x=e |- P[e/x] clear_top (); // G |- P[e/x] visit simplify_eq_implication let rewrite_all_equalities () : Tac unit = visit simplify_eq_implication let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit = let g = cur_goal () in match term_as_formula g with | App hd arg -> if term_eq hd tm then trivial () else () | _ -> begin let r = destruct_equality_implication g in match r with | None -> fail "Not an equality implication" | Some (_, rhs) -> let eq_h = implies_intro () in rewrite eq_h; clear_top (); visit (fun () -> unfold_definition_and_simplify_eq tm) end private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) (** A tactic to unsquash a hypothesis. Perhaps you are looking for [unsquash_term]. Pre: goal = G |- e : squash s t : squash r Post: G, x:r |- e : squash s `x` is returned as a term *) let unsquash (t : term) : Tac term = let v = `vbind in apply_lemma (mk_e_app v [t]); let b = intro () in pack (Tv_Var b) private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p \/ q) -> (squash (p ==> phi)) -> (squash (q ==> phi)) -> Lemma phi let or_ind #p #q #phi o l r = () let cases_or (o:term) : Tac unit = apply_lemma (mk_e_app (`or_ind) [o]) private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) -> (squash (b == false ==> phi)) -> Lemma phi let bool_ind b phi l r = () let cases_bool (b:term) : Tac unit = let bi = `bool_ind in seq (fun () -> apply_lemma (mk_e_app bi [b])) (fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ()) private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q) let or_intro_1 #p #q _ = () private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q) let or_intro_2 #p #q _ = () let left () : Tac unit = apply_lemma (`or_intro_1) let right () : Tac unit = apply_lemma (`or_intro_2) private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) -> (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim #p #q #phi p_and_q f = () private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) -> squash (p /\ q) -> squash (p ==> q ==> phi) -> Lemma phi let __and_elim' #p #q #phi p_and_q f = () let and_elim (t : term) : Tac unit = begin try apply_lemma (`(__and_elim (`#t))) with | _ -> apply_lemma (`(__and_elim' (`#t))) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac (FStar.Tactics.NamedView.binding * FStar.Tactics.NamedView.binding)
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.term", "FStar.Pervasives.Native.Mktuple2", "FStar.Tactics.NamedView.binding", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.V2.Logic.implies_intro", "Prims.unit", "FStar.Tactics.V2.Logic.and_elim" ]
[]
false
true
false
false
false
let destruct_and (t: term) : Tac (binding * binding) =
and_elim t; (implies_intro (), implies_intro ())
false
FStar.Tactics.V2.Logic.fst
FStar.Tactics.V2.Logic.imp_intro_lem
val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b)
val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) -> Lemma (a ==> b)
let imp_intro_lem #a #b f = FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
{ "file_name": "ulib/FStar.Tactics.V2.Logic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 113, "end_line": 76, "start_col": 0, "start_line": 75 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.V2.Logic open FStar.Reflection.V2 open FStar.Reflection.V2.Formula open FStar.Tactics.Effect open FStar.Stubs.Tactics.V2.Builtins open FStar.Tactics.V2.Derived open FStar.Tactics.V2.SyntaxCoercions open FStar.Tactics.NamedView open FStar.Tactics.Util (** Returns the current goal as a [formula]. *) let cur_formula () : Tac formula = term_as_formula (cur_goal ()) private val revert_squash : (#a:Type) -> (#b : (a -> Type)) -> (squash (forall (x:a). b x)) -> x:a -> squash (b x) let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () (** Revert an introduced binder as a forall. *) let l_revert () : Tac unit = revert (); apply (`revert_squash) (** Repeated [l_revert]. *) let rec l_revert_all (bs:list binding) : Tac unit = match bs with | [] -> () | _::tl -> begin l_revert (); l_revert_all tl end private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) = FStar.Classical.lemma_forall_intro_gtot ((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x))) (** Introduce a forall. *) let forall_intro () : Tac binding = apply_lemma (`fa_intro_lem); intro () (** Introduce a forall, with some given name. *) let forall_intro_as (s:string) : Tac binding = apply_lemma (`fa_intro_lem); intro_as s (** Repeated [forall_intro]. *) let forall_intros () : Tac (list binding) = repeat1 forall_intro private val split_lem : (#a:Type) -> (#b:Type) -> squash a -> squash b -> Lemma (a /\ b) let split_lem #a #b sa sb = () (** Split a conjunction into two goals. *) let split () : Tac unit = try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" private val imp_intro_lem : (#a:Type) -> (#b : Type) -> (a -> squash b) ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.SyntaxCoercions.fst.checked", "FStar.Tactics.V2.Derived.fst.checked", "FStar.Tactics.Util.fst.checked", "FStar.Tactics.NamedView.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Stubs.Tactics.V2.Builtins.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.V2.Logic.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.NamedView", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.SyntaxCoercions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Tactics.V2.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> Prims.squash b) -> FStar.Pervasives.Lemma (ensures a ==> b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.squash", "FStar.Classical.give_witness", "Prims.l_imp", "FStar.Classical.arrow_to_impl", "FStar.Squash.bind_squash", "Prims.unit" ]
[]
false
false
true
false
false
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x: squash a) -> FStar.Squash.bind_squash x f))
false