file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.__elim_exists' | val __elim_exists'
(#t: _)
(#pred: (t -> Type0))
(#goal: _)
(h: (exists x. pred x))
(k: (x: t -> pred x -> squash goal))
: squash goal | val __elim_exists'
(#t: _)
(#pred: (t -> Type0))
(#goal: _)
(h: (exists x. pred x))
(k: (x: t -> pred x -> squash goal))
: squash goal | let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf) | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 70,
"end_line": 275,
"start_col": 0,
"start_line": 273
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: (exists (x: t). pred x) -> k: (x: t -> _: pred x -> Prims.squash goal) -> Prims.squash goal | Prims.Tot | [
"total"
] | [] | [
"Prims.l_Exists",
"Prims.squash",
"FStar.Squash.bind_squash",
"Prims.dtuple2"
] | [] | false | false | true | false | false | let __elim_exists'
#t
(#pred: (t -> Type0))
#goal
(h: (exists x. pred x))
(k: (x: t -> pred x -> squash goal))
: squash goal =
| FStar.Squash.bind_squash #(x: t & pred x) h (fun (| x , pf |) -> k x pf) | false |
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.elim_exists | val elim_exists (t: term) : Tac (binding & binding) | val elim_exists (t: term) : Tac (binding & binding) | let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf) | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 9,
"end_line": 282,
"start_col": 0,
"start_line": 278
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac (FStar.Tactics.NamedView.binding * FStar.Tactics.NamedView.binding) | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Tactics.NamedView.binding",
"FStar.Pervasives.Native.tuple2",
"FStar.Stubs.Reflection.V2.Data.binding",
"FStar.Stubs.Tactics.V2.Builtins.intro",
"Prims.unit",
"FStar.Tactics.V2.Derived.apply_lemma"
] | [] | false | true | false | false | false | let elim_exists (t: term) : Tac (binding & binding) =
| apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf) | false |
Hacl.Impl.K256.Verify.fst | Hacl.Impl.K256.Verify.fmul_eq_vartime | val fmul_eq_vartime (r z x: felem) : Stack bool
(requires fun h ->
live h r /\ live h z /\ live h x /\ eq_or_disjoint r z /\
felem_fits5 (as_felem5 h r) (2,2,2,2,2) /\ as_nat h r < S.prime /\
inv_lazy_reduced2 h z /\ inv_fully_reduced h x)
(ensures fun h0 b h1 -> modifies0 h0 h1 /\
b == (S.fmul (as_nat h0 r) (feval h0 z) = as_nat h0 x)) | val fmul_eq_vartime (r z x: felem) : Stack bool
(requires fun h ->
live h r /\ live h z /\ live h x /\ eq_or_disjoint r z /\
felem_fits5 (as_felem5 h r) (2,2,2,2,2) /\ as_nat h r < S.prime /\
inv_lazy_reduced2 h z /\ inv_fully_reduced h x)
(ensures fun h0 b h1 -> modifies0 h0 h1 /\
b == (S.fmul (as_nat h0 r) (feval h0 z) = as_nat h0 x)) | let fmul_eq_vartime r z x =
push_frame ();
let tmp = create_felem () in
fmul tmp r z;
let h1 = ST.get () in
fnormalize tmp tmp;
let h2 = ST.get () in
BL.normalize5_lemma (1,1,1,1,2) (as_felem5 h1 tmp);
assert (inv_fully_reduced h2 tmp);
let b = is_felem_eq_vartime tmp x in
pop_frame ();
b | {
"file_name": "code/k256/Hacl.Impl.K256.Verify.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 71,
"start_col": 0,
"start_line": 60
} | module Hacl.Impl.K256.Verify
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module S = Spec.K256
module KL = Spec.K256.Lemmas
open Hacl.K256.Field
open Hacl.Impl.K256.Point
open Hacl.Impl.K256.PointMul
open Hacl.Impl.K256.GLV
module QA = Hacl.K256.Scalar
module QI = Hacl.Impl.K256.Qinv
module BL = Hacl.Spec.K256.Field52.Lemmas
module BSeq = Lib.ByteSequence
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let lbytes len = lbuffer uint8 len
inline_for_extraction noextract
val ecdsa_verify_get_u12 (u1 u2 r s z: QA.qelem) : Stack unit
(requires fun h ->
live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\
disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\
disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\
QA.qas_nat h s < S.q /\ QA.qas_nat h z < S.q /\ QA.qas_nat h r < S.q)
(ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\
(let sinv = S.qinv (QA.qas_nat h0 s) in
QA.qas_nat h1 u1 == QA.qas_nat h0 z * sinv % S.q /\
QA.qas_nat h1 u2 == QA.qas_nat h0 r * sinv % S.q))
let ecdsa_verify_get_u12 u1 u2 r s z =
push_frame ();
let sinv = QA.create_qelem () in
QI.qinv sinv s;
QA.qmul u1 z sinv;
QA.qmul u2 r sinv;
pop_frame ()
val fmul_eq_vartime (r z x: felem) : Stack bool
(requires fun h ->
live h r /\ live h z /\ live h x /\ eq_or_disjoint r z /\
felem_fits5 (as_felem5 h r) (2,2,2,2,2) /\ as_nat h r < S.prime /\
inv_lazy_reduced2 h z /\ inv_fully_reduced h x)
(ensures fun h0 b h1 -> modifies0 h0 h1 /\
b == (S.fmul (as_nat h0 r) (feval h0 z) = as_nat h0 x)) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.Lemmas.fsti.checked",
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Field52.Lemmas.fsti.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.K256.Field.fsti.checked",
"Hacl.Impl.K256.Qinv.fst.checked",
"Hacl.Impl.K256.PointMul.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"Hacl.Impl.K256.GLV.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Verify.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Lemmas",
"short_module": "BL"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.K256.Qinv",
"short_module": "QI"
},
{
"abbrev": true,
"full_module": "Hacl.K256.Scalar",
"short_module": "QA"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.GLV",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.PointMul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Field",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256.Lemmas",
"short_module": "KL"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Hacl.K256.Field.felem -> z: Hacl.K256.Field.felem -> x: Hacl.K256.Field.felem
-> FStar.HyperStack.ST.Stack Prims.bool | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.K256.Field.felem",
"Prims.bool",
"Prims.unit",
"FStar.HyperStack.ST.pop_frame",
"Hacl.K256.Field.is_felem_eq_vartime",
"Prims._assert",
"Hacl.K256.Field.inv_fully_reduced",
"Hacl.Spec.K256.Field52.Lemmas.normalize5_lemma",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Hacl.K256.Field.as_felem5",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.K256.Field.fnormalize",
"Hacl.K256.Field.fmul",
"Hacl.K256.Field.create_felem",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let fmul_eq_vartime r z x =
| push_frame ();
let tmp = create_felem () in
fmul tmp r z;
let h1 = ST.get () in
fnormalize tmp tmp;
let h2 = ST.get () in
BL.normalize5_lemma (1, 1, 1, 1, 2) (as_felem5 h1 tmp);
assert (inv_fully_reduced h2 tmp);
let b = is_felem_eq_vartime tmp x in
pop_frame ();
b | false |
Pulse.Checker.AssertWithBinders.fst | Pulse.Checker.AssertWithBinders.as_subst | val as_subst
(p: list (term & term))
(out: list subst_elt)
(domain: list var)
(codomain: Set.set var)
: option (list subst_elt) | val as_subst
(p: list (term & term))
(out: list subst_elt)
(domain: list var)
(codomain: Set.set var)
: option (list subst_elt) | let rec as_subst (p : list (term & term))
(out:list subst_elt)
(domain:list var)
(codomain:Set.set var)
: option (list subst_elt) =
match p with
| [] ->
if disjoint domain codomain
then Some out
else None
| (e1, e2)::p -> (
match e1.t with
| Tm_FStar e1 -> (
match R.inspect_ln e1 with
| R.Tv_Var n -> (
let nv = R.inspect_namedv n in
as_subst p
(NT nv.uniq e2::out)
(nv.uniq ::domain )
(Set.union codomain (freevars e2))
)
| _ -> None
)
| _ -> None
) | {
"file_name": "lib/steel/pulse/Pulse.Checker.AssertWithBinders.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 3,
"end_line": 243,
"start_col": 0,
"start_line": 219
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Checker.AssertWithBinders
open Pulse.Syntax
open Pulse.Typing
open Pulse.Checker.Base
open Pulse.Elaborate.Pure
open Pulse.Typing.Env
module L = FStar.List.Tot
module T = FStar.Tactics.V2
module R = FStar.Reflection.V2
module PC = Pulse.Checker.Pure
module P = Pulse.Syntax.Printer
module N = Pulse.Syntax.Naming
module PS = Pulse.Checker.Prover.Substs
module Prover = Pulse.Checker.Prover
module Env = Pulse.Typing.Env
open Pulse.Show
module RU = Pulse.RuntimeUtils
let is_host_term (t:R.term) = not (R.Tv_Unknown? (R.inspect_ln t))
let debug_log = Pulse.Typing.debug_log "with_binders"
let option_must (f:option 'a) (msg:string) : T.Tac 'a =
match f with
| Some x -> x
| None -> T.fail msg
let rec refl_abs_binders (t:R.term) (acc:list binder) : T.Tac (list binder) =
let open R in
match inspect_ln t with
| Tv_Abs b body ->
let {sort; ppname} = R.inspect_binder b in
let sort = option_must (readback_ty sort)
(Printf.sprintf "Failed to readback elaborated binder sort %s in refl_abs_binders"
(T.term_to_string sort)) in
refl_abs_binders body
((mk_binder_ppname sort (mk_ppname ppname (RU.range_of_term t)))::acc)
| _ -> L.rev acc
let infer_binder_types (g:env) (bs:list binder) (v:vprop)
: T.Tac (list binder) =
match bs with
| [] -> []
| _ ->
let g = push_context g "infer_binder_types" v.range in
let tv = elab_term v in
if not (is_host_term tv)
then fail g (Some v.range)
(Printf.sprintf "assert.infer_binder_types: elaborated %s to %s, which failed the host term check"
(P.term_to_string v) (T.term_to_string tv));
let as_binder (b:binder) : R.binder =
let open R in
let bv : binder_view =
{ sort = elab_term b.binder_ty;
ppname = b.binder_ppname.name;
qual = Q_Explicit;
attrs = [] } in
pack_binder bv
in
let abstraction =
L.fold_right
(fun b (tv:host_term) ->
let b = as_binder b in
R.pack_ln (R.Tv_Abs b tv))
bs
tv
in
let inst_abstraction, _ = PC.instantiate_term_implicits g (tm_fstar abstraction v.range) in
match inst_abstraction.t with
| Tm_FStar t -> refl_abs_binders t []
| _ -> T.fail "Impossible: instantiated abstraction is not embedded F* term, please file a bug-report"
let rec open_binders (g:env) (bs:list binder) (uvs:env { disjoint uvs g }) (v:term) (body:st_term)
: T.Tac (uvs:env { disjoint uvs g } & term & st_term) =
match bs with
| [] -> (| uvs, v, body |)
| b::bs ->
// these binders are only lax checked so far
let _ = PC.check_universe (push_env g uvs) b.binder_ty in
let x = fresh (push_env g uvs) in
let ss = [ DT 0 (tm_var {nm_index=x;nm_ppname=b.binder_ppname}) ] in
let bs = L.mapi (fun i b ->
assume (i >= 0);
subst_binder b (shift_subst_n i ss)) bs in
let v = subst_term v (shift_subst_n (L.length bs) ss) in
let body = subst_st_term body (shift_subst_n (L.length bs) ss) in
open_binders g bs (push_binding uvs x b.binder_ppname b.binder_ty) v body
let closing (bs:list (ppname & var & typ)) : subst =
L.fold_right (fun (_, x, _) (n, ss) ->
n+1,
(ND x n)::ss
) bs (0, []) |> snd
let rec close_binders (bs:list (ppname & var & typ))
: Tot (list binder) (decreases L.length bs) =
match bs with
| [] -> []
| (name, x, t)::bs ->
let bss = L.mapi (fun n (n1, x1, t1) ->
assume (n >= 0);
n1, x1, subst_term t1 [ND x n]) bs in
let b = mk_binder_ppname t name in
assume (L.length bss == L.length bs);
b::(close_binders bss)
let unfold_defs (g:env) (defs:option (list string)) (t:term)
: T.Tac term
= let t = elab_term t in
let head, _ = T.collect_app t in
match R.inspect_ln head with
| R.Tv_FVar fv
| R.Tv_UInst fv _ -> (
let head = String.concat "." (R.inspect_fv fv) in
let fully =
match defs with
| Some defs -> defs
| None -> []
in
let rt = RU.unfold_def (fstar_env g) head fully t in
let rt = option_must rt
(Printf.sprintf "unfolding %s returned None" (T.term_to_string t)) in
let ty = option_must (readback_ty rt)
(Printf.sprintf "error in reading back the unfolded term %s" (T.term_to_string rt)) in
debug_log g (fun _ -> Printf.sprintf "Unfolded %s to F* term %s and readback as %s" (T.term_to_string t) (T.term_to_string rt) (P.term_to_string ty));
ty
)
| _ ->
fail g (Some (RU.range_of_term t))
(Printf.sprintf "Cannot unfold %s, the head is not an fvar" (T.term_to_string t))
let check_unfoldable g (v:term) : T.Tac unit =
match v.t with
| Tm_FStar _ -> ()
| _ ->
fail g
(Some v.range)
(Printf.sprintf "`fold` and `unfold` expect a single user-defined predicate as an argument, \
but %s is a primitive term that cannot be folded or unfolded"
(P.term_to_string v))
let visit_and_rewrite (p: (R.term & R.term)) (t:term) : T.Tac term =
let open FStar.Reflection.V2.TermEq in
let lhs, rhs = p in
let visitor (t:R.term) : T.Tac R.term =
if term_eq t lhs then rhs else t
in
match R.inspect_ln lhs with
| R.Tv_Var n -> (
let nv = R.inspect_namedv n in
assume (is_host_term rhs);
subst_term t [NT nv.uniq { t = Tm_FStar rhs; range = t.range }]
)
| _ ->
let rec aux (t:term) : T.Tac term =
match t.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Inames
| Tm_Unknown -> t
| Tm_Inv i ->
{ t with t = Tm_Inv (aux i) }
| Tm_AddInv i is ->
{ t with t = Tm_AddInv (aux i) (aux is) }
| Tm_Pure p -> { t with t = Tm_Pure (aux p) }
| Tm_Star l r -> { t with t = Tm_Star (aux l) (aux r) }
| Tm_ExistsSL u b body -> { t with t = Tm_ExistsSL u { b with binder_ty=aux b.binder_ty} (aux body) }
| Tm_ForallSL u b body -> { t with t = Tm_ForallSL u { b with binder_ty=aux b.binder_ty} (aux body) }
| Tm_FStar h ->
let h = FStar.Tactics.Visit.visit_tm visitor h in
assume (is_host_term h);
{ t with t=Tm_FStar h }
in
aux t
let visit_and_rewrite_conjuncts (p: (R.term & R.term)) (tms:list term) : T.Tac (list term) =
T.map (visit_and_rewrite p) tms
let visit_and_rewrite_conjuncts_all (p: list (R.term & R.term)) (goal:term) : T.Tac (term & term) =
let tms = Pulse.Typing.Combinators.vprop_as_list goal in
let tms' = T.fold_left (fun tms p -> visit_and_rewrite_conjuncts p tms) tms p in
assume (L.length tms' == L.length tms);
let lhs, rhs =
T.fold_left2
(fun (lhs, rhs) t t' ->
if eq_tm t t' then lhs, rhs
else (t::lhs, t'::rhs))
([], [])
tms tms'
in
Pulse.Typing.Combinators.list_as_vprop lhs,
Pulse.Typing.Combinators.list_as_vprop rhs
let disjoint (dom:list var) (cod:Set.set var) =
L.for_all (fun d -> not (Set.mem d cod)) dom | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Printer.fsti.checked",
"Pulse.Syntax.Naming.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Show.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.PP.fst.checked",
"Pulse.Elaborate.Pure.fst.checked",
"Pulse.Checker.Pure.fsti.checked",
"Pulse.Checker.Prover.Substs.fsti.checked",
"Pulse.Checker.Prover.fsti.checked",
"Pulse.Checker.Base.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Pprint.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Reflection.V2.TermEq.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Checker.AssertWithBinders.fst"
} | [
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": false,
"full_module": "Pulse.Show",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.Typing.Env",
"short_module": "Env"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Prover",
"short_module": "Prover"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Prover.Substs",
"short_module": "PS"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Naming",
"short_module": "N"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Printer",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Pure",
"short_module": "PC"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Prims.list (Pulse.Syntax.Base.term * Pulse.Syntax.Base.term) ->
out: Prims.list Pulse.Syntax.Naming.subst_elt ->
domain: Prims.list Pulse.Syntax.Base.var ->
codomain: FStar.Set.set Pulse.Syntax.Base.var
-> FStar.Pervasives.Native.option (Prims.list Pulse.Syntax.Naming.subst_elt) | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Naming.subst_elt",
"Pulse.Syntax.Base.var",
"FStar.Set.set",
"Pulse.Checker.AssertWithBinders.disjoint",
"FStar.Pervasives.Native.Some",
"Prims.bool",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.__proj__Mkterm__item__t",
"Pulse.Syntax.Base.host_term",
"FStar.Stubs.Reflection.V2.Builtins.inspect_ln",
"FStar.Stubs.Reflection.Types.namedv",
"Pulse.Checker.AssertWithBinders.as_subst",
"Prims.Cons",
"Pulse.Syntax.Naming.NT",
"FStar.Stubs.Reflection.V2.Data.__proj__Mknamedv_view__item__uniq",
"FStar.Set.union",
"Pulse.Syntax.Naming.freevars",
"FStar.Stubs.Reflection.V2.Data.namedv_view",
"Prims.precedes",
"FStar.Stubs.Reflection.V2.Builtins.inspect_namedv",
"FStar.Stubs.Reflection.V2.Data.term_view",
"Pulse.Syntax.Base.term'"
] | [
"recursion"
] | false | false | false | true | false | let rec as_subst
(p: list (term & term))
(out: list subst_elt)
(domain: list var)
(codomain: Set.set var)
: option (list subst_elt) =
| match p with
| [] -> if disjoint domain codomain then Some out else None
| (e1, e2) :: p ->
(match e1.t with
| Tm_FStar e1 ->
(match R.inspect_ln e1 with
| R.Tv_Var n ->
(let nv = R.inspect_namedv n in
as_subst p (NT nv.uniq e2 :: out) (nv.uniq :: domain) (Set.union codomain (freevars e2))
)
| _ -> None)
| _ -> None) | false |
Pulse.Checker.AssertWithBinders.fst | Pulse.Checker.AssertWithBinders.check_wild | val check_wild (g: env) (pre: term) (st: st_term{head_wild st}) : T.Tac st_term | val check_wild (g: env) (pre: term) (st: st_term{head_wild st}) : T.Tac st_term | let check_wild
(g:env)
(pre:term)
(st:st_term { head_wild st })
: T.Tac st_term
= let Tm_ProofHintWithBinders ht = st.term in
let { binders=bs; t=body } = ht in
match bs with
| [] ->
fail g (Some st.range) "A wildcard must have at least one binder"
| _ ->
let vprops = Pulse.Typing.Combinators.vprop_as_list pre in
let ex, rest = List.Tot.partition (fun (v:vprop) -> Tm_ExistsSL? v.t) vprops in
match ex with
| []
| _::_::_ ->
fail g (Some st.range) "Binding names with a wildcard requires exactly one existential quantifier in the goal"
| [ex] ->
let k = List.Tot.length bs in
let rec peel_binders (n:nat) (t:term) : T.Tac st_term =
if n = 0
then (
let ex_body = t in
{ st with term = Tm_ProofHintWithBinders { ht with hint_type = ASSERT { p = ex_body } }}
)
else (
match t.t with
| Tm_ExistsSL u b body -> peel_binders (n-1) body
| _ ->
fail g (Some st.range)
(Printf.sprintf "Expected an existential quantifier with at least %d binders; but only found %s with %d binders"
k (show ex) (k - n))
)
in
peel_binders k ex | {
"file_name": "lib/steel/pulse/Pulse.Checker.AssertWithBinders.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 23,
"end_line": 334,
"start_col": 0,
"start_line": 299
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Checker.AssertWithBinders
open Pulse.Syntax
open Pulse.Typing
open Pulse.Checker.Base
open Pulse.Elaborate.Pure
open Pulse.Typing.Env
module L = FStar.List.Tot
module T = FStar.Tactics.V2
module R = FStar.Reflection.V2
module PC = Pulse.Checker.Pure
module P = Pulse.Syntax.Printer
module N = Pulse.Syntax.Naming
module PS = Pulse.Checker.Prover.Substs
module Prover = Pulse.Checker.Prover
module Env = Pulse.Typing.Env
open Pulse.Show
module RU = Pulse.RuntimeUtils
let is_host_term (t:R.term) = not (R.Tv_Unknown? (R.inspect_ln t))
let debug_log = Pulse.Typing.debug_log "with_binders"
let option_must (f:option 'a) (msg:string) : T.Tac 'a =
match f with
| Some x -> x
| None -> T.fail msg
let rec refl_abs_binders (t:R.term) (acc:list binder) : T.Tac (list binder) =
let open R in
match inspect_ln t with
| Tv_Abs b body ->
let {sort; ppname} = R.inspect_binder b in
let sort = option_must (readback_ty sort)
(Printf.sprintf "Failed to readback elaborated binder sort %s in refl_abs_binders"
(T.term_to_string sort)) in
refl_abs_binders body
((mk_binder_ppname sort (mk_ppname ppname (RU.range_of_term t)))::acc)
| _ -> L.rev acc
let infer_binder_types (g:env) (bs:list binder) (v:vprop)
: T.Tac (list binder) =
match bs with
| [] -> []
| _ ->
let g = push_context g "infer_binder_types" v.range in
let tv = elab_term v in
if not (is_host_term tv)
then fail g (Some v.range)
(Printf.sprintf "assert.infer_binder_types: elaborated %s to %s, which failed the host term check"
(P.term_to_string v) (T.term_to_string tv));
let as_binder (b:binder) : R.binder =
let open R in
let bv : binder_view =
{ sort = elab_term b.binder_ty;
ppname = b.binder_ppname.name;
qual = Q_Explicit;
attrs = [] } in
pack_binder bv
in
let abstraction =
L.fold_right
(fun b (tv:host_term) ->
let b = as_binder b in
R.pack_ln (R.Tv_Abs b tv))
bs
tv
in
let inst_abstraction, _ = PC.instantiate_term_implicits g (tm_fstar abstraction v.range) in
match inst_abstraction.t with
| Tm_FStar t -> refl_abs_binders t []
| _ -> T.fail "Impossible: instantiated abstraction is not embedded F* term, please file a bug-report"
let rec open_binders (g:env) (bs:list binder) (uvs:env { disjoint uvs g }) (v:term) (body:st_term)
: T.Tac (uvs:env { disjoint uvs g } & term & st_term) =
match bs with
| [] -> (| uvs, v, body |)
| b::bs ->
// these binders are only lax checked so far
let _ = PC.check_universe (push_env g uvs) b.binder_ty in
let x = fresh (push_env g uvs) in
let ss = [ DT 0 (tm_var {nm_index=x;nm_ppname=b.binder_ppname}) ] in
let bs = L.mapi (fun i b ->
assume (i >= 0);
subst_binder b (shift_subst_n i ss)) bs in
let v = subst_term v (shift_subst_n (L.length bs) ss) in
let body = subst_st_term body (shift_subst_n (L.length bs) ss) in
open_binders g bs (push_binding uvs x b.binder_ppname b.binder_ty) v body
let closing (bs:list (ppname & var & typ)) : subst =
L.fold_right (fun (_, x, _) (n, ss) ->
n+1,
(ND x n)::ss
) bs (0, []) |> snd
let rec close_binders (bs:list (ppname & var & typ))
: Tot (list binder) (decreases L.length bs) =
match bs with
| [] -> []
| (name, x, t)::bs ->
let bss = L.mapi (fun n (n1, x1, t1) ->
assume (n >= 0);
n1, x1, subst_term t1 [ND x n]) bs in
let b = mk_binder_ppname t name in
assume (L.length bss == L.length bs);
b::(close_binders bss)
let unfold_defs (g:env) (defs:option (list string)) (t:term)
: T.Tac term
= let t = elab_term t in
let head, _ = T.collect_app t in
match R.inspect_ln head with
| R.Tv_FVar fv
| R.Tv_UInst fv _ -> (
let head = String.concat "." (R.inspect_fv fv) in
let fully =
match defs with
| Some defs -> defs
| None -> []
in
let rt = RU.unfold_def (fstar_env g) head fully t in
let rt = option_must rt
(Printf.sprintf "unfolding %s returned None" (T.term_to_string t)) in
let ty = option_must (readback_ty rt)
(Printf.sprintf "error in reading back the unfolded term %s" (T.term_to_string rt)) in
debug_log g (fun _ -> Printf.sprintf "Unfolded %s to F* term %s and readback as %s" (T.term_to_string t) (T.term_to_string rt) (P.term_to_string ty));
ty
)
| _ ->
fail g (Some (RU.range_of_term t))
(Printf.sprintf "Cannot unfold %s, the head is not an fvar" (T.term_to_string t))
let check_unfoldable g (v:term) : T.Tac unit =
match v.t with
| Tm_FStar _ -> ()
| _ ->
fail g
(Some v.range)
(Printf.sprintf "`fold` and `unfold` expect a single user-defined predicate as an argument, \
but %s is a primitive term that cannot be folded or unfolded"
(P.term_to_string v))
let visit_and_rewrite (p: (R.term & R.term)) (t:term) : T.Tac term =
let open FStar.Reflection.V2.TermEq in
let lhs, rhs = p in
let visitor (t:R.term) : T.Tac R.term =
if term_eq t lhs then rhs else t
in
match R.inspect_ln lhs with
| R.Tv_Var n -> (
let nv = R.inspect_namedv n in
assume (is_host_term rhs);
subst_term t [NT nv.uniq { t = Tm_FStar rhs; range = t.range }]
)
| _ ->
let rec aux (t:term) : T.Tac term =
match t.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Inames
| Tm_Unknown -> t
| Tm_Inv i ->
{ t with t = Tm_Inv (aux i) }
| Tm_AddInv i is ->
{ t with t = Tm_AddInv (aux i) (aux is) }
| Tm_Pure p -> { t with t = Tm_Pure (aux p) }
| Tm_Star l r -> { t with t = Tm_Star (aux l) (aux r) }
| Tm_ExistsSL u b body -> { t with t = Tm_ExistsSL u { b with binder_ty=aux b.binder_ty} (aux body) }
| Tm_ForallSL u b body -> { t with t = Tm_ForallSL u { b with binder_ty=aux b.binder_ty} (aux body) }
| Tm_FStar h ->
let h = FStar.Tactics.Visit.visit_tm visitor h in
assume (is_host_term h);
{ t with t=Tm_FStar h }
in
aux t
let visit_and_rewrite_conjuncts (p: (R.term & R.term)) (tms:list term) : T.Tac (list term) =
T.map (visit_and_rewrite p) tms
let visit_and_rewrite_conjuncts_all (p: list (R.term & R.term)) (goal:term) : T.Tac (term & term) =
let tms = Pulse.Typing.Combinators.vprop_as_list goal in
let tms' = T.fold_left (fun tms p -> visit_and_rewrite_conjuncts p tms) tms p in
assume (L.length tms' == L.length tms);
let lhs, rhs =
T.fold_left2
(fun (lhs, rhs) t t' ->
if eq_tm t t' then lhs, rhs
else (t::lhs, t'::rhs))
([], [])
tms tms'
in
Pulse.Typing.Combinators.list_as_vprop lhs,
Pulse.Typing.Combinators.list_as_vprop rhs
let disjoint (dom:list var) (cod:Set.set var) =
L.for_all (fun d -> not (Set.mem d cod)) dom
let rec as_subst (p : list (term & term))
(out:list subst_elt)
(domain:list var)
(codomain:Set.set var)
: option (list subst_elt) =
match p with
| [] ->
if disjoint domain codomain
then Some out
else None
| (e1, e2)::p -> (
match e1.t with
| Tm_FStar e1 -> (
match R.inspect_ln e1 with
| R.Tv_Var n -> (
let nv = R.inspect_namedv n in
as_subst p
(NT nv.uniq e2::out)
(nv.uniq ::domain )
(Set.union codomain (freevars e2))
)
| _ -> None
)
| _ -> None
)
let rewrite_all (g:env) (p: list (term & term)) (t:term) : T.Tac (term & term) =
match as_subst p [] [] Set.empty with
| Some s ->
t, subst_term t s
| _ ->
let p : list (R.term & R.term) =
T.map
(fun (e1, e2) ->
elab_term (fst (Pulse.Checker.Pure.instantiate_term_implicits g e1)),
elab_term (fst (Pulse.Checker.Pure.instantiate_term_implicits g e2)))
p
in
let lhs, rhs = visit_and_rewrite_conjuncts_all p t in
debug_log g (fun _ -> Printf.sprintf "Rewrote %s to %s" (P.term_to_string lhs) (P.term_to_string rhs));
lhs, rhs
let check_renaming
(g:env)
(pre:term)
(st:st_term {
match st.term with
| Tm_ProofHintWithBinders { hint_type = RENAME _ } -> true
| _ -> false
})
: T.Tac st_term
= let Tm_ProofHintWithBinders ht = st.term in
let { hint_type=RENAME { pairs; goal }; binders=bs; t=body } = ht in
match bs, goal with
| _::_, None ->
//if there are binders, we must have a goal
fail g (Some st.range) "A renaming with binders must have a goal (with xs. rename ... in goal)"
| _::_, Some goal ->
//rewrite it as
// with bs. assert goal;
// rename [pairs] in goal;
// ...
let body = {st with term = Tm_ProofHintWithBinders { ht with binders = [] }} in
{ st with term = Tm_ProofHintWithBinders { hint_type=ASSERT { p = goal }; binders=bs; t=body } }
| [], None ->
// if there is no goal, take the goal to be the full current pre
let lhs, rhs = rewrite_all g pairs pre in
let t = { st with term = Tm_Rewrite { t1 = lhs; t2 = rhs } } in
{ st with term = Tm_Bind { binder = as_binder tm_unit; head = t; body } }
| [], Some goal -> (
let goal, _ = PC.instantiate_term_implicits g goal in
let lhs, rhs = rewrite_all g pairs goal in
let t = { st with term = Tm_Rewrite { t1 = lhs; t2 = rhs } } in
{ st with term = Tm_Bind { binder = as_binder tm_unit; head = t; body } }
) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Printer.fsti.checked",
"Pulse.Syntax.Naming.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Show.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.PP.fst.checked",
"Pulse.Elaborate.Pure.fst.checked",
"Pulse.Checker.Pure.fsti.checked",
"Pulse.Checker.Prover.Substs.fsti.checked",
"Pulse.Checker.Prover.fsti.checked",
"Pulse.Checker.Base.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Pprint.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Reflection.V2.TermEq.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Checker.AssertWithBinders.fst"
} | [
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": false,
"full_module": "Pulse.Show",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.Typing.Env",
"short_module": "Env"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Prover",
"short_module": "Prover"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Prover.Substs",
"short_module": "PS"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Naming",
"short_module": "N"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Printer",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Pure",
"short_module": "PC"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
g: Pulse.Typing.Env.env ->
pre: Pulse.Syntax.Base.term ->
st: Pulse.Syntax.Base.st_term{Pulse.Checker.AssertWithBinders.head_wild st}
-> FStar.Tactics.Effect.Tac Pulse.Syntax.Base.st_term | FStar.Tactics.Effect.Tac | [] | [] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.st_term",
"Prims.b2t",
"Pulse.Checker.AssertWithBinders.head_wild",
"Pulse.Syntax.Base.st_term'__Tm_ProofHintWithBinders__payload",
"Pulse.Syntax.Base.proof_hint_type",
"Prims.list",
"Pulse.Syntax.Base.binder",
"Pulse.Typing.Env.fail",
"FStar.Pervasives.Native.Some",
"Pulse.Syntax.Base.range",
"Pulse.Syntax.Base.__proj__Mkst_term__item__range",
"Pulse.Syntax.Base.vprop",
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Pulse.Syntax.Base.Mkst_term",
"Pulse.Syntax.Base.Tm_ProofHintWithBinders",
"Pulse.Syntax.Base.Mkst_term'__Tm_ProofHintWithBinders__payload",
"Pulse.Syntax.Base.ASSERT",
"Pulse.Syntax.Base.Mkproof_hint_type__ASSERT__payload",
"Pulse.Syntax.Base.__proj__Mkst_term'__Tm_ProofHintWithBinders__payload__item__binders",
"Pulse.Syntax.Base.__proj__Mkst_term'__Tm_ProofHintWithBinders__payload__item__t",
"Pulse.Syntax.Base.__proj__Mkst_term__item__effect_tag",
"Prims.bool",
"Pulse.Syntax.Base.__proj__Mkterm__item__t",
"Pulse.Syntax.Base.universe",
"Prims.op_Subtraction",
"Pulse.Syntax.Base.term'",
"Prims.string",
"FStar.Printf.sprintf",
"Pulse.Show.show",
"Pulse.Show.uu___30",
"FStar.List.Tot.Base.length",
"FStar.Pervasives.Native.tuple2",
"FStar.List.Tot.Base.partition",
"Pulse.Syntax.Base.uu___is_Tm_ExistsSL",
"Pulse.Typing.Combinators.vprop_as_list",
"Pulse.Syntax.Base.st_term'",
"Pulse.Syntax.Base.__proj__Mkst_term__item__term"
] | [] | false | true | false | false | false | let check_wild (g: env) (pre: term) (st: st_term{head_wild st}) : T.Tac st_term =
| let Tm_ProofHintWithBinders ht = st.term in
let { binders = bs ; t = body } = ht in
match bs with
| [] -> fail g (Some st.range) "A wildcard must have at least one binder"
| _ ->
let vprops = Pulse.Typing.Combinators.vprop_as_list pre in
let ex, rest = List.Tot.partition (fun (v: vprop) -> Tm_ExistsSL? v.t) vprops in
match ex with
| []
| _ :: _ :: _ ->
fail g
(Some st.range)
"Binding names with a wildcard requires exactly one existential quantifier in the goal"
| [ex] ->
let k = List.Tot.length bs in
let rec peel_binders (n: nat) (t: term) : T.Tac st_term =
if n = 0
then
(let ex_body = t in
{
st with
term = Tm_ProofHintWithBinders ({ ht with hint_type = ASSERT ({ p = ex_body }) })
})
else
(match t.t with
| Tm_ExistsSL u b body -> peel_binders (n - 1) body
| _ ->
fail g
(Some st.range)
(Printf.sprintf "Expected an existential quantifier with at least %d binders; but only found %s with %d binders"
k
(show ex)
(k - n)))
in
peel_binders k ex | false |
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.__lemma_to_squash | val __lemma_to_squash:
#req: _ ->
#ens: _ ->
squash req ->
h: (unit -> Lemma (requires req) (ensures ens))
-> squash ens | val __lemma_to_squash:
#req: _ ->
#ens: _ ->
squash req ->
h: (unit -> Lemma (requires req) (ensures ens))
-> squash ens | let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h () | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 6,
"end_line": 109,
"start_col": 0,
"start_line": 108
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.squash req -> h: (_: Prims.unit -> FStar.Pervasives.Lemma (requires req) (ensures ens))
-> Prims.squash ens | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"Prims.unit",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let __lemma_to_squash #req #ens (_: squash req) (h: (unit -> Lemma (requires req) (ensures ens)))
: squash ens =
| h () | false |
Lib.IntTypes.fst | Lib.IntTypes.conditional_subtract | val conditional_subtract:
#t:inttype{signed t}
-> #l:secrecy_level
-> t':inttype{signed t' /\ bits t' < bits t}
-> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1}
-> b:int_t t l{v b = v a @%. t'} | val conditional_subtract:
#t:inttype{signed t}
-> #l:secrecy_level
-> t':inttype{signed t' /\ bits t' < bits t}
-> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1}
-> b:int_t t l{v b = v a @%. t'} | let conditional_subtract #t #l t' a =
assert_norm (pow2 7 = 128);
assert_norm (pow2 15 = 32768);
let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in
shift_left_lemma #t #l (mk_int 1) (size (bits t'));
let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in
shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1));
// assert (v pow2_bits == pow2 (bits t'));
// assert (v pow2_bits_minus_one == pow2 (bits t' - 1));
let a2 = a `sub` pow2_bits_minus_one in
let mask = shift_right a2 (size (bits t - 1)) in
shift_right_lemma a2 (size (bits t - 1));
// assert (if v a2 < 0 then v mask = -1 else v mask = 0);
let a3 = a `sub` pow2_bits in
logand_lemma mask pow2_bits;
a3 `add` (mask `logand` pow2_bits) | {
"file_name": "lib/Lib.IntTypes.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 36,
"end_line": 1009,
"start_col": 0,
"start_line": 994
} | module Lib.IntTypes
open FStar.Math.Lemmas
#push-options "--max_fuel 0 --max_ifuel 1 --z3rlimit 200"
let pow2_2 _ = assert_norm (pow2 2 = 4)
let pow2_3 _ = assert_norm (pow2 3 = 8)
let pow2_4 _ = assert_norm (pow2 4 = 16)
let pow2_127 _ = assert_norm (pow2 127 = 0x80000000000000000000000000000000)
let bits_numbytes t = ()
let sec_int_t t = pub_int_t t
let sec_int_v #t u = pub_int_v u
let secret #t x = x
[@(strict_on_arguments [0])]
let mk_int #t #l x =
match t with
| U1 -> UInt8.uint_to_t x
| U8 -> UInt8.uint_to_t x
| U16 -> UInt16.uint_to_t x
| U32 -> UInt32.uint_to_t x
| U64 -> UInt64.uint_to_t x
| U128 -> UInt128.uint_to_t x
| S8 -> Int8.int_to_t x
| S16 -> Int16.int_to_t x
| S32 -> Int32.int_to_t x
| S64 -> Int64.int_to_t x
| S128 -> Int128.int_to_t x
val v_extensionality:
#t:inttype
-> #l:secrecy_level
-> a:int_t t l
-> b:int_t t l
-> Lemma
(requires v a == v b)
(ensures a == b)
let v_extensionality #t #l a b =
match t with
| U1 -> ()
| U8 -> UInt8.v_inj a b
| U16 -> UInt16.v_inj a b
| U32 -> UInt32.v_inj a b
| U64 -> UInt64.v_inj a b
| U128 -> UInt128.v_inj a b
| S8 -> Int8.v_inj a b
| S16 -> Int16.v_inj a b
| S32 -> Int32.v_inj a b
| S64 -> Int64.v_inj a b
| S128 -> Int128.v_inj a b
let v_injective #t #l a =
v_extensionality a (mk_int (v a))
let v_mk_int #t #l n = ()
let u128 n = FStar.UInt128.uint64_to_uint128 (u64 n)
// KaRaMeL will extract this to FStar_Int128_int_to_t, which isn't provided
// We'll need to have FStar.Int128.int64_to_int128 to support int128_t literals
let i128 n =
assert_norm (pow2 (bits S64 - 1) <= pow2 (bits S128 - 1));
sint #S128 #SEC n
let size_to_uint32 x = x
let size_to_uint64 x = Int.Cast.uint32_to_uint64 x
let byte_to_uint8 x = x
let byte_to_int8 x = Int.Cast.uint8_to_int8 x
let op_At_Percent = Int.op_At_Percent
// FStar.UInt128 gets special treatment in KaRaMeL. There is no
// equivalent for FStar.Int128 at the moment, so we use the three
// assumed cast operators below.
//
// Using them will fail at runtime with an informative message.
// The commented-out implementations show that they are realizable.
//
// When support for `FStar.Int128` is added KaRaMeL, these casts must
// be added as special cases. When using builtin compiler support for
// `int128_t`, they can be implemented directly as C casts without
// undefined or implementation-defined behaviour.
assume
val uint128_to_int128: a:UInt128.t{v a <= maxint S128} -> b:Int128.t{Int128.v b == UInt128.v a}
//let uint128_to_int128 a = Int128.int_to_t (v a)
assume
val int128_to_uint128: a:Int128.t -> b:UInt128.t{UInt128.v b == Int128.v a % pow2 128}
//let int128_to_uint128 a = mk_int (v a % pow2 128)
assume
val int64_to_int128: a:Int64.t -> b:Int128.t{Int128.v b == Int64.v a}
//let int64_to_int128 a = Int128.int_to_t (v a)
val uint64_to_int128: a:UInt64.t -> b:Int128.t{Int128.v b == UInt64.v a}
let uint64_to_int128 a = uint128_to_int128 (Int.Cast.Full.uint64_to_uint128 a)
val int64_to_uint128: a:Int64.t -> b:UInt128.t{UInt128.v b == Int64.v a % pow2 128}
let int64_to_uint128 a = int128_to_uint128 (int64_to_int128 a)
val int128_to_uint64: a:Int128.t -> b:UInt64.t{UInt64.v b == Int128.v a % pow2 64}
let int128_to_uint64 a = Int.Cast.Full.uint128_to_uint64 (int128_to_uint128 a)
#push-options "--z3rlimit 1000"
[@(strict_on_arguments [0;2])]
let cast #t #l t' l' u =
assert_norm (pow2 8 = 2 * pow2 7);
assert_norm (pow2 16 = 2 * pow2 15);
assert_norm (pow2 64 * pow2 64 = pow2 128);
assert_norm (pow2 16 * pow2 48 = pow2 64);
assert_norm (pow2 8 * pow2 56 = pow2 64);
assert_norm (pow2 32 * pow2 32 = pow2 64);
modulo_modulo_lemma (v u) (pow2 32) (pow2 32);
modulo_modulo_lemma (v u) (pow2 64) (pow2 64);
modulo_modulo_lemma (v u) (pow2 128) (pow2 64);
modulo_modulo_lemma (v u) (pow2 16) (pow2 48);
modulo_modulo_lemma (v u) (pow2 8) (pow2 56);
let open FStar.Int.Cast in
let open FStar.Int.Cast.Full in
match t, t' with
| U1, U1 -> u
| U1, U8 -> u
| U1, U16 -> uint8_to_uint16 u
| U1, U32 -> uint8_to_uint32 u
| U1, U64 -> uint8_to_uint64 u
| U1, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u)
| U1, S8 -> uint8_to_int8 u
| U1, S16 -> uint8_to_int16 u
| U1, S32 -> uint8_to_int32 u
| U1, S64 -> uint8_to_int64 u
| U1, S128 -> uint64_to_int128 (uint8_to_uint64 u)
| U8, U1 -> UInt8.rem u 2uy
| U8, U8 -> u
| U8, U16 -> uint8_to_uint16 u
| U8, U32 -> uint8_to_uint32 u
| U8, U64 -> uint8_to_uint64 u
| U8, U128 -> UInt128.uint64_to_uint128 (uint8_to_uint64 u)
| U8, S8 -> uint8_to_int8 u
| U8, S16 -> uint8_to_int16 u
| U8, S32 -> uint8_to_int32 u
| U8, S64 -> uint8_to_int64 u
| U8, S128 -> uint64_to_int128 (uint8_to_uint64 u)
| U16, U1 -> UInt8.rem (uint16_to_uint8 u) 2uy
| U16, U8 -> uint16_to_uint8 u
| U16, U16 -> u
| U16, U32 -> uint16_to_uint32 u
| U16, U64 -> uint16_to_uint64 u
| U16, U128 -> UInt128.uint64_to_uint128 (uint16_to_uint64 u)
| U16, S8 -> uint16_to_int8 u
| U16, S16 -> uint16_to_int16 u
| U16, S32 -> uint16_to_int32 u
| U16, S64 -> uint16_to_int64 u
| U16, S128 -> uint64_to_int128 (uint16_to_uint64 u)
| U32, U1 -> UInt8.rem (uint32_to_uint8 u) 2uy
| U32, U8 -> uint32_to_uint8 u
| U32, U16 -> uint32_to_uint16 u
| U32, U32 -> u
| U32, U64 -> uint32_to_uint64 u
| U32, U128 -> UInt128.uint64_to_uint128 (uint32_to_uint64 u)
| U32, S8 -> uint32_to_int8 u
| U32, S16 -> uint32_to_int16 u
| U32, S32 -> uint32_to_int32 u
| U32, S64 -> uint32_to_int64 u
| U32, S128 -> uint64_to_int128 (uint32_to_uint64 u)
| U64, U1 -> UInt8.rem (uint64_to_uint8 u) 2uy
| U64, U8 -> uint64_to_uint8 u
| U64, U16 -> uint64_to_uint16 u
| U64, U32 -> uint64_to_uint32 u
| U64, U64 -> u
| U64, U128 -> UInt128.uint64_to_uint128 u
| U64, S8 -> uint64_to_int8 u
| U64, S16 -> uint64_to_int16 u
| U64, S32 -> uint64_to_int32 u
| U64, S64 -> uint64_to_int64 u
| U64, S128 -> uint64_to_int128 u
| U128, U1 -> UInt8.rem (uint64_to_uint8 (uint128_to_uint64 u)) 2uy
| U128, U8 -> uint64_to_uint8 (UInt128.uint128_to_uint64 u)
| U128, U16 -> uint64_to_uint16 (UInt128.uint128_to_uint64 u)
| U128, U32 -> uint64_to_uint32 (UInt128.uint128_to_uint64 u)
| U128, U64 -> UInt128.uint128_to_uint64 u
| U128, U128 -> u
| U128, S8 -> uint64_to_int8 (UInt128.uint128_to_uint64 u)
| U128, S16 -> uint64_to_int16 (UInt128.uint128_to_uint64 u)
| U128, S32 -> uint64_to_int32 (UInt128.uint128_to_uint64 u)
| U128, S64 -> uint64_to_int64 (UInt128.uint128_to_uint64 u)
| U128, S128 -> uint128_to_int128 u
| S8, U1 -> UInt8.rem (int8_to_uint8 u) 2uy
| S8, U8 -> int8_to_uint8 u
| S8, U16 -> int8_to_uint16 u
| S8, U32 -> int8_to_uint32 u
| S8, U64 -> int8_to_uint64 u
| S8, U128 -> int64_to_uint128 (int8_to_int64 u)
| S8, S8 -> u
| S8, S16 -> int8_to_int16 u
| S8, S32 -> int8_to_int32 u
| S8, S64 -> int8_to_int64 u
| S8, S128 -> int64_to_int128 (int8_to_int64 u)
| S16, U1 -> UInt8.rem (int16_to_uint8 u) 2uy
| S16, U8 -> int16_to_uint8 u
| S16, U16 -> int16_to_uint16 u
| S16, U32 -> int16_to_uint32 u
| S16, U64 -> int16_to_uint64 u
| S16, U128 -> int64_to_uint128 (int16_to_int64 u)
| S16, S8 -> int16_to_int8 u
| S16, S16 -> u
| S16, S32 -> int16_to_int32 u
| S16, S64 -> int16_to_int64 u
| S16, S128 -> int64_to_int128 (int16_to_int64 u)
| S32, U1 -> UInt8.rem (int32_to_uint8 u) 2uy
| S32, U8 -> int32_to_uint8 u
| S32, U16 -> int32_to_uint16 u
| S32, U32 -> int32_to_uint32 u
| S32, U64 -> int32_to_uint64 u
| S32, U128 -> int64_to_uint128 (int32_to_int64 u)
| S32, S8 -> int32_to_int8 u
| S32, S16 -> int32_to_int16 u
| S32, S32 -> u
| S32, S64 -> int32_to_int64 u
| S32, S128 -> int64_to_int128 (int32_to_int64 u)
| S64, U1 -> UInt8.rem (int64_to_uint8 u) 2uy
| S64, U8 -> int64_to_uint8 u
| S64, U16 -> int64_to_uint16 u
| S64, U32 -> int64_to_uint32 u
| S64, U64 -> int64_to_uint64 u
| S64, U128 -> int64_to_uint128 u
| S64, S8 -> int64_to_int8 u
| S64, S16 -> int64_to_int16 u
| S64, S32 -> int64_to_int32 u
| S64, S64 -> u
| S64, S128 -> int64_to_int128 u
| S128, U1 -> UInt8.rem (uint64_to_uint8 (int128_to_uint64 u)) 2uy
| S128, U8 -> uint64_to_uint8 (int128_to_uint64 u)
| S128, U16 -> uint64_to_uint16 (int128_to_uint64 u)
| S128, U32 -> uint64_to_uint32 (int128_to_uint64 u)
| S128, U64 -> int128_to_uint64 u
| S128, U128 -> int128_to_uint128 u
| S128, S8 -> uint64_to_int8 (int128_to_uint64 u)
| S128, S16 -> uint64_to_int16 (int128_to_uint64 u)
| S128, S32 -> uint64_to_int32 (int128_to_uint64 u)
| S128, S64 -> uint64_to_int64 (int128_to_uint64 u)
| S128, S128 -> u
#pop-options
[@(strict_on_arguments [0])]
let ones t l =
match t with
| U1 -> 0x1uy
| U8 -> 0xFFuy
| U16 -> 0xFFFFus
| U32 -> 0xFFFFFFFFul
| U64 -> 0xFFFFFFFFFFFFFFFFuL
| U128 ->
let x = UInt128.uint64_to_uint128 0xFFFFFFFFFFFFFFFFuL in
let y = (UInt128.shift_left x 64ul) `UInt128.add` x in
assert_norm (UInt128.v y == pow2 128 - 1);
y
| _ -> mk_int (-1)
let zeros t l = mk_int 0
[@(strict_on_arguments [0])]
let add_mod #t #l a b =
match t with
| U1 -> UInt8.rem (UInt8.add_mod a b) 2uy
| U8 -> UInt8.add_mod a b
| U16 -> UInt16.add_mod a b
| U32 -> UInt32.add_mod a b
| U64 -> UInt64.add_mod a b
| U128 -> UInt128.add_mod a b
let add_mod_lemma #t #l a b = ()
[@(strict_on_arguments [0])]
let add #t #l a b =
match t with
| U1 -> UInt8.add a b
| U8 -> UInt8.add a b
| U16 -> UInt16.add a b
| U32 -> UInt32.add a b
| U64 -> UInt64.add a b
| U128 -> UInt128.add a b
| S8 -> Int8.add a b
| S16 -> Int16.add a b
| S32 -> Int32.add a b
| S64 -> Int64.add a b
| S128 -> Int128.add a b
let add_lemma #t #l a b = ()
#push-options "--max_fuel 1"
[@(strict_on_arguments [0])]
let incr #t #l a =
match t with
| U1 -> UInt8.add a 1uy
| U8 -> UInt8.add a 1uy
| U16 -> UInt16.add a 1us
| U32 -> UInt32.add a 1ul
| U64 -> UInt64.add a 1uL
| U128 -> UInt128.add a (UInt128.uint_to_t 1)
| S8 -> Int8.add a 1y
| S16 -> Int16.add a 1s
| S32 -> Int32.add a 1l
| S64 -> Int64.add a 1L
| S128 -> Int128.add a (Int128.int_to_t 1)
let incr_lemma #t #l a = ()
#pop-options
[@(strict_on_arguments [0])]
let mul_mod #t #l a b =
match t with
| U1 -> UInt8.mul_mod a b
| U8 -> UInt8.mul_mod a b
| U16 -> UInt16.mul_mod a b
| U32 -> UInt32.mul_mod a b
| U64 -> UInt64.mul_mod a b
let mul_mod_lemma #t #l a b = ()
[@(strict_on_arguments [0])]
let mul #t #l a b =
match t with
| U1 -> UInt8.mul a b
| U8 -> UInt8.mul a b
| U16 -> UInt16.mul a b
| U32 -> UInt32.mul a b
| U64 -> UInt64.mul a b
| S8 -> Int8.mul a b
| S16 -> Int16.mul a b
| S32 -> Int32.mul a b
| S64 -> Int64.mul a b
let mul_lemma #t #l a b = ()
let mul64_wide a b = UInt128.mul_wide a b
let mul64_wide_lemma a b = ()
let mul_s64_wide a b = Int128.mul_wide a b
let mul_s64_wide_lemma a b = ()
[@(strict_on_arguments [0])]
let sub_mod #t #l a b =
match t with
| U1 -> UInt8.rem (UInt8.sub_mod a b) 2uy
| U8 -> UInt8.sub_mod a b
| U16 -> UInt16.sub_mod a b
| U32 -> UInt32.sub_mod a b
| U64 -> UInt64.sub_mod a b
| U128 -> UInt128.sub_mod a b
let sub_mod_lemma #t #l a b = ()
[@(strict_on_arguments [0])]
let sub #t #l a b =
match t with
| U1 -> UInt8.sub a b
| U8 -> UInt8.sub a b
| U16 -> UInt16.sub a b
| U32 -> UInt32.sub a b
| U64 -> UInt64.sub a b
| U128 -> UInt128.sub a b
| S8 -> Int8.sub a b
| S16 -> Int16.sub a b
| S32 -> Int32.sub a b
| S64 -> Int64.sub a b
| S128 -> Int128.sub a b
let sub_lemma #t #l a b = ()
#push-options "--max_fuel 1"
[@(strict_on_arguments [0])]
let decr #t #l a =
match t with
| U1 -> UInt8.sub a 1uy
| U8 -> UInt8.sub a 1uy
| U16 -> UInt16.sub a 1us
| U32 -> UInt32.sub a 1ul
| U64 -> UInt64.sub a 1uL
| U128 -> UInt128.sub a (UInt128.uint_to_t 1)
| S8 -> Int8.sub a 1y
| S16 -> Int16.sub a 1s
| S32 -> Int32.sub a 1l
| S64 -> Int64.sub a 1L
| S128 -> Int128.sub a (Int128.int_to_t 1)
let decr_lemma #t #l a = ()
#pop-options
[@(strict_on_arguments [0])]
let logxor #t #l a b =
match t with
| U1 ->
assert_norm (UInt8.logxor 0uy 0uy == 0uy);
assert_norm (UInt8.logxor 0uy 1uy == 1uy);
assert_norm (UInt8.logxor 1uy 0uy == 1uy);
assert_norm (UInt8.logxor 1uy 1uy == 0uy);
UInt8.logxor a b
| U8 -> UInt8.logxor a b
| U16 -> UInt16.logxor a b
| U32 -> UInt32.logxor a b
| U64 -> UInt64.logxor a b
| U128 -> UInt128.logxor a b
| S8 -> Int8.logxor a b
| S16 -> Int16.logxor a b
| S32 -> Int32.logxor a b
| S64 -> Int64.logxor a b
| S128 -> Int128.logxor a b
#push-options "--max_fuel 1"
val logxor_lemma_: #t:inttype -> #l:secrecy_level -> a:int_t t l -> b:int_t t l -> Lemma
(v (a `logxor` (a `logxor` b)) == v b)
let logxor_lemma_ #t #l a b =
match t with
| U1 | U8 | U16 | U32 | U64 | U128 ->
UInt.logxor_associative #(bits t) (v a) (v a) (v b);
UInt.logxor_self #(bits t) (v a);
UInt.logxor_commutative #(bits t) 0 (v b);
UInt.logxor_lemma_1 #(bits t) (v b)
| S8 | S16 | S32 | S64 | S128 ->
Int.logxor_associative #(bits t) (v a) (v a) (v b);
Int.logxor_self #(bits t) (v a);
Int.logxor_commutative #(bits t) 0 (v b);
Int.logxor_lemma_1 #(bits t) (v b)
let logxor_lemma #t #l a b =
logxor_lemma_ #t a b;
v_extensionality (logxor a (logxor a b)) b;
begin
match t with
| U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_commutative #(bits t) (v a) (v b)
| S8 | S16 | S32 | S64 | S128 -> Int.logxor_commutative #(bits t) (v a) (v b)
end;
v_extensionality (logxor a (logxor b a)) b;
begin
match t with
| U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logxor_lemma_1 #(bits t) (v a)
| S8 | S16 | S32 | S64 | S128 -> Int.logxor_lemma_1 #(bits t) (v a)
end;
v_extensionality (logxor a (mk_int #t #l 0)) a
let logxor_lemma1 #t #l a b =
match v a, v b with
| _, 0 ->
UInt.logxor_lemma_1 #(bits t) (v a)
| 0, _ ->
UInt.logxor_commutative #(bits t) (v a) (v b);
UInt.logxor_lemma_1 #(bits t) (v b)
| 1, 1 ->
v_extensionality a b;
UInt.logxor_self #(bits t) (v a)
let logxor_spec #t #l a b =
match t with
| U1 ->
assert_norm (u1 0 `logxor` u1 0 == u1 0 /\ u1 0 `logxor` u1 1 == u1 1);
assert_norm (u1 1 `logxor` u1 0 == u1 1 /\ u1 1 `logxor` u1 1 == u1 0);
assert_norm (0 `logxor_v #U1` 0 == 0 /\ 0 `logxor_v #U1` 1 == 1);
assert_norm (1 `logxor_v #U1` 0 == 1 /\ 1 `logxor_v #U1` 1 == 0)
| _ -> ()
#pop-options
[@(strict_on_arguments [0])]
let logand #t #l a b =
match t with
| U1 ->
assert_norm (UInt8.logand 0uy 0uy == 0uy);
assert_norm (UInt8.logand 0uy 1uy == 0uy);
assert_norm (UInt8.logand 1uy 0uy == 0uy);
assert_norm (UInt8.logand 1uy 1uy == 1uy);
UInt8.logand a b
| U8 -> UInt8.logand a b
| U16 -> UInt16.logand a b
| U32 -> UInt32.logand a b
| U64 -> UInt64.logand a b
| U128 -> UInt128.logand a b
| S8 -> Int8.logand a b
| S16 -> Int16.logand a b
| S32 -> Int32.logand a b
| S64 -> Int64.logand a b
| S128 -> Int128.logand a b
let logand_zeros #t #l a =
match t with
| U1 -> assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0)
| U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_1 #(bits t) (v a)
| S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_1 #(bits t) (v a)
let logand_ones #t #l a =
match t with
| U1 -> assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1)
| U8 | U16 | U32 | U64 | U128 -> UInt.logand_lemma_2 #(bits t) (v a)
| S8 | S16 | S32 | S64 | S128 -> Int.logand_lemma_2 #(bits t) (v a)
let logand_lemma #t #l a b =
logand_zeros #t #l b;
logand_ones #t #l b;
match t with
| U1 ->
assert_norm (u1 0 `logand` zeros U1 l == u1 0 /\ u1 1 `logand` zeros U1 l == u1 0);
assert_norm (u1 0 `logand` ones U1 l == u1 0 /\ u1 1 `logand` ones U1 l == u1 1)
| U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v a) (v b)
| S8 | S16 | S32 | S64 | S128 -> Int.logand_commutative #(bits t) (v a) (v b)
let logand_spec #t #l a b =
match t with
| U1 ->
assert_norm (u1 0 `logand` u1 0 == u1 0 /\ u1 0 `logand` u1 1 == u1 0);
assert_norm (u1 1 `logand` u1 0 == u1 0 /\ u1 1 `logand` u1 1 == u1 1);
assert_norm (0 `logand_v #U1` 0 == 0 /\ 0 `logand_v #U1` 1 == 0);
assert_norm (1 `logand_v #U1` 0 == 0 /\ 1 `logand_v #U1` 1 == 1)
| _ -> ()
let logand_le #t #l a b =
match t with
| U1 ->
assert_norm (UInt8.logand 0uy 0uy == 0uy);
assert_norm (UInt8.logand 0uy 1uy == 0uy);
assert_norm (UInt8.logand 1uy 0uy == 0uy);
assert_norm (UInt8.logand 1uy 1uy == 1uy)
| U8 -> UInt.logand_le (UInt.to_uint_t 8 (v a)) (UInt.to_uint_t 8 (v b))
| U16 -> UInt.logand_le (UInt.to_uint_t 16 (v a)) (UInt.to_uint_t 16 (v b))
| U32 -> UInt.logand_le (UInt.to_uint_t 32 (v a)) (UInt.to_uint_t 32 (v b))
| U64 -> UInt.logand_le (UInt.to_uint_t 64 (v a)) (UInt.to_uint_t 64 (v b))
| U128 -> UInt.logand_le (UInt.to_uint_t 128 (v a)) (UInt.to_uint_t 128 (v b))
let logand_mask #t #l a b m =
match t with
| U1 ->
assert_norm (UInt8.logand 0uy 0uy == 0uy);
assert_norm (UInt8.logand 0uy 1uy == 0uy);
assert_norm (UInt8.logand 1uy 0uy == 0uy);
assert_norm (UInt8.logand 1uy 1uy == 1uy)
| U8 -> UInt.logand_mask (UInt.to_uint_t 8 (v a)) m
| U16 -> UInt.logand_mask (UInt.to_uint_t 16 (v a)) m
| U32 -> UInt.logand_mask (UInt.to_uint_t 32 (v a)) m
| U64 -> UInt.logand_mask (UInt.to_uint_t 64 (v a)) m
| U128 -> UInt.logand_mask (UInt.to_uint_t 128 (v a)) m
[@(strict_on_arguments [0])]
let logor #t #l a b =
match t with
| U1 ->
assert_norm (UInt8.logor 0uy 0uy == 0uy);
assert_norm (UInt8.logor 0uy 1uy == 1uy);
assert_norm (UInt8.logor 1uy 0uy == 1uy);
assert_norm (UInt8.logor 1uy 1uy == 1uy);
UInt8.logor a b
| U8 -> UInt8.logor a b
| U16 -> UInt16.logor a b
| U32 -> UInt32.logor a b
| U64 -> UInt64.logor a b
| U128 -> UInt128.logor a b
| S8 -> Int8.logor a b
| S16 -> Int16.logor a b
| S32 -> Int32.logor a b
| S64 -> Int64.logor a b
| S128 -> Int128.logor a b
#push-options "--max_fuel 1"
let logor_disjoint #t #l a b m =
if m > 0 then
begin
UInt.logor_disjoint #(bits t) (v b) (v a) m;
UInt.logor_commutative #(bits t) (v b) (v a)
end
else
begin
UInt.logor_commutative #(bits t) (v a) (v b);
UInt.logor_lemma_1 #(bits t) (v b)
end
#pop-options
let logor_zeros #t #l a =
match t with
|U1 -> assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1)
| U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_1 #(bits t) (v a)
| S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (Int.zero (bits t))) (v a)
let logor_ones #t #l a =
match t with
|U1 -> assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1)
| U8 | U16 | U32 | U64 | U128 -> UInt.logor_lemma_2 #(bits t) (v a)
| S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma (Int.logor #(bits t) (v a) (Int.ones (bits t))) (Int.ones (bits t))
let logor_lemma #t #l a b =
logor_zeros #t #l b;
logor_ones #t #l b;
match t with
| U1 ->
assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1);
assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1)
| U8 | U16 | U32 | U64 | U128 -> UInt.logor_commutative #(bits t) (v a) (v b)
| S8 | S16 | S32 | S64 | S128 -> Int.nth_lemma #(bits t) (Int.logor #(bits t) (v a) (v b)) (Int.logor #(bits t) (v b) (v a))
let logor_spec #t #l a b =
match t with
| U1 ->
assert_norm(u1 0 `logor` ones U1 l == u1 1 /\ u1 1 `logor` ones U1 l == u1 1);
assert_norm(u1 0 `logor` zeros U1 l == u1 0 /\ u1 1 `logor` zeros U1 l == u1 1);
assert_norm (0 `logor_v #U1` 0 == 0 /\ 0 `logor_v #U1` 1 == 1);
assert_norm (1 `logor_v #U1` 0 == 1 /\ 1 `logor_v #U1` 1 == 1)
| _ -> ()
[@(strict_on_arguments [0])]
let lognot #t #l a =
match t with
| U1 -> UInt8.rem (UInt8.lognot a) 2uy
| U8 -> UInt8.lognot a
| U16 -> UInt16.lognot a
| U32 -> UInt32.lognot a
| U64 -> UInt64.lognot a
| U128 -> UInt128.lognot a
| S8 -> Int8.lognot a
| S16 -> Int16.lognot a
| S32 -> Int32.lognot a
| S64 -> Int64.lognot a
| S128 -> Int128.lognot a
let lognot_lemma #t #l a =
match t with
|U1 -> assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0)
| U8 | U16 | U32 | U64 | U128 ->
FStar.UInt.lognot_lemma_1 #(bits t);
UInt.nth_lemma (FStar.UInt.lognot #(bits t) (UInt.ones (bits t))) (UInt.zero (bits t))
| S8 | S16 | S32 | S64 | S128 ->
Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.zero (bits t))) (Int.ones (bits t));
Int.nth_lemma (FStar.Int.lognot #(bits t) (Int.ones (bits t))) (Int.zero (bits t))
let lognot_spec #t #l a =
match t with
| U1 ->
assert_norm(lognot (u1 0) == u1 1 /\ lognot (u1 1) == u1 0);
assert_norm(lognot_v #U1 0 == 1 /\ lognot_v #U1 1 == 0)
| _ -> ()
[@(strict_on_arguments [0])]
let shift_right #t #l a b =
match t with
| U1 -> UInt8.shift_right a b
| U8 -> UInt8.shift_right a b
| U16 -> UInt16.shift_right a b
| U32 -> UInt32.shift_right a b
| U64 -> UInt64.shift_right a b
| U128 -> UInt128.shift_right a b
| S8 -> Int8.shift_arithmetic_right a b
| S16 -> Int16.shift_arithmetic_right a b
| S32 -> Int32.shift_arithmetic_right a b
| S64 -> Int64.shift_arithmetic_right a b
| S128 -> Int128.shift_arithmetic_right a b
val shift_right_value_aux_1: #n:pos{1 < n} -> a:Int.int_t n -> s:nat{n <= s} ->
Lemma (Int.shift_arithmetic_right #n a s = a / pow2 s)
let shift_right_value_aux_1 #n a s =
pow2_le_compat s n;
if a >= 0 then Int.sign_bit_positive a else Int.sign_bit_negative a
#push-options "--z3rlimit 200"
val shift_right_value_aux_2: #n:pos{1 < n} -> a:Int.int_t n ->
Lemma (Int.shift_arithmetic_right #n a 1 = a / 2)
let shift_right_value_aux_2 #n a =
if a >= 0 then
begin
Int.sign_bit_positive a;
UInt.shift_right_value_aux_3 #n a 1
end
else
begin
Int.sign_bit_negative a;
let a1 = Int.to_vec a in
let au = Int.to_uint a in
let sar = Int.shift_arithmetic_right #n a 1 in
let sar1 = Int.to_vec sar in
let sr = UInt.shift_right #n au 1 in
let sr1 = UInt.to_vec sr in
assert (Seq.equal (Seq.slice sar1 1 n) (Seq.slice sr1 1 n));
assert (Seq.equal sar1 (Seq.append (BitVector.ones_vec #1) (Seq.slice sr1 1 n)));
UInt.append_lemma #1 #(n-1) (BitVector.ones_vec #1) (Seq.slice sr1 1 n);
assert (Seq.equal (Seq.slice a1 0 (n-1)) (Seq.slice sar1 1 n));
UInt.slice_left_lemma a1 (n-1);
assert (sar + pow2 n = pow2 (n-1) + (au / 2));
pow2_double_sum (n-1);
assert (sar + pow2 (n-1) = (a + pow2 n) / 2);
pow2_double_mult (n-1);
lemma_div_plus a (pow2 (n-1)) 2;
assert (sar = a / 2)
end
val shift_right_value_aux_3: #n:pos -> a:Int.int_t n -> s:pos{s < n} ->
Lemma (ensures Int.shift_arithmetic_right #n a s = a / pow2 s)
(decreases s)
let rec shift_right_value_aux_3 #n a s =
if s = 1 then
shift_right_value_aux_2 #n a
else
begin
let a1 = Int.to_vec a in
assert (Seq.equal (BitVector.shift_arithmetic_right_vec #n a1 s)
(BitVector.shift_arithmetic_right_vec #n
(BitVector.shift_arithmetic_right_vec #n a1 (s-1)) 1));
assert (Int.shift_arithmetic_right #n a s =
Int.shift_arithmetic_right #n (Int.shift_arithmetic_right #n a (s-1)) 1);
shift_right_value_aux_3 #n a (s-1);
shift_right_value_aux_2 #n (Int.shift_arithmetic_right #n a (s-1));
assert (Int.shift_arithmetic_right #n a s = (a / pow2 (s-1)) / 2);
pow2_double_mult (s-1);
division_multiplication_lemma a (pow2 (s-1)) 2
end
let shift_right_lemma #t #l a b =
match t with
| U1 | U8 | U16 | U32 | U64 | U128 -> ()
| S8 | S16 | S32 | S64 | S128 ->
if v b = 0 then ()
else if v b >= bits t then
shift_right_value_aux_1 #(bits t) (v a) (v b)
else
shift_right_value_aux_3 #(bits t) (v a) (v b)
[@(strict_on_arguments [0])]
let shift_left #t #l a b =
match t with
| U1 -> UInt8.shift_left a b
| U8 -> UInt8.shift_left a b
| U16 -> UInt16.shift_left a b
| U32 -> UInt32.shift_left a b
| U64 -> UInt64.shift_left a b
| U128 -> UInt128.shift_left a b
| S8 -> Int8.shift_left a b
| S16 -> Int16.shift_left a b
| S32 -> Int32.shift_left a b
| S64 -> Int64.shift_left a b
| S128 -> Int128.shift_left a b
#push-options "--max_fuel 1"
let shift_left_lemma #t #l a b = ()
let rotate_right #t #l a b =
logor (shift_right a b) (shift_left a (sub #U32 (size (bits t)) b))
let rotate_left #t #l a b =
logor (shift_left a b) (shift_right a (sub #U32 (size (bits t)) b))
[@(strict_on_arguments [0])]
let ct_abs #t #l a =
match t with
| S8 -> Int8.ct_abs a
| S16 -> Int16.ct_abs a
| S32 -> Int32.ct_abs a
| S64 -> Int64.ct_abs a
#pop-options
[@(strict_on_arguments [0])]
let eq_mask #t a b =
match t with
| U1 -> lognot (logxor a b)
| U8 -> UInt8.eq_mask a b
| U16 -> UInt16.eq_mask a b
| U32 -> UInt32.eq_mask a b
| U64 -> UInt64.eq_mask a b
| U128 -> UInt128.eq_mask a b
| S8 -> Int.Cast.uint8_to_int8 (UInt8.eq_mask (to_u8 a) (to_u8 b))
| S16 -> Int.Cast.uint16_to_int16 (UInt16.eq_mask (to_u16 a) (to_u16 b))
| S32 -> Int.Cast.uint32_to_int32 (UInt32.eq_mask (to_u32 a) (to_u32 b))
| S64 -> Int.Cast.uint64_to_int64 (UInt64.eq_mask (to_u64 a) (to_u64 b))
val eq_mask_lemma_unsigned: #t:inttype{unsigned t} -> a:int_t t SEC -> b:int_t t SEC -> Lemma
(if v a = v b then v (eq_mask a b) == ones_v t
else v (eq_mask a b) == 0)
let eq_mask_lemma_unsigned #t a b =
match t with
| U1 ->
assert_norm (
logxor (u1 0) (u1 0) == u1 0 /\ logxor (u1 0) (u1 1) == u1 1 /\
logxor (u1 1) (u1 0) == u1 1 /\ logxor (u1 1) (u1 1) == u1 0 /\
lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1)
| U8 | U16 | U32 | U64 | U128 -> ()
#push-options "--z3rlimit 200"
val eq_mask_lemma_signed: #t:inttype{signed t /\ ~(S128? t)} -> a:int_t t SEC -> b:int_t t SEC -> Lemma
(if v a = v b then v (eq_mask a b) == ones_v t
else v (eq_mask a b) == 0)
let eq_mask_lemma_signed #t a b =
match t with
| S8 ->
begin
assert_norm (pow2 8 = 2 * pow2 7);
if 0 <= v a then modulo_lemma (v a) (pow2 8)
else
begin
modulo_addition_lemma (v a) 1 (pow2 8);
modulo_lemma (v a + pow2 8) (pow2 8)
end
end
| S16 ->
begin
assert_norm (pow2 16 = 2 * pow2 15);
if 0 <= v a then modulo_lemma (v a) (pow2 16)
else
begin
modulo_addition_lemma (v a) 1 (pow2 16);
modulo_lemma (v a + pow2 16) (pow2 16)
end
end
| S32 ->
begin
if 0 <= v a then modulo_lemma (v a) (pow2 32)
else
begin
modulo_addition_lemma (v a) 1 (pow2 32);
modulo_lemma (v a + pow2 32) (pow2 32)
end
end
| S64 ->
begin
if 0 <= v a then modulo_lemma (v a) (pow2 64)
else
begin
modulo_addition_lemma (v a) 1 (pow2 64);
modulo_lemma (v a + pow2 64) (pow2 64)
end
end
#pop-options
let eq_mask_lemma #t a b =
if signed t then eq_mask_lemma_signed a b
else eq_mask_lemma_unsigned a b
let eq_mask_logand_lemma #t a b c =
eq_mask_lemma a b;
logand_zeros c;
logand_ones c;
match t with
| U1 | U8 | U16 | U32 | U64 | U128 -> UInt.logand_commutative #(bits t) (v (eq_mask a b)) (v c)
| S8 | S16 | S32 | S64 -> Int.logand_commutative #(bits t) (v (eq_mask a b)) (v c)
[@(strict_on_arguments [0])]
let neq_mask #t a b = lognot (eq_mask #t a b)
let neq_mask_lemma #t a b =
match t with
| U1 -> assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1)
| _ ->
UInt.lognot_lemma_1 #(bits t);
UInt.lognot_self #(bits t) 0
[@(strict_on_arguments [0])]
let gte_mask #t a b =
match t with
| U1 -> logor a (lognot b)
| U8 -> UInt8.gte_mask a b
| U16 -> UInt16.gte_mask a b
| U32 -> UInt32.gte_mask a b
| U64 -> UInt64.gte_mask a b
| U128 -> UInt128.gte_mask a b
let gte_mask_lemma #t a b =
match t with
| U1 ->
begin
assert_norm (
logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\
logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\
lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1)
end
| _ -> ()
let gte_mask_logand_lemma #t a b c =
logand_zeros c;
logand_ones c;
match t with
| U1 ->
assert_norm (
logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\
logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1 /\
lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1)
| _ -> UInt.logand_commutative #(bits t) (v (gte_mask a b)) (v c)
let lt_mask #t a b = lognot (gte_mask a b)
let lt_mask_lemma #t a b =
assert_norm (lognot (u1 1) == u1 0 /\ lognot (u1 0) == u1 1);
UInt.lognot_lemma_1 #(bits t);
UInt.lognot_self #(bits t) 0
let gt_mask #t a b = logand (gte_mask a b) (neq_mask a b)
let gt_mask_lemma #t a b =
logand_zeros (gte_mask a b);
logand_ones (gte_mask a b)
let lte_mask #t a b = logor (lt_mask a b) (eq_mask a b)
let lte_mask_lemma #t a b =
match t with
| U1 ->
assert_norm (
logor (u1 0) (u1 0) == u1 0 /\ logor (u1 1) (u1 1) == u1 1 /\
logor (u1 0) (u1 1) == u1 1 /\ logor (u1 1) (u1 0) == u1 1)
| U8 | U16 | U32 | U64 | U128 ->
if v a > v b then
UInt.logor_lemma_1 #(bits t) (v (lt_mask a b))
else if v a = v b then
UInt.logor_lemma_2 #(bits t) (v (lt_mask a b))
else
UInt.logor_lemma_1 #(bits t) (v (lt_mask a b))
#push-options "--max_fuel 1"
val mod_mask_value: #t:inttype -> #l:secrecy_level -> m:shiftval t{pow2 (uint_v m) <= maxint t} ->
Lemma (v (mod_mask #t #l m) == pow2 (v m) - 1)
let mod_mask_value #t #l m =
shift_left_lemma (mk_int #t #l 1) m;
pow2_double_mult (bits t - 1);
pow2_lt_compat (bits t) (v m);
small_modulo_lemma_1 (pow2 (v m)) (pow2 (bits t));
small_modulo_lemma_1 (pow2 (v m) - 1) (pow2 (bits t))
let mod_mask_lemma #t #l a m =
mod_mask_value #t #l m;
if unsigned t || 0 <= v a then
if v m = 0 then
UInt.logand_lemma_1 #(bits t) (v a)
else
UInt.logand_mask #(bits t) (v a) (v m)
else
begin
let a1 = v a in
let a2 = v a + pow2 (bits t) in
pow2_plus (bits t - v m) (v m);
pow2_le_compat (bits t - 1) (v m);
lemma_mod_plus a1 (pow2 (bits t - v m)) (pow2 (v m));
if v m = 0 then
UInt.logand_lemma_1 #(bits t) a2
else
UInt.logand_mask #(bits t) a2 (v m)
end
#pop-options
#push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 1000"
(**
Conditionally subtracts 2^(bits t') from a in constant-time,
so that the result fits in t'; i.e.
b = if a >= 2^(bits t' - 1) then a - 2^(bits t') else a
*)
inline_for_extraction
val conditional_subtract:
#t:inttype{signed t}
-> #l:secrecy_level
-> t':inttype{signed t' /\ bits t' < bits t}
-> a:int_t t l{0 <= v a /\ v a <= pow2 (bits t') - 1} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt128.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Int8.fsti.checked",
"FStar.Int64.fsti.checked",
"FStar.Int32.fsti.checked",
"FStar.Int16.fsti.checked",
"FStar.Int128.fsti.checked",
"FStar.Int.Cast.Full.fst.checked",
"FStar.Int.Cast.fst.checked",
"FStar.Int.fsti.checked",
"FStar.BitVector.fst.checked"
],
"interface_file": true,
"source_file": "Lib.IntTypes.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 1000,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
t': Lib.IntTypes.inttype{Lib.IntTypes.signed t' /\ Lib.IntTypes.bits t' < Lib.IntTypes.bits t} ->
a:
Lib.IntTypes.int_t t l
{0 <= Lib.IntTypes.v a /\ Lib.IntTypes.v a <= Prims.pow2 (Lib.IntTypes.bits t') - 1}
-> b: Lib.IntTypes.int_t t l {Lib.IntTypes.v b = Lib.IntTypes.v a @%. t'} | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.signed",
"Lib.IntTypes.secrecy_level",
"Prims.l_and",
"Prims.op_LessThan",
"Lib.IntTypes.bits",
"Lib.IntTypes.int_t",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.v",
"Prims.op_Subtraction",
"Prims.pow2",
"Lib.IntTypes.add",
"Lib.IntTypes.logand",
"Prims.unit",
"Lib.IntTypes.logand_lemma",
"Lib.IntTypes.sub",
"Lib.IntTypes.shift_right_lemma",
"Lib.IntTypes.size",
"Lib.IntTypes.shift_right",
"Lib.IntTypes.shift_left_lemma",
"Lib.IntTypes.mk_int",
"Lib.IntTypes.shift_left",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"Lib.IntTypes.op_At_Percent_Dot"
] | [] | false | false | false | false | false | let conditional_subtract #t #l t' a =
| assert_norm (pow2 7 = 128);
assert_norm (pow2 15 = 32768);
let pow2_bits = shift_left #t #l (mk_int 1) (size (bits t')) in
shift_left_lemma #t #l (mk_int 1) (size (bits t'));
let pow2_bits_minus_one = shift_left #t #l (mk_int 1) (size (bits t' - 1)) in
shift_left_lemma #t #l (mk_int 1) (size (bits t' - 1));
let a2 = a `sub` pow2_bits_minus_one in
let mask = shift_right a2 (size (bits t - 1)) in
shift_right_lemma a2 (size (bits t - 1));
let a3 = a `sub` pow2_bits in
logand_lemma mask pow2_bits;
a3 `add` (mask `logand` pow2_bits) | false |
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.instantiate | val instantiate (fa x: term) : Tac binding | val instantiate (fa x: term) : Tac binding | let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate" | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 296,
"start_col": 0,
"start_line": 293
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | fa: FStar.Tactics.NamedView.term -> x: FStar.Tactics.NamedView.term
-> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.try_with",
"FStar.Tactics.NamedView.binding",
"Prims.unit",
"FStar.Tactics.V2.Derived.pose",
"Prims.exn",
"FStar.Tactics.V2.Derived.fail"
] | [] | false | true | false | false | false | let instantiate (fa x: term) : Tac binding =
| try pose (`__forall_inst_sq (`#fa) (`#x))
with
| _ -> try pose (`__forall_inst (`#fa) (`#x)) with | _ -> fail "could not instantiate" | false |
Pulse.Checker.AssertWithBinders.fst | Pulse.Checker.AssertWithBinders.infer_binder_types | val infer_binder_types (g: env) (bs: list binder) (v: vprop) : T.Tac (list binder) | val infer_binder_types (g: env) (bs: list binder) (v: vprop) : T.Tac (list binder) | let infer_binder_types (g:env) (bs:list binder) (v:vprop)
: T.Tac (list binder) =
match bs with
| [] -> []
| _ ->
let g = push_context g "infer_binder_types" v.range in
let tv = elab_term v in
if not (is_host_term tv)
then fail g (Some v.range)
(Printf.sprintf "assert.infer_binder_types: elaborated %s to %s, which failed the host term check"
(P.term_to_string v) (T.term_to_string tv));
let as_binder (b:binder) : R.binder =
let open R in
let bv : binder_view =
{ sort = elab_term b.binder_ty;
ppname = b.binder_ppname.name;
qual = Q_Explicit;
attrs = [] } in
pack_binder bv
in
let abstraction =
L.fold_right
(fun b (tv:host_term) ->
let b = as_binder b in
R.pack_ln (R.Tv_Abs b tv))
bs
tv
in
let inst_abstraction, _ = PC.instantiate_term_implicits g (tm_fstar abstraction v.range) in
match inst_abstraction.t with
| Tm_FStar t -> refl_abs_binders t []
| _ -> T.fail "Impossible: instantiated abstraction is not embedded F* term, please file a bug-report" | {
"file_name": "lib/steel/pulse/Pulse.Checker.AssertWithBinders.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 106,
"end_line": 89,
"start_col": 0,
"start_line": 58
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Checker.AssertWithBinders
open Pulse.Syntax
open Pulse.Typing
open Pulse.Checker.Base
open Pulse.Elaborate.Pure
open Pulse.Typing.Env
module L = FStar.List.Tot
module T = FStar.Tactics.V2
module R = FStar.Reflection.V2
module PC = Pulse.Checker.Pure
module P = Pulse.Syntax.Printer
module N = Pulse.Syntax.Naming
module PS = Pulse.Checker.Prover.Substs
module Prover = Pulse.Checker.Prover
module Env = Pulse.Typing.Env
open Pulse.Show
module RU = Pulse.RuntimeUtils
let is_host_term (t:R.term) = not (R.Tv_Unknown? (R.inspect_ln t))
let debug_log = Pulse.Typing.debug_log "with_binders"
let option_must (f:option 'a) (msg:string) : T.Tac 'a =
match f with
| Some x -> x
| None -> T.fail msg
let rec refl_abs_binders (t:R.term) (acc:list binder) : T.Tac (list binder) =
let open R in
match inspect_ln t with
| Tv_Abs b body ->
let {sort; ppname} = R.inspect_binder b in
let sort = option_must (readback_ty sort)
(Printf.sprintf "Failed to readback elaborated binder sort %s in refl_abs_binders"
(T.term_to_string sort)) in
refl_abs_binders body
((mk_binder_ppname sort (mk_ppname ppname (RU.range_of_term t)))::acc)
| _ -> L.rev acc | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Printer.fsti.checked",
"Pulse.Syntax.Naming.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Show.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.PP.fst.checked",
"Pulse.Elaborate.Pure.fst.checked",
"Pulse.Checker.Pure.fsti.checked",
"Pulse.Checker.Prover.Substs.fsti.checked",
"Pulse.Checker.Prover.fsti.checked",
"Pulse.Checker.Base.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Pprint.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Reflection.V2.TermEq.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Checker.AssertWithBinders.fst"
} | [
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": false,
"full_module": "Pulse.Show",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.Typing.Env",
"short_module": "Env"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Prover",
"short_module": "Prover"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Prover.Substs",
"short_module": "PS"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Naming",
"short_module": "N"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Printer",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Pure",
"short_module": "PC"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | g: Pulse.Typing.Env.env -> bs: Prims.list Pulse.Syntax.Base.binder -> v: Pulse.Syntax.Base.vprop
-> FStar.Tactics.Effect.Tac (Prims.list Pulse.Syntax.Base.binder) | FStar.Tactics.Effect.Tac | [] | [] | [
"Pulse.Typing.Env.env",
"Prims.list",
"Pulse.Syntax.Base.binder",
"Pulse.Syntax.Base.vprop",
"Prims.Nil",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.__proj__Mkterm__item__t",
"Pulse.Syntax.Base.host_term",
"Pulse.Checker.AssertWithBinders.refl_abs_binders",
"Pulse.Syntax.Base.term'",
"FStar.Tactics.V2.Derived.fail",
"FStar.Pervasives.Native.tuple2",
"Pulse.Checker.Pure.instantiate_term_implicits",
"Pulse.Syntax.Base.tm_fstar",
"Pulse.Syntax.Base.__proj__Mkterm__item__range",
"FStar.List.Tot.Base.fold_right",
"FStar.Stubs.Reflection.V2.Builtins.pack_ln",
"FStar.Stubs.Reflection.V2.Data.Tv_Abs",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Stubs.Reflection.V2.Builtins.pack_binder",
"FStar.Stubs.Reflection.V2.Data.binder_view",
"FStar.Stubs.Reflection.V2.Data.Mkbinder_view",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty",
"FStar.Stubs.Reflection.V2.Data.Q_Explicit",
"FStar.Stubs.Reflection.Types.term",
"Pulse.Syntax.Base.__proj__Mkppname__item__name",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ppname",
"Prims.unit",
"Prims.op_Negation",
"Pulse.Checker.AssertWithBinders.is_host_term",
"Pulse.Typing.Env.fail",
"FStar.Pervasives.Native.Some",
"Pulse.Syntax.Base.range",
"Prims.string",
"FStar.Printf.sprintf",
"Pulse.Syntax.Printer.term_to_string",
"FStar.Stubs.Tactics.V2.Builtins.term_to_string",
"Prims.bool",
"Prims.eq2",
"Pulse.Typing.Env.push_context"
] | [] | false | true | false | false | false | let infer_binder_types (g: env) (bs: list binder) (v: vprop) : T.Tac (list binder) =
| match bs with
| [] -> []
| _ ->
let g = push_context g "infer_binder_types" v.range in
let tv = elab_term v in
if not (is_host_term tv)
then
fail g
(Some v.range)
(Printf.sprintf "assert.infer_binder_types: elaborated %s to %s, which failed the host term check"
(P.term_to_string v)
(T.term_to_string tv));
let as_binder (b: binder) : R.binder =
let open R in
let bv:binder_view =
{ sort = elab_term b.binder_ty; ppname = b.binder_ppname.name; qual = Q_Explicit; attrs = [] }
in
pack_binder bv
in
let abstraction =
L.fold_right (fun b (tv: host_term) ->
let b = as_binder b in
R.pack_ln (R.Tv_Abs b tv))
bs
tv
in
let inst_abstraction, _ = PC.instantiate_term_implicits g (tm_fstar abstraction v.range) in
match inst_abstraction.t with
| Tm_FStar t -> refl_abs_binders t []
| _ ->
T.fail "Impossible: instantiated abstraction is not embedded F* term, please file a bug-report" | false |
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.__forall_inst_sq | val __forall_inst_sq (#t: _) (#pred: (t -> Type0)) (h: squash (forall x. pred x)) (x: t)
: squash (pred x) | val __forall_inst_sq (#t: _) (#pred: (t -> Type0)) (h: squash (forall x. pred x)) (x: t)
: squash (pred x) | let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x) | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 82,
"end_line": 291,
"start_col": 0,
"start_line": 290
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: Prims.squash (forall (x: t). pred x) -> x: t -> Prims.squash (pred x) | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"Prims.l_Forall",
"FStar.Squash.bind_squash",
"FStar.Tactics.V2.Logic.__forall_inst"
] | [] | false | false | true | false | false | let __forall_inst_sq #t (#pred: (t -> Type0)) (h: squash (forall x. pred x)) (x: t)
: squash (pred x) =
| FStar.Squash.bind_squash h (fun (f: (forall x. pred x)) -> __forall_inst f x) | false |
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.instantiate_as | val instantiate_as (fa x: term) (s: string) : Tac binding | val instantiate_as (fa x: term) (s: string) : Tac binding | let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 300,
"start_col": 0,
"start_line": 298
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | fa: FStar.Tactics.NamedView.term -> x: FStar.Tactics.NamedView.term -> s: Prims.string
-> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.term",
"Prims.string",
"FStar.Stubs.Tactics.V2.Builtins.rename_to",
"FStar.Stubs.Reflection.V2.Data.binding",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Logic.instantiate"
] | [] | false | true | false | false | false | let instantiate_as (fa x: term) (s: string) : Tac binding =
| let b = instantiate fa x in
rename_to b s | false |
Pulse.Checker.AssertWithBinders.fst | Pulse.Checker.AssertWithBinders.check_renaming | val check_renaming
(g: env)
(pre: term)
(st:
st_term
{ match st.term with
| Tm_ProofHintWithBinders { hint_type = RENAME _ } -> true
| _ -> false })
: T.Tac st_term | val check_renaming
(g: env)
(pre: term)
(st:
st_term
{ match st.term with
| Tm_ProofHintWithBinders { hint_type = RENAME _ } -> true
| _ -> false })
: T.Tac st_term | let check_renaming
(g:env)
(pre:term)
(st:st_term {
match st.term with
| Tm_ProofHintWithBinders { hint_type = RENAME _ } -> true
| _ -> false
})
: T.Tac st_term
= let Tm_ProofHintWithBinders ht = st.term in
let { hint_type=RENAME { pairs; goal }; binders=bs; t=body } = ht in
match bs, goal with
| _::_, None ->
//if there are binders, we must have a goal
fail g (Some st.range) "A renaming with binders must have a goal (with xs. rename ... in goal)"
| _::_, Some goal ->
//rewrite it as
// with bs. assert goal;
// rename [pairs] in goal;
// ...
let body = {st with term = Tm_ProofHintWithBinders { ht with binders = [] }} in
{ st with term = Tm_ProofHintWithBinders { hint_type=ASSERT { p = goal }; binders=bs; t=body } }
| [], None ->
// if there is no goal, take the goal to be the full current pre
let lhs, rhs = rewrite_all g pairs pre in
let t = { st with term = Tm_Rewrite { t1 = lhs; t2 = rhs } } in
{ st with term = Tm_Bind { binder = as_binder tm_unit; head = t; body } }
| [], Some goal -> (
let goal, _ = PC.instantiate_term_implicits g goal in
let lhs, rhs = rewrite_all g pairs goal in
let t = { st with term = Tm_Rewrite { t1 = lhs; t2 = rhs } } in
{ st with term = Tm_Bind { binder = as_binder tm_unit; head = t; body } }
) | {
"file_name": "lib/steel/pulse/Pulse.Checker.AssertWithBinders.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 3,
"end_line": 297,
"start_col": 0,
"start_line": 262
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Checker.AssertWithBinders
open Pulse.Syntax
open Pulse.Typing
open Pulse.Checker.Base
open Pulse.Elaborate.Pure
open Pulse.Typing.Env
module L = FStar.List.Tot
module T = FStar.Tactics.V2
module R = FStar.Reflection.V2
module PC = Pulse.Checker.Pure
module P = Pulse.Syntax.Printer
module N = Pulse.Syntax.Naming
module PS = Pulse.Checker.Prover.Substs
module Prover = Pulse.Checker.Prover
module Env = Pulse.Typing.Env
open Pulse.Show
module RU = Pulse.RuntimeUtils
let is_host_term (t:R.term) = not (R.Tv_Unknown? (R.inspect_ln t))
let debug_log = Pulse.Typing.debug_log "with_binders"
let option_must (f:option 'a) (msg:string) : T.Tac 'a =
match f with
| Some x -> x
| None -> T.fail msg
let rec refl_abs_binders (t:R.term) (acc:list binder) : T.Tac (list binder) =
let open R in
match inspect_ln t with
| Tv_Abs b body ->
let {sort; ppname} = R.inspect_binder b in
let sort = option_must (readback_ty sort)
(Printf.sprintf "Failed to readback elaborated binder sort %s in refl_abs_binders"
(T.term_to_string sort)) in
refl_abs_binders body
((mk_binder_ppname sort (mk_ppname ppname (RU.range_of_term t)))::acc)
| _ -> L.rev acc
let infer_binder_types (g:env) (bs:list binder) (v:vprop)
: T.Tac (list binder) =
match bs with
| [] -> []
| _ ->
let g = push_context g "infer_binder_types" v.range in
let tv = elab_term v in
if not (is_host_term tv)
then fail g (Some v.range)
(Printf.sprintf "assert.infer_binder_types: elaborated %s to %s, which failed the host term check"
(P.term_to_string v) (T.term_to_string tv));
let as_binder (b:binder) : R.binder =
let open R in
let bv : binder_view =
{ sort = elab_term b.binder_ty;
ppname = b.binder_ppname.name;
qual = Q_Explicit;
attrs = [] } in
pack_binder bv
in
let abstraction =
L.fold_right
(fun b (tv:host_term) ->
let b = as_binder b in
R.pack_ln (R.Tv_Abs b tv))
bs
tv
in
let inst_abstraction, _ = PC.instantiate_term_implicits g (tm_fstar abstraction v.range) in
match inst_abstraction.t with
| Tm_FStar t -> refl_abs_binders t []
| _ -> T.fail "Impossible: instantiated abstraction is not embedded F* term, please file a bug-report"
let rec open_binders (g:env) (bs:list binder) (uvs:env { disjoint uvs g }) (v:term) (body:st_term)
: T.Tac (uvs:env { disjoint uvs g } & term & st_term) =
match bs with
| [] -> (| uvs, v, body |)
| b::bs ->
// these binders are only lax checked so far
let _ = PC.check_universe (push_env g uvs) b.binder_ty in
let x = fresh (push_env g uvs) in
let ss = [ DT 0 (tm_var {nm_index=x;nm_ppname=b.binder_ppname}) ] in
let bs = L.mapi (fun i b ->
assume (i >= 0);
subst_binder b (shift_subst_n i ss)) bs in
let v = subst_term v (shift_subst_n (L.length bs) ss) in
let body = subst_st_term body (shift_subst_n (L.length bs) ss) in
open_binders g bs (push_binding uvs x b.binder_ppname b.binder_ty) v body
let closing (bs:list (ppname & var & typ)) : subst =
L.fold_right (fun (_, x, _) (n, ss) ->
n+1,
(ND x n)::ss
) bs (0, []) |> snd
let rec close_binders (bs:list (ppname & var & typ))
: Tot (list binder) (decreases L.length bs) =
match bs with
| [] -> []
| (name, x, t)::bs ->
let bss = L.mapi (fun n (n1, x1, t1) ->
assume (n >= 0);
n1, x1, subst_term t1 [ND x n]) bs in
let b = mk_binder_ppname t name in
assume (L.length bss == L.length bs);
b::(close_binders bss)
let unfold_defs (g:env) (defs:option (list string)) (t:term)
: T.Tac term
= let t = elab_term t in
let head, _ = T.collect_app t in
match R.inspect_ln head with
| R.Tv_FVar fv
| R.Tv_UInst fv _ -> (
let head = String.concat "." (R.inspect_fv fv) in
let fully =
match defs with
| Some defs -> defs
| None -> []
in
let rt = RU.unfold_def (fstar_env g) head fully t in
let rt = option_must rt
(Printf.sprintf "unfolding %s returned None" (T.term_to_string t)) in
let ty = option_must (readback_ty rt)
(Printf.sprintf "error in reading back the unfolded term %s" (T.term_to_string rt)) in
debug_log g (fun _ -> Printf.sprintf "Unfolded %s to F* term %s and readback as %s" (T.term_to_string t) (T.term_to_string rt) (P.term_to_string ty));
ty
)
| _ ->
fail g (Some (RU.range_of_term t))
(Printf.sprintf "Cannot unfold %s, the head is not an fvar" (T.term_to_string t))
let check_unfoldable g (v:term) : T.Tac unit =
match v.t with
| Tm_FStar _ -> ()
| _ ->
fail g
(Some v.range)
(Printf.sprintf "`fold` and `unfold` expect a single user-defined predicate as an argument, \
but %s is a primitive term that cannot be folded or unfolded"
(P.term_to_string v))
let visit_and_rewrite (p: (R.term & R.term)) (t:term) : T.Tac term =
let open FStar.Reflection.V2.TermEq in
let lhs, rhs = p in
let visitor (t:R.term) : T.Tac R.term =
if term_eq t lhs then rhs else t
in
match R.inspect_ln lhs with
| R.Tv_Var n -> (
let nv = R.inspect_namedv n in
assume (is_host_term rhs);
subst_term t [NT nv.uniq { t = Tm_FStar rhs; range = t.range }]
)
| _ ->
let rec aux (t:term) : T.Tac term =
match t.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Inames
| Tm_Unknown -> t
| Tm_Inv i ->
{ t with t = Tm_Inv (aux i) }
| Tm_AddInv i is ->
{ t with t = Tm_AddInv (aux i) (aux is) }
| Tm_Pure p -> { t with t = Tm_Pure (aux p) }
| Tm_Star l r -> { t with t = Tm_Star (aux l) (aux r) }
| Tm_ExistsSL u b body -> { t with t = Tm_ExistsSL u { b with binder_ty=aux b.binder_ty} (aux body) }
| Tm_ForallSL u b body -> { t with t = Tm_ForallSL u { b with binder_ty=aux b.binder_ty} (aux body) }
| Tm_FStar h ->
let h = FStar.Tactics.Visit.visit_tm visitor h in
assume (is_host_term h);
{ t with t=Tm_FStar h }
in
aux t
let visit_and_rewrite_conjuncts (p: (R.term & R.term)) (tms:list term) : T.Tac (list term) =
T.map (visit_and_rewrite p) tms
let visit_and_rewrite_conjuncts_all (p: list (R.term & R.term)) (goal:term) : T.Tac (term & term) =
let tms = Pulse.Typing.Combinators.vprop_as_list goal in
let tms' = T.fold_left (fun tms p -> visit_and_rewrite_conjuncts p tms) tms p in
assume (L.length tms' == L.length tms);
let lhs, rhs =
T.fold_left2
(fun (lhs, rhs) t t' ->
if eq_tm t t' then lhs, rhs
else (t::lhs, t'::rhs))
([], [])
tms tms'
in
Pulse.Typing.Combinators.list_as_vprop lhs,
Pulse.Typing.Combinators.list_as_vprop rhs
let disjoint (dom:list var) (cod:Set.set var) =
L.for_all (fun d -> not (Set.mem d cod)) dom
let rec as_subst (p : list (term & term))
(out:list subst_elt)
(domain:list var)
(codomain:Set.set var)
: option (list subst_elt) =
match p with
| [] ->
if disjoint domain codomain
then Some out
else None
| (e1, e2)::p -> (
match e1.t with
| Tm_FStar e1 -> (
match R.inspect_ln e1 with
| R.Tv_Var n -> (
let nv = R.inspect_namedv n in
as_subst p
(NT nv.uniq e2::out)
(nv.uniq ::domain )
(Set.union codomain (freevars e2))
)
| _ -> None
)
| _ -> None
)
let rewrite_all (g:env) (p: list (term & term)) (t:term) : T.Tac (term & term) =
match as_subst p [] [] Set.empty with
| Some s ->
t, subst_term t s
| _ ->
let p : list (R.term & R.term) =
T.map
(fun (e1, e2) ->
elab_term (fst (Pulse.Checker.Pure.instantiate_term_implicits g e1)),
elab_term (fst (Pulse.Checker.Pure.instantiate_term_implicits g e2)))
p
in
let lhs, rhs = visit_and_rewrite_conjuncts_all p t in
debug_log g (fun _ -> Printf.sprintf "Rewrote %s to %s" (P.term_to_string lhs) (P.term_to_string rhs));
lhs, rhs | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Printer.fsti.checked",
"Pulse.Syntax.Naming.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Show.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.PP.fst.checked",
"Pulse.Elaborate.Pure.fst.checked",
"Pulse.Checker.Pure.fsti.checked",
"Pulse.Checker.Prover.Substs.fsti.checked",
"Pulse.Checker.Prover.fsti.checked",
"Pulse.Checker.Base.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Pprint.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Reflection.V2.TermEq.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Checker.AssertWithBinders.fst"
} | [
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": false,
"full_module": "Pulse.Show",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.Typing.Env",
"short_module": "Env"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Prover",
"short_module": "Prover"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Prover.Substs",
"short_module": "PS"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Naming",
"short_module": "N"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Printer",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Pure",
"short_module": "PC"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
g: Pulse.Typing.Env.env ->
pre: Pulse.Syntax.Base.term ->
st:
Pulse.Syntax.Base.st_term
{ (match Mkst_term?.term st with
| Pulse.Syntax.Base.Tm_ProofHintWithBinders
{ hint_type = Pulse.Syntax.Base.RENAME _ ; binders = _ ; t = _ } ->
true
| _ -> false)
<:
Type0 }
-> FStar.Tactics.Effect.Tac Pulse.Syntax.Base.st_term | FStar.Tactics.Effect.Tac | [] | [] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.st_term",
"Pulse.Syntax.Base.__proj__Mkst_term__item__term",
"Pulse.Syntax.Base.proof_hint_type__RENAME__payload",
"Prims.list",
"Pulse.Syntax.Base.binder",
"Prims.b2t",
"Pulse.Syntax.Base.st_term'",
"Pulse.Syntax.Base.st_term'__Tm_ProofHintWithBinders__payload",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.Mktuple2",
"Pulse.Typing.Env.fail",
"FStar.Pervasives.Native.Some",
"Pulse.Syntax.Base.range",
"Pulse.Syntax.Base.__proj__Mkst_term__item__range",
"Pulse.Syntax.Base.Mkst_term",
"Pulse.Syntax.Base.Tm_ProofHintWithBinders",
"Pulse.Syntax.Base.Mkst_term'__Tm_ProofHintWithBinders__payload",
"Pulse.Syntax.Base.ASSERT",
"Pulse.Syntax.Base.Mkproof_hint_type__ASSERT__payload",
"Pulse.Syntax.Base.__proj__Mkst_term__item__effect_tag",
"Pulse.Syntax.Base.__proj__Mkst_term'__Tm_ProofHintWithBinders__payload__item__hint_type",
"Prims.Nil",
"Pulse.Syntax.Base.__proj__Mkst_term'__Tm_ProofHintWithBinders__payload__item__t",
"Pulse.Syntax.Base.Tm_Bind",
"Pulse.Syntax.Base.Mkst_term'__Tm_Bind__payload",
"Pulse.Syntax.Base.as_binder",
"Pulse.Typing.tm_unit",
"Pulse.Syntax.Base.Tm_Rewrite",
"Pulse.Syntax.Base.Mkst_term'__Tm_Rewrite__payload",
"Pulse.Checker.AssertWithBinders.rewrite_all",
"Pulse.Checker.Pure.instantiate_term_implicits"
] | [] | false | true | false | false | false | let check_renaming
(g: env)
(pre: term)
(st:
st_term
{ match st.term with
| Tm_ProofHintWithBinders { hint_type = RENAME _ } -> true
| _ -> false })
: T.Tac st_term =
| let Tm_ProofHintWithBinders ht = st.term in
let { hint_type = RENAME { pairs = pairs ; goal = goal } ; binders = bs ; t = body } = ht in
match bs, goal with
| _ :: _, None ->
fail g (Some st.range) "A renaming with binders must have a goal (with xs. rename ... in goal)"
| _ :: _, Some goal ->
let body = { st with term = Tm_ProofHintWithBinders ({ ht with binders = [] }) } in
{
st with
term = Tm_ProofHintWithBinders ({ hint_type = ASSERT ({ p = goal }); binders = bs; t = body })
}
| [], None ->
let lhs, rhs = rewrite_all g pairs pre in
let t = { st with term = Tm_Rewrite ({ t1 = lhs; t2 = rhs }) } in
{ st with term = Tm_Bind ({ binder = as_binder tm_unit; head = t; body = body }) }
| [], Some goal ->
(let goal, _ = PC.instantiate_term_implicits g goal in
let lhs, rhs = rewrite_all g pairs goal in
let t = { st with term = Tm_Rewrite ({ t1 = lhs; t2 = rhs }) } in
{ st with term = Tm_Bind ({ binder = as_binder tm_unit; head = t; body = body }) }) | false |
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.sk_binder | val sk_binder : b: FStar.Tactics.NamedView.binding
-> FStar.Tactics.Effect.Tac
(Prims.list FStar.Tactics.NamedView.binding * FStar.Tactics.NamedView.binding) | let sk_binder b = sk_binder' [] b | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 322,
"start_col": 0,
"start_line": 322
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Tactics.NamedView.binding
-> FStar.Tactics.Effect.Tac
(Prims.list FStar.Tactics.NamedView.binding * FStar.Tactics.NamedView.binding) | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Logic.sk_binder'",
"Prims.Nil",
"FStar.Pervasives.Native.tuple2",
"Prims.list"
] | [] | false | true | false | false | false | let sk_binder b =
| sk_binder' [] b | false |
|
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.skolem | val skolem : _: Prims.unit
-> FStar.Tactics.Effect.Tac
(Prims.list (Prims.list FStar.Tactics.NamedView.binding * FStar.Tactics.NamedView.binding)) | let skolem () =
let bs = vars_of_env (cur_env ()) in
map sk_binder bs | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 326,
"start_col": 0,
"start_line": 324
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit
-> FStar.Tactics.Effect.Tac
(Prims.list (Prims.list FStar.Tactics.NamedView.binding * FStar.Tactics.NamedView.binding)) | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.Util.map",
"FStar.Stubs.Reflection.V2.Data.binding",
"FStar.Pervasives.Native.tuple2",
"Prims.list",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Logic.sk_binder",
"FStar.Stubs.Reflection.V2.Builtins.vars_of_env",
"FStar.Stubs.Reflection.Types.env",
"FStar.Tactics.V2.Derived.cur_env"
] | [] | false | true | false | false | false | let skolem () =
| let bs = vars_of_env (cur_env ()) in
map sk_binder bs | false |
|
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.sk_binder' | val sk_binder' (acc: list binding) (b: binding) : Tac (list binding & binding) | val sk_binder' (acc: list binding) (b: binding) : Tac (list binding & binding) | let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
) | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 318,
"start_col": 0,
"start_line": 308
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | acc: Prims.list FStar.Tactics.NamedView.binding -> b: FStar.Tactics.NamedView.binding
-> FStar.Tactics.Effect.Tac
(Prims.list FStar.Tactics.NamedView.binding * FStar.Tactics.NamedView.binding) | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Derived.focus",
"FStar.Pervasives.Native.tuple2",
"Prims.unit",
"FStar.Tactics.V2.Derived.try_with",
"FStar.Tactics.V2.Logic.sk_binder'",
"Prims.Cons",
"FStar.Tactics.V2.Logic.implies_intro",
"FStar.Tactics.V2.Logic.forall_intro",
"FStar.Stubs.Tactics.V2.Builtins.clear",
"FStar.Tactics.V2.Derived.fail",
"Prims.bool",
"Prims.op_disEquality",
"Prims.int",
"FStar.Tactics.V2.Derived.ngoals",
"FStar.Tactics.V2.Derived.apply_lemma",
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V2.SyntaxCoercions.binding_to_term",
"Prims.exn",
"FStar.Pervasives.Native.Mktuple2"
] | [
"recursion"
] | false | true | false | false | false | let rec sk_binder' (acc: list binding) (b: binding) : Tac (list binding & binding) =
| focus (fun () ->
try
(apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx :: acc) b')
with
| _ -> (acc, b)) | false |
Pulse.Checker.AssertWithBinders.fst | Pulse.Checker.AssertWithBinders.disjoint | val disjoint : dom: Prims.list Pulse.Syntax.Base.var -> cod: FStar.Set.set Pulse.Syntax.Base.var -> Prims.bool | let disjoint (dom:list var) (cod:Set.set var) =
L.for_all (fun d -> not (Set.mem d cod)) dom | {
"file_name": "lib/steel/pulse/Pulse.Checker.AssertWithBinders.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 46,
"end_line": 217,
"start_col": 0,
"start_line": 216
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Checker.AssertWithBinders
open Pulse.Syntax
open Pulse.Typing
open Pulse.Checker.Base
open Pulse.Elaborate.Pure
open Pulse.Typing.Env
module L = FStar.List.Tot
module T = FStar.Tactics.V2
module R = FStar.Reflection.V2
module PC = Pulse.Checker.Pure
module P = Pulse.Syntax.Printer
module N = Pulse.Syntax.Naming
module PS = Pulse.Checker.Prover.Substs
module Prover = Pulse.Checker.Prover
module Env = Pulse.Typing.Env
open Pulse.Show
module RU = Pulse.RuntimeUtils
let is_host_term (t:R.term) = not (R.Tv_Unknown? (R.inspect_ln t))
let debug_log = Pulse.Typing.debug_log "with_binders"
let option_must (f:option 'a) (msg:string) : T.Tac 'a =
match f with
| Some x -> x
| None -> T.fail msg
let rec refl_abs_binders (t:R.term) (acc:list binder) : T.Tac (list binder) =
let open R in
match inspect_ln t with
| Tv_Abs b body ->
let {sort; ppname} = R.inspect_binder b in
let sort = option_must (readback_ty sort)
(Printf.sprintf "Failed to readback elaborated binder sort %s in refl_abs_binders"
(T.term_to_string sort)) in
refl_abs_binders body
((mk_binder_ppname sort (mk_ppname ppname (RU.range_of_term t)))::acc)
| _ -> L.rev acc
let infer_binder_types (g:env) (bs:list binder) (v:vprop)
: T.Tac (list binder) =
match bs with
| [] -> []
| _ ->
let g = push_context g "infer_binder_types" v.range in
let tv = elab_term v in
if not (is_host_term tv)
then fail g (Some v.range)
(Printf.sprintf "assert.infer_binder_types: elaborated %s to %s, which failed the host term check"
(P.term_to_string v) (T.term_to_string tv));
let as_binder (b:binder) : R.binder =
let open R in
let bv : binder_view =
{ sort = elab_term b.binder_ty;
ppname = b.binder_ppname.name;
qual = Q_Explicit;
attrs = [] } in
pack_binder bv
in
let abstraction =
L.fold_right
(fun b (tv:host_term) ->
let b = as_binder b in
R.pack_ln (R.Tv_Abs b tv))
bs
tv
in
let inst_abstraction, _ = PC.instantiate_term_implicits g (tm_fstar abstraction v.range) in
match inst_abstraction.t with
| Tm_FStar t -> refl_abs_binders t []
| _ -> T.fail "Impossible: instantiated abstraction is not embedded F* term, please file a bug-report"
let rec open_binders (g:env) (bs:list binder) (uvs:env { disjoint uvs g }) (v:term) (body:st_term)
: T.Tac (uvs:env { disjoint uvs g } & term & st_term) =
match bs with
| [] -> (| uvs, v, body |)
| b::bs ->
// these binders are only lax checked so far
let _ = PC.check_universe (push_env g uvs) b.binder_ty in
let x = fresh (push_env g uvs) in
let ss = [ DT 0 (tm_var {nm_index=x;nm_ppname=b.binder_ppname}) ] in
let bs = L.mapi (fun i b ->
assume (i >= 0);
subst_binder b (shift_subst_n i ss)) bs in
let v = subst_term v (shift_subst_n (L.length bs) ss) in
let body = subst_st_term body (shift_subst_n (L.length bs) ss) in
open_binders g bs (push_binding uvs x b.binder_ppname b.binder_ty) v body
let closing (bs:list (ppname & var & typ)) : subst =
L.fold_right (fun (_, x, _) (n, ss) ->
n+1,
(ND x n)::ss
) bs (0, []) |> snd
let rec close_binders (bs:list (ppname & var & typ))
: Tot (list binder) (decreases L.length bs) =
match bs with
| [] -> []
| (name, x, t)::bs ->
let bss = L.mapi (fun n (n1, x1, t1) ->
assume (n >= 0);
n1, x1, subst_term t1 [ND x n]) bs in
let b = mk_binder_ppname t name in
assume (L.length bss == L.length bs);
b::(close_binders bss)
let unfold_defs (g:env) (defs:option (list string)) (t:term)
: T.Tac term
= let t = elab_term t in
let head, _ = T.collect_app t in
match R.inspect_ln head with
| R.Tv_FVar fv
| R.Tv_UInst fv _ -> (
let head = String.concat "." (R.inspect_fv fv) in
let fully =
match defs with
| Some defs -> defs
| None -> []
in
let rt = RU.unfold_def (fstar_env g) head fully t in
let rt = option_must rt
(Printf.sprintf "unfolding %s returned None" (T.term_to_string t)) in
let ty = option_must (readback_ty rt)
(Printf.sprintf "error in reading back the unfolded term %s" (T.term_to_string rt)) in
debug_log g (fun _ -> Printf.sprintf "Unfolded %s to F* term %s and readback as %s" (T.term_to_string t) (T.term_to_string rt) (P.term_to_string ty));
ty
)
| _ ->
fail g (Some (RU.range_of_term t))
(Printf.sprintf "Cannot unfold %s, the head is not an fvar" (T.term_to_string t))
let check_unfoldable g (v:term) : T.Tac unit =
match v.t with
| Tm_FStar _ -> ()
| _ ->
fail g
(Some v.range)
(Printf.sprintf "`fold` and `unfold` expect a single user-defined predicate as an argument, \
but %s is a primitive term that cannot be folded or unfolded"
(P.term_to_string v))
let visit_and_rewrite (p: (R.term & R.term)) (t:term) : T.Tac term =
let open FStar.Reflection.V2.TermEq in
let lhs, rhs = p in
let visitor (t:R.term) : T.Tac R.term =
if term_eq t lhs then rhs else t
in
match R.inspect_ln lhs with
| R.Tv_Var n -> (
let nv = R.inspect_namedv n in
assume (is_host_term rhs);
subst_term t [NT nv.uniq { t = Tm_FStar rhs; range = t.range }]
)
| _ ->
let rec aux (t:term) : T.Tac term =
match t.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Inames
| Tm_Unknown -> t
| Tm_Inv i ->
{ t with t = Tm_Inv (aux i) }
| Tm_AddInv i is ->
{ t with t = Tm_AddInv (aux i) (aux is) }
| Tm_Pure p -> { t with t = Tm_Pure (aux p) }
| Tm_Star l r -> { t with t = Tm_Star (aux l) (aux r) }
| Tm_ExistsSL u b body -> { t with t = Tm_ExistsSL u { b with binder_ty=aux b.binder_ty} (aux body) }
| Tm_ForallSL u b body -> { t with t = Tm_ForallSL u { b with binder_ty=aux b.binder_ty} (aux body) }
| Tm_FStar h ->
let h = FStar.Tactics.Visit.visit_tm visitor h in
assume (is_host_term h);
{ t with t=Tm_FStar h }
in
aux t
let visit_and_rewrite_conjuncts (p: (R.term & R.term)) (tms:list term) : T.Tac (list term) =
T.map (visit_and_rewrite p) tms
let visit_and_rewrite_conjuncts_all (p: list (R.term & R.term)) (goal:term) : T.Tac (term & term) =
let tms = Pulse.Typing.Combinators.vprop_as_list goal in
let tms' = T.fold_left (fun tms p -> visit_and_rewrite_conjuncts p tms) tms p in
assume (L.length tms' == L.length tms);
let lhs, rhs =
T.fold_left2
(fun (lhs, rhs) t t' ->
if eq_tm t t' then lhs, rhs
else (t::lhs, t'::rhs))
([], [])
tms tms'
in
Pulse.Typing.Combinators.list_as_vprop lhs,
Pulse.Typing.Combinators.list_as_vprop rhs | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Printer.fsti.checked",
"Pulse.Syntax.Naming.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Show.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.PP.fst.checked",
"Pulse.Elaborate.Pure.fst.checked",
"Pulse.Checker.Pure.fsti.checked",
"Pulse.Checker.Prover.Substs.fsti.checked",
"Pulse.Checker.Prover.fsti.checked",
"Pulse.Checker.Base.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Pprint.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Reflection.V2.TermEq.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Checker.AssertWithBinders.fst"
} | [
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": false,
"full_module": "Pulse.Show",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.Typing.Env",
"short_module": "Env"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Prover",
"short_module": "Prover"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Prover.Substs",
"short_module": "PS"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Naming",
"short_module": "N"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Printer",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Pure",
"short_module": "PC"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | dom: Prims.list Pulse.Syntax.Base.var -> cod: FStar.Set.set Pulse.Syntax.Base.var -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Pulse.Syntax.Base.var",
"FStar.Set.set",
"FStar.List.Tot.Base.for_all",
"Prims.op_Negation",
"FStar.Set.mem",
"Prims.bool"
] | [] | false | false | false | true | false | let disjoint (dom: list var) (cod: Set.set var) =
| L.for_all (fun d -> not (Set.mem d cod)) dom | false |
|
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.easy_fill | val easy_fill : _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | let easy_fill () =
let _ = repeat intro in
(* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *)
let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in
smt () | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 10,
"end_line": 338,
"start_col": 0,
"start_line": 334
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = vars_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x)
private
let lemma_from_squash #a #b f x = let _ = f x in assert (b x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.smt",
"FStar.Pervasives.Native.option",
"FStar.Stubs.Reflection.V2.Data.binding",
"FStar.Tactics.V2.Derived.trytac",
"FStar.Stubs.Tactics.V2.Builtins.intro",
"FStar.Tactics.V2.Derived.apply",
"Prims.list",
"FStar.Tactics.V2.Derived.repeat"
] | [] | false | true | false | false | false | let easy_fill () =
| let _ = repeat intro in
let _ =
trytac (fun () ->
apply (`lemma_from_squash);
intro ())
in
smt () | false |
|
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.using_lemma | val using_lemma (t: term) : Tac binding | val using_lemma (t: term) : Tac binding | let using_lemma (t : term) : Tac binding =
try pose_lemma (`(lem1_fa (`#t))) with | _ ->
try pose_lemma (`(lem2_fa (`#t))) with | _ ->
try pose_lemma (`(lem3_fa (`#t))) with | _ ->
fail "using_lemma: failed to instantiate" | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 43,
"end_line": 378,
"start_col": 0,
"start_line": 374
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = vars_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x)
private
let lemma_from_squash #a #b f x = let _ = f x in assert (b x)
private
let easy_fill () =
let _ = repeat intro in
(* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *)
let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in
smt ()
val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a
let easy #a #x = x
private
let lem1_fa #a #pre #post
($lem : (x:a -> Lemma (requires pre x) (ensures post x))) :
Lemma (forall (x:a). pre x ==> post x) =
let l' x : Lemma (pre x ==> post x) =
Classical.move_requires lem x
in
Classical.forall_intro l'
private
let lem2_fa #a #b #pre #post
($lem : (x:a -> y:b -> Lemma (requires pre x y) (ensures post x y))) :
Lemma (forall (x:a) (y:b). pre x y ==> post x y) =
let l' x y : Lemma (pre x y ==> post x y) =
Classical.move_requires (lem x) y
in
Classical.forall_intro_2 l'
private
let lem3_fa #a #b #c #pre #post
($lem : (x:a -> y:b -> z:c -> Lemma (requires pre x y z) (ensures post x y z))) :
Lemma (forall (x:a) (y:b) (z:c). pre x y z ==> post x y z) =
let l' x y z : Lemma (pre x y z ==> post x y z) =
Classical.move_requires (lem x y) z
in
Classical.forall_intro_3 l'
(** Add a lemma into the local context, quantified for all arguments.
Only works for lemmas with up to 3 arguments for now. It is expected
that `t` is a top-level name, this has not been battle-tested for other | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.binding | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Derived.try_with",
"FStar.Tactics.NamedView.binding",
"Prims.unit",
"FStar.Tactics.V2.Logic.pose_lemma",
"Prims.exn",
"FStar.Tactics.V2.Derived.fail"
] | [] | false | true | false | false | false | let using_lemma (t: term) : Tac binding =
| try pose_lemma (`(lem1_fa (`#t)))
with
| _ ->
try pose_lemma (`(lem2_fa (`#t)))
with
| _ -> try pose_lemma (`(lem3_fa (`#t))) with | _ -> fail "using_lemma: failed to instantiate" | false |
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.lem1_fa | val lem1_fa (#a #pre #post: _) ($lem: (x: a -> Lemma (requires pre x) (ensures post x)))
: Lemma (forall (x: a). pre x ==> post x) | val lem1_fa (#a #pre #post: _) ($lem: (x: a -> Lemma (requires pre x) (ensures post x)))
: Lemma (forall (x: a). pre x ==> post x) | let lem1_fa #a #pre #post
($lem : (x:a -> Lemma (requires pre x) (ensures post x))) :
Lemma (forall (x:a). pre x ==> post x) =
let l' x : Lemma (pre x ==> post x) =
Classical.move_requires lem x
in
Classical.forall_intro l' | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 350,
"start_col": 0,
"start_line": 344
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = vars_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x)
private
let lemma_from_squash #a #b f x = let _ = f x in assert (b x)
private
let easy_fill () =
let _ = repeat intro in
(* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *)
let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in
smt ()
val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a
let easy #a #x = x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $lem: (x: a -> FStar.Pervasives.Lemma (requires pre x) (ensures post x))
-> FStar.Pervasives.Lemma (ensures forall (x: a). pre x ==> post x) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro",
"Prims.l_imp",
"Prims.l_True",
"FStar.Classical.move_requires",
"Prims.l_Forall"
] | [] | false | false | true | false | false | let lem1_fa #a #pre #post ($lem: (x: a -> Lemma (requires pre x) (ensures post x)))
: Lemma (forall (x: a). pre x ==> post x) =
| let l' x : Lemma (pre x ==> post x) = Classical.move_requires lem x in
Classical.forall_intro l' | false |
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.easy | val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a | val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a | let easy #a #x = x | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 341,
"start_col": 0,
"start_line": 341
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = vars_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x)
private
let lemma_from_squash #a #b f x = let _ = f x in assert (b x)
private
let easy_fill () =
let _ = repeat intro in
(* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *)
let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in
smt () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let easy #a #x =
| x | false |
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.unfold_definition_and_simplify_eq | val unfold_definition_and_simplify_eq (tm: term) : Tac unit | val unfold_definition_and_simplify_eq (tm: term) : Tac unit | let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 188,
"start_col": 0,
"start_line": 172
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | tm: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Tactics.NamedView.term",
"FStar.Stubs.Reflection.V2.Builtins.term_eq",
"FStar.Tactics.V2.Derived.trivial",
"Prims.unit",
"Prims.bool",
"FStar.Reflection.V2.Formula.formula",
"FStar.Tactics.V2.Derived.fail",
"FStar.Tactics.V2.Logic.visit",
"FStar.Tactics.V2.Logic.unfold_definition_and_simplify_eq",
"FStar.Stubs.Tactics.V2.Builtins.clear_top",
"FStar.Stubs.Tactics.V2.Builtins.rewrite",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Logic.implies_intro",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V2.Derived.destruct_equality_implication",
"FStar.Reflection.V2.Formula.term_as_formula",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.V2.Derived.cur_goal"
] | [
"recursion"
] | false | true | false | false | false | let rec unfold_definition_and_simplify_eq (tm: term) : Tac unit =
| let g = cur_goal () in
match term_as_formula g with
| App hd arg -> if term_eq hd tm then trivial ()
| _ ->
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm) | false |
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.lem3_fa | val lem3_fa
(#a #b #c #pre #post: _)
($lem: (x: a -> y: b -> z: c -> Lemma (requires pre x y z) (ensures post x y z)))
: Lemma (forall (x: a) (y: b) (z: c). pre x y z ==> post x y z) | val lem3_fa
(#a #b #c #pre #post: _)
($lem: (x: a -> y: b -> z: c -> Lemma (requires pre x y z) (ensures post x y z)))
: Lemma (forall (x: a) (y: b) (z: c). pre x y z ==> post x y z) | let lem3_fa #a #b #c #pre #post
($lem : (x:a -> y:b -> z:c -> Lemma (requires pre x y z) (ensures post x y z))) :
Lemma (forall (x:a) (y:b) (z:c). pre x y z ==> post x y z) =
let l' x y z : Lemma (pre x y z ==> post x y z) =
Classical.move_requires (lem x y) z
in
Classical.forall_intro_3 l' | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 368,
"start_col": 0,
"start_line": 362
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = vars_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x)
private
let lemma_from_squash #a #b f x = let _ = f x in assert (b x)
private
let easy_fill () =
let _ = repeat intro in
(* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *)
let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in
smt ()
val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a
let easy #a #x = x
private
let lem1_fa #a #pre #post
($lem : (x:a -> Lemma (requires pre x) (ensures post x))) :
Lemma (forall (x:a). pre x ==> post x) =
let l' x : Lemma (pre x ==> post x) =
Classical.move_requires lem x
in
Classical.forall_intro l'
private
let lem2_fa #a #b #pre #post
($lem : (x:a -> y:b -> Lemma (requires pre x y) (ensures post x y))) :
Lemma (forall (x:a) (y:b). pre x y ==> post x y) =
let l' x y : Lemma (pre x y ==> post x y) =
Classical.move_requires (lem x) y
in
Classical.forall_intro_2 l' | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $lem: (x: a -> y: b -> z: c -> FStar.Pervasives.Lemma (requires pre x y z) (ensures post x y z))
-> FStar.Pervasives.Lemma (ensures forall (x: a) (y: b) (z: c). pre x y z ==> post x y z) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro_3",
"Prims.l_imp",
"Prims.l_True",
"FStar.Classical.move_requires",
"Prims.l_Forall"
] | [] | false | false | true | false | false | let lem3_fa
#a
#b
#c
#pre
#post
($lem: (x: a -> y: b -> z: c -> Lemma (requires pre x y z) (ensures post x y z)))
: Lemma (forall (x: a) (y: b) (z: c). pre x y z ==> post x y z) =
| let l' x y z : Lemma (pre x y z ==> post x y z) = Classical.move_requires (lem x y) z in
Classical.forall_intro_3 l' | false |
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.simplify_eq_implication | val simplify_eq_implication: Prims.unit -> Tac unit | val simplify_eq_implication: Prims.unit -> Tac unit | let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 167,
"start_col": 0,
"start_line": 156
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V2.Derived.fail",
"FStar.Reflection.V2.Formula.formula",
"FStar.Tactics.NamedView.term",
"FStar.Tactics.V2.Logic.visit",
"FStar.Tactics.V2.Logic.simplify_eq_implication",
"FStar.Stubs.Tactics.V2.Builtins.clear_top",
"FStar.Stubs.Tactics.V2.Builtins.rewrite",
"FStar.Tactics.NamedView.binding",
"FStar.Tactics.V2.Logic.implies_intro",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V2.Derived.destruct_equality_implication",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.V2.Derived.cur_goal",
"FStar.Stubs.Reflection.Types.env",
"FStar.Tactics.V2.Derived.cur_env"
] | [
"recursion"
] | false | true | false | false | false | let rec simplify_eq_implication () : Tac unit =
| let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit simplify_eq_implication | false |
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.lem2_fa | val lem2_fa
(#a #b #pre #post: _)
($lem: (x: a -> y: b -> Lemma (requires pre x y) (ensures post x y)))
: Lemma (forall (x: a) (y: b). pre x y ==> post x y) | val lem2_fa
(#a #b #pre #post: _)
($lem: (x: a -> y: b -> Lemma (requires pre x y) (ensures post x y)))
: Lemma (forall (x: a) (y: b). pre x y ==> post x y) | let lem2_fa #a #b #pre #post
($lem : (x:a -> y:b -> Lemma (requires pre x y) (ensures post x y))) :
Lemma (forall (x:a) (y:b). pre x y ==> post x y) =
let l' x y : Lemma (pre x y ==> post x y) =
Classical.move_requires (lem x) y
in
Classical.forall_intro_2 l' | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 359,
"start_col": 0,
"start_line": 353
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = vars_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x)
private
let lemma_from_squash #a #b f x = let _ = f x in assert (b x)
private
let easy_fill () =
let _ = repeat intro in
(* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *)
let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in
smt ()
val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a
let easy #a #x = x
private
let lem1_fa #a #pre #post
($lem : (x:a -> Lemma (requires pre x) (ensures post x))) :
Lemma (forall (x:a). pre x ==> post x) =
let l' x : Lemma (pre x ==> post x) =
Classical.move_requires lem x
in
Classical.forall_intro l' | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $lem: (x: a -> y: b -> FStar.Pervasives.Lemma (requires pre x y) (ensures post x y))
-> FStar.Pervasives.Lemma (ensures forall (x: a) (y: b). pre x y ==> post x y) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro_2",
"Prims.l_imp",
"Prims.l_True",
"FStar.Classical.move_requires",
"Prims.l_Forall"
] | [] | false | false | true | false | false | let lem2_fa #a #b #pre #post ($lem: (x: a -> y: b -> Lemma (requires pre x y) (ensures post x y)))
: Lemma (forall (x: a) (y: b). pre x y ==> post x y) =
| let l' x y : Lemma (pre x y ==> post x y) = Classical.move_requires (lem x) y in
Classical.forall_intro_2 l' | false |
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.vbind | val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q | val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q | let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 95,
"end_line": 191,
"start_col": 0,
"start_line": 191
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | sq: Prims.squash p -> f: (_: p -> Prims.squash q) -> FStar.Pervasives.Lemma (ensures q) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.squash",
"FStar.Classical.give_witness_from_squash",
"FStar.Squash.bind_squash",
"Prims.unit"
] | [] | true | false | true | false | false | let vbind #p #q sq f =
| FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) | false |
HyE.RSA.fst | HyE.RSA.plainsize | val plainsize : Prims.int | let plainsize = aeadKeySize AES_128_GCM | {
"file_name": "examples/crypto/HyE.RSA.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 40,
"start_col": 0,
"start_line": 40
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(* our encryption module is parameterized by a "native" RSA-OAEP
implementation, available at least for F#/.NET *)
(* I am trying to capture functional correctness, which we did not
have with F7; otherwise most refinements can be ignored.
I think this would require coding "events" as membership of
increasing mutable lists, possibly too advanced for a tutorial *)
(* We should replace this module by an implementation using CoreCrypto,
can we use OAEP? *)
module HyE.RSA
open FStar.List.Tot
open Platform.Bytes
open CoreCrypto
module B = Platform.Bytes
assume type pkey
assume type skey | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Platform.Bytes.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"CoreCrypto.fst.checked"
],
"interface_file": false,
"source_file": "HyE.RSA.fst"
} | [
{
"abbrev": true,
"full_module": "Platform.Bytes",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "CoreCrypto",
"short_module": null
},
{
"abbrev": false,
"full_module": "Platform.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "HyE",
"short_module": null
},
{
"abbrev": false,
"full_module": "HyE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.int | Prims.Tot | [
"total"
] | [] | [
"CoreCrypto.aeadKeySize",
"CoreCrypto.AES_128_GCM"
] | [] | false | false | false | true | false | let plainsize =
| aeadKeySize AES_128_GCM | false |
|
FStar.Tactics.V2.Logic.fst | FStar.Tactics.V2.Logic.lemma_from_squash | val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x) | val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x) | let lemma_from_squash #a #b f x = let _ = f x in assert (b x) | {
"file_name": "ulib/FStar.Tactics.V2.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 61,
"end_line": 331,
"start_col": 0,
"start_line": 331
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V2.Logic
open FStar.Reflection.V2
open FStar.Reflection.V2.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V2.Builtins
open FStar.Tactics.V2.Derived
open FStar.Tactics.V2.SyntaxCoercions
open FStar.Tactics.NamedView
open FStar.Tactics.Util
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:list binding) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binding =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binding =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac (list binding) = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binding =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binding =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac (list binding) = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
// FIXME: should this take a binding? It's less general...
// but usually what we want. Coercions could help.
let hyp (x:namedv) : Tac unit = l_exact (namedv_to_term x)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binding =
let c = tcc (cur_env ()) t in
let pre, post =
match c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(reqb <: term)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term].
Pre:
goal =
G |- e : squash s
t : squash r
Post:
G, x:r |- e : squash s
`x` is returned as a term
*)
let unsquash (t : term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack (Tv_Var b)
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binding * binding) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binding & binding) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binding =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binding =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:list binding) (b:binding) : Tac (list binding & binding) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#b)));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = vars_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.SyntaxCoercions.fst.checked",
"FStar.Tactics.V2.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.NamedView.fsti.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V2.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V2.Formula.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V2.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.NamedView",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.SyntaxCoercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V2.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (x: a -> Prims.squash (b x)) -> x: a -> FStar.Pervasives.Lemma (ensures b x) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.squash",
"Prims._assert",
"Prims.unit"
] | [] | true | false | true | false | false | let lemma_from_squash #a #b f x =
| let _ = f x in
assert (b x) | false |
Pulse.Checker.AssertWithBinders.fst | Pulse.Checker.AssertWithBinders.unfold_defs | val unfold_defs (g: env) (defs: option (list string)) (t: term) : T.Tac term | val unfold_defs (g: env) (defs: option (list string)) (t: term) : T.Tac term | let unfold_defs (g:env) (defs:option (list string)) (t:term)
: T.Tac term
= let t = elab_term t in
let head, _ = T.collect_app t in
match R.inspect_ln head with
| R.Tv_FVar fv
| R.Tv_UInst fv _ -> (
let head = String.concat "." (R.inspect_fv fv) in
let fully =
match defs with
| Some defs -> defs
| None -> []
in
let rt = RU.unfold_def (fstar_env g) head fully t in
let rt = option_must rt
(Printf.sprintf "unfolding %s returned None" (T.term_to_string t)) in
let ty = option_must (readback_ty rt)
(Printf.sprintf "error in reading back the unfolded term %s" (T.term_to_string rt)) in
debug_log g (fun _ -> Printf.sprintf "Unfolded %s to F* term %s and readback as %s" (T.term_to_string t) (T.term_to_string rt) (P.term_to_string ty));
ty
)
| _ ->
fail g (Some (RU.range_of_term t))
(Printf.sprintf "Cannot unfold %s, the head is not an fvar" (T.term_to_string t)) | {
"file_name": "lib/steel/pulse/Pulse.Checker.AssertWithBinders.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 89,
"end_line": 149,
"start_col": 0,
"start_line": 126
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Checker.AssertWithBinders
open Pulse.Syntax
open Pulse.Typing
open Pulse.Checker.Base
open Pulse.Elaborate.Pure
open Pulse.Typing.Env
module L = FStar.List.Tot
module T = FStar.Tactics.V2
module R = FStar.Reflection.V2
module PC = Pulse.Checker.Pure
module P = Pulse.Syntax.Printer
module N = Pulse.Syntax.Naming
module PS = Pulse.Checker.Prover.Substs
module Prover = Pulse.Checker.Prover
module Env = Pulse.Typing.Env
open Pulse.Show
module RU = Pulse.RuntimeUtils
let is_host_term (t:R.term) = not (R.Tv_Unknown? (R.inspect_ln t))
let debug_log = Pulse.Typing.debug_log "with_binders"
let option_must (f:option 'a) (msg:string) : T.Tac 'a =
match f with
| Some x -> x
| None -> T.fail msg
let rec refl_abs_binders (t:R.term) (acc:list binder) : T.Tac (list binder) =
let open R in
match inspect_ln t with
| Tv_Abs b body ->
let {sort; ppname} = R.inspect_binder b in
let sort = option_must (readback_ty sort)
(Printf.sprintf "Failed to readback elaborated binder sort %s in refl_abs_binders"
(T.term_to_string sort)) in
refl_abs_binders body
((mk_binder_ppname sort (mk_ppname ppname (RU.range_of_term t)))::acc)
| _ -> L.rev acc
let infer_binder_types (g:env) (bs:list binder) (v:vprop)
: T.Tac (list binder) =
match bs with
| [] -> []
| _ ->
let g = push_context g "infer_binder_types" v.range in
let tv = elab_term v in
if not (is_host_term tv)
then fail g (Some v.range)
(Printf.sprintf "assert.infer_binder_types: elaborated %s to %s, which failed the host term check"
(P.term_to_string v) (T.term_to_string tv));
let as_binder (b:binder) : R.binder =
let open R in
let bv : binder_view =
{ sort = elab_term b.binder_ty;
ppname = b.binder_ppname.name;
qual = Q_Explicit;
attrs = [] } in
pack_binder bv
in
let abstraction =
L.fold_right
(fun b (tv:host_term) ->
let b = as_binder b in
R.pack_ln (R.Tv_Abs b tv))
bs
tv
in
let inst_abstraction, _ = PC.instantiate_term_implicits g (tm_fstar abstraction v.range) in
match inst_abstraction.t with
| Tm_FStar t -> refl_abs_binders t []
| _ -> T.fail "Impossible: instantiated abstraction is not embedded F* term, please file a bug-report"
let rec open_binders (g:env) (bs:list binder) (uvs:env { disjoint uvs g }) (v:term) (body:st_term)
: T.Tac (uvs:env { disjoint uvs g } & term & st_term) =
match bs with
| [] -> (| uvs, v, body |)
| b::bs ->
// these binders are only lax checked so far
let _ = PC.check_universe (push_env g uvs) b.binder_ty in
let x = fresh (push_env g uvs) in
let ss = [ DT 0 (tm_var {nm_index=x;nm_ppname=b.binder_ppname}) ] in
let bs = L.mapi (fun i b ->
assume (i >= 0);
subst_binder b (shift_subst_n i ss)) bs in
let v = subst_term v (shift_subst_n (L.length bs) ss) in
let body = subst_st_term body (shift_subst_n (L.length bs) ss) in
open_binders g bs (push_binding uvs x b.binder_ppname b.binder_ty) v body
let closing (bs:list (ppname & var & typ)) : subst =
L.fold_right (fun (_, x, _) (n, ss) ->
n+1,
(ND x n)::ss
) bs (0, []) |> snd
let rec close_binders (bs:list (ppname & var & typ))
: Tot (list binder) (decreases L.length bs) =
match bs with
| [] -> []
| (name, x, t)::bs ->
let bss = L.mapi (fun n (n1, x1, t1) ->
assume (n >= 0);
n1, x1, subst_term t1 [ND x n]) bs in
let b = mk_binder_ppname t name in
assume (L.length bss == L.length bs);
b::(close_binders bss) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Printer.fsti.checked",
"Pulse.Syntax.Naming.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Show.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.PP.fst.checked",
"Pulse.Elaborate.Pure.fst.checked",
"Pulse.Checker.Pure.fsti.checked",
"Pulse.Checker.Prover.Substs.fsti.checked",
"Pulse.Checker.Prover.fsti.checked",
"Pulse.Checker.Base.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Pprint.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Reflection.V2.TermEq.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Checker.AssertWithBinders.fst"
} | [
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": false,
"full_module": "Pulse.Show",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.Typing.Env",
"short_module": "Env"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Prover",
"short_module": "Prover"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Prover.Substs",
"short_module": "PS"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Naming",
"short_module": "N"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Printer",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Pure",
"short_module": "PC"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
g: Pulse.Typing.Env.env ->
defs: FStar.Pervasives.Native.option (Prims.list Prims.string) ->
t: Pulse.Syntax.Base.term
-> FStar.Tactics.Effect.Tac Pulse.Syntax.Base.term | FStar.Tactics.Effect.Tac | [] | [] | [
"Pulse.Typing.Env.env",
"FStar.Pervasives.Native.option",
"Prims.list",
"Prims.string",
"Pulse.Syntax.Base.term",
"FStar.Tactics.NamedView.term",
"FStar.Stubs.Reflection.V2.Data.argv",
"FStar.Stubs.Reflection.V2.Builtins.inspect_ln",
"FStar.Stubs.Reflection.Types.fv",
"Prims.unit",
"Pulse.Checker.AssertWithBinders.debug_log",
"FStar.Printf.sprintf",
"FStar.Stubs.Tactics.V2.Builtins.term_to_string",
"Pulse.Syntax.Printer.term_to_string",
"Prims.eq2",
"FStar.Stubs.Reflection.Types.term",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Checker.AssertWithBinders.option_must",
"Pulse.Readback.readback_ty",
"Pulse.RuntimeUtils.unfold_def",
"Pulse.Typing.Env.fstar_env",
"Prims.Nil",
"FStar.String.concat",
"FStar.Stubs.Reflection.V2.Builtins.inspect_fv",
"FStar.Stubs.Reflection.V2.Data.universes",
"FStar.Stubs.Reflection.V2.Data.term_view",
"Pulse.Typing.Env.fail",
"FStar.Pervasives.Native.Some",
"Pulse.Syntax.Base.range",
"Pulse.RuntimeUtils.range_of_term",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V2.SyntaxHelpers.collect_app"
] | [] | false | true | false | false | false | let unfold_defs (g: env) (defs: option (list string)) (t: term) : T.Tac term =
| let t = elab_term t in
let head, _ = T.collect_app t in
match R.inspect_ln head with
| R.Tv_FVar fv
| R.Tv_UInst fv _ ->
(let head = String.concat "." (R.inspect_fv fv) in
let fully =
match defs with
| Some defs -> defs
| None -> []
in
let rt = RU.unfold_def (fstar_env g) head fully t in
let rt = option_must rt (Printf.sprintf "unfolding %s returned None" (T.term_to_string t)) in
let ty =
option_must (readback_ty rt)
(Printf.sprintf "error in reading back the unfolded term %s" (T.term_to_string rt))
in
debug_log g
(fun _ ->
Printf.sprintf "Unfolded %s to F* term %s and readback as %s"
(T.term_to_string t)
(T.term_to_string rt)
(P.term_to_string ty));
ty)
| _ ->
fail g
(Some (RU.range_of_term t))
(Printf.sprintf "Cannot unfold %s, the head is not an fvar" (T.term_to_string t)) | false |
Hacl.Spec.Bignum.ModReduction.fst | Hacl.Spec.Bignum.ModReduction.bn_mod_slow_precomp | val bn_mod_slow_precomp:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) ->
lbignum t len | val bn_mod_slow_precomp:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) ->
lbignum t len | let bn_mod_slow_precomp #t #len n mu r2 a =
let a_mod = BAM.bn_almost_mont_reduction n mu a in
let res = BM.bn_to_mont n mu r2 a_mod in
res | {
"file_name": "code/bignum/Hacl.Spec.Bignum.ModReduction.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 33,
"start_col": 0,
"start_line": 30
} | module Hacl.Spec.Bignum.ModReduction
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
module BM = Hacl.Spec.Bignum.Montgomery
module BAM = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// Modular reduction based on Montgomery arithmetic
val bn_mod_slow_precomp:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) ->
lbignum t len | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.ModReduction.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "BAM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Hacl.Spec.Bignum.Definitions.lbignum t len ->
mu: Hacl.Spec.Bignum.Definitions.limb t ->
r2: Hacl.Spec.Bignum.Definitions.lbignum t len ->
a: Hacl.Spec.Bignum.Definitions.lbignum t (len + len)
-> Hacl.Spec.Bignum.Definitions.lbignum t len | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.op_Addition",
"Hacl.Spec.Bignum.Montgomery.bn_to_mont",
"Hacl.Spec.Bignum.AlmostMontgomery.bn_almost_mont_reduction"
] | [] | false | false | false | false | false | let bn_mod_slow_precomp #t #len n mu r2 a =
| let a_mod = BAM.bn_almost_mont_reduction n mu a in
let res = BM.bn_to_mont n mu r2 a_mod in
res | false |
Hacl.Spec.Bignum.ModReduction.fst | Hacl.Spec.Bignum.ModReduction.bn_mod_slow | val bn_mod_slow:
#t:limb_t
-> #len:BN.bn_len t
-> nBits:size_nat
-> n:lbignum t len
-> a:lbignum t (len + len) ->
Pure (lbignum t len)
(requires
1 < bn_v n /\ bn_v n % 2 = 1 /\
nBits / bits t < len /\ pow2 nBits < bn_v n)
(ensures fun res ->
bn_v res == bn_v a % bn_v n) | val bn_mod_slow:
#t:limb_t
-> #len:BN.bn_len t
-> nBits:size_nat
-> n:lbignum t len
-> a:lbignum t (len + len) ->
Pure (lbignum t len)
(requires
1 < bn_v n /\ bn_v n % 2 = 1 /\
nBits / bits t < len /\ pow2 nBits < bn_v n)
(ensures fun res ->
bn_v res == bn_v a % bn_v n) | let bn_mod_slow #t #len nBits n a =
let r2, mu = BM.bn_mont_precomp nBits n in
bn_mod_slow_precomp_lemma n mu r2 a;
bn_mod_slow_precomp n mu r2 a | {
"file_name": "code/bignum/Hacl.Spec.Bignum.ModReduction.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 98,
"start_col": 0,
"start_line": 95
} | module Hacl.Spec.Bignum.ModReduction
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
module BM = Hacl.Spec.Bignum.Montgomery
module BAM = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// Modular reduction based on Montgomery arithmetic
val bn_mod_slow_precomp:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) ->
lbignum t len
let bn_mod_slow_precomp #t #len n mu r2 a =
let a_mod = BAM.bn_almost_mont_reduction n mu a in
let res = BM.bn_to_mont n mu r2 a_mod in
res
val bn_mod_slow_precomp_lemma:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) -> Lemma
(requires
BM.bn_mont_pre n mu /\
bn_v r2 == pow2 (2 * bits t * len) % bn_v n)
(ensures bn_v (bn_mod_slow_precomp n mu r2 a) == bn_v a % bn_v n)
let bn_mod_slow_precomp_lemma #t #len n mu r2 a =
let r = pow2 (bits t * len) in
let d, _ = M.eea_pow2_odd (bits t * len) (bn_v n) in
M.mont_preconditions_d (bits t) len (bn_v n);
assert (M.mont_pre (bits t) len (bn_v n) (v mu));
let a_mod = BAM.bn_almost_mont_reduction n mu a in
let res = BM.bn_to_mont n mu r2 a_mod in
BAM.bn_almost_mont_reduction_lemma n mu a;
BM.bn_to_mont_lemma n mu r2 a_mod;
bn_eval_bound a (len + len);
assert (bn_v a < pow2 (bits t * (len + len)));
Math.Lemmas.pow2_plus (bits t * len) (bits t * len);
assert (bn_v a < r * r);
AM.almost_mont_reduction_lemma (bits t) len (bn_v n) (v mu) (bn_v a);
assert (bn_v a_mod % bn_v n == bn_v a * d % bn_v n);
calc (==) {
bn_v res;
(==) { M.to_mont_lemma (bits t) len (bn_v n) (v mu) (bn_v a_mod) }
bn_v a_mod * r % bn_v n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (bn_v a_mod) r (bn_v n) }
bn_v a_mod % bn_v n * r % bn_v n;
(==) { }
(bn_v a * d % bn_v n) * r % bn_v n;
(==) { M.lemma_mont_id1 (bn_v n) r d (bn_v a) }
bn_v a % bn_v n;
};
assert (bn_v res == bn_v a % bn_v n)
val bn_mod_slow:
#t:limb_t
-> #len:BN.bn_len t
-> nBits:size_nat
-> n:lbignum t len
-> a:lbignum t (len + len) ->
Pure (lbignum t len)
(requires
1 < bn_v n /\ bn_v n % 2 = 1 /\
nBits / bits t < len /\ pow2 nBits < bn_v n)
(ensures fun res ->
bn_v res == bn_v a % bn_v n) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.ModReduction.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "BAM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
nBits: Lib.IntTypes.size_nat ->
n: Hacl.Spec.Bignum.Definitions.lbignum t len ->
a: Hacl.Spec.Bignum.Definitions.lbignum t (len + len)
-> Prims.Pure (Hacl.Spec.Bignum.Definitions.lbignum t len) | Prims.Pure | [] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.op_Addition",
"Hacl.Spec.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.ModReduction.bn_mod_slow_precomp",
"Prims.unit",
"Hacl.Spec.Bignum.ModReduction.bn_mod_slow_precomp_lemma",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Montgomery.bn_mont_precomp"
] | [] | false | false | false | false | false | let bn_mod_slow #t #len nBits n a =
| let r2, mu = BM.bn_mont_precomp nBits n in
bn_mod_slow_precomp_lemma n mu r2 a;
bn_mod_slow_precomp n mu r2 a | false |
Hacl.Spec.Bignum.ModReduction.fst | Hacl.Spec.Bignum.ModReduction.bn_mod_slow_precomp_lemma | val bn_mod_slow_precomp_lemma:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) -> Lemma
(requires
BM.bn_mont_pre n mu /\
bn_v r2 == pow2 (2 * bits t * len) % bn_v n)
(ensures bn_v (bn_mod_slow_precomp n mu r2 a) == bn_v a % bn_v n) | val bn_mod_slow_precomp_lemma:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) -> Lemma
(requires
BM.bn_mont_pre n mu /\
bn_v r2 == pow2 (2 * bits t * len) % bn_v n)
(ensures bn_v (bn_mod_slow_precomp n mu r2 a) == bn_v a % bn_v n) | let bn_mod_slow_precomp_lemma #t #len n mu r2 a =
let r = pow2 (bits t * len) in
let d, _ = M.eea_pow2_odd (bits t * len) (bn_v n) in
M.mont_preconditions_d (bits t) len (bn_v n);
assert (M.mont_pre (bits t) len (bn_v n) (v mu));
let a_mod = BAM.bn_almost_mont_reduction n mu a in
let res = BM.bn_to_mont n mu r2 a_mod in
BAM.bn_almost_mont_reduction_lemma n mu a;
BM.bn_to_mont_lemma n mu r2 a_mod;
bn_eval_bound a (len + len);
assert (bn_v a < pow2 (bits t * (len + len)));
Math.Lemmas.pow2_plus (bits t * len) (bits t * len);
assert (bn_v a < r * r);
AM.almost_mont_reduction_lemma (bits t) len (bn_v n) (v mu) (bn_v a);
assert (bn_v a_mod % bn_v n == bn_v a * d % bn_v n);
calc (==) {
bn_v res;
(==) { M.to_mont_lemma (bits t) len (bn_v n) (v mu) (bn_v a_mod) }
bn_v a_mod * r % bn_v n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (bn_v a_mod) r (bn_v n) }
bn_v a_mod % bn_v n * r % bn_v n;
(==) { }
(bn_v a * d % bn_v n) * r % bn_v n;
(==) { M.lemma_mont_id1 (bn_v n) r d (bn_v a) }
bn_v a % bn_v n;
};
assert (bn_v res == bn_v a % bn_v n) | {
"file_name": "code/bignum/Hacl.Spec.Bignum.ModReduction.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 38,
"end_line": 79,
"start_col": 0,
"start_line": 48
} | module Hacl.Spec.Bignum.ModReduction
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Bignum.Definitions
module M = Hacl.Spec.Montgomery.Lemmas
module AM = Hacl.Spec.AlmostMontgomery.Lemmas
module BM = Hacl.Spec.Bignum.Montgomery
module BAM = Hacl.Spec.Bignum.AlmostMontgomery
module BN = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// Modular reduction based on Montgomery arithmetic
val bn_mod_slow_precomp:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) ->
lbignum t len
let bn_mod_slow_precomp #t #len n mu r2 a =
let a_mod = BAM.bn_almost_mont_reduction n mu a in
let res = BM.bn_to_mont n mu r2 a_mod in
res
val bn_mod_slow_precomp_lemma:
#t:limb_t
-> #len:BN.bn_len t
-> n:lbignum t len
-> mu:limb t
-> r2:lbignum t len
-> a:lbignum t (len + len) -> Lemma
(requires
BM.bn_mont_pre n mu /\
bn_v r2 == pow2 (2 * bits t * len) % bn_v n)
(ensures bn_v (bn_mod_slow_precomp n mu r2 a) == bn_v a % bn_v n) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.AlmostMontgomery.fsti.checked",
"Hacl.Spec.Bignum.fsti.checked",
"Hacl.Spec.AlmostMontgomery.Lemmas.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.ModReduction.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.AlmostMontgomery",
"short_module": "BAM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.AlmostMontgomery.Lemmas",
"short_module": "AM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Hacl.Spec.Bignum.Definitions.lbignum t len ->
mu: Hacl.Spec.Bignum.Definitions.limb t ->
r2: Hacl.Spec.Bignum.Definitions.lbignum t len ->
a: Hacl.Spec.Bignum.Definitions.lbignum t (len + len)
-> FStar.Pervasives.Lemma
(requires
Hacl.Spec.Bignum.Montgomery.bn_mont_pre n mu /\
Hacl.Spec.Bignum.Definitions.bn_v r2 ==
Prims.pow2 ((2 * Lib.IntTypes.bits t) * len) % Hacl.Spec.Bignum.Definitions.bn_v n)
(ensures
Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.ModReduction.bn_mod_slow_precomp n
mu
r2
a) ==
Hacl.Spec.Bignum.Definitions.bn_v a % Hacl.Spec.Bignum.Definitions.bn_v n) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.bn_len",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.op_Addition",
"Prims.int",
"Prims._assert",
"Prims.eq2",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_Modulus",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.nat",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Mul.op_Star",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Montgomery.Lemmas.to_mont_lemma",
"Lib.IntTypes.bits",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l",
"Hacl.Spec.Montgomery.Lemmas.lemma_mont_id1",
"Hacl.Spec.AlmostMontgomery.Lemmas.almost_mont_reduction_lemma",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Math.Lemmas.pow2_plus",
"Prims.pow2",
"Hacl.Spec.Bignum.Definitions.bn_eval_bound",
"Hacl.Spec.Bignum.Montgomery.bn_to_mont_lemma",
"Hacl.Spec.Bignum.AlmostMontgomery.bn_almost_mont_reduction_lemma",
"Hacl.Spec.Bignum.Montgomery.bn_to_mont",
"Hacl.Spec.Bignum.AlmostMontgomery.bn_almost_mont_reduction",
"Hacl.Spec.Montgomery.Lemmas.mont_pre",
"Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd",
"Prims.pos"
] | [] | false | false | true | false | false | let bn_mod_slow_precomp_lemma #t #len n mu r2 a =
| let r = pow2 (bits t * len) in
let d, _ = M.eea_pow2_odd (bits t * len) (bn_v n) in
M.mont_preconditions_d (bits t) len (bn_v n);
assert (M.mont_pre (bits t) len (bn_v n) (v mu));
let a_mod = BAM.bn_almost_mont_reduction n mu a in
let res = BM.bn_to_mont n mu r2 a_mod in
BAM.bn_almost_mont_reduction_lemma n mu a;
BM.bn_to_mont_lemma n mu r2 a_mod;
bn_eval_bound a (len + len);
assert (bn_v a < pow2 (bits t * (len + len)));
Math.Lemmas.pow2_plus (bits t * len) (bits t * len);
assert (bn_v a < r * r);
AM.almost_mont_reduction_lemma (bits t) len (bn_v n) (v mu) (bn_v a);
assert (bn_v a_mod % bn_v n == bn_v a * d % bn_v n);
calc ( == ) {
bn_v res;
( == ) { M.to_mont_lemma (bits t) len (bn_v n) (v mu) (bn_v a_mod) }
bn_v a_mod * r % bn_v n;
( == ) { Math.Lemmas.lemma_mod_mul_distr_l (bn_v a_mod) r (bn_v n) }
(bn_v a_mod % bn_v n) * r % bn_v n;
( == ) { () }
(bn_v a * d % bn_v n) * r % bn_v n;
( == ) { M.lemma_mont_id1 (bn_v n) r d (bn_v a) }
bn_v a % bn_v n;
};
assert (bn_v res == bn_v a % bn_v n) | false |
OWGCounter.fst | OWGCounter.og_acquire | val og_acquire
(r: ref int)
(r_mine r_other: ghost_ref int)
(b: G.erased bool)
(l: lock (lock_inv r (if b then r_mine else r_other) (if b then r_other else r_mine)))
: SteelT unit emp (fun _ -> lock_inv r r_mine r_other) | val og_acquire
(r: ref int)
(r_mine r_other: ghost_ref int)
(b: G.erased bool)
(l: lock (lock_inv r (if b then r_mine else r_other) (if b then r_other else r_mine)))
: SteelT unit emp (fun _ -> lock_inv r r_mine r_other) | let og_acquire (r:ref int) (r_mine r_other:ghost_ref int) (b:G.erased bool)
(l:lock (lock_inv r (if b then r_mine else r_other)
(if b then r_other else r_mine)))
: SteelT unit
emp
(fun _ -> lock_inv r r_mine r_other)
= acquire l;
if b then begin
rewrite_slprop (lock_inv r (if b then r_mine else r_other)
(if b then r_other else r_mine))
(lock_inv r r_mine r_other)
(fun _ -> ());
()
end
else begin
rewrite_slprop (lock_inv r (if b then r_mine else r_other)
(if b then r_other else r_mine))
(lock_inv r r_other r_mine)
(fun _ -> ());
lock_inv_equiv_lemma r r_other r_mine;
rewrite_slprop (lock_inv r r_other r_mine) (lock_inv r r_mine r_other) (fun _ -> reveal_equiv (lock_inv r r_other r_mine) (lock_inv r r_mine r_other))
end | {
"file_name": "share/steel/examples/steel/OWGCounter.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 7,
"end_line": 149,
"start_col": 0,
"start_line": 128
} | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(*
* An implementation of the parallel counter presented by Owicki and Gries
* "Verifying properties of parallel programs: An axiomatic approach.", CACM'76
*
* In this example, the main thread forks two worker thread that both
* increment a shared counter. The goal of the example is to show that
* after both the worker threads are done, the value of the counter is
* its original value + 2.
*
* See http://pm.inf.ethz.ch/publications/getpdf.php for an implementation
* of the OWG counters in the Chalice framework.
*)
module OWGCounter
module G = FStar.Ghost
open Steel.Memory
open Steel.FractionalPermission
open Steel.Reference
open Steel.SpinLock
open Steel.Effect.Atomic
open Steel.Effect
module R = Steel.Reference
module P = Steel.FractionalPermission
module A = Steel.Effect.Atomic
#set-options "--ide_id_info_off --using_facts_from '* -FStar.Tactics -FStar.Reflection' --fuel 0 --ifuel 0"
let half_perm = half_perm full_perm
(* Some basic wrappers to avoid issues with normalization.
TODO: The frame inference tactic should not normalize fst and snd*)
noextract
let fst = fst
noextract
let snd = snd
/// The core invariant of the Owicki-Gries counter, shared by the two parties.
/// The concrete counter [r] is shared, and the full permission is stored in the invariant.
/// Each party also has half permission to their own ghost counter [r1] or [r2], ensuring that
/// only them can modify it by retrieving the other half of the permission when accessing the invariant.
/// The `__reduce__` attribute indicates the frame inference tactic to unfold this predicate for frame inference only
[@@ __reduce__]
let lock_inv_slprop (r:ref int) (r1 r2:ghost_ref int) (w:int & int) =
ghost_pts_to r1 half_perm (fst w) `star`
ghost_pts_to r2 half_perm (snd w) `star`
pts_to r full_perm (fst w + snd w)
[@@ __reduce__]
let lock_inv_pred (r:ref int) (r1 r2:ghost_ref int) =
fun (x:int & int) -> lock_inv_slprop r r1 r2 x
/// The actual invariant, existentially quantifying over the values currently stored in the two ghost references
[@@ __reduce__]
let lock_inv (r:ref int) (r1 r2:ghost_ref int) : vprop =
h_exists (lock_inv_pred r r1 r2)
#push-options "--warn_error -271 --fuel 1 --ifuel 1"
/// A helper lemma to reason about the lock invariant
let lock_inv_equiv_lemma (r:ref int) (r1 r2:ghost_ref int)
: Lemma (lock_inv r r1 r2 `equiv` lock_inv r r2 r1)
=
let aux (r:ref int) (r1 r2:ghost_ref int) (m:mem)
: Lemma
(requires interp (hp_of (lock_inv r r1 r2)) m)
(ensures interp (hp_of (lock_inv r r2 r1)) m)
[SMTPat ()]
= assert (
Steel.Memory.h_exists #(int & int) (fun x -> hp_of (lock_inv_pred r r1 r2 x)) ==
h_exists_sl #(int & int) (lock_inv_pred r r1 r2))
by (FStar.Tactics.norm [delta_only [`%h_exists_sl]]);
let w : G.erased (int & int) = id_elim_exists (fun x -> hp_of (lock_inv_pred r r1 r2 x)) m in
assert ((ghost_pts_to r1 half_perm (snd (snd w, fst w)) `star`
ghost_pts_to r2 half_perm (fst (snd w, fst w)) `star`
pts_to r full_perm (fst (snd w, fst w) + snd (snd w, fst w))) `equiv`
(ghost_pts_to r2 half_perm (fst (snd w, fst w)) `star`
ghost_pts_to r1 half_perm (snd (snd w, fst w)) `star`
pts_to r full_perm (fst (snd w, fst w) + snd (snd w, fst w)))) by (FStar.Tactics.norm [delta_attr [`%__steel_reduce__]]; canon' false (`true_p) (`true_p));
reveal_equiv
(ghost_pts_to r1 half_perm (snd (snd w, fst w)) `star`
ghost_pts_to r2 half_perm (fst (snd w, fst w)) `star`
pts_to r full_perm (fst (snd w, fst w) + snd (snd w, fst w)))
(ghost_pts_to r2 half_perm (fst (snd w, fst w)) `star`
ghost_pts_to r1 half_perm (snd (snd w, fst w)) `star`
pts_to r full_perm (fst (snd w, fst w) + snd (snd w, fst w)));
assert (interp (hp_of (lock_inv_pred r r2 r1 (snd w, fst w))) m);
intro_h_exists (snd w, fst w) (fun x -> hp_of (lock_inv_pred r r2 r1 x)) m;
assert (interp (Steel.Memory.h_exists (fun x -> hp_of (lock_inv_pred r r2 r1 x))) m);
assert (
Steel.Memory.h_exists #(int & int) (fun x -> hp_of (lock_inv_pred r r2 r1 x)) ==
h_exists_sl #(int & int) (lock_inv_pred r r2 r1))
by (FStar.Tactics.norm [delta_only [`%h_exists_sl]])
in
reveal_equiv (lock_inv r r1 r2) (lock_inv r r2 r1)
#pop-options
/// Acquiring the shared lock invariant | {
"checked_file": "/",
"dependencies": [
"Steel.SpinLock.fsti.checked",
"Steel.Reference.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "OWGCounter.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Effect.Atomic",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Steel.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.SpinLock",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
r: Steel.Reference.ref Prims.int ->
r_mine: Steel.Reference.ghost_ref Prims.int ->
r_other: Steel.Reference.ghost_ref Prims.int ->
b: FStar.Ghost.erased Prims.bool ->
l:
Steel.SpinLock.lock (OWGCounter.lock_inv r
(match FStar.Ghost.reveal b with
| true -> r_mine
| _ -> r_other)
(match FStar.Ghost.reveal b with
| true -> r_other
| _ -> r_mine))
-> Steel.Effect.SteelT Prims.unit | Steel.Effect.SteelT | [] | [] | [
"Steel.Reference.ref",
"Prims.int",
"Steel.Reference.ghost_ref",
"FStar.Ghost.erased",
"Prims.bool",
"Steel.SpinLock.lock",
"OWGCounter.lock_inv",
"FStar.Ghost.reveal",
"Prims.unit",
"Steel.Effect.Atomic.rewrite_slprop",
"FStar.Ghost.hide",
"FStar.Set.set",
"Steel.Memory.iname",
"FStar.Set.empty",
"Steel.Memory.mem",
"Steel.Effect.Common.reveal_equiv",
"OWGCounter.lock_inv_equiv_lemma",
"Steel.SpinLock.acquire",
"Steel.Effect.Common.emp",
"Steel.Effect.Common.vprop"
] | [] | false | true | false | false | false | let og_acquire
(r: ref int)
(r_mine r_other: ghost_ref int)
(b: G.erased bool)
(l: lock (lock_inv r (if b then r_mine else r_other) (if b then r_other else r_mine)))
: SteelT unit emp (fun _ -> lock_inv r r_mine r_other) =
| acquire l;
if b
then
(rewrite_slprop (lock_inv r (if b then r_mine else r_other) (if b then r_other else r_mine))
(lock_inv r r_mine r_other)
(fun _ -> ());
())
else
(rewrite_slprop (lock_inv r (if b then r_mine else r_other) (if b then r_other else r_mine))
(lock_inv r r_other r_mine)
(fun _ -> ());
lock_inv_equiv_lemma r r_other r_mine;
rewrite_slprop (lock_inv r r_other r_mine)
(lock_inv r r_mine r_other)
(fun _ -> reveal_equiv (lock_inv r r_other r_mine) (lock_inv r r_mine r_other))) | false |
Spec.Poly1305.fst | Spec.Poly1305.prime | val prime:pos | val prime:pos | let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 17,
"start_col": 0,
"start_line": 14
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.pos | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.int",
"Prims.op_Subtraction",
"Prims.pow2"
] | [] | false | false | false | true | false | let prime:pos =
| let p = pow2 130 - 5 in
assert_norm (p > 0);
p | false |
Spec.Poly1305.fst | Spec.Poly1305.felem | val felem : Type0 | let felem = x:nat{x < prime} | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 19,
"start_col": 0,
"start_line": 19
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Spec.Poly1305.prime"
] | [] | false | false | false | true | true | let felem =
| x: nat{x < prime} | false |
|
Spec.Poly1305.fst | Spec.Poly1305.from_felem | val from_felem (x: felem) : nat | val from_felem (x: felem) : nat | let from_felem (x:felem) : nat = x | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 24,
"start_col": 0,
"start_line": 24
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Spec.Poly1305.felem -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Spec.Poly1305.felem",
"Prims.nat"
] | [] | false | false | false | true | false | let from_felem (x: felem) : nat =
| x | false |
Spec.Poly1305.fst | Spec.Poly1305.to_felem | val to_felem (x: nat{x < prime}) : felem | val to_felem (x: nat{x < prime}) : felem | let to_felem (x:nat{x < prime}) : felem = x | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 43,
"end_line": 23,
"start_col": 0,
"start_line": 23
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.nat{x < Spec.Poly1305.prime} -> Spec.Poly1305.felem | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Spec.Poly1305.prime",
"Spec.Poly1305.felem"
] | [] | false | false | false | false | false | let to_felem (x: nat{x < prime}) : felem =
| x | false |
OWGCounter.fst | OWGCounter.og_release | val og_release
(r: ref int)
(r_mine r_other: ghost_ref int)
(b: G.erased bool)
(l: lock (lock_inv r (if b then r_mine else r_other) (if b then r_other else r_mine)))
: SteelT unit (lock_inv r r_mine r_other) (fun _ -> emp) | val og_release
(r: ref int)
(r_mine r_other: ghost_ref int)
(b: G.erased bool)
(l: lock (lock_inv r (if b then r_mine else r_other) (if b then r_other else r_mine)))
: SteelT unit (lock_inv r r_mine r_other) (fun _ -> emp) | let og_release (r:ref int) (r_mine r_other:ghost_ref int) (b:G.erased bool)
(l:lock (lock_inv r (if b then r_mine else r_other)
(if b then r_other else r_mine)))
: SteelT unit
(lock_inv r r_mine r_other)
(fun _ -> emp)
= if b then begin
rewrite_slprop (lock_inv r r_mine r_other)
(lock_inv r (if b then r_mine else r_other)
(if b then r_other else r_mine))
(fun _ -> ());
()
end
else begin
lock_inv_equiv_lemma r r_mine r_other;
rewrite_slprop (lock_inv r r_mine r_other) (lock_inv r r_other r_mine) (fun _ -> reveal_equiv (lock_inv r r_mine r_other) (lock_inv r r_other r_mine));
rewrite_slprop (lock_inv r r_other r_mine)
(lock_inv r (if b then r_mine else r_other)
(if b then r_other else r_mine))
(fun _ -> ())
end;
release l | {
"file_name": "share/steel/examples/steel/OWGCounter.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 13,
"end_line": 174,
"start_col": 0,
"start_line": 153
} | (*
Copyright 2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(*
* An implementation of the parallel counter presented by Owicki and Gries
* "Verifying properties of parallel programs: An axiomatic approach.", CACM'76
*
* In this example, the main thread forks two worker thread that both
* increment a shared counter. The goal of the example is to show that
* after both the worker threads are done, the value of the counter is
* its original value + 2.
*
* See http://pm.inf.ethz.ch/publications/getpdf.php for an implementation
* of the OWG counters in the Chalice framework.
*)
module OWGCounter
module G = FStar.Ghost
open Steel.Memory
open Steel.FractionalPermission
open Steel.Reference
open Steel.SpinLock
open Steel.Effect.Atomic
open Steel.Effect
module R = Steel.Reference
module P = Steel.FractionalPermission
module A = Steel.Effect.Atomic
#set-options "--ide_id_info_off --using_facts_from '* -FStar.Tactics -FStar.Reflection' --fuel 0 --ifuel 0"
let half_perm = half_perm full_perm
(* Some basic wrappers to avoid issues with normalization.
TODO: The frame inference tactic should not normalize fst and snd*)
noextract
let fst = fst
noextract
let snd = snd
/// The core invariant of the Owicki-Gries counter, shared by the two parties.
/// The concrete counter [r] is shared, and the full permission is stored in the invariant.
/// Each party also has half permission to their own ghost counter [r1] or [r2], ensuring that
/// only them can modify it by retrieving the other half of the permission when accessing the invariant.
/// The `__reduce__` attribute indicates the frame inference tactic to unfold this predicate for frame inference only
[@@ __reduce__]
let lock_inv_slprop (r:ref int) (r1 r2:ghost_ref int) (w:int & int) =
ghost_pts_to r1 half_perm (fst w) `star`
ghost_pts_to r2 half_perm (snd w) `star`
pts_to r full_perm (fst w + snd w)
[@@ __reduce__]
let lock_inv_pred (r:ref int) (r1 r2:ghost_ref int) =
fun (x:int & int) -> lock_inv_slprop r r1 r2 x
/// The actual invariant, existentially quantifying over the values currently stored in the two ghost references
[@@ __reduce__]
let lock_inv (r:ref int) (r1 r2:ghost_ref int) : vprop =
h_exists (lock_inv_pred r r1 r2)
#push-options "--warn_error -271 --fuel 1 --ifuel 1"
/// A helper lemma to reason about the lock invariant
let lock_inv_equiv_lemma (r:ref int) (r1 r2:ghost_ref int)
: Lemma (lock_inv r r1 r2 `equiv` lock_inv r r2 r1)
=
let aux (r:ref int) (r1 r2:ghost_ref int) (m:mem)
: Lemma
(requires interp (hp_of (lock_inv r r1 r2)) m)
(ensures interp (hp_of (lock_inv r r2 r1)) m)
[SMTPat ()]
= assert (
Steel.Memory.h_exists #(int & int) (fun x -> hp_of (lock_inv_pred r r1 r2 x)) ==
h_exists_sl #(int & int) (lock_inv_pred r r1 r2))
by (FStar.Tactics.norm [delta_only [`%h_exists_sl]]);
let w : G.erased (int & int) = id_elim_exists (fun x -> hp_of (lock_inv_pred r r1 r2 x)) m in
assert ((ghost_pts_to r1 half_perm (snd (snd w, fst w)) `star`
ghost_pts_to r2 half_perm (fst (snd w, fst w)) `star`
pts_to r full_perm (fst (snd w, fst w) + snd (snd w, fst w))) `equiv`
(ghost_pts_to r2 half_perm (fst (snd w, fst w)) `star`
ghost_pts_to r1 half_perm (snd (snd w, fst w)) `star`
pts_to r full_perm (fst (snd w, fst w) + snd (snd w, fst w)))) by (FStar.Tactics.norm [delta_attr [`%__steel_reduce__]]; canon' false (`true_p) (`true_p));
reveal_equiv
(ghost_pts_to r1 half_perm (snd (snd w, fst w)) `star`
ghost_pts_to r2 half_perm (fst (snd w, fst w)) `star`
pts_to r full_perm (fst (snd w, fst w) + snd (snd w, fst w)))
(ghost_pts_to r2 half_perm (fst (snd w, fst w)) `star`
ghost_pts_to r1 half_perm (snd (snd w, fst w)) `star`
pts_to r full_perm (fst (snd w, fst w) + snd (snd w, fst w)));
assert (interp (hp_of (lock_inv_pred r r2 r1 (snd w, fst w))) m);
intro_h_exists (snd w, fst w) (fun x -> hp_of (lock_inv_pred r r2 r1 x)) m;
assert (interp (Steel.Memory.h_exists (fun x -> hp_of (lock_inv_pred r r2 r1 x))) m);
assert (
Steel.Memory.h_exists #(int & int) (fun x -> hp_of (lock_inv_pred r r2 r1 x)) ==
h_exists_sl #(int & int) (lock_inv_pred r r2 r1))
by (FStar.Tactics.norm [delta_only [`%h_exists_sl]])
in
reveal_equiv (lock_inv r r1 r2) (lock_inv r r2 r1)
#pop-options
/// Acquiring the shared lock invariant
inline_for_extraction noextract
let og_acquire (r:ref int) (r_mine r_other:ghost_ref int) (b:G.erased bool)
(l:lock (lock_inv r (if b then r_mine else r_other)
(if b then r_other else r_mine)))
: SteelT unit
emp
(fun _ -> lock_inv r r_mine r_other)
= acquire l;
if b then begin
rewrite_slprop (lock_inv r (if b then r_mine else r_other)
(if b then r_other else r_mine))
(lock_inv r r_mine r_other)
(fun _ -> ());
()
end
else begin
rewrite_slprop (lock_inv r (if b then r_mine else r_other)
(if b then r_other else r_mine))
(lock_inv r r_other r_mine)
(fun _ -> ());
lock_inv_equiv_lemma r r_other r_mine;
rewrite_slprop (lock_inv r r_other r_mine) (lock_inv r r_mine r_other) (fun _ -> reveal_equiv (lock_inv r r_other r_mine) (lock_inv r r_mine r_other))
end
/// Releasing the shared lock invariant | {
"checked_file": "/",
"dependencies": [
"Steel.SpinLock.fsti.checked",
"Steel.Reference.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "OWGCounter.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Effect.Atomic",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Steel.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.SpinLock",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
r: Steel.Reference.ref Prims.int ->
r_mine: Steel.Reference.ghost_ref Prims.int ->
r_other: Steel.Reference.ghost_ref Prims.int ->
b: FStar.Ghost.erased Prims.bool ->
l:
Steel.SpinLock.lock (OWGCounter.lock_inv r
(match FStar.Ghost.reveal b with
| true -> r_mine
| _ -> r_other)
(match FStar.Ghost.reveal b with
| true -> r_other
| _ -> r_mine))
-> Steel.Effect.SteelT Prims.unit | Steel.Effect.SteelT | [] | [] | [
"Steel.Reference.ref",
"Prims.int",
"Steel.Reference.ghost_ref",
"FStar.Ghost.erased",
"Prims.bool",
"Steel.SpinLock.lock",
"OWGCounter.lock_inv",
"FStar.Ghost.reveal",
"Steel.SpinLock.release",
"Prims.unit",
"Steel.Effect.Atomic.rewrite_slprop",
"FStar.Ghost.hide",
"FStar.Set.set",
"Steel.Memory.iname",
"FStar.Set.empty",
"Steel.Memory.mem",
"Steel.Effect.Common.reveal_equiv",
"OWGCounter.lock_inv_equiv_lemma",
"Steel.Effect.Common.emp",
"Steel.Effect.Common.vprop"
] | [] | false | true | false | false | false | let og_release
(r: ref int)
(r_mine r_other: ghost_ref int)
(b: G.erased bool)
(l: lock (lock_inv r (if b then r_mine else r_other) (if b then r_other else r_mine)))
: SteelT unit (lock_inv r r_mine r_other) (fun _ -> emp) =
| if b
then
(rewrite_slprop (lock_inv r r_mine r_other)
(lock_inv r (if b then r_mine else r_other) (if b then r_other else r_mine))
(fun _ -> ());
())
else
(lock_inv_equiv_lemma r r_mine r_other;
rewrite_slprop (lock_inv r r_mine r_other)
(lock_inv r r_other r_mine)
(fun _ -> reveal_equiv (lock_inv r r_mine r_other) (lock_inv r r_other r_mine));
rewrite_slprop (lock_inv r r_other r_mine)
(lock_inv r (if b then r_mine else r_other) (if b then r_other else r_mine))
(fun _ -> ()));
release l | false |
Spec.Poly1305.fst | Spec.Poly1305.fadd | val fadd (x y: felem) : felem | val fadd (x y: felem) : felem | let fadd (x:felem) (y:felem) : felem = (x + y) % prime | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 54,
"end_line": 20,
"start_col": 0,
"start_line": 20
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Spec.Poly1305.felem -> y: Spec.Poly1305.felem -> Spec.Poly1305.felem | Prims.Tot | [
"total"
] | [] | [
"Spec.Poly1305.felem",
"Prims.op_Modulus",
"Prims.op_Addition",
"Spec.Poly1305.prime"
] | [] | false | false | false | true | false | let fadd (x y: felem) : felem =
| (x + y) % prime | false |
Spec.Poly1305.fst | Spec.Poly1305.poly1305_update1 | val poly1305_update1 (r: felem) (len: size_nat{len <= size_block}) (b: lbytes len) (acc: felem)
: Tot felem | val poly1305_update1 (r: felem) (len: size_nat{len <= size_block}) (b: lbytes len) (acc: felem)
: Tot felem | let poly1305_update1 (r:felem) (len:size_nat{len <= size_block}) (b:lbytes len) (acc:felem) : Tot felem =
(encode len b `fadd` acc) `fmul` r | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 36,
"end_line": 57,
"start_col": 0,
"start_line": 56
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *)
let size_block : size_nat = 16
let size_key : size_nat = 32
type block = lbytes size_block
type tag = lbytes size_block
type key = lbytes size_key
/// Specification
let poly1305_encode_r (rb:block) : Tot felem =
let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo)
let poly1305_init (k:key) : Tot (felem & felem) =
let r = poly1305_encode_r (slice k 0 16) in
zero, r
let encode (len:size_nat{len <= size_block}) (b:lbytes len) : Tot felem =
Math.Lemmas.pow2_le_compat 128 (8 * len);
assert_norm (pow2 128 + pow2 128 < prime);
fadd (pow2 (8 * len)) (nat_from_bytes_le b) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
r: Spec.Poly1305.felem ->
len: Lib.IntTypes.size_nat{len <= Spec.Poly1305.size_block} ->
b: Lib.ByteSequence.lbytes len ->
acc: Spec.Poly1305.felem
-> Spec.Poly1305.felem | Prims.Tot | [
"total"
] | [] | [
"Spec.Poly1305.felem",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Spec.Poly1305.size_block",
"Lib.ByteSequence.lbytes",
"Spec.Poly1305.fmul",
"Spec.Poly1305.fadd",
"Spec.Poly1305.encode"
] | [] | false | false | false | false | false | let poly1305_update1 (r: felem) (len: size_nat{len <= size_block}) (b: lbytes len) (acc: felem)
: Tot felem =
| ((encode len b) `fadd` acc) `fmul` r | false |
Hacl.Impl.K256.Verify.fst | Hacl.Impl.K256.Verify.ecdsa_verify_cmpr | val ecdsa_verify_cmpr: r:QA.qelem -> pk:point -> u1:QA.qelem -> u2:QA.qelem -> Stack bool
(requires fun h ->
live h r /\ live h pk /\ live h u1 /\ live h u2 /\
disjoint r u1 /\ disjoint r u2 /\ disjoint r pk /\
disjoint pk u1 /\ disjoint pk u2 /\
point_inv h pk /\ QA.qas_nat h u1 < S.q /\ QA.qas_nat h u2 < S.q /\
0 < QA.qas_nat h r /\ QA.qas_nat h r < S.q)
(ensures fun h0 b h1 -> modifies0 h0 h1 /\
(let _X, _Y, _Z = S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2)
(point_eval h0 pk) in
b <==> (if S.is_proj_point_at_inf (_X, _Y, _Z) then false
else S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r))) | val ecdsa_verify_cmpr: r:QA.qelem -> pk:point -> u1:QA.qelem -> u2:QA.qelem -> Stack bool
(requires fun h ->
live h r /\ live h pk /\ live h u1 /\ live h u2 /\
disjoint r u1 /\ disjoint r u2 /\ disjoint r pk /\
disjoint pk u1 /\ disjoint pk u2 /\
point_inv h pk /\ QA.qas_nat h u1 < S.q /\ QA.qas_nat h u2 < S.q /\
0 < QA.qas_nat h r /\ QA.qas_nat h r < S.q)
(ensures fun h0 b h1 -> modifies0 h0 h1 /\
(let _X, _Y, _Z = S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2)
(point_eval h0 pk) in
b <==> (if S.is_proj_point_at_inf (_X, _Y, _Z) then false
else S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r))) | let ecdsa_verify_cmpr r pk u1 u2 =
push_frame ();
let res = create_point () in
let h0 = ST.get () in
point_mul_g_double_split_lambda_vartime res u1 u2 pk;
let h1 = ST.get () in
assert (S.to_aff_point (point_eval h1 res) ==
S.to_aff_point (S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2)
(point_eval h0 pk)));
KL.lemma_aff_is_point_at_inf (point_eval h1 res);
KL.lemma_aff_is_point_at_inf (S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2)
(point_eval h0 pk));
let b =
if is_proj_point_at_inf_vartime res then false
else ecdsa_verify_avoid_finv res r in
pop_frame ();
b | {
"file_name": "code/k256/Hacl.Impl.K256.Verify.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 169,
"start_col": 0,
"start_line": 151
} | module Hacl.Impl.K256.Verify
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module S = Spec.K256
module KL = Spec.K256.Lemmas
open Hacl.K256.Field
open Hacl.Impl.K256.Point
open Hacl.Impl.K256.PointMul
open Hacl.Impl.K256.GLV
module QA = Hacl.K256.Scalar
module QI = Hacl.Impl.K256.Qinv
module BL = Hacl.Spec.K256.Field52.Lemmas
module BSeq = Lib.ByteSequence
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let lbytes len = lbuffer uint8 len
inline_for_extraction noextract
val ecdsa_verify_get_u12 (u1 u2 r s z: QA.qelem) : Stack unit
(requires fun h ->
live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\
disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\
disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\
QA.qas_nat h s < S.q /\ QA.qas_nat h z < S.q /\ QA.qas_nat h r < S.q)
(ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\
(let sinv = S.qinv (QA.qas_nat h0 s) in
QA.qas_nat h1 u1 == QA.qas_nat h0 z * sinv % S.q /\
QA.qas_nat h1 u2 == QA.qas_nat h0 r * sinv % S.q))
let ecdsa_verify_get_u12 u1 u2 r s z =
push_frame ();
let sinv = QA.create_qelem () in
QI.qinv sinv s;
QA.qmul u1 z sinv;
QA.qmul u2 r sinv;
pop_frame ()
val fmul_eq_vartime (r z x: felem) : Stack bool
(requires fun h ->
live h r /\ live h z /\ live h x /\ eq_or_disjoint r z /\
felem_fits5 (as_felem5 h r) (2,2,2,2,2) /\ as_nat h r < S.prime /\
inv_lazy_reduced2 h z /\ inv_fully_reduced h x)
(ensures fun h0 b h1 -> modifies0 h0 h1 /\
b == (S.fmul (as_nat h0 r) (feval h0 z) = as_nat h0 x))
[@CInline]
let fmul_eq_vartime r z x =
push_frame ();
let tmp = create_felem () in
fmul tmp r z;
let h1 = ST.get () in
fnormalize tmp tmp;
let h2 = ST.get () in
BL.normalize5_lemma (1,1,1,1,2) (as_felem5 h1 tmp);
assert (inv_fully_reduced h2 tmp);
let b = is_felem_eq_vartime tmp x in
pop_frame ();
b
inline_for_extraction noextract
val ecdsa_verify_avoid_finv: p:point -> r:QA.qelem -> Stack bool
(requires fun h ->
live h p /\ live h r /\ disjoint p r /\
point_inv h p /\ QA.qe_lt_q h r /\ 0 < QA.qas_nat h r /\
not (S.is_proj_point_at_inf (point_eval h p)))
(ensures fun h0 b h1 -> modifies0 h0 h1 /\
(let (_X, _Y, _Z) = point_eval h0 p in
b <==> (S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r)))
let ecdsa_verify_avoid_finv p r =
let h0 = ST.get () in
let x, y, z = getx p, gety p, getz p in
push_frame ();
let r_bytes = create 32ul (u8 0) in
let r_fe = create_felem () in
let tmp_q = create_felem () in
let tmp_x = create_felem () in
QA.store_qelem r_bytes r;
load_felem r_fe r_bytes;
let h1 = ST.get () in
assert (modifies (loc r_fe) h0 h1);
//assert (inv_fully_reduced h1 r_fe);
//assert (as_nat h1 r_fe == qas_nat h1 r);
let h2 = ST.get () in
fnormalize tmp_x x;
let h3 = ST.get () in
assert (modifies (loc tmp_x) h2 h3);
BL.normalize5_lemma (1,1,1,1,2) (as_felem5 h2 x);
//assert (inv_fully_reduced h3 tmp_x);
//assert (inv_lazy_reduced2 h3 z);
let is_rz_x = fmul_eq_vartime r_fe z tmp_x in
//assert (is_rz_x == (S.fmul (as_nat h3 r_fe) (feval h3 z) = as_nat h3 tmp_x));
let res : bool =
if not is_rz_x then begin
let is_r_lt_p_m_q = is_felem_lt_prime_minus_order_vartime r_fe in
if is_r_lt_p_m_q then begin
assert (as_nat h1 r_fe < S.prime - S.q);
make_u52_5 tmp_q (make_order_k256 ());
let h4 = ST.get () in
BL.add5_lemma (1,1,1,1,1) (1,1,1,1,1) (as_felem5 h4 r_fe) (as_felem5 h4 tmp_q);
fadd tmp_q r_fe tmp_q;
fmul_eq_vartime tmp_q z tmp_x end
//assert (is_rqz_x == (S.fmul (feval h5 tmp) (feval h5 z) = as_nat h5 tmp_x));
else false end
else true in
let h4 = ST.get () in
assert (modifies (loc tmp_q) h3 h4);
pop_frame ();
KL.ecdsa_verify_avoid_finv (point_eval h0 p) (QA.qas_nat h0 r);
assert (res <==> (S.fmul (feval h0 x) (S.finv (feval h0 z)) % S.q = QA.qas_nat h0 r));
let h5 = ST.get () in
assert (modifies0 h0 h5);
res
inline_for_extraction noextract
val ecdsa_verify_cmpr: r:QA.qelem -> pk:point -> u1:QA.qelem -> u2:QA.qelem -> Stack bool
(requires fun h ->
live h r /\ live h pk /\ live h u1 /\ live h u2 /\
disjoint r u1 /\ disjoint r u2 /\ disjoint r pk /\
disjoint pk u1 /\ disjoint pk u2 /\
point_inv h pk /\ QA.qas_nat h u1 < S.q /\ QA.qas_nat h u2 < S.q /\
0 < QA.qas_nat h r /\ QA.qas_nat h r < S.q)
(ensures fun h0 b h1 -> modifies0 h0 h1 /\
(let _X, _Y, _Z = S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2)
(point_eval h0 pk) in
b <==> (if S.is_proj_point_at_inf (_X, _Y, _Z) then false
else S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r))) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.Lemmas.fsti.checked",
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Field52.Lemmas.fsti.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.K256.Field.fsti.checked",
"Hacl.Impl.K256.Qinv.fst.checked",
"Hacl.Impl.K256.PointMul.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"Hacl.Impl.K256.GLV.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Verify.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Lemmas",
"short_module": "BL"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.K256.Qinv",
"short_module": "QI"
},
{
"abbrev": true,
"full_module": "Hacl.K256.Scalar",
"short_module": "QA"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.GLV",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.PointMul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Field",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256.Lemmas",
"short_module": "KL"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
r: Hacl.K256.Scalar.qelem ->
pk: Hacl.Impl.K256.Point.point ->
u1: Hacl.K256.Scalar.qelem ->
u2: Hacl.K256.Scalar.qelem
-> FStar.HyperStack.ST.Stack Prims.bool | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.K256.Scalar.qelem",
"Hacl.Impl.K256.Point.point",
"Prims.bool",
"Prims.unit",
"FStar.HyperStack.ST.pop_frame",
"Hacl.Impl.K256.Verify.ecdsa_verify_avoid_finv",
"Hacl.Impl.K256.Point.is_proj_point_at_inf_vartime",
"Spec.K256.Lemmas.lemma_aff_is_point_at_inf",
"Spec.K256.point_mul_double_g",
"Hacl.K256.Scalar.qas_nat",
"Hacl.Impl.K256.Point.point_eval",
"Prims._assert",
"Prims.eq2",
"Spec.K256.PointOps.aff_point",
"Spec.K256.PointOps.to_aff_point",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.Impl.K256.GLV.point_mul_g_double_split_lambda_vartime",
"Hacl.Impl.K256.Point.create_point",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let ecdsa_verify_cmpr r pk u1 u2 =
| push_frame ();
let res = create_point () in
let h0 = ST.get () in
point_mul_g_double_split_lambda_vartime res u1 u2 pk;
let h1 = ST.get () in
assert (S.to_aff_point (point_eval h1 res) ==
S.to_aff_point (S.point_mul_double_g (QA.qas_nat h0 u1) (QA.qas_nat h0 u2) (point_eval h0 pk)));
KL.lemma_aff_is_point_at_inf (point_eval h1 res);
KL.lemma_aff_is_point_at_inf (S.point_mul_double_g (QA.qas_nat h0 u1)
(QA.qas_nat h0 u2)
(point_eval h0 pk));
let b = if is_proj_point_at_inf_vartime res then false else ecdsa_verify_avoid_finv res r in
pop_frame ();
b | false |
Spec.Poly1305.fst | Spec.Poly1305.poly1305_mac | val poly1305_mac (msg: bytes) (k: key) : Tot tag | val poly1305_mac (msg: bytes) (k: key) : Tot tag | let poly1305_mac (msg:bytes) (k:key) : Tot tag =
let acc, r = poly1305_init k in
let acc = poly1305_update msg acc r in
poly1305_finish k acc | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 23,
"end_line": 77,
"start_col": 0,
"start_line": 74
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *)
let size_block : size_nat = 16
let size_key : size_nat = 32
type block = lbytes size_block
type tag = lbytes size_block
type key = lbytes size_key
/// Specification
let poly1305_encode_r (rb:block) : Tot felem =
let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo)
let poly1305_init (k:key) : Tot (felem & felem) =
let r = poly1305_encode_r (slice k 0 16) in
zero, r
let encode (len:size_nat{len <= size_block}) (b:lbytes len) : Tot felem =
Math.Lemmas.pow2_le_compat 128 (8 * len);
assert_norm (pow2 128 + pow2 128 < prime);
fadd (pow2 (8 * len)) (nat_from_bytes_le b)
let poly1305_update1 (r:felem) (len:size_nat{len <= size_block}) (b:lbytes len) (acc:felem) : Tot felem =
(encode len b `fadd` acc) `fmul` r
let poly1305_finish (k:key) (acc:felem) : Tot tag =
let s = nat_from_bytes_le (slice k 16 32) in
let n = (from_felem acc + s) % pow2 128 in
nat_to_bytes_le 16 n
let poly1305_update_last (r:felem) (l:size_nat{l < 16}) (b:lbytes l) (acc:felem) =
if l = 0 then acc else poly1305_update1 r l b acc
let poly1305_update (text:bytes) (acc:felem) (r:felem) : Tot felem =
repeat_blocks #uint8 #felem size_block text
(poly1305_update1 r size_block)
(poly1305_update_last r)
acc | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | msg: Lib.ByteSequence.bytes -> k: Spec.Poly1305.key -> Spec.Poly1305.tag | Prims.Tot | [
"total"
] | [] | [
"Lib.ByteSequence.bytes",
"Spec.Poly1305.key",
"Spec.Poly1305.felem",
"Spec.Poly1305.poly1305_finish",
"Spec.Poly1305.poly1305_update",
"Spec.Poly1305.tag",
"FStar.Pervasives.Native.tuple2",
"Spec.Poly1305.poly1305_init"
] | [] | false | false | false | true | false | let poly1305_mac (msg: bytes) (k: key) : Tot tag =
| let acc, r = poly1305_init k in
let acc = poly1305_update msg acc r in
poly1305_finish k acc | false |
Spec.Poly1305.fst | Spec.Poly1305.zero | val zero:felem | val zero:felem | let zero : felem = to_felem 0 | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 25,
"start_col": 0,
"start_line": 25
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Spec.Poly1305.felem | Prims.Tot | [
"total"
] | [] | [
"Spec.Poly1305.to_felem"
] | [] | false | false | false | true | false | let zero:felem =
| to_felem 0 | false |
Spec.Poly1305.fst | Spec.Poly1305.fmul | val fmul (x y: felem) : felem | val fmul (x y: felem) : felem | let fmul (x:felem) (y:felem) : felem = (x * y) % prime | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 54,
"end_line": 21,
"start_col": 0,
"start_line": 21
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Spec.Poly1305.felem -> y: Spec.Poly1305.felem -> Spec.Poly1305.felem | Prims.Tot | [
"total"
] | [] | [
"Spec.Poly1305.felem",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Spec.Poly1305.prime"
] | [] | false | false | false | true | false | let fmul (x y: felem) : felem =
| (x * y) % prime | false |
Spec.Poly1305.fst | Spec.Poly1305.poly1305_init | val poly1305_init (k: key) : Tot (felem & felem) | val poly1305_init (k: key) : Tot (felem & felem) | let poly1305_init (k:key) : Tot (felem & felem) =
let r = poly1305_encode_r (slice k 0 16) in
zero, r | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 9,
"end_line": 49,
"start_col": 0,
"start_line": 47
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *)
let size_block : size_nat = 16
let size_key : size_nat = 32
type block = lbytes size_block
type tag = lbytes size_block
type key = lbytes size_key
/// Specification
let poly1305_encode_r (rb:block) : Tot felem =
let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: Spec.Poly1305.key -> Spec.Poly1305.felem * Spec.Poly1305.felem | Prims.Tot | [
"total"
] | [] | [
"Spec.Poly1305.key",
"FStar.Pervasives.Native.Mktuple2",
"Spec.Poly1305.felem",
"Spec.Poly1305.zero",
"Spec.Poly1305.poly1305_encode_r",
"Lib.Sequence.slice",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.Poly1305.size_key",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | true | false | let poly1305_init (k: key) : Tot (felem & felem) =
| let r = poly1305_encode_r (slice k 0 16) in
zero, r | false |
Spec.Poly1305.fst | Spec.Poly1305.size_key | val size_key:size_nat | val size_key:size_nat | let size_key : size_nat = 32 | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 30,
"end_line": 29,
"start_col": 0,
"start_line": 29
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat{n <= Prims.pow2 32 - 1} | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | false | false | let size_key:size_nat =
| 32 | false |
FStar.Classical.fst | FStar.Classical.lemma_to_squash_gtot | val lemma_to_squash_gtot (#a: Type) (#p: (a -> GTot Type)) ($_: (x: a -> Lemma (p x))) (x: a)
: GTot (squash (p x)) | val lemma_to_squash_gtot (#a: Type) (#p: (a -> GTot Type)) ($_: (x: a -> Lemma (p x))) (x: a)
: GTot (squash (p x)) | let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x) | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 27,
"start_col": 0,
"start_line": 25
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (x: a -> FStar.Pervasives.Lemma (ensures p x)) -> x: a -> Prims.GTot (Prims.squash (p x)) | Prims.GTot | [
"sometrivial"
] | [] | [
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Squash.get_proof"
] | [] | false | false | true | false | false | let lemma_to_squash_gtot #a #p f x =
| f x;
get_proof (p x) | false |
Spec.Poly1305.fst | Spec.Poly1305.size_block | val size_block:size_nat | val size_block:size_nat | let size_block : size_nat = 16 | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 30,
"end_line": 28,
"start_col": 0,
"start_line": 28
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat{n <= Prims.pow2 32 - 1} | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | false | false | let size_block:size_nat =
| 16 | false |
FStar.Classical.fst | FStar.Classical.arrow_to_impl | val arrow_to_impl (#a #b: Type0) (_: (squash a -> GTot (squash b))) : GTot (a ==> b) | val arrow_to_impl (#a #b: Type0) (_: (squash a -> GTot (squash b))) : GTot (a ==> b) | let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x))) | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 94,
"end_line": 43,
"start_col": 0,
"start_line": 43
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.squash a -> Prims.GTot (Prims.squash b)) -> Prims.GTot (a ==> b) | Prims.GTot | [
"sometrivial"
] | [] | [
"Prims.squash",
"FStar.Squash.squash_double_arrow",
"FStar.Squash.return_squash",
"Prims.l_imp"
] | [] | false | false | false | false | false | let arrow_to_impl #a #b f =
| squash_double_arrow (return_squash (fun x -> f (return_squash x))) | false |
Spec.Poly1305.fst | Spec.Poly1305.poly1305_encode_r | val poly1305_encode_r (rb: block) : Tot felem | val poly1305_encode_r (rb: block) : Tot felem | let poly1305_encode_r (rb:block) : Tot felem =
let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo) | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 44,
"end_line": 45,
"start_col": 0,
"start_line": 37
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *)
let size_block : size_nat = 16
let size_key : size_nat = 32
type block = lbytes size_block
type tag = lbytes size_block
type key = lbytes size_key
/// Specification | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | rb: Spec.Poly1305.block -> Spec.Poly1305.felem | Prims.Tot | [
"total"
] | [] | [
"Spec.Poly1305.block",
"Spec.Poly1305.to_felem",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Lib.IntTypes.uint_v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.pow2",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Spec.Poly1305.prime",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Amp_Dot",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"Lib.IntTypes.u64",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.Sequence.sub",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Spec.Poly1305.size_block",
"Spec.Poly1305.felem"
] | [] | false | false | false | true | false | let poly1305_encode_r (rb: block) : Tot felem =
| let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo) | false |
FStar.Classical.fst | FStar.Classical.impl_to_arrow | val impl_to_arrow (#a #b: Type0) (_: (a ==> b)) (_: squash a) : Tot (squash b) | val impl_to_arrow (#a #b: Type0) (_: (a ==> b)) (_: squash a) : Tot (squash b) | let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x))) | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 90,
"end_line": 41,
"start_col": 0,
"start_line": 40
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | impl: (a ==> b) -> sx: Prims.squash a -> Prims.squash b | Prims.Tot | [
"total"
] | [] | [
"Prims.l_imp",
"Prims.squash",
"FStar.Squash.bind_squash",
"FStar.Squash.return_squash"
] | [] | false | false | true | true | false | let impl_to_arrow #a #b impl sx =
| bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x))) | false |
Spec.Poly1305.fst | Spec.Poly1305.poly1305_finish | val poly1305_finish (k: key) (acc: felem) : Tot tag | val poly1305_finish (k: key) (acc: felem) : Tot tag | let poly1305_finish (k:key) (acc:felem) : Tot tag =
let s = nat_from_bytes_le (slice k 16 32) in
let n = (from_felem acc + s) % pow2 128 in
nat_to_bytes_le 16 n | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 22,
"end_line": 62,
"start_col": 0,
"start_line": 59
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *)
let size_block : size_nat = 16
let size_key : size_nat = 32
type block = lbytes size_block
type tag = lbytes size_block
type key = lbytes size_key
/// Specification
let poly1305_encode_r (rb:block) : Tot felem =
let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo)
let poly1305_init (k:key) : Tot (felem & felem) =
let r = poly1305_encode_r (slice k 0 16) in
zero, r
let encode (len:size_nat{len <= size_block}) (b:lbytes len) : Tot felem =
Math.Lemmas.pow2_le_compat 128 (8 * len);
assert_norm (pow2 128 + pow2 128 < prime);
fadd (pow2 (8 * len)) (nat_from_bytes_le b)
let poly1305_update1 (r:felem) (len:size_nat{len <= size_block}) (b:lbytes len) (acc:felem) : Tot felem =
(encode len b `fadd` acc) `fmul` r | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: Spec.Poly1305.key -> acc: Spec.Poly1305.felem -> Spec.Poly1305.tag | Prims.Tot | [
"total"
] | [] | [
"Spec.Poly1305.key",
"Spec.Poly1305.felem",
"Lib.ByteSequence.nat_to_bytes_le",
"Lib.IntTypes.SEC",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Addition",
"Spec.Poly1305.from_felem",
"Prims.pow2",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Multiply",
"Lib.Sequence.length",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.Sequence.slice",
"Spec.Poly1305.size_key",
"Lib.ByteSequence.nat_from_bytes_le",
"Lib.IntTypes.uint_t",
"Spec.Poly1305.tag"
] | [] | false | false | false | true | false | let poly1305_finish (k: key) (acc: felem) : Tot tag =
| let s = nat_from_bytes_le (slice k 16 32) in
let n = (from_felem acc + s) % pow2 128 in
nat_to_bytes_le 16 n | false |
FStar.Classical.fst | FStar.Classical.impl_intro_tot | val impl_intro_tot (#p #q: Type0) ($_: (p -> Tot q)) : Tot (p ==> q) | val impl_intro_tot (#p #q: Type0) ($_: (p -> Tot q)) : Tot (p ==> q) | let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 59,
"end_line": 47,
"start_col": 0,
"start_line": 47
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (_: p -> q) -> (p ==> q) | Prims.Tot | [
"total"
] | [] | [
"FStar.Squash.return_squash",
"Prims.l_imp"
] | [] | false | false | false | true | false | let impl_intro_tot #p #q f =
| return_squash #(p -> GTot q) f | false |
FStar.Classical.fst | FStar.Classical.get_squashed | val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True)) | val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True)) | let get_squashed #b a =
let p = get_proof a in
join_squash #b p | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 35,
"start_col": 0,
"start_line": 33
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": true,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type0 -> Prims.Pure a | Prims.Pure | [] | [] | [
"FStar.Squash.join_squash",
"Prims.squash",
"FStar.Squash.get_proof"
] | [] | false | false | false | false | false | let get_squashed #b a =
| let p = get_proof a in
join_squash #b p | false |
FStar.Classical.fst | FStar.Classical.impl_intro_gtot | val impl_intro_gtot (#p #q: Type0) ($_: (p -> GTot q)) : GTot (p ==> q) | val impl_intro_gtot (#p #q: Type0) ($_: (p -> GTot q)) : GTot (p ==> q) | let impl_intro_gtot #p #q f = return_squash f | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 45,
"start_col": 0,
"start_line": 45
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (_: p -> Prims.GTot q) -> Prims.GTot (p ==> q) | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Squash.return_squash",
"Prims.l_imp"
] | [] | false | false | false | false | false | let impl_intro_gtot #p #q f =
| return_squash f | false |
FStar.Classical.fst | FStar.Classical.give_witness_from_squash | val give_witness_from_squash (#a: Type) (_: squash a) : Lemma (ensures a) | val give_witness_from_squash (#a: Type) (_: squash a) : Lemma (ensures a) | let give_witness_from_squash #a x = x | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 23,
"start_col": 0,
"start_line": 23
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.squash a -> FStar.Pervasives.Lemma (ensures a) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.squash",
"Prims.unit"
] | [] | true | false | true | false | false | let give_witness_from_squash #a x =
| x | false |
FStar.Classical.fst | FStar.Classical.give_witness | val give_witness (#a: Type) (_: a) : Lemma (ensures a) | val give_witness (#a: Type) (_: a) : Lemma (ensures a) | let give_witness #a x = return_squash x | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 39,
"end_line": 21,
"start_col": 0,
"start_line": 21
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: a -> FStar.Pervasives.Lemma (ensures a) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Squash.return_squash",
"Prims.unit"
] | [] | true | false | true | false | false | let give_witness #a x =
| return_squash x | false |
FStar.Classical.fst | FStar.Classical.get_equality | val get_equality (#t: Type) (a b: t) : Pure (a == b) (requires (a == b)) (ensures (fun _ -> True)) | val get_equality (#t: Type) (a b: t) : Pure (a == b) (requires (a == b)) (ensures (fun _ -> True)) | let get_equality #t a b = get_squashed #(equals a b) (a == b) | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 61,
"end_line": 38,
"start_col": 0,
"start_line": 38
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: t -> b: t -> Prims.Pure (a == b) | Prims.Pure | [] | [] | [
"FStar.Classical.get_squashed",
"Prims.equals",
"Prims.eq2"
] | [] | false | false | false | false | false | let get_equality #t a b =
| get_squashed #(equals a b) (a == b) | false |
FStar.Classical.fst | FStar.Classical.move_requires_2 | val move_requires_2
(#a #b: Type)
(#p #q: (a -> b -> Type))
($_: (x: a -> y: b -> Lemma (requires (p x y)) (ensures (q x y))))
(x: a)
(y: b)
: Lemma (p x y ==> q x y) | val move_requires_2
(#a #b: Type)
(#p #q: (a -> b -> Type))
($_: (x: a -> y: b -> Lemma (requires (p x y)) (ensures (q x y))))
(x: a)
(y: b)
: Lemma (p x y ==> q x y) | let move_requires_2 #a #b #p #q f x y = move_requires (f x) y | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 61,
"end_line": 64,
"start_col": 0,
"start_line": 64
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (x: a -> y: b -> FStar.Pervasives.Lemma (requires p x y) (ensures q x y)) -> x: a -> y: b
-> FStar.Pervasives.Lemma (ensures p x y ==> q x y) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.move_requires"
] | [] | true | false | true | false | false | let move_requires_2 #a #b #p #q f x y =
| move_requires (f x) y | false |
Spec.Poly1305.fst | Spec.Poly1305.encode | val encode (len: size_nat{len <= size_block}) (b: lbytes len) : Tot felem | val encode (len: size_nat{len <= size_block}) (b: lbytes len) : Tot felem | let encode (len:size_nat{len <= size_block}) (b:lbytes len) : Tot felem =
Math.Lemmas.pow2_le_compat 128 (8 * len);
assert_norm (pow2 128 + pow2 128 < prime);
fadd (pow2 (8 * len)) (nat_from_bytes_le b) | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 45,
"end_line": 54,
"start_col": 0,
"start_line": 51
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *)
let size_block : size_nat = 16
let size_key : size_nat = 32
type block = lbytes size_block
type tag = lbytes size_block
type key = lbytes size_key
/// Specification
let poly1305_encode_r (rb:block) : Tot felem =
let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo)
let poly1305_init (k:key) : Tot (felem & felem) =
let r = poly1305_encode_r (slice k 0 16) in
zero, r | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Lib.IntTypes.size_nat{len <= Spec.Poly1305.size_block} -> b: Lib.ByteSequence.lbytes len
-> Spec.Poly1305.felem | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Spec.Poly1305.size_block",
"Lib.ByteSequence.lbytes",
"Spec.Poly1305.fadd",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.ByteSequence.nat_from_bytes_le",
"Lib.IntTypes.SEC",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_LessThan",
"Prims.op_Addition",
"Spec.Poly1305.prime",
"FStar.Math.Lemmas.pow2_le_compat",
"Spec.Poly1305.felem"
] | [] | false | false | false | false | false | let encode (len: size_nat{len <= size_block}) (b: lbytes len) : Tot felem =
| Math.Lemmas.pow2_le_compat 128 (8 * len);
assert_norm (pow2 128 + pow2 128 < prime);
fadd (pow2 (8 * len)) (nat_from_bytes_le b) | false |
FStar.Classical.fst | FStar.Classical.move_requires_3 | val move_requires_3
(#a #b #c: Type)
(#p #q: (a -> b -> c -> Type))
($_: (x: a -> y: b -> z: c -> Lemma (requires (p x y z)) (ensures (q x y z))))
(x: a)
(y: b)
(z: c)
: Lemma (p x y z ==> q x y z) | val move_requires_3
(#a #b #c: Type)
(#p #q: (a -> b -> c -> Type))
($_: (x: a -> y: b -> z: c -> Lemma (requires (p x y z)) (ensures (q x y z))))
(x: a)
(y: b)
(z: c)
: Lemma (p x y z ==> q x y z) | let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 68,
"end_line": 66,
"start_col": 0,
"start_line": 66
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
$f: (x: a -> y: b -> z: c -> FStar.Pervasives.Lemma (requires p x y z) (ensures q x y z)) ->
x: a ->
y: b ->
z: c
-> FStar.Pervasives.Lemma (ensures p x y z ==> q x y z) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.move_requires"
] | [] | true | false | true | false | false | let move_requires_3 #a #b #c #p #q f x y z =
| move_requires (f x y) z | false |
Spec.Poly1305.fst | Spec.Poly1305.poly1305_update_last | val poly1305_update_last : r: Spec.Poly1305.felem ->
l: Lib.IntTypes.size_nat{l < 16} ->
b: Lib.ByteSequence.lbytes l ->
acc: Spec.Poly1305.felem
-> Spec.Poly1305.felem | let poly1305_update_last (r:felem) (l:size_nat{l < 16}) (b:lbytes l) (acc:felem) =
if l = 0 then acc else poly1305_update1 r l b acc | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 51,
"end_line": 65,
"start_col": 0,
"start_line": 64
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *)
let size_block : size_nat = 16
let size_key : size_nat = 32
type block = lbytes size_block
type tag = lbytes size_block
type key = lbytes size_key
/// Specification
let poly1305_encode_r (rb:block) : Tot felem =
let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo)
let poly1305_init (k:key) : Tot (felem & felem) =
let r = poly1305_encode_r (slice k 0 16) in
zero, r
let encode (len:size_nat{len <= size_block}) (b:lbytes len) : Tot felem =
Math.Lemmas.pow2_le_compat 128 (8 * len);
assert_norm (pow2 128 + pow2 128 < prime);
fadd (pow2 (8 * len)) (nat_from_bytes_le b)
let poly1305_update1 (r:felem) (len:size_nat{len <= size_block}) (b:lbytes len) (acc:felem) : Tot felem =
(encode len b `fadd` acc) `fmul` r
let poly1305_finish (k:key) (acc:felem) : Tot tag =
let s = nat_from_bytes_le (slice k 16 32) in
let n = (from_felem acc + s) % pow2 128 in
nat_to_bytes_le 16 n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
r: Spec.Poly1305.felem ->
l: Lib.IntTypes.size_nat{l < 16} ->
b: Lib.ByteSequence.lbytes l ->
acc: Spec.Poly1305.felem
-> Spec.Poly1305.felem | Prims.Tot | [
"total"
] | [] | [
"Spec.Poly1305.felem",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.ByteSequence.lbytes",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Spec.Poly1305.poly1305_update1"
] | [] | false | false | false | false | false | let poly1305_update_last (r: felem) (l: size_nat{l < 16}) (b: lbytes l) (acc: felem) =
| if l = 0 then acc else poly1305_update1 r l b acc | false |
|
FStar.Classical.fst | FStar.Classical.forall_intro_squash_gtot | val forall_intro_squash_gtot (#a: Type) (#p: (a -> GTot Type)) ($_: (x: a -> GTot (squash (p x))))
: Tot (squash (forall (x: a). p x)) | val forall_intro_squash_gtot (#a: Type) (#p: (a -> GTot Type)) ($_: (x: a -> GTot (squash (p x))))
: Tot (squash (forall (x: a). p x)) | let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f) | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 46,
"end_line": 94,
"start_col": 0,
"start_line": 90
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (x: a -> Prims.GTot (Prims.squash (p x))) -> Prims.squash (forall (x: a). p x) | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"FStar.Squash.bind_squash",
"Prims.l_Forall",
"FStar.Squash.squash_double_arrow",
"FStar.Squash.return_squash",
"FStar.Classical.lemma_forall_intro_gtot"
] | [] | false | false | true | false | false | let forall_intro_squash_gtot #a #p f =
| bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f) | false |
Spec.Poly1305.fst | Spec.Poly1305.poly1305_update | val poly1305_update (text: bytes) (acc r: felem) : Tot felem | val poly1305_update (text: bytes) (acc r: felem) : Tot felem | let poly1305_update (text:bytes) (acc:felem) (r:felem) : Tot felem =
repeat_blocks #uint8 #felem size_block text
(poly1305_update1 r size_block)
(poly1305_update_last r)
acc | {
"file_name": "specs/Spec.Poly1305.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 72,
"start_col": 0,
"start_line": 68
} | module Spec.Poly1305
#reset-options "--z3rlimit 60 --initial_fuel 0 --max_fuel 0 --initial_ifuel 0 --max_ifuel 0"
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants and Types
(* Field types and parameters *)
let prime : pos =
let p = pow2 130 - 5 in
assert_norm (p > 0);
p
let felem = x:nat{x < prime}
let fadd (x:felem) (y:felem) : felem = (x + y) % prime
let fmul (x:felem) (y:felem) : felem = (x * y) % prime
let to_felem (x:nat{x < prime}) : felem = x
let from_felem (x:felem) : nat = x
let zero : felem = to_felem 0
(* Poly1305 parameters *)
let size_block : size_nat = 16
let size_key : size_nat = 32
type block = lbytes size_block
type tag = lbytes size_block
type key = lbytes size_key
/// Specification
let poly1305_encode_r (rb:block) : Tot felem =
let lo = uint_from_bytes_le (sub rb 0 8) in
let hi = uint_from_bytes_le (sub rb 8 8) in
let mask0 = u64 0x0ffffffc0fffffff in
let mask1 = u64 0x0ffffffc0ffffffc in
let lo = lo &. mask0 in
let hi = hi &. mask1 in
assert_norm (pow2 128 < prime);
to_felem (uint_v hi * pow2 64 + uint_v lo)
let poly1305_init (k:key) : Tot (felem & felem) =
let r = poly1305_encode_r (slice k 0 16) in
zero, r
let encode (len:size_nat{len <= size_block}) (b:lbytes len) : Tot felem =
Math.Lemmas.pow2_le_compat 128 (8 * len);
assert_norm (pow2 128 + pow2 128 < prime);
fadd (pow2 (8 * len)) (nat_from_bytes_le b)
let poly1305_update1 (r:felem) (len:size_nat{len <= size_block}) (b:lbytes len) (acc:felem) : Tot felem =
(encode len b `fadd` acc) `fmul` r
let poly1305_finish (k:key) (acc:felem) : Tot tag =
let s = nat_from_bytes_le (slice k 16 32) in
let n = (from_felem acc + s) % pow2 128 in
nat_to_bytes_le 16 n
let poly1305_update_last (r:felem) (l:size_nat{l < 16}) (b:lbytes l) (acc:felem) =
if l = 0 then acc else poly1305_update1 r l b acc | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Poly1305.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | text: Lib.ByteSequence.bytes -> acc: Spec.Poly1305.felem -> r: Spec.Poly1305.felem
-> Spec.Poly1305.felem | Prims.Tot | [
"total"
] | [] | [
"Lib.ByteSequence.bytes",
"Spec.Poly1305.felem",
"Lib.Sequence.repeat_blocks",
"Lib.IntTypes.uint8",
"Spec.Poly1305.size_block",
"Spec.Poly1305.poly1305_update1",
"Spec.Poly1305.poly1305_update_last"
] | [] | false | false | false | true | false | let poly1305_update (text: bytes) (acc r: felem) : Tot felem =
| repeat_blocks #uint8
#felem
size_block
text
(poly1305_update1 r size_block)
(poly1305_update_last r)
acc | false |
FStar.Classical.fst | FStar.Classical.impl_intro | val impl_intro (#p #q: Type0) ($_: (p -> Lemma q)) : Lemma (p ==> q) | val impl_intro (#p #q: Type0) ($_: (p -> Lemma q)) : Lemma (p ==> q) | let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f))) | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 88,
"end_line": 50,
"start_col": 0,
"start_line": 49
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (_: p -> FStar.Pervasives.Lemma (ensures q)) -> FStar.Pervasives.Lemma (ensures p ==> q) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.give_witness",
"Prims.l_imp",
"FStar.Squash.squash_double_arrow",
"FStar.Squash.return_squash",
"FStar.Classical.lemma_to_squash_gtot"
] | [] | false | false | true | false | false | let impl_intro #p #q f =
| give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f))) | false |
FStar.Classical.fst | FStar.Classical.forall_intro_squash_gtot_join | val forall_intro_squash_gtot_join
(#a: Type)
(#p: (a -> GTot Type))
($_: (x: a -> GTot (squash (p x))))
: Tot (forall (x: a). p x) | val forall_intro_squash_gtot_join
(#a: Type)
(#p: (a -> GTot Type))
($_: (x: a -> GTot (squash (p x))))
: Tot (forall (x: a). p x) | let forall_intro_squash_gtot_join #a #p f =
join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)) | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 100,
"start_col": 0,
"start_line": 96
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x))
let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (x: a -> Prims.GTot (Prims.squash (p x))) -> (forall (x: a). p x) | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"FStar.Squash.join_squash",
"FStar.Squash.bind_squash",
"Prims.l_Forall",
"FStar.Squash.squash_double_arrow",
"FStar.Squash.return_squash",
"FStar.Classical.lemma_forall_intro_gtot"
] | [] | false | false | false | false | false | let forall_intro_squash_gtot_join #a #p f =
| join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)) | false |
FStar.Classical.fst | FStar.Classical.forall_intro_with_pat | val forall_intro_with_pat
(#a: Type)
(#c: (x: a -> Type))
(#p: (x: a -> GTot Type0))
($pat: (x: a -> Tot (c x)))
($_: (x: a -> Lemma (p x)))
: Lemma (forall (x: a). {:pattern (pat x)} p x) | val forall_intro_with_pat
(#a: Type)
(#c: (x: a -> Type))
(#p: (x: a -> GTot Type0))
($pat: (x: a -> Tot (c x)))
($_: (x: a -> Lemma (p x)))
: Lemma (forall (x: a). {:pattern (pat x)} p x) | let forall_intro_with_pat #a #c #p pat f = forall_intro #a #p f | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 63,
"end_line": 104,
"start_col": 0,
"start_line": 104
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x))
let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)
let forall_intro_squash_gtot_join #a #p f =
join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f))
let forall_intro #a #p f = give_witness (forall_intro_squash_gtot (lemma_to_squash_gtot #a #p f)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $pat: (x: a -> c x) -> $f: (x: a -> FStar.Pervasives.Lemma (ensures p x))
-> FStar.Pervasives.Lemma (ensures forall (x: a). {:pattern pat x} p x) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro"
] | [] | true | false | true | false | false | let forall_intro_with_pat #a #c #p pat f =
| forall_intro #a #p f | false |
FStar.Classical.fst | FStar.Classical.forall_intro_sub | val forall_intro_sub (#a: Type) (#p: (a -> GTot Type)) (_: (x: a -> Lemma (p x)))
: Lemma (forall (x: a). p x) | val forall_intro_sub (#a: Type) (#p: (a -> GTot Type)) (_: (x: a -> Lemma (p x)))
: Lemma (forall (x: a). p x) | let forall_intro_sub #a #p f = forall_intro f | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 106,
"start_col": 0,
"start_line": 106
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x))
let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)
let forall_intro_squash_gtot_join #a #p f =
join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f))
let forall_intro #a #p f = give_witness (forall_intro_squash_gtot (lemma_to_squash_gtot #a #p f))
let forall_intro_with_pat #a #c #p pat f = forall_intro #a #p f | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (x: a -> FStar.Pervasives.Lemma (ensures p x))
-> FStar.Pervasives.Lemma (ensures forall (x: a). p x) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro"
] | [] | true | false | true | false | false | let forall_intro_sub #a #p f =
| forall_intro f | false |
ExtractRefs.fst | ExtractRefs.copy_ref | val copy_ref (r: ref U32.t)
: Steel (ref U32.t)
(vptr r)
(fun r' -> (vptr r) `star` (vptr r'))
(requires fun _ -> True)
(ensures fun h0 r' h1 -> sel r h0 == sel r h1 /\ sel r' h1 == sel r h1) | val copy_ref (r: ref U32.t)
: Steel (ref U32.t)
(vptr r)
(fun r' -> (vptr r) `star` (vptr r'))
(requires fun _ -> True)
(ensures fun h0 r' h1 -> sel r h0 == sel r h1 /\ sel r' h1 == sel r h1) | let copy_ref (r:ref U32.t) : Steel (ref U32.t)
(vptr r)
// We allocated a new reference r', which is the return value
(fun r' -> vptr r `star` vptr r')
(requires fun _ -> True)
(ensures fun h0 r' h1 ->
// reference r was not modified
sel r h0 == sel r h1 /\
// After copying, reference r' contains the same value as reference r
sel r' h1 == sel r h1)
= let x = read r in
let r' = malloc x in
r' | {
"file_name": "share/steel/tutorial/ExtractRefs.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 6,
"end_line": 60,
"start_col": 0,
"start_line": 47
} | module ExtractRefs
open FStar.Ghost
open Steel.FractionalPermission
open Steel.Effect.Atomic
open Steel.Effect
open Steel.Reference
module U32 = FStar.UInt32
/// Some examples using Steel references with fractional permissions
#push-options "--fuel 0 --ifuel 0 --ide_id_info_off"
(** Swap examples **)
/// A selector version of swap, more idiomatic in Steel
let swap (r1 r2:ref U32.t) : Steel unit
(vptr r1 `star` vptr r2)
(fun _ -> vptr r1 `star` vptr r2)
(requires fun _ -> True)
(ensures fun h0 _ h1 ->
sel r1 h0 == sel r2 h1 /\
sel r2 h0 == sel r1 h1)
= let x1 = read r1 in
let x2 = read r2 in
write r2 x1;
write r1 x2
(** Allocating and Freeing references *)
/// Demonstrating standard reference operations
let main_ref () : Steel U32.t emp (fun _ -> emp)
(requires fun _ -> True)
(ensures fun _ x _ -> x == 2ul)
= // Allocating reference r
let r = malloc 0ul in
// Writing value 2 in the newly allocated reference
write r 2ul;
// Reading value of r in memory. This was set to 2 just above
let v = read r in
// Freeing reference r
free r;
// The returned value is equal to 1, the context is now empty
v | {
"checked_file": "/",
"dependencies": [
"Steel.Reference.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "ExtractRefs.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.Reference.ref FStar.UInt32.t -> Steel.Effect.Steel (Steel.Reference.ref FStar.UInt32.t) | Steel.Effect.Steel | [] | [] | [
"Steel.Reference.ref",
"FStar.UInt32.t",
"Steel.Reference.malloc",
"Steel.Reference.read",
"Steel.Reference.vptr",
"Steel.Effect.Common.star",
"Steel.Effect.Common.vprop",
"Steel.Effect.Common.rmem",
"Prims.l_True",
"Prims.l_and",
"Prims.eq2",
"Steel.Effect.Common.normal",
"Steel.Effect.Common.t_of",
"Steel.Reference.sel"
] | [] | false | true | false | false | false | let copy_ref (r: ref U32.t)
: Steel (ref U32.t)
(vptr r)
(fun r' -> (vptr r) `star` (vptr r'))
(requires fun _ -> True)
(ensures fun h0 r' h1 -> sel r h0 == sel r h1 /\ sel r' h1 == sel r h1) =
| let x = read r in
let r' = malloc x in
r' | false |
FStar.Classical.fst | FStar.Classical.get_forall | val get_forall (#a: Type) (p: (a -> GTot Type0))
: Pure (forall (x: a). p x) (requires (forall (x: a). p x)) (ensures (fun _ -> True)) | val get_forall (#a: Type) (p: (a -> GTot Type0))
: Pure (forall (x: a). p x) (requires (forall (x: a). p x)) (ensures (fun _ -> True)) | let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x) | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 57,
"end_line": 78,
"start_col": 0,
"start_line": 74
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: a -> Prims.GTot Type0) -> Prims.Pure (forall (x: a). p x) | Prims.Pure | [] | [] | [
"FStar.Classical.get_squashed",
"Prims.l_Forall",
"Prims.unit",
"FStar.Pervasives.norm_spec",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta",
"FStar.Pervasives.delta_only",
"Prims.string",
"Prims.Nil",
"Prims.logical",
"Prims._assert",
"Prims.eq2",
"FStar.Pervasives.norm",
"Prims.squash"
] | [] | false | false | false | false | false | let get_forall #a p =
| let t = (forall (x: a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x: a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x) | false |
FStar.Classical.fst | FStar.Classical.forall_intro_2 | val forall_intro_2
(#a: Type)
(#b: (a -> Type))
(#p: (x: a -> b x -> GTot Type0))
($_: (x: a -> y: b x -> Lemma (p x y)))
: Lemma (forall (x: a) (y: b x). p x y) | val forall_intro_2
(#a: Type)
(#b: (a -> Type))
(#p: (x: a -> b x -> GTot Type0))
($_: (x: a -> y: b x -> Lemma (p x y)))
: Lemma (forall (x: a) (y: b x). p x y) | let forall_intro_2 #a #b #p f =
let g: x: a -> Lemma (forall (y: b x). p x y) = fun x -> forall_intro (f x) in
forall_intro g | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 16,
"end_line": 111,
"start_col": 0,
"start_line": 109
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x))
let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)
let forall_intro_squash_gtot_join #a #p f =
join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f))
let forall_intro #a #p f = give_witness (forall_intro_squash_gtot (lemma_to_squash_gtot #a #p f))
let forall_intro_with_pat #a #c #p pat f = forall_intro #a #p f
let forall_intro_sub #a #p f = forall_intro f | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (x: a -> y: b x -> FStar.Pervasives.Lemma (ensures p x y))
-> FStar.Pervasives.Lemma (ensures forall (x: a) (y: b x). p x y) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro",
"Prims.l_Forall"
] | [] | false | false | true | false | false | let forall_intro_2 #a #b #p f =
| let g: x: a -> Lemma (forall (y: b x). p x y) = fun x -> forall_intro (f x) in
forall_intro g | false |
FStar.Classical.fst | FStar.Classical.forall_intro_2_with_pat | val forall_intro_2_with_pat
(#a: Type)
(#b: (a -> Type))
(#c: (x: a -> y: b x -> Type))
(#p: (x: a -> b x -> GTot Type0))
($pat: (x: a -> y: b x -> Tot (c x y)))
($_: (x: a -> y: b x -> Lemma (p x y)))
: Lemma (forall (x: a) (y: b x). {:pattern (pat x y)} p x y) | val forall_intro_2_with_pat
(#a: Type)
(#b: (a -> Type))
(#c: (x: a -> y: b x -> Type))
(#p: (x: a -> b x -> GTot Type0))
($pat: (x: a -> y: b x -> Tot (c x y)))
($_: (x: a -> y: b x -> Lemma (p x y)))
: Lemma (forall (x: a) (y: b x). {:pattern (pat x y)} p x y) | let forall_intro_2_with_pat #a #b #c #p pat f = forall_intro_2 #a #b #p f | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 73,
"end_line": 113,
"start_col": 0,
"start_line": 113
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x))
let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)
let forall_intro_squash_gtot_join #a #p f =
join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f))
let forall_intro #a #p f = give_witness (forall_intro_squash_gtot (lemma_to_squash_gtot #a #p f))
let forall_intro_with_pat #a #c #p pat f = forall_intro #a #p f
let forall_intro_sub #a #p f = forall_intro f
(* Some basic stuff, should be moved to FStar.Squash, probably *)
let forall_intro_2 #a #b #p f =
let g: x: a -> Lemma (forall (y: b x). p x y) = fun x -> forall_intro (f x) in
forall_intro g | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $pat: (x: a -> y: b x -> c x y) -> $f: (x: a -> y: b x -> FStar.Pervasives.Lemma (ensures p x y))
-> FStar.Pervasives.Lemma (ensures forall (x: a) (y: b x). {:pattern pat x y} p x y) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro_2"
] | [] | true | false | true | false | false | let forall_intro_2_with_pat #a #b #c #p pat f =
| forall_intro_2 #a #b #p f | false |
FStar.Classical.fst | FStar.Classical.gtot_to_lemma | val gtot_to_lemma (#a: Type) (#p: (a -> GTot Type)) ($_: (x: a -> GTot (p x))) (x: a) : Lemma (p x) | val gtot_to_lemma (#a: Type) (#p: (a -> GTot Type)) ($_: (x: a -> GTot (p x))) (x: a) : Lemma (p x) | let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x)) | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 69,
"end_line": 88,
"start_col": 0,
"start_line": 88
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (x: a -> Prims.GTot (p x)) -> x: a -> FStar.Pervasives.Lemma (ensures p x) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Squash.give_proof",
"FStar.Squash.return_squash",
"Prims.unit"
] | [] | true | false | true | false | false | let gtot_to_lemma #a #p f x =
| give_proof #(p x) (return_squash (f x)) | false |
FStar.Classical.fst | FStar.Classical.forall_intro_gtot | val forall_intro_gtot (#a: Type) (#p: (a -> GTot Type)) ($_: (x: a -> GTot (p x)))
: Tot (squash (forall (x: a). p x)) | val forall_intro_gtot (#a: Type) (#p: (a -> GTot Type)) ($_: (x: a -> GTot (p x)))
: Tot (squash (forall (x: a). p x)) | let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) () | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 84,
"start_col": 0,
"start_line": 81
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (x: a -> Prims.GTot (p x)) -> Prims.squash (forall (x: a). p x) | Prims.Tot | [
"total"
] | [] | [
"FStar.Squash.return_squash",
"Prims.l_Forall",
"Prims.squash"
] | [] | false | false | true | false | false | let forall_intro_gtot #a #p f =
| let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) () | false |
FStar.Classical.fst | FStar.Classical.forall_intro_3 | val forall_intro_3
(#a: Type)
(#b: (a -> Type))
(#c: (x: a -> y: b x -> Type))
(#p: (x: a -> y: b x -> z: c x y -> Type0))
($_: (x: a -> y: b x -> z: c x y -> Lemma (p x y z)))
: Lemma (forall (x: a) (y: b x) (z: c x y). p x y z) | val forall_intro_3
(#a: Type)
(#b: (a -> Type))
(#c: (x: a -> y: b x -> Type))
(#p: (x: a -> y: b x -> z: c x y -> Type0))
($_: (x: a -> y: b x -> z: c x y -> Lemma (p x y z)))
: Lemma (forall (x: a) (y: b x) (z: c x y). p x y z) | let forall_intro_3 #a #b #c #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y). p x y z) = fun x -> forall_intro_2 (f x) in
forall_intro g | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 16,
"end_line": 117,
"start_col": 0,
"start_line": 115
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x))
let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)
let forall_intro_squash_gtot_join #a #p f =
join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f))
let forall_intro #a #p f = give_witness (forall_intro_squash_gtot (lemma_to_squash_gtot #a #p f))
let forall_intro_with_pat #a #c #p pat f = forall_intro #a #p f
let forall_intro_sub #a #p f = forall_intro f
(* Some basic stuff, should be moved to FStar.Squash, probably *)
let forall_intro_2 #a #b #p f =
let g: x: a -> Lemma (forall (y: b x). p x y) = fun x -> forall_intro (f x) in
forall_intro g
let forall_intro_2_with_pat #a #b #c #p pat f = forall_intro_2 #a #b #p f | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (x: a -> y: b x -> z: c x y -> FStar.Pervasives.Lemma (ensures p x y z))
-> FStar.Pervasives.Lemma (ensures forall (x: a) (y: b x) (z: c x y). p x y z) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro",
"Prims.l_Forall",
"FStar.Classical.forall_intro_2"
] | [] | false | false | true | false | false | let forall_intro_3 #a #b #c #p f =
| let g: x: a -> Lemma (forall (y: b x) (z: c x y). p x y z) = fun x -> forall_intro_2 (f x) in
forall_intro g | false |
FStar.Classical.fst | FStar.Classical.forall_intro_3_with_pat | val forall_intro_3_with_pat
(#a: Type)
(#b: (a -> Type))
(#c: (x: a -> y: b x -> Type))
(#d: (x: a -> y: b x -> z: c x y -> Type))
(#p: (x: a -> y: b x -> z: c x y -> GTot Type0))
($pat: (x: a -> y: b x -> z: c x y -> Tot (d x y z)))
($_: (x: a -> y: b x -> z: c x y -> Lemma (p x y z)))
: Lemma (forall (x: a) (y: b x) (z: c x y). {:pattern (pat x y z)} p x y z) | val forall_intro_3_with_pat
(#a: Type)
(#b: (a -> Type))
(#c: (x: a -> y: b x -> Type))
(#d: (x: a -> y: b x -> z: c x y -> Type))
(#p: (x: a -> y: b x -> z: c x y -> GTot Type0))
($pat: (x: a -> y: b x -> z: c x y -> Tot (d x y z)))
($_: (x: a -> y: b x -> z: c x y -> Lemma (p x y z)))
: Lemma (forall (x: a) (y: b x) (z: c x y). {:pattern (pat x y z)} p x y z) | let forall_intro_3_with_pat #a #b #c #d #p pat f = forall_intro_3 #a #b #c #p f | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 79,
"end_line": 119,
"start_col": 0,
"start_line": 119
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x))
let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)
let forall_intro_squash_gtot_join #a #p f =
join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f))
let forall_intro #a #p f = give_witness (forall_intro_squash_gtot (lemma_to_squash_gtot #a #p f))
let forall_intro_with_pat #a #c #p pat f = forall_intro #a #p f
let forall_intro_sub #a #p f = forall_intro f
(* Some basic stuff, should be moved to FStar.Squash, probably *)
let forall_intro_2 #a #b #p f =
let g: x: a -> Lemma (forall (y: b x). p x y) = fun x -> forall_intro (f x) in
forall_intro g
let forall_intro_2_with_pat #a #b #c #p pat f = forall_intro_2 #a #b #p f
let forall_intro_3 #a #b #c #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y). p x y z) = fun x -> forall_intro_2 (f x) in
forall_intro g | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
$pat: (x: a -> y: b x -> z: c x y -> d x y z) ->
$f: (x: a -> y: b x -> z: c x y -> FStar.Pervasives.Lemma (ensures p x y z))
-> FStar.Pervasives.Lemma
(ensures forall (x: a) (y: b x) (z: c x y). {:pattern pat x y z} p x y z) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro_3"
] | [] | true | false | true | false | false | let forall_intro_3_with_pat #a #b #c #d #p pat f =
| forall_intro_3 #a #b #c #p f | false |
FStar.Classical.fst | FStar.Classical.forall_intro_4 | val forall_intro_4
(#a: Type)
(#b: (a -> Type))
(#c: (x: a -> y: b x -> Type))
(#d: (x: a -> y: b x -> z: c x y -> Type))
(#p: (x: a -> y: b x -> z: c x y -> w: d x y z -> Type0))
($_: (x: a -> y: b x -> z: c x y -> w: d x y z -> Lemma (p x y z w)))
: Lemma (forall (x: a) (y: b x) (z: c x y) (w: d x y z). p x y z w) | val forall_intro_4
(#a: Type)
(#b: (a -> Type))
(#c: (x: a -> y: b x -> Type))
(#d: (x: a -> y: b x -> z: c x y -> Type))
(#p: (x: a -> y: b x -> z: c x y -> w: d x y z -> Type0))
($_: (x: a -> y: b x -> z: c x y -> w: d x y z -> Lemma (p x y z w)))
: Lemma (forall (x: a) (y: b x) (z: c x y) (w: d x y z). p x y z w) | let forall_intro_4 #a #b #c #d #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y) (w: d x y z). p x y z w) =
fun x -> forall_intro_3 (f x)
in
forall_intro g | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 16,
"end_line": 125,
"start_col": 0,
"start_line": 121
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x))
let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)
let forall_intro_squash_gtot_join #a #p f =
join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f))
let forall_intro #a #p f = give_witness (forall_intro_squash_gtot (lemma_to_squash_gtot #a #p f))
let forall_intro_with_pat #a #c #p pat f = forall_intro #a #p f
let forall_intro_sub #a #p f = forall_intro f
(* Some basic stuff, should be moved to FStar.Squash, probably *)
let forall_intro_2 #a #b #p f =
let g: x: a -> Lemma (forall (y: b x). p x y) = fun x -> forall_intro (f x) in
forall_intro g
let forall_intro_2_with_pat #a #b #c #p pat f = forall_intro_2 #a #b #p f
let forall_intro_3 #a #b #c #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y). p x y z) = fun x -> forall_intro_2 (f x) in
forall_intro g
let forall_intro_3_with_pat #a #b #c #d #p pat f = forall_intro_3 #a #b #c #p f | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (x: a -> y: b x -> z: c x y -> w: d x y z -> FStar.Pervasives.Lemma (ensures p x y z w))
-> FStar.Pervasives.Lemma (ensures forall (x: a) (y: b x) (z: c x y) (w: d x y z). p x y z w) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro",
"Prims.l_Forall",
"FStar.Classical.forall_intro_3"
] | [] | false | false | true | false | false | let forall_intro_4 #a #b #c #d #p f =
| let g: x: a -> Lemma (forall (y: b x) (z: c x y) (w: d x y z). p x y z w) =
fun x -> forall_intro_3 (f x)
in
forall_intro g | false |
FStar.Classical.fst | FStar.Classical.impl_intro_gen | val impl_intro_gen (#p: Type0) (#q: (squash p -> Tot Type0)) (_: (squash p -> Lemma (q ())))
: Lemma (p ==> q ()) | val impl_intro_gen (#p: Type0) (#q: (squash p -> Tot Type0)) (_: (squash p -> Lemma (q ())))
: Lemma (p ==> q ()) | let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g () | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 20,
"end_line": 71,
"start_col": 0,
"start_line": 69
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.squash p -> FStar.Pervasives.Lemma (ensures q ()))
-> FStar.Pervasives.Lemma (ensures p ==> q ()) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.squash",
"Prims.unit",
"Prims.l_True",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.move_requires",
"Prims.l_imp",
"FStar.Squash.give_proof",
"FStar.Squash.get_proof"
] | [] | false | false | true | false | false | let impl_intro_gen #p #q f =
| let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g () | false |
FStar.Classical.fst | FStar.Classical.lemma_forall_intro_gtot | val lemma_forall_intro_gtot (#a: Type) (#p: (a -> GTot Type)) ($_: (x: a -> GTot (p x)))
: Lemma (forall (x: a). p x) | val lemma_forall_intro_gtot (#a: Type) (#p: (a -> GTot Type)) ($_: (x: a -> GTot (p x)))
: Lemma (forall (x: a). p x) | let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f) | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 78,
"end_line": 86,
"start_col": 0,
"start_line": 86
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (x: a -> Prims.GTot (p x)) -> FStar.Pervasives.Lemma (ensures forall (x: a). p x) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Classical.give_witness",
"Prims.squash",
"Prims.l_Forall",
"FStar.Classical.forall_intro_gtot",
"Prims.unit"
] | [] | false | false | true | false | false | let lemma_forall_intro_gtot #a #p f =
| give_witness (forall_intro_gtot #a #p f) | false |
FStar.Classical.fst | FStar.Classical.move_requires | val move_requires
(#a: Type)
(#p #q: (a -> Type))
($_: (x: a -> Lemma (requires (p x)) (ensures (q x))))
(x: a)
: Lemma (p x ==> q x) | val move_requires
(#a: Type)
(#p #q: (a -> Type))
($_: (x: a -> Lemma (requires (p x)) (ensures (q x))))
(x: a)
: Lemma (p x ==> q x) | let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp))) | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 58,
"end_line": 62,
"start_col": 0,
"start_line": 52
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (x: a -> FStar.Pervasives.Lemma (requires p x) (ensures q x)) -> x: a
-> FStar.Pervasives.Lemma (ensures p x ==> q x) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Squash.give_proof",
"Prims.l_imp",
"FStar.Squash.bind_squash",
"Prims.l_or",
"Prims.l_not",
"FStar.Squash.get_proof",
"Prims.sum",
"FStar.Classical.give_witness"
] | [] | false | false | true | false | false | let move_requires #a #p #q f x =
| give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp))) | false |
FStar.Classical.fst | FStar.Classical.forall_intro | val forall_intro (#a: Type) (#p: (a -> GTot Type)) ($_: (x: a -> Lemma (p x)))
: Lemma (forall (x: a). p x) | val forall_intro (#a: Type) (#p: (a -> GTot Type)) ($_: (x: a -> Lemma (p x)))
: Lemma (forall (x: a). p x) | let forall_intro #a #p f = give_witness (forall_intro_squash_gtot (lemma_to_squash_gtot #a #p f)) | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 97,
"end_line": 102,
"start_col": 0,
"start_line": 102
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x))
let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)
let forall_intro_squash_gtot_join #a #p f =
join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (x: a -> FStar.Pervasives.Lemma (ensures p x))
-> FStar.Pervasives.Lemma (ensures forall (x: a). p x) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.give_witness",
"Prims.l_Forall",
"FStar.Classical.forall_intro_squash_gtot",
"FStar.Classical.lemma_to_squash_gtot"
] | [] | false | false | true | false | false | let forall_intro #a #p f =
| give_witness (forall_intro_squash_gtot (lemma_to_squash_gtot #a #p f)) | false |
FStar.Classical.fst | FStar.Classical.forall_impl_intro | val forall_impl_intro
(#a: Type)
(#p #q: (a -> GTot Type))
($_: (x: a -> squash (p x) -> Lemma (q x)))
: Lemma (forall x. p x ==> q x) | val forall_impl_intro
(#a: Type)
(#p #q: (a -> GTot Type))
($_: (x: a -> squash (p x) -> Lemma (q x)))
: Lemma (forall x. p x ==> q x) | let forall_impl_intro #a #p #q f =
let f' (x: a) : Lemma (requires (p x)) (ensures (q x)) = f x (get_proof (p x)) in
forall_intro (move_requires f') | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 130,
"start_col": 0,
"start_line": 128
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x))
let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)
let forall_intro_squash_gtot_join #a #p f =
join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f))
let forall_intro #a #p f = give_witness (forall_intro_squash_gtot (lemma_to_squash_gtot #a #p f))
let forall_intro_with_pat #a #c #p pat f = forall_intro #a #p f
let forall_intro_sub #a #p f = forall_intro f
(* Some basic stuff, should be moved to FStar.Squash, probably *)
let forall_intro_2 #a #b #p f =
let g: x: a -> Lemma (forall (y: b x). p x y) = fun x -> forall_intro (f x) in
forall_intro g
let forall_intro_2_with_pat #a #b #c #p pat f = forall_intro_2 #a #b #p f
let forall_intro_3 #a #b #c #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y). p x y z) = fun x -> forall_intro_2 (f x) in
forall_intro g
let forall_intro_3_with_pat #a #b #c #d #p pat f = forall_intro_3 #a #b #c #p f
let forall_intro_4 #a #b #c #d #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y) (w: d x y z). p x y z w) =
fun x -> forall_intro_3 (f x)
in
forall_intro g | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (x: a -> _: Prims.squash (p x) -> FStar.Pervasives.Lemma (ensures q x))
-> FStar.Pervasives.Lemma (ensures forall (x: a). p x ==> q x) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.squash",
"Prims.unit",
"Prims.l_True",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro",
"Prims.l_imp",
"FStar.Classical.move_requires",
"FStar.Squash.get_proof"
] | [] | false | false | true | false | false | let forall_impl_intro #a #p #q f =
| let f' (x: a) : Lemma (requires (p x)) (ensures (q x)) = f x (get_proof (p x)) in
forall_intro (move_requires f') | false |
FStar.Classical.fst | FStar.Classical.ghost_lemma | val ghost_lemma
(#a: Type)
(#p: (a -> GTot Type0))
(#q: (a -> unit -> GTot Type0))
($_: (x: a -> Lemma (requires p x) (ensures (q x ()))))
: Lemma (forall (x: a). p x ==> q x ()) | val ghost_lemma
(#a: Type)
(#p: (a -> GTot Type0))
(#q: (a -> unit -> GTot Type0))
($_: (x: a -> Lemma (requires p x) (ensures (q x ()))))
: Lemma (forall (x: a). p x ==> q x ()) | let ghost_lemma #a #p #q f =
let lem: x: a -> Lemma (p x ==> q x ()) =
(fun x ->
(* basically, the same as above *)
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x ())
| Prims.Right hnp -> give_witness hnp))))
in
forall_intro lem | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 148,
"start_col": 0,
"start_line": 133
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x))
let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)
let forall_intro_squash_gtot_join #a #p f =
join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f))
let forall_intro #a #p f = give_witness (forall_intro_squash_gtot (lemma_to_squash_gtot #a #p f))
let forall_intro_with_pat #a #c #p pat f = forall_intro #a #p f
let forall_intro_sub #a #p f = forall_intro f
(* Some basic stuff, should be moved to FStar.Squash, probably *)
let forall_intro_2 #a #b #p f =
let g: x: a -> Lemma (forall (y: b x). p x y) = fun x -> forall_intro (f x) in
forall_intro g
let forall_intro_2_with_pat #a #b #c #p pat f = forall_intro_2 #a #b #p f
let forall_intro_3 #a #b #c #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y). p x y z) = fun x -> forall_intro_2 (f x) in
forall_intro g
let forall_intro_3_with_pat #a #b #c #d #p pat f = forall_intro_3 #a #b #c #p f
let forall_intro_4 #a #b #c #d #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y) (w: d x y z). p x y z w) =
fun x -> forall_intro_3 (f x)
in
forall_intro g
let forall_impl_intro #a #p #q f =
let f' (x: a) : Lemma (requires (p x)) (ensures (q x)) = f x (get_proof (p x)) in
forall_intro (move_requires f') | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (x: a -> FStar.Pervasives.Lemma (requires p x) (ensures q x ()))
-> FStar.Pervasives.Lemma (ensures forall (x: a). p x ==> q x ()) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro",
"Prims.l_imp",
"Prims.l_True",
"FStar.Squash.give_proof",
"FStar.Squash.bind_squash",
"Prims.l_or",
"Prims.l_not",
"FStar.Squash.get_proof",
"Prims.sum",
"FStar.Classical.give_witness"
] | [] | false | false | true | false | false | let ghost_lemma #a #p #q f =
| let lem: x: a -> Lemma (p x ==> q x ()) =
(fun x ->
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x ())
| Prims.Right hnp -> give_witness hnp))))
in
forall_intro lem | false |
FStar.Classical.fst | FStar.Classical.or_elim | val or_elim
(#l #r: Type0)
(#goal: (squash (l \/ r) -> Tot Type0))
(hl: (squash l -> Lemma (goal ())))
(hr: (squash r -> Lemma (goal ())))
: Lemma ((l \/ r) ==> goal ()) | val or_elim
(#l #r: Type0)
(#goal: (squash (l \/ r) -> Tot Type0))
(hl: (squash l -> Lemma (goal ())))
(hr: (squash r -> Lemma (goal ())))
: Lemma ((l \/ r) ==> goal ()) | let or_elim #l #r #goal hl hr =
impl_intro_gen #l #(fun _ -> goal ()) hl;
impl_intro_gen #r #(fun _ -> goal ()) hr | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 42,
"end_line": 186,
"start_col": 0,
"start_line": 184
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x))
let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)
let forall_intro_squash_gtot_join #a #p f =
join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f))
let forall_intro #a #p f = give_witness (forall_intro_squash_gtot (lemma_to_squash_gtot #a #p f))
let forall_intro_with_pat #a #c #p pat f = forall_intro #a #p f
let forall_intro_sub #a #p f = forall_intro f
(* Some basic stuff, should be moved to FStar.Squash, probably *)
let forall_intro_2 #a #b #p f =
let g: x: a -> Lemma (forall (y: b x). p x y) = fun x -> forall_intro (f x) in
forall_intro g
let forall_intro_2_with_pat #a #b #c #p pat f = forall_intro_2 #a #b #p f
let forall_intro_3 #a #b #c #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y). p x y z) = fun x -> forall_intro_2 (f x) in
forall_intro g
let forall_intro_3_with_pat #a #b #c #d #p pat f = forall_intro_3 #a #b #c #p f
let forall_intro_4 #a #b #c #d #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y) (w: d x y z). p x y z w) =
fun x -> forall_intro_3 (f x)
in
forall_intro g
let forall_impl_intro #a #p #q f =
let f' (x: a) : Lemma (requires (p x)) (ensures (q x)) = f x (get_proof (p x)) in
forall_intro (move_requires f')
let ghost_lemma #a #p #q f =
let lem: x: a -> Lemma (p x ==> q x ()) =
(fun x ->
(* basically, the same as above *)
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x ())
| Prims.Right hnp -> give_witness hnp))))
in
forall_intro lem
(*** Existential quantification *)
let exists_intro #a p witness = ()
#push-options "--warn_error -271" //local SMT pattern misses variables
let exists_intro_not_all_not (#a:Type) (#p:a -> Type)
($f: (x:a -> Lemma (~(p x))) -> Lemma False)
: Lemma (exists x. p x)
= let open FStar.Squash in
let aux ()
: Lemma (requires (forall x. ~(p x)))
(ensures False)
[SMTPat ()]
= bind_squash
(get_proof (forall x. ~ (p x)))
(fun (g: (forall x. ~ (p x))) ->
bind_squash #(x:a -> GTot (~(p x))) #Prims.empty g
(fun (h:(x:a -> GTot (~(p x)))) -> f h))
in
()
#pop-options
let forall_to_exists #a #p #r f = forall_intro f
let forall_to_exists_2 #a #p #b #q #r f = forall_intro_2 f
let exists_elim goal #a #p have f =
bind_squash #_
#goal
(join_squash have)
(fun (| x , pf |) ->
return_squash pf;
f x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
hl: (_: Prims.squash l -> FStar.Pervasives.Lemma (ensures goal ())) ->
hr: (_: Prims.squash r -> FStar.Pervasives.Lemma (ensures goal ()))
-> FStar.Pervasives.Lemma (ensures l \/ r ==> goal ()) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.squash",
"Prims.l_or",
"Prims.unit",
"Prims.l_True",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.impl_intro_gen"
] | [] | false | false | true | false | false | let or_elim #l #r #goal hl hr =
| impl_intro_gen #l #(fun _ -> goal ()) hl;
impl_intro_gen #r #(fun _ -> goal ()) hr | false |
FStar.Classical.fst | FStar.Classical.forall_to_exists_2 | val forall_to_exists_2
(#a: Type)
(#p: (a -> Type))
(#b: Type)
(#q: (b -> Type))
(#r: Type)
($f: (x: a -> y: b -> Lemma ((p x /\ q y) ==> r)))
: Lemma (((exists (x: a). p x) /\ (exists (y: b). q y)) ==> r) | val forall_to_exists_2
(#a: Type)
(#p: (a -> Type))
(#b: Type)
(#q: (b -> Type))
(#r: Type)
($f: (x: a -> y: b -> Lemma ((p x /\ q y) ==> r)))
: Lemma (((exists (x: a). p x) /\ (exists (y: b). q y)) ==> r) | let forall_to_exists_2 #a #p #b #q #r f = forall_intro_2 f | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 58,
"end_line": 173,
"start_col": 0,
"start_line": 173
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x))
let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)
let forall_intro_squash_gtot_join #a #p f =
join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f))
let forall_intro #a #p f = give_witness (forall_intro_squash_gtot (lemma_to_squash_gtot #a #p f))
let forall_intro_with_pat #a #c #p pat f = forall_intro #a #p f
let forall_intro_sub #a #p f = forall_intro f
(* Some basic stuff, should be moved to FStar.Squash, probably *)
let forall_intro_2 #a #b #p f =
let g: x: a -> Lemma (forall (y: b x). p x y) = fun x -> forall_intro (f x) in
forall_intro g
let forall_intro_2_with_pat #a #b #c #p pat f = forall_intro_2 #a #b #p f
let forall_intro_3 #a #b #c #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y). p x y z) = fun x -> forall_intro_2 (f x) in
forall_intro g
let forall_intro_3_with_pat #a #b #c #d #p pat f = forall_intro_3 #a #b #c #p f
let forall_intro_4 #a #b #c #d #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y) (w: d x y z). p x y z w) =
fun x -> forall_intro_3 (f x)
in
forall_intro g
let forall_impl_intro #a #p #q f =
let f' (x: a) : Lemma (requires (p x)) (ensures (q x)) = f x (get_proof (p x)) in
forall_intro (move_requires f')
let ghost_lemma #a #p #q f =
let lem: x: a -> Lemma (p x ==> q x ()) =
(fun x ->
(* basically, the same as above *)
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x ())
| Prims.Right hnp -> give_witness hnp))))
in
forall_intro lem
(*** Existential quantification *)
let exists_intro #a p witness = ()
#push-options "--warn_error -271" //local SMT pattern misses variables
let exists_intro_not_all_not (#a:Type) (#p:a -> Type)
($f: (x:a -> Lemma (~(p x))) -> Lemma False)
: Lemma (exists x. p x)
= let open FStar.Squash in
let aux ()
: Lemma (requires (forall x. ~(p x)))
(ensures False)
[SMTPat ()]
= bind_squash
(get_proof (forall x. ~ (p x)))
(fun (g: (forall x. ~ (p x))) ->
bind_squash #(x:a -> GTot (~(p x))) #Prims.empty g
(fun (h:(x:a -> GTot (~(p x)))) -> f h))
in
()
#pop-options
let forall_to_exists #a #p #r f = forall_intro f | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (x: a -> y: b -> FStar.Pervasives.Lemma (ensures p x /\ q y ==> r))
-> FStar.Pervasives.Lemma (ensures (exists (x: a). p x) /\ (exists (y: b). q y) ==> r) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_imp",
"Prims.l_and",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro_2"
] | [] | false | false | true | false | false | let forall_to_exists_2 #a #p #b #q #r f =
| forall_intro_2 f | false |
FStar.Classical.fst | FStar.Classical.exists_intro_not_all_not | val exists_intro_not_all_not
(#a: Type)
(#p: (a -> Type))
($f: ((x: a -> Lemma (~(p x))) -> Lemma False))
: Lemma (exists x. p x) | val exists_intro_not_all_not
(#a: Type)
(#p: (a -> Type))
($f: ((x: a -> Lemma (~(p x))) -> Lemma False))
: Lemma (exists x. p x) | let exists_intro_not_all_not (#a:Type) (#p:a -> Type)
($f: (x:a -> Lemma (~(p x))) -> Lemma False)
: Lemma (exists x. p x)
= let open FStar.Squash in
let aux ()
: Lemma (requires (forall x. ~(p x)))
(ensures False)
[SMTPat ()]
= bind_squash
(get_proof (forall x. ~ (p x)))
(fun (g: (forall x. ~ (p x))) ->
bind_squash #(x:a -> GTot (~(p x))) #Prims.empty g
(fun (h:(x:a -> GTot (~(p x)))) -> f h))
in
() | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 6,
"end_line": 168,
"start_col": 0,
"start_line": 154
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x))
let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)
let forall_intro_squash_gtot_join #a #p f =
join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f))
let forall_intro #a #p f = give_witness (forall_intro_squash_gtot (lemma_to_squash_gtot #a #p f))
let forall_intro_with_pat #a #c #p pat f = forall_intro #a #p f
let forall_intro_sub #a #p f = forall_intro f
(* Some basic stuff, should be moved to FStar.Squash, probably *)
let forall_intro_2 #a #b #p f =
let g: x: a -> Lemma (forall (y: b x). p x y) = fun x -> forall_intro (f x) in
forall_intro g
let forall_intro_2_with_pat #a #b #c #p pat f = forall_intro_2 #a #b #p f
let forall_intro_3 #a #b #c #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y). p x y z) = fun x -> forall_intro_2 (f x) in
forall_intro g
let forall_intro_3_with_pat #a #b #c #d #p pat f = forall_intro_3 #a #b #c #p f
let forall_intro_4 #a #b #c #d #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y) (w: d x y z). p x y z w) =
fun x -> forall_intro_3 (f x)
in
forall_intro g
let forall_impl_intro #a #p #q f =
let f' (x: a) : Lemma (requires (p x)) (ensures (q x)) = f x (get_proof (p x)) in
forall_intro (move_requires f')
let ghost_lemma #a #p #q f =
let lem: x: a -> Lemma (p x ==> q x ()) =
(fun x ->
(* basically, the same as above *)
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x ())
| Prims.Right hnp -> give_witness hnp))))
in
forall_intro lem
(*** Existential quantification *)
let exists_intro #a p witness = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
$f:
(_: (x: a -> FStar.Pervasives.Lemma (ensures ~(p x)))
-> FStar.Pervasives.Lemma (ensures Prims.l_False))
-> FStar.Pervasives.Lemma (ensures exists (x: a). p x) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_not",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims.l_False",
"Prims.l_Forall",
"Prims.Cons",
"FStar.Pervasives.smt_pat",
"FStar.Squash.bind_squash",
"Prims.empty",
"FStar.Squash.get_proof",
"Prims.l_Exists"
] | [] | false | false | true | false | false | let exists_intro_not_all_not
(#a: Type)
(#p: (a -> Type))
($f: ((x: a -> Lemma (~(p x))) -> Lemma False))
: Lemma (exists x. p x) =
| let open FStar.Squash in
let aux () : Lemma (requires (forall x. ~(p x))) (ensures False) [SMTPat ()] =
bind_squash (get_proof (forall x. ~(p x)))
(fun (g: (forall x. ~(p x))) ->
bind_squash #(x: a -> GTot (~(p x)))
#Prims.empty
g
(fun (h: (x: a -> GTot (~(p x)))) -> f h))
in
() | false |
FStar.Classical.fst | FStar.Classical.exists_elim | val exists_elim
(goal #a: Type)
(#p: (a -> Type))
(_: squash (exists (x: a). p x))
(_: (x: a{p x} -> GTot (squash goal)))
: Lemma goal | val exists_elim
(goal #a: Type)
(#p: (a -> Type))
(_: squash (exists (x: a). p x))
(_: (x: a{p x} -> GTot (squash goal)))
: Lemma goal | let exists_elim goal #a #p have f =
bind_squash #_
#goal
(join_squash have)
(fun (| x , pf |) ->
return_squash pf;
f x) | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 12,
"end_line": 181,
"start_col": 0,
"start_line": 175
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x))
let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)
let forall_intro_squash_gtot_join #a #p f =
join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f))
let forall_intro #a #p f = give_witness (forall_intro_squash_gtot (lemma_to_squash_gtot #a #p f))
let forall_intro_with_pat #a #c #p pat f = forall_intro #a #p f
let forall_intro_sub #a #p f = forall_intro f
(* Some basic stuff, should be moved to FStar.Squash, probably *)
let forall_intro_2 #a #b #p f =
let g: x: a -> Lemma (forall (y: b x). p x y) = fun x -> forall_intro (f x) in
forall_intro g
let forall_intro_2_with_pat #a #b #c #p pat f = forall_intro_2 #a #b #p f
let forall_intro_3 #a #b #c #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y). p x y z) = fun x -> forall_intro_2 (f x) in
forall_intro g
let forall_intro_3_with_pat #a #b #c #d #p pat f = forall_intro_3 #a #b #c #p f
let forall_intro_4 #a #b #c #d #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y) (w: d x y z). p x y z w) =
fun x -> forall_intro_3 (f x)
in
forall_intro g
let forall_impl_intro #a #p #q f =
let f' (x: a) : Lemma (requires (p x)) (ensures (q x)) = f x (get_proof (p x)) in
forall_intro (move_requires f')
let ghost_lemma #a #p #q f =
let lem: x: a -> Lemma (p x ==> q x ()) =
(fun x ->
(* basically, the same as above *)
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x ())
| Prims.Right hnp -> give_witness hnp))))
in
forall_intro lem
(*** Existential quantification *)
let exists_intro #a p witness = ()
#push-options "--warn_error -271" //local SMT pattern misses variables
let exists_intro_not_all_not (#a:Type) (#p:a -> Type)
($f: (x:a -> Lemma (~(p x))) -> Lemma False)
: Lemma (exists x. p x)
= let open FStar.Squash in
let aux ()
: Lemma (requires (forall x. ~(p x)))
(ensures False)
[SMTPat ()]
= bind_squash
(get_proof (forall x. ~ (p x)))
(fun (g: (forall x. ~ (p x))) ->
bind_squash #(x:a -> GTot (~(p x))) #Prims.empty g
(fun (h:(x:a -> GTot (~(p x)))) -> f h))
in
()
#pop-options
let forall_to_exists #a #p #r f = forall_intro f
let forall_to_exists_2 #a #p #b #q #r f = forall_intro_2 f | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
goal: Type0 ->
have: Prims.squash (exists (x: a). p x) ->
f: (x: a{p x} -> Prims.GTot (Prims.squash goal))
-> FStar.Pervasives.Lemma (ensures goal) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.squash",
"Prims.l_Exists",
"FStar.Squash.bind_squash",
"Prims.dtuple2",
"FStar.Squash.join_squash",
"Prims.unit",
"FStar.Squash.return_squash"
] | [] | false | false | true | false | false | let exists_elim goal #a #p have f =
| bind_squash #_
#goal
(join_squash have)
(fun (| x , pf |) ->
return_squash pf;
f x) | false |
FStar.Classical.fst | FStar.Classical.forall_to_exists | val forall_to_exists (#a: Type) (#p: (a -> Type)) (#r: Type) ($_: (x: a -> Lemma (p x ==> r)))
: Lemma ((exists (x: a). p x) ==> r) | val forall_to_exists (#a: Type) (#p: (a -> Type)) (#r: Type) ($_: (x: a -> Lemma (p x ==> r)))
: Lemma ((exists (x: a). p x) ==> r) | let forall_to_exists #a #p #r f = forall_intro f | {
"file_name": "ulib/FStar.Classical.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 48,
"end_line": 171,
"start_col": 0,
"start_line": 171
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Classical
open FStar.Squash
let give_witness #a x = return_squash x
let give_witness_from_squash #a x = x
let lemma_to_squash_gtot #a #p f x =
f x;
get_proof (p x)
val get_squashed (#b a: Type) : Pure a (requires (a /\ a == squash b)) (ensures (fun _ -> True))
#push-options "--smtencoding.valid_intro true --smtencoding.valid_elim true"
[@@ noextract_to "FSharp"]
let get_squashed #b a =
let p = get_proof a in
join_squash #b p
#pop-options
let get_equality #t a b = get_squashed #(equals a b) (a == b)
let impl_to_arrow #a #b impl sx =
bind_squash #(a -> GTot b) impl (fun f -> bind_squash sx (fun x -> return_squash (f x)))
let arrow_to_impl #a #b f = squash_double_arrow (return_squash (fun x -> f (return_squash x)))
let impl_intro_gtot #p #q f = return_squash f
let impl_intro_tot #p #q f = return_squash #(p -> GTot q) f
let impl_intro #p #q f =
give_witness #(p ==> q) (squash_double_arrow (return_squash (lemma_to_squash_gtot f)))
let move_requires #a #p #q f x =
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x)
| Prims.Right hnp -> give_witness hnp)))
let move_requires_2 #a #b #p #q f x y = move_requires (f x) y
let move_requires_3 #a #b #c #p #q f x y z = move_requires (f x y) z
// Thanks KM, CH and SZ
let impl_intro_gen #p #q f =
let g () : Lemma (requires p) (ensures (p ==> q ())) = give_proof #(q ()) (f (get_proof p)) in
move_requires g ()
(*** Universal quantification *)
let get_forall #a p =
let t = (forall (x:a). p x) in
assert (norm [delta; delta_only [`%l_Forall]] t == (squash (x:a -> GTot (p x))));
norm_spec [delta; delta_only [`%l_Forall]] t;
get_squashed #(x: a -> GTot (p x)) (forall (x: a). p x)
(* TODO: Maybe this should move to FStar.Squash.fst *)
let forall_intro_gtot #a #p f =
let id (#a: Type) (x: a) = x in
let h:(x: a -> GTot (id (p x))) = fun x -> f x in
return_squash #(forall (x: a). id (p x)) ()
let lemma_forall_intro_gtot #a #p f = give_witness (forall_intro_gtot #a #p f)
let gtot_to_lemma #a #p f x = give_proof #(p x) (return_squash (f x))
let forall_intro_squash_gtot #a #p f =
bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f)
let forall_intro_squash_gtot_join #a #p f =
join_squash (bind_squash #(x: a -> GTot (p x))
#(forall (x: a). p x)
(squash_double_arrow #a #p (return_squash f))
(fun f -> lemma_forall_intro_gtot #a #p f))
let forall_intro #a #p f = give_witness (forall_intro_squash_gtot (lemma_to_squash_gtot #a #p f))
let forall_intro_with_pat #a #c #p pat f = forall_intro #a #p f
let forall_intro_sub #a #p f = forall_intro f
(* Some basic stuff, should be moved to FStar.Squash, probably *)
let forall_intro_2 #a #b #p f =
let g: x: a -> Lemma (forall (y: b x). p x y) = fun x -> forall_intro (f x) in
forall_intro g
let forall_intro_2_with_pat #a #b #c #p pat f = forall_intro_2 #a #b #p f
let forall_intro_3 #a #b #c #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y). p x y z) = fun x -> forall_intro_2 (f x) in
forall_intro g
let forall_intro_3_with_pat #a #b #c #d #p pat f = forall_intro_3 #a #b #c #p f
let forall_intro_4 #a #b #c #d #p f =
let g: x: a -> Lemma (forall (y: b x) (z: c x y) (w: d x y z). p x y z w) =
fun x -> forall_intro_3 (f x)
in
forall_intro g
let forall_impl_intro #a #p #q f =
let f' (x: a) : Lemma (requires (p x)) (ensures (q x)) = f x (get_proof (p x)) in
forall_intro (move_requires f')
let ghost_lemma #a #p #q f =
let lem: x: a -> Lemma (p x ==> q x ()) =
(fun x ->
(* basically, the same as above *)
give_proof (bind_squash (get_proof (l_or (p x) (~(p x))))
(fun (b: l_or (p x) (~(p x))) ->
bind_squash b
(fun (b': Prims.sum (p x) (~(p x))) ->
match b' with
| Prims.Left hp ->
give_witness hp;
f x;
get_proof (p x ==> q x ())
| Prims.Right hnp -> give_witness hnp))))
in
forall_intro lem
(*** Existential quantification *)
let exists_intro #a p witness = ()
#push-options "--warn_error -271" //local SMT pattern misses variables
let exists_intro_not_all_not (#a:Type) (#p:a -> Type)
($f: (x:a -> Lemma (~(p x))) -> Lemma False)
: Lemma (exists x. p x)
= let open FStar.Squash in
let aux ()
: Lemma (requires (forall x. ~(p x)))
(ensures False)
[SMTPat ()]
= bind_squash
(get_proof (forall x. ~ (p x)))
(fun (g: (forall x. ~ (p x))) ->
bind_squash #(x:a -> GTot (~(p x))) #Prims.empty g
(fun (h:(x:a -> GTot (~(p x)))) -> f h))
in
()
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Classical.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $f: (x: a -> FStar.Pervasives.Lemma (ensures p x ==> r))
-> FStar.Pervasives.Lemma (ensures (exists (x: a). p x) ==> r) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_imp",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro"
] | [] | false | false | true | false | false | let forall_to_exists #a #p #r f =
| forall_intro f | false |
LowParse.Low.IfThenElse.fst | LowParse.Low.IfThenElse.clens_ifthenelse_tag | val clens_ifthenelse_tag (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t) | val clens_ifthenelse_tag (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t) | let clens_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dfst (s.serialize_ifthenelse_synth_recip x));
} | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 3,
"end_line": 138,
"start_col": 0,
"start_line": 131
} | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
inline_for_extraction
type test_ifthenelse_tag
(p: parse_ifthenelse_param)
= (#rrel: _) -> (#rel: _) ->
(input: slice rrel rel) ->
(pos: U32.t) ->
HST.Stack bool
(requires (fun h -> valid p.parse_ifthenelse_tag_parser h input pos))
(ensures (fun h res h' ->
B.modifies B.loc_none h h' /\
res == p.parse_ifthenelse_tag_cond (contents p.parse_ifthenelse_tag_parser h input pos)
))
inline_for_extraction
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (validator (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
inline_for_extraction
let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (jumper (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_elim p h input) pos
in
let pos_after_t = vt input pos in
let b = test input pos in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: LowParse.Spec.IfThenElse.serialize_ifthenelse_param p
-> LowParse.Low.Base.Spec.clens (Mkparse_ifthenelse_param?.parse_ifthenelse_t p)
(Mkparse_ifthenelse_param?.parse_ifthenelse_tag_t p) | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"LowParse.Spec.IfThenElse.serialize_ifthenelse_param",
"LowParse.Low.Base.Spec.Mkclens",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"Prims.l_True",
"FStar.Pervasives.dfst",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_cond",
"LowParse.Spec.IfThenElse.__proj__Mkserialize_ifthenelse_param__item__serialize_ifthenelse_synth_recip",
"LowParse.Low.Base.Spec.clens"
] | [] | false | false | false | false | false | let clens_ifthenelse_tag (#p: parse_ifthenelse_param) (s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t) =
| {
clens_cond = (fun _ -> True);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dfst (s.serialize_ifthenelse_synth_recip x))
} | false |
Pulse.Checker.AssertWithBinders.fst | Pulse.Checker.AssertWithBinders.check | val check
(g:env)
(pre:term)
(pre_typing:tot_typing g pre tm_vprop)
(post_hint:post_hint_opt g)
(res_ppname:ppname)
(st:st_term { Tm_ProofHintWithBinders? st.term })
(check:check_t)
: T.Tac (checker_result_t g pre post_hint) | val check
(g:env)
(pre:term)
(pre_typing:tot_typing g pre tm_vprop)
(post_hint:post_hint_opt g)
(res_ppname:ppname)
(st:st_term { Tm_ProofHintWithBinders? st.term })
(check:check_t)
: T.Tac (checker_result_t g pre post_hint) | let check
(g:env)
(pre:term)
(pre_typing:tot_typing g pre tm_vprop)
(post_hint:post_hint_opt g)
(res_ppname:ppname)
(st:st_term { Tm_ProofHintWithBinders? st.term })
(check:check_t)
: T.Tac (checker_result_t g pre post_hint) =
let g = push_context g "check_assert" st.range in
let Tm_ProofHintWithBinders { hint_type; binders=bs; t=body } = st.term in
match hint_type with
| WILD ->
let st = check_wild g pre st in
check g pre pre_typing post_hint res_ppname st
| SHOW_PROOF_STATE r ->
let open FStar.Stubs.Pprint in
let open Pulse.PP in
let msg = [
text "Current context:" ^^
indent (pp pre)
] in
fail_doc_env true g (Some r) msg
| RENAME { pairs; goal } ->
let st = check_renaming g pre st in
check g pre pre_typing post_hint res_ppname st
| REWRITE { t1; t2 } -> (
match bs with
| [] ->
let t = { st with term = Tm_Rewrite { t1; t2 } } in
check g pre pre_typing post_hint res_ppname
{ st with term = Tm_Bind { binder = as_binder tm_unit; head = t; body } }
| _ ->
let t = { st with term = Tm_Rewrite { t1; t2 } } in
let body = { st with term = Tm_Bind { binder = as_binder tm_unit; head = t; body } } in
let st = { st with term = Tm_ProofHintWithBinders { hint_type = ASSERT { p = t1 }; binders = bs; t = body } } in
check g pre pre_typing post_hint res_ppname st
)
| ASSERT { p = v } ->
let bs = infer_binder_types g bs v in
let (| uvs, v_opened, body_opened |) = open_binders g bs (mk_env (fstar_env g)) v body in
let v, body = v_opened, body_opened in
let (| v, d |) = PC.check_vprop (push_env g uvs) v in
let (| g1, nts, _, pre', k_frame |) = Prover.prove pre_typing uvs d in
//
// No need to check effect labels for the uvs solution here,
// since we are checking the substituted body anyway,
// if some of them are ghost when they shouldn't be,
// it will get caught
//
let (| x, x_ty, pre'', g2, k |) =
check g1 (tm_star (PS.nt_subst_term v nts) pre')
(RU.magic ())
post_hint res_ppname (PS.nt_subst_st_term body nts) in
(| x, x_ty, pre'', g2, k_elab_trans k_frame k |)
| UNFOLD { names; p=v }
| FOLD { names; p=v } ->
let (| uvs, v_opened, body_opened |) =
let bs = infer_binder_types g bs v in
open_binders g bs (mk_env (fstar_env g)) v body in
check_unfoldable g v;
let v_opened, t_rem = PC.instantiate_term_implicits (push_env g uvs) v_opened in
let uvs, v_opened =
let (| uvs_rem, v_opened |) =
add_rem_uvs (push_env g uvs) t_rem (mk_env (fstar_env g)) v_opened in
push_env uvs uvs_rem, v_opened in
let lhs, rhs =
match hint_type with
| UNFOLD _ ->
v_opened,
unfold_defs (push_env g uvs) None v_opened
| FOLD { names=ns } ->
unfold_defs (push_env g uvs) ns v_opened,
v_opened in
let uvs_bs = uvs |> bindings_with_ppname |> L.rev in
let uvs_closing = uvs_bs |> closing in
let lhs = subst_term lhs uvs_closing in
let rhs = subst_term rhs uvs_closing in
let body = subst_st_term body_opened uvs_closing in
let bs = close_binders uvs_bs in
let rw = { term = Tm_Rewrite { t1 = lhs;
t2 = rhs };
range = st.range;
effect_tag = as_effect_hint STT_Ghost } in
let st = { term = Tm_Bind { binder = as_binder (tm_fstar (`unit) st.range);
head = rw; body };
range = st.range;
effect_tag = body.effect_tag } in
let st =
match bs with
| [] -> st
| _ ->
{ term = Tm_ProofHintWithBinders { hint_type = ASSERT { p = lhs };
binders = bs;
t = st };
range = st.range;
effect_tag = st.effect_tag } in
check g pre pre_typing post_hint res_ppname st | {
"file_name": "lib/steel/pulse/Pulse.Checker.AssertWithBinders.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 50,
"end_line": 464,
"start_col": 0,
"start_line": 351
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Checker.AssertWithBinders
open Pulse.Syntax
open Pulse.Typing
open Pulse.Checker.Base
open Pulse.Elaborate.Pure
open Pulse.Typing.Env
module L = FStar.List.Tot
module T = FStar.Tactics.V2
module R = FStar.Reflection.V2
module PC = Pulse.Checker.Pure
module P = Pulse.Syntax.Printer
module N = Pulse.Syntax.Naming
module PS = Pulse.Checker.Prover.Substs
module Prover = Pulse.Checker.Prover
module Env = Pulse.Typing.Env
open Pulse.Show
module RU = Pulse.RuntimeUtils
let is_host_term (t:R.term) = not (R.Tv_Unknown? (R.inspect_ln t))
let debug_log = Pulse.Typing.debug_log "with_binders"
let option_must (f:option 'a) (msg:string) : T.Tac 'a =
match f with
| Some x -> x
| None -> T.fail msg
let rec refl_abs_binders (t:R.term) (acc:list binder) : T.Tac (list binder) =
let open R in
match inspect_ln t with
| Tv_Abs b body ->
let {sort; ppname} = R.inspect_binder b in
let sort = option_must (readback_ty sort)
(Printf.sprintf "Failed to readback elaborated binder sort %s in refl_abs_binders"
(T.term_to_string sort)) in
refl_abs_binders body
((mk_binder_ppname sort (mk_ppname ppname (RU.range_of_term t)))::acc)
| _ -> L.rev acc
let infer_binder_types (g:env) (bs:list binder) (v:vprop)
: T.Tac (list binder) =
match bs with
| [] -> []
| _ ->
let g = push_context g "infer_binder_types" v.range in
let tv = elab_term v in
if not (is_host_term tv)
then fail g (Some v.range)
(Printf.sprintf "assert.infer_binder_types: elaborated %s to %s, which failed the host term check"
(P.term_to_string v) (T.term_to_string tv));
let as_binder (b:binder) : R.binder =
let open R in
let bv : binder_view =
{ sort = elab_term b.binder_ty;
ppname = b.binder_ppname.name;
qual = Q_Explicit;
attrs = [] } in
pack_binder bv
in
let abstraction =
L.fold_right
(fun b (tv:host_term) ->
let b = as_binder b in
R.pack_ln (R.Tv_Abs b tv))
bs
tv
in
let inst_abstraction, _ = PC.instantiate_term_implicits g (tm_fstar abstraction v.range) in
match inst_abstraction.t with
| Tm_FStar t -> refl_abs_binders t []
| _ -> T.fail "Impossible: instantiated abstraction is not embedded F* term, please file a bug-report"
let rec open_binders (g:env) (bs:list binder) (uvs:env { disjoint uvs g }) (v:term) (body:st_term)
: T.Tac (uvs:env { disjoint uvs g } & term & st_term) =
match bs with
| [] -> (| uvs, v, body |)
| b::bs ->
// these binders are only lax checked so far
let _ = PC.check_universe (push_env g uvs) b.binder_ty in
let x = fresh (push_env g uvs) in
let ss = [ DT 0 (tm_var {nm_index=x;nm_ppname=b.binder_ppname}) ] in
let bs = L.mapi (fun i b ->
assume (i >= 0);
subst_binder b (shift_subst_n i ss)) bs in
let v = subst_term v (shift_subst_n (L.length bs) ss) in
let body = subst_st_term body (shift_subst_n (L.length bs) ss) in
open_binders g bs (push_binding uvs x b.binder_ppname b.binder_ty) v body
let closing (bs:list (ppname & var & typ)) : subst =
L.fold_right (fun (_, x, _) (n, ss) ->
n+1,
(ND x n)::ss
) bs (0, []) |> snd
let rec close_binders (bs:list (ppname & var & typ))
: Tot (list binder) (decreases L.length bs) =
match bs with
| [] -> []
| (name, x, t)::bs ->
let bss = L.mapi (fun n (n1, x1, t1) ->
assume (n >= 0);
n1, x1, subst_term t1 [ND x n]) bs in
let b = mk_binder_ppname t name in
assume (L.length bss == L.length bs);
b::(close_binders bss)
let unfold_defs (g:env) (defs:option (list string)) (t:term)
: T.Tac term
= let t = elab_term t in
let head, _ = T.collect_app t in
match R.inspect_ln head with
| R.Tv_FVar fv
| R.Tv_UInst fv _ -> (
let head = String.concat "." (R.inspect_fv fv) in
let fully =
match defs with
| Some defs -> defs
| None -> []
in
let rt = RU.unfold_def (fstar_env g) head fully t in
let rt = option_must rt
(Printf.sprintf "unfolding %s returned None" (T.term_to_string t)) in
let ty = option_must (readback_ty rt)
(Printf.sprintf "error in reading back the unfolded term %s" (T.term_to_string rt)) in
debug_log g (fun _ -> Printf.sprintf "Unfolded %s to F* term %s and readback as %s" (T.term_to_string t) (T.term_to_string rt) (P.term_to_string ty));
ty
)
| _ ->
fail g (Some (RU.range_of_term t))
(Printf.sprintf "Cannot unfold %s, the head is not an fvar" (T.term_to_string t))
let check_unfoldable g (v:term) : T.Tac unit =
match v.t with
| Tm_FStar _ -> ()
| _ ->
fail g
(Some v.range)
(Printf.sprintf "`fold` and `unfold` expect a single user-defined predicate as an argument, \
but %s is a primitive term that cannot be folded or unfolded"
(P.term_to_string v))
let visit_and_rewrite (p: (R.term & R.term)) (t:term) : T.Tac term =
let open FStar.Reflection.V2.TermEq in
let lhs, rhs = p in
let visitor (t:R.term) : T.Tac R.term =
if term_eq t lhs then rhs else t
in
match R.inspect_ln lhs with
| R.Tv_Var n -> (
let nv = R.inspect_namedv n in
assume (is_host_term rhs);
subst_term t [NT nv.uniq { t = Tm_FStar rhs; range = t.range }]
)
| _ ->
let rec aux (t:term) : T.Tac term =
match t.t with
| Tm_Emp
| Tm_VProp
| Tm_Inames
| Tm_EmpInames
| Tm_Inames
| Tm_Unknown -> t
| Tm_Inv i ->
{ t with t = Tm_Inv (aux i) }
| Tm_AddInv i is ->
{ t with t = Tm_AddInv (aux i) (aux is) }
| Tm_Pure p -> { t with t = Tm_Pure (aux p) }
| Tm_Star l r -> { t with t = Tm_Star (aux l) (aux r) }
| Tm_ExistsSL u b body -> { t with t = Tm_ExistsSL u { b with binder_ty=aux b.binder_ty} (aux body) }
| Tm_ForallSL u b body -> { t with t = Tm_ForallSL u { b with binder_ty=aux b.binder_ty} (aux body) }
| Tm_FStar h ->
let h = FStar.Tactics.Visit.visit_tm visitor h in
assume (is_host_term h);
{ t with t=Tm_FStar h }
in
aux t
let visit_and_rewrite_conjuncts (p: (R.term & R.term)) (tms:list term) : T.Tac (list term) =
T.map (visit_and_rewrite p) tms
let visit_and_rewrite_conjuncts_all (p: list (R.term & R.term)) (goal:term) : T.Tac (term & term) =
let tms = Pulse.Typing.Combinators.vprop_as_list goal in
let tms' = T.fold_left (fun tms p -> visit_and_rewrite_conjuncts p tms) tms p in
assume (L.length tms' == L.length tms);
let lhs, rhs =
T.fold_left2
(fun (lhs, rhs) t t' ->
if eq_tm t t' then lhs, rhs
else (t::lhs, t'::rhs))
([], [])
tms tms'
in
Pulse.Typing.Combinators.list_as_vprop lhs,
Pulse.Typing.Combinators.list_as_vprop rhs
let disjoint (dom:list var) (cod:Set.set var) =
L.for_all (fun d -> not (Set.mem d cod)) dom
let rec as_subst (p : list (term & term))
(out:list subst_elt)
(domain:list var)
(codomain:Set.set var)
: option (list subst_elt) =
match p with
| [] ->
if disjoint domain codomain
then Some out
else None
| (e1, e2)::p -> (
match e1.t with
| Tm_FStar e1 -> (
match R.inspect_ln e1 with
| R.Tv_Var n -> (
let nv = R.inspect_namedv n in
as_subst p
(NT nv.uniq e2::out)
(nv.uniq ::domain )
(Set.union codomain (freevars e2))
)
| _ -> None
)
| _ -> None
)
let rewrite_all (g:env) (p: list (term & term)) (t:term) : T.Tac (term & term) =
match as_subst p [] [] Set.empty with
| Some s ->
t, subst_term t s
| _ ->
let p : list (R.term & R.term) =
T.map
(fun (e1, e2) ->
elab_term (fst (Pulse.Checker.Pure.instantiate_term_implicits g e1)),
elab_term (fst (Pulse.Checker.Pure.instantiate_term_implicits g e2)))
p
in
let lhs, rhs = visit_and_rewrite_conjuncts_all p t in
debug_log g (fun _ -> Printf.sprintf "Rewrote %s to %s" (P.term_to_string lhs) (P.term_to_string rhs));
lhs, rhs
let check_renaming
(g:env)
(pre:term)
(st:st_term {
match st.term with
| Tm_ProofHintWithBinders { hint_type = RENAME _ } -> true
| _ -> false
})
: T.Tac st_term
= let Tm_ProofHintWithBinders ht = st.term in
let { hint_type=RENAME { pairs; goal }; binders=bs; t=body } = ht in
match bs, goal with
| _::_, None ->
//if there are binders, we must have a goal
fail g (Some st.range) "A renaming with binders must have a goal (with xs. rename ... in goal)"
| _::_, Some goal ->
//rewrite it as
// with bs. assert goal;
// rename [pairs] in goal;
// ...
let body = {st with term = Tm_ProofHintWithBinders { ht with binders = [] }} in
{ st with term = Tm_ProofHintWithBinders { hint_type=ASSERT { p = goal }; binders=bs; t=body } }
| [], None ->
// if there is no goal, take the goal to be the full current pre
let lhs, rhs = rewrite_all g pairs pre in
let t = { st with term = Tm_Rewrite { t1 = lhs; t2 = rhs } } in
{ st with term = Tm_Bind { binder = as_binder tm_unit; head = t; body } }
| [], Some goal -> (
let goal, _ = PC.instantiate_term_implicits g goal in
let lhs, rhs = rewrite_all g pairs goal in
let t = { st with term = Tm_Rewrite { t1 = lhs; t2 = rhs } } in
{ st with term = Tm_Bind { binder = as_binder tm_unit; head = t; body } }
)
let check_wild
(g:env)
(pre:term)
(st:st_term { head_wild st })
: T.Tac st_term
= let Tm_ProofHintWithBinders ht = st.term in
let { binders=bs; t=body } = ht in
match bs with
| [] ->
fail g (Some st.range) "A wildcard must have at least one binder"
| _ ->
let vprops = Pulse.Typing.Combinators.vprop_as_list pre in
let ex, rest = List.Tot.partition (fun (v:vprop) -> Tm_ExistsSL? v.t) vprops in
match ex with
| []
| _::_::_ ->
fail g (Some st.range) "Binding names with a wildcard requires exactly one existential quantifier in the goal"
| [ex] ->
let k = List.Tot.length bs in
let rec peel_binders (n:nat) (t:term) : T.Tac st_term =
if n = 0
then (
let ex_body = t in
{ st with term = Tm_ProofHintWithBinders { ht with hint_type = ASSERT { p = ex_body } }}
)
else (
match t.t with
| Tm_ExistsSL u b body -> peel_binders (n-1) body
| _ ->
fail g (Some st.range)
(Printf.sprintf "Expected an existential quantifier with at least %d binders; but only found %s with %d binders"
k (show ex) (k - n))
)
in
peel_binders k ex
//
// v is a partially applied vprop with type t
// add uvars for the remaining arguments
//
let rec add_rem_uvs (g:env) (t:typ) (uvs:env { Env.disjoint g uvs }) (v:vprop)
: T.Tac (uvs:env { Env.disjoint g uvs } & vprop) =
match is_arrow t with
| None -> (| uvs, v |)
| Some (b, qopt, c) ->
let x = fresh (push_env g uvs) in
let ct = open_comp_nv c (b.binder_ppname, x) in
let uvs = Env.push_binding uvs x b.binder_ppname b.binder_ty in
let v = tm_pureapp v qopt (tm_var {nm_index = x; nm_ppname = b.binder_ppname}) in
add_rem_uvs g (comp_res ct) uvs v | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.Env.fsti.checked",
"Pulse.Typing.Combinators.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Printer.fsti.checked",
"Pulse.Syntax.Naming.fsti.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Show.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.PP.fst.checked",
"Pulse.Elaborate.Pure.fst.checked",
"Pulse.Checker.Pure.fsti.checked",
"Pulse.Checker.Prover.Substs.fsti.checked",
"Pulse.Checker.Prover.fsti.checked",
"Pulse.Checker.Base.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Stubs.Pprint.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Reflection.V2.TermEq.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": true,
"source_file": "Pulse.Checker.AssertWithBinders.fst"
} | [
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": false,
"full_module": "Pulse.Show",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.Typing.Env",
"short_module": "Env"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Prover",
"short_module": "Prover"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Prover.Substs",
"short_module": "PS"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Naming",
"short_module": "N"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Printer",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Pulse.Checker.Pure",
"short_module": "PC"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Pulse.Typing.Env",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
g: Pulse.Typing.Env.env ->
pre: Pulse.Syntax.Base.term ->
pre_typing: Pulse.Typing.tot_typing g pre Pulse.Syntax.Base.tm_vprop ->
post_hint: Pulse.Typing.post_hint_opt g ->
res_ppname: Pulse.Syntax.Base.ppname ->
st: Pulse.Syntax.Base.st_term{Tm_ProofHintWithBinders? (Mkst_term?.term st)} ->
check: Pulse.Checker.Base.check_t
-> FStar.Tactics.Effect.Tac (Pulse.Checker.Base.checker_result_t g pre post_hint) | FStar.Tactics.Effect.Tac | [] | [] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.term",
"Pulse.Typing.tot_typing",
"Pulse.Syntax.Base.tm_vprop",
"Pulse.Typing.post_hint_opt",
"Pulse.Syntax.Base.ppname",
"Pulse.Syntax.Base.st_term",
"Prims.b2t",
"Pulse.Syntax.Base.uu___is_Tm_ProofHintWithBinders",
"Pulse.Syntax.Base.__proj__Mkst_term__item__term",
"Pulse.Checker.Base.check_t",
"Pulse.Syntax.Base.proof_hint_type",
"Prims.list",
"Pulse.Syntax.Base.binder",
"Pulse.Checker.Base.checker_result_t",
"Pulse.Checker.AssertWithBinders.check_wild",
"Pulse.Syntax.Base.range",
"Pulse.Typing.Env.fail_doc_env",
"FStar.Pervasives.Native.Some",
"FStar.Stubs.Pprint.document",
"Prims.Cons",
"Prims.Nil",
"FStar.Stubs.Pprint.op_Hat_Hat",
"Pulse.PP.text",
"Pulse.PP.indent",
"Pulse.PP.pp",
"Pulse.PP.uu___44",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.option",
"Pulse.Checker.AssertWithBinders.check_renaming",
"Pulse.Syntax.Base.vprop",
"Pulse.Syntax.Base.Mkst_term",
"Pulse.Syntax.Base.Tm_Bind",
"Pulse.Syntax.Base.Mkst_term'__Tm_Bind__payload",
"Pulse.Syntax.Base.as_binder",
"Pulse.Typing.tm_unit",
"Pulse.Syntax.Base.__proj__Mkst_term__item__range",
"Pulse.Syntax.Base.__proj__Mkst_term__item__effect_tag",
"Pulse.Syntax.Base.Tm_Rewrite",
"Pulse.Syntax.Base.Mkst_term'__Tm_Rewrite__payload",
"Pulse.Syntax.Base.Tm_ProofHintWithBinders",
"Pulse.Syntax.Base.Mkst_term'__Tm_ProofHintWithBinders__payload",
"Pulse.Syntax.Base.ASSERT",
"Pulse.Syntax.Base.Mkproof_hint_type__ASSERT__payload",
"Pulse.Typing.Env.disjoint",
"Pulse.Typing.Env.push_env",
"Prims.l_and",
"Pulse.Typing.Env.env_extends",
"Pulse.Checker.Prover.Substs.nt_substs",
"FStar.Stubs.TypeChecker.Core.tot_or_ghost",
"Pulse.Checker.Prover.Substs.well_typed_nt_substs",
"Pulse.Checker.Base.continuation_elaborator",
"Pulse.Checker.Prover.Base.op_Star",
"Pulse.Checker.Prover.Substs.nt_subst_term",
"Pulse.Syntax.Base.var",
"FStar.Pervasives.dtuple3",
"Pulse.Syntax.Base.universe",
"Pulse.Syntax.Base.typ",
"Pulse.Typing.universe_of",
"Prims.dtuple2",
"Pulse.Syntax.Base.tm_star",
"FStar.Pervasives.dfst",
"Pulse.Checker.Base.checker_result_inv",
"FStar.Pervasives.Mkdtuple5",
"Pulse.Checker.Base.k_elab_trans",
"Pulse.RuntimeUtils.magic",
"Pulse.Checker.Prover.Substs.nt_subst_st_term",
"FStar.Pervasives.dtuple5",
"Pulse.Checker.Prover.prove",
"Pulse.Checker.Pure.check_vprop",
"FStar.Pervasives.Native.Mktuple2",
"Pulse.Checker.AssertWithBinders.open_binders",
"Pulse.Typing.Env.mk_env",
"Pulse.Typing.Env.fstar_env",
"Pulse.Checker.AssertWithBinders.infer_binder_types",
"Prims.string",
"Pulse.Syntax.Base.tm_fstar",
"Pulse.Syntax.Base.as_effect_hint",
"Pulse.Syntax.Base.STT_Ghost",
"Pulse.Checker.AssertWithBinders.close_binders",
"Pulse.Syntax.Naming.subst_st_term",
"Pulse.Syntax.Naming.subst_term",
"Pulse.Syntax.Naming.subst",
"Pulse.Checker.AssertWithBinders.closing",
"FStar.Pervasives.Native.tuple3",
"FStar.List.Tot.Base.rev",
"Pulse.Typing.Env.bindings_with_ppname",
"Pulse.Syntax.Base.proof_hint_type__UNFOLD__payload",
"Pulse.Checker.AssertWithBinders.unfold_defs",
"FStar.Pervasives.Native.None",
"Pulse.Checker.AssertWithBinders.add_rem_uvs",
"Pulse.Checker.Pure.instantiate_term_implicits",
"Prims.unit",
"Pulse.Checker.AssertWithBinders.check_unfoldable",
"Pulse.Syntax.Base.st_term'",
"Prims.eq2",
"Pulse.Typing.Env.push_context"
] | [] | false | true | false | false | false | let check
(g: env)
(pre: term)
(pre_typing: tot_typing g pre tm_vprop)
(post_hint: post_hint_opt g)
(res_ppname: ppname)
(st: st_term{Tm_ProofHintWithBinders? st.term})
(check: check_t)
: T.Tac (checker_result_t g pre post_hint) =
| let g = push_context g "check_assert" st.range in
let Tm_ProofHintWithBinders { hint_type = hint_type ; binders = bs ; t = body } = st.term in
match hint_type with
| WILD ->
let st = check_wild g pre st in
check g pre pre_typing post_hint res_ppname st
| SHOW_PROOF_STATE r ->
let open FStar.Stubs.Pprint in
let open Pulse.PP in
let msg = [text "Current context:" ^^ indent (pp pre)] in
fail_doc_env true g (Some r) msg
| RENAME { pairs = pairs ; goal = goal } ->
let st = check_renaming g pre st in
check g pre pre_typing post_hint res_ppname st
| REWRITE { t1 = t1 ; t2 = t2 } ->
(match bs with
| [] ->
let t = { st with term = Tm_Rewrite ({ t1 = t1; t2 = t2 }) } in
check g
pre
pre_typing
post_hint
res_ppname
({ st with term = Tm_Bind ({ binder = as_binder tm_unit; head = t; body = body }) })
| _ ->
let t = { st with term = Tm_Rewrite ({ t1 = t1; t2 = t2 }) } in
let body =
{ st with term = Tm_Bind ({ binder = as_binder tm_unit; head = t; body = body }) }
in
let st =
{
st with
term
=
Tm_ProofHintWithBinders ({ hint_type = ASSERT ({ p = t1 }); binders = bs; t = body })
}
in
check g pre pre_typing post_hint res_ppname st)
| ASSERT { p = v } ->
let bs = infer_binder_types g bs v in
let (| uvs , v_opened , body_opened |) = open_binders g bs (mk_env (fstar_env g)) v body in
let v, body = v_opened, body_opened in
let (| v , d |) = PC.check_vprop (push_env g uvs) v in
let (| g1 , nts , _ , pre' , k_frame |) = Prover.prove pre_typing uvs d in
let (| x , x_ty , pre'' , g2 , k |) =
check g1
(tm_star (PS.nt_subst_term v nts) pre')
(RU.magic ())
post_hint
res_ppname
(PS.nt_subst_st_term body nts)
in
(| x, x_ty, pre'', g2, k_elab_trans k_frame k |)
| UNFOLD { names = names ; p = v }
| FOLD { names = names ; p = v } ->
let (| uvs , v_opened , body_opened |) =
let bs = infer_binder_types g bs v in
open_binders g bs (mk_env (fstar_env g)) v body
in
check_unfoldable g v;
let v_opened, t_rem = PC.instantiate_term_implicits (push_env g uvs) v_opened in
let uvs, v_opened =
let (| uvs_rem , v_opened |) =
add_rem_uvs (push_env g uvs) t_rem (mk_env (fstar_env g)) v_opened
in
push_env uvs uvs_rem, v_opened
in
let lhs, rhs =
match hint_type with
| UNFOLD _ -> v_opened, unfold_defs (push_env g uvs) None v_opened
| FOLD { names = ns } -> unfold_defs (push_env g uvs) ns v_opened, v_opened
in
let uvs_bs = uvs |> bindings_with_ppname |> L.rev in
let uvs_closing = uvs_bs |> closing in
let lhs = subst_term lhs uvs_closing in
let rhs = subst_term rhs uvs_closing in
let body = subst_st_term body_opened uvs_closing in
let bs = close_binders uvs_bs in
let rw =
{
term = Tm_Rewrite ({ t1 = lhs; t2 = rhs });
range = st.range;
effect_tag = as_effect_hint STT_Ghost
}
in
let st =
{
term = Tm_Bind ({ binder = as_binder (tm_fstar (`unit) st.range); head = rw; body = body });
range = st.range;
effect_tag = body.effect_tag
}
in
let st =
match bs with
| [] -> st
| _ ->
{
term = Tm_ProofHintWithBinders ({ hint_type = ASSERT ({ p = lhs }); binders = bs; t = st });
range = st.range;
effect_tag = st.effect_tag
}
in
check g pre pre_typing post_hint res_ppname st | false |
Lib.Sequence.fst | Lib.Sequence.member | val member: #a:eqtype -> #len: size_nat -> a -> lseq a len -> Tot bool | val member: #a:eqtype -> #len: size_nat -> a -> lseq a len -> Tot bool | let member #a #len x l = Seq.count x l > 0 | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 42,
"end_line": 37,
"start_col": 0,
"start_line": 37
} | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: a -> l: Lib.Sequence.lseq a len -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Prims.eqtype",
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Prims.op_GreaterThan",
"FStar.Seq.Properties.count",
"Prims.bool"
] | [] | false | false | false | false | false | let member #a #len x l =
| Seq.count x l > 0 | false |
Lib.Sequence.fst | Lib.Sequence.map2_inner | val map2_inner : f: (_: a -> _: b -> c) ->
s1: Lib.Sequence.lseq a len ->
s2: Lib.Sequence.lseq b len ->
i: Lib.IntTypes.size_nat{i < len}
-> c | let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i] | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 118,
"start_col": 0,
"start_line": 116
} | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i]) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f: (_: a -> _: b -> c) ->
s1: Lib.Sequence.lseq a len ->
s2: Lib.Sequence.lseq b len ->
i: Lib.IntTypes.size_nat{i < len}
-> c | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.op_String_Access"
] | [] | false | false | false | false | false | let map2_inner
(#a #b #c: Type)
(#len: size_nat)
(f: (a -> b -> Tot c))
(s1: lseq a len)
(s2: lseq b len)
(i: size_nat{i < len})
=
| f s1.[ i ] s2.[ i ] | false |
|
Lib.Sequence.fst | Lib.Sequence.map_inner | val map_inner : f: (_: a -> b) -> s: Lib.Sequence.lseq a len -> i: Lib.IntTypes.size_nat{i < len} -> b | let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i] | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 9,
"end_line": 107,
"start_col": 0,
"start_line": 105
} | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: a -> b) -> s: Lib.Sequence.lseq a len -> i: Lib.IntTypes.size_nat{i < len} -> b | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.op_String_Access"
] | [] | false | false | false | false | false | let map_inner
(#a #b: Type)
(#len: size_nat)
(f: (a -> Tot b))
(s: lseq a len)
(i: size_nat{i < len})
=
| f s.[ i ] | false |
|
Hacl.Impl.K256.Verify.fst | Hacl.Impl.K256.Verify.ecdsa_verify_avoid_finv | val ecdsa_verify_avoid_finv: p:point -> r:QA.qelem -> Stack bool
(requires fun h ->
live h p /\ live h r /\ disjoint p r /\
point_inv h p /\ QA.qe_lt_q h r /\ 0 < QA.qas_nat h r /\
not (S.is_proj_point_at_inf (point_eval h p)))
(ensures fun h0 b h1 -> modifies0 h0 h1 /\
(let (_X, _Y, _Z) = point_eval h0 p in
b <==> (S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r))) | val ecdsa_verify_avoid_finv: p:point -> r:QA.qelem -> Stack bool
(requires fun h ->
live h p /\ live h r /\ disjoint p r /\
point_inv h p /\ QA.qe_lt_q h r /\ 0 < QA.qas_nat h r /\
not (S.is_proj_point_at_inf (point_eval h p)))
(ensures fun h0 b h1 -> modifies0 h0 h1 /\
(let (_X, _Y, _Z) = point_eval h0 p in
b <==> (S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r))) | let ecdsa_verify_avoid_finv p r =
let h0 = ST.get () in
let x, y, z = getx p, gety p, getz p in
push_frame ();
let r_bytes = create 32ul (u8 0) in
let r_fe = create_felem () in
let tmp_q = create_felem () in
let tmp_x = create_felem () in
QA.store_qelem r_bytes r;
load_felem r_fe r_bytes;
let h1 = ST.get () in
assert (modifies (loc r_fe) h0 h1);
//assert (inv_fully_reduced h1 r_fe);
//assert (as_nat h1 r_fe == qas_nat h1 r);
let h2 = ST.get () in
fnormalize tmp_x x;
let h3 = ST.get () in
assert (modifies (loc tmp_x) h2 h3);
BL.normalize5_lemma (1,1,1,1,2) (as_felem5 h2 x);
//assert (inv_fully_reduced h3 tmp_x);
//assert (inv_lazy_reduced2 h3 z);
let is_rz_x = fmul_eq_vartime r_fe z tmp_x in
//assert (is_rz_x == (S.fmul (as_nat h3 r_fe) (feval h3 z) = as_nat h3 tmp_x));
let res : bool =
if not is_rz_x then begin
let is_r_lt_p_m_q = is_felem_lt_prime_minus_order_vartime r_fe in
if is_r_lt_p_m_q then begin
assert (as_nat h1 r_fe < S.prime - S.q);
make_u52_5 tmp_q (make_order_k256 ());
let h4 = ST.get () in
BL.add5_lemma (1,1,1,1,1) (1,1,1,1,1) (as_felem5 h4 r_fe) (as_felem5 h4 tmp_q);
fadd tmp_q r_fe tmp_q;
fmul_eq_vartime tmp_q z tmp_x end
//assert (is_rqz_x == (S.fmul (feval h5 tmp) (feval h5 z) = as_nat h5 tmp_x));
else false end
else true in
let h4 = ST.get () in
assert (modifies (loc tmp_q) h3 h4);
pop_frame ();
KL.ecdsa_verify_avoid_finv (point_eval h0 p) (QA.qas_nat h0 r);
assert (res <==> (S.fmul (feval h0 x) (S.finv (feval h0 z)) % S.q = QA.qas_nat h0 r));
let h5 = ST.get () in
assert (modifies0 h0 h5);
res | {
"file_name": "code/k256/Hacl.Impl.K256.Verify.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 134,
"start_col": 0,
"start_line": 84
} | module Hacl.Impl.K256.Verify
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module S = Spec.K256
module KL = Spec.K256.Lemmas
open Hacl.K256.Field
open Hacl.Impl.K256.Point
open Hacl.Impl.K256.PointMul
open Hacl.Impl.K256.GLV
module QA = Hacl.K256.Scalar
module QI = Hacl.Impl.K256.Qinv
module BL = Hacl.Spec.K256.Field52.Lemmas
module BSeq = Lib.ByteSequence
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let lbytes len = lbuffer uint8 len
inline_for_extraction noextract
val ecdsa_verify_get_u12 (u1 u2 r s z: QA.qelem) : Stack unit
(requires fun h ->
live h r /\ live h s /\ live h z /\ live h u1 /\ live h u2 /\
disjoint u1 u2 /\ disjoint u1 z /\ disjoint u1 r /\ disjoint u1 s /\
disjoint u2 z /\ disjoint u2 r /\ disjoint u2 s /\
QA.qas_nat h s < S.q /\ QA.qas_nat h z < S.q /\ QA.qas_nat h r < S.q)
(ensures fun h0 _ h1 -> modifies (loc u1 |+| loc u2) h0 h1 /\
(let sinv = S.qinv (QA.qas_nat h0 s) in
QA.qas_nat h1 u1 == QA.qas_nat h0 z * sinv % S.q /\
QA.qas_nat h1 u2 == QA.qas_nat h0 r * sinv % S.q))
let ecdsa_verify_get_u12 u1 u2 r s z =
push_frame ();
let sinv = QA.create_qelem () in
QI.qinv sinv s;
QA.qmul u1 z sinv;
QA.qmul u2 r sinv;
pop_frame ()
val fmul_eq_vartime (r z x: felem) : Stack bool
(requires fun h ->
live h r /\ live h z /\ live h x /\ eq_or_disjoint r z /\
felem_fits5 (as_felem5 h r) (2,2,2,2,2) /\ as_nat h r < S.prime /\
inv_lazy_reduced2 h z /\ inv_fully_reduced h x)
(ensures fun h0 b h1 -> modifies0 h0 h1 /\
b == (S.fmul (as_nat h0 r) (feval h0 z) = as_nat h0 x))
[@CInline]
let fmul_eq_vartime r z x =
push_frame ();
let tmp = create_felem () in
fmul tmp r z;
let h1 = ST.get () in
fnormalize tmp tmp;
let h2 = ST.get () in
BL.normalize5_lemma (1,1,1,1,2) (as_felem5 h1 tmp);
assert (inv_fully_reduced h2 tmp);
let b = is_felem_eq_vartime tmp x in
pop_frame ();
b
inline_for_extraction noextract
val ecdsa_verify_avoid_finv: p:point -> r:QA.qelem -> Stack bool
(requires fun h ->
live h p /\ live h r /\ disjoint p r /\
point_inv h p /\ QA.qe_lt_q h r /\ 0 < QA.qas_nat h r /\
not (S.is_proj_point_at_inf (point_eval h p)))
(ensures fun h0 b h1 -> modifies0 h0 h1 /\
(let (_X, _Y, _Z) = point_eval h0 p in
b <==> (S.fmul _X (S.finv _Z) % S.q = QA.qas_nat h0 r))) | {
"checked_file": "/",
"dependencies": [
"Spec.K256.Lemmas.fsti.checked",
"Spec.K256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.K256.Field52.Lemmas.fsti.checked",
"Hacl.K256.Scalar.fsti.checked",
"Hacl.K256.Field.fsti.checked",
"Hacl.Impl.K256.Qinv.fst.checked",
"Hacl.Impl.K256.PointMul.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"Hacl.Impl.K256.GLV.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.K256.Verify.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.Field52.Lemmas",
"short_module": "BL"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.K256.Qinv",
"short_module": "QI"
},
{
"abbrev": true,
"full_module": "Hacl.K256.Scalar",
"short_module": "QA"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.GLV",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.PointMul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256.Field",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256.Lemmas",
"short_module": "KL"
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Hacl.Impl.K256.Point.point -> r: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.bool | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.K256.Point.point",
"Hacl.K256.Scalar.qelem",
"Hacl.K256.Field.felem",
"Prims.unit",
"Prims._assert",
"Lib.Buffer.modifies0",
"Prims.bool",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Prims.l_iff",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Spec.K256.PointOps.fmul",
"Hacl.K256.Field.feval",
"Spec.K256.PointOps.finv",
"Spec.K256.PointOps.q",
"Hacl.K256.Scalar.qas_nat",
"Spec.K256.Lemmas.ecdsa_verify_avoid_finv",
"Hacl.Impl.K256.Point.point_eval",
"FStar.HyperStack.ST.pop_frame",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint64",
"Prims.op_Negation",
"Hacl.Impl.K256.Verify.fmul_eq_vartime",
"Hacl.K256.Field.fadd",
"Hacl.Spec.K256.Field52.Lemmas.add5_lemma",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Hacl.K256.Field.as_felem5",
"Hacl.K256.Field.make_u52_5",
"Hacl.K256.Field.make_order_k256",
"Prims.op_LessThan",
"Hacl.K256.Field.as_nat",
"Prims.op_Subtraction",
"Spec.K256.PointOps.prime",
"Hacl.K256.Field.is_felem_lt_prime_minus_order_vartime",
"Hacl.Spec.K256.Field52.Lemmas.normalize5_lemma",
"Hacl.K256.Field.fnormalize",
"Hacl.K256.Field.load_felem",
"Hacl.K256.Scalar.store_qelem",
"Hacl.K256.Field.create_felem",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.u8",
"Lib.Buffer.lbuffer",
"FStar.HyperStack.ST.push_frame",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.Mktuple3",
"Hacl.Impl.K256.Point.getz",
"Hacl.Impl.K256.Point.gety",
"Hacl.Impl.K256.Point.getx"
] | [] | false | true | false | false | false | let ecdsa_verify_avoid_finv p r =
| let h0 = ST.get () in
let x, y, z = getx p, gety p, getz p in
push_frame ();
let r_bytes = create 32ul (u8 0) in
let r_fe = create_felem () in
let tmp_q = create_felem () in
let tmp_x = create_felem () in
QA.store_qelem r_bytes r;
load_felem r_fe r_bytes;
let h1 = ST.get () in
assert (modifies (loc r_fe) h0 h1);
let h2 = ST.get () in
fnormalize tmp_x x;
let h3 = ST.get () in
assert (modifies (loc tmp_x) h2 h3);
BL.normalize5_lemma (1, 1, 1, 1, 2) (as_felem5 h2 x);
let is_rz_x = fmul_eq_vartime r_fe z tmp_x in
let res:bool =
if not is_rz_x
then
let is_r_lt_p_m_q = is_felem_lt_prime_minus_order_vartime r_fe in
if is_r_lt_p_m_q
then
(assert (as_nat h1 r_fe < S.prime - S.q);
make_u52_5 tmp_q (make_order_k256 ());
let h4 = ST.get () in
BL.add5_lemma (1, 1, 1, 1, 1) (1, 1, 1, 1, 1) (as_felem5 h4 r_fe) (as_felem5 h4 tmp_q);
fadd tmp_q r_fe tmp_q;
fmul_eq_vartime tmp_q z tmp_x)
else false
else true
in
let h4 = ST.get () in
assert (modifies (loc tmp_q) h3 h4);
pop_frame ();
KL.ecdsa_verify_avoid_finv (point_eval h0 p) (QA.qas_nat h0 r);
assert (res <==> (S.fmul (feval h0 x) (S.finv (feval h0 z)) % S.q = QA.qas_nat h0 r));
let h5 = ST.get () in
assert (modifies0 h0 h5);
res | false |
Lib.Sequence.fst | Lib.Sequence.for_all | val for_all:#a:Type -> #len:size_nat -> (a -> Tot bool) -> lseq a len -> bool | val for_all:#a:Type -> #len:size_nat -> (a -> Tot bool) -> lseq a len -> bool | let for_all #a #len f x = Seq.for_all f x | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 41,
"end_line": 123,
"start_col": 0,
"start_line": 123
} | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options
inline_for_extraction
let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i]
let mapi #a #b #len f s =
createi #b len (mapi_inner #a #b #len f s)
inline_for_extraction
let map_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(a -> Tot b)) (s:lseq a len) (i:size_nat{i < len}) =
f s.[i]
let map #a #b #len f s =
createi #b len (map_inner #a #b #len f s)
let map2i #a #b #c #len f s1 s2 =
createi #c len (fun i -> f i s1.[i] s2.[i])
inline_for_extraction
let map2_inner (#a:Type) (#b:Type) (#c:Type) (#len:size_nat)
(f:(a -> b -> Tot c)) (s1:lseq a len) (s2:lseq b len) (i:size_nat{i < len}) =
f s1.[i] s2.[i]
let map2 #a #b #c #len f s1 s2 =
createi #c len (map2_inner #a #b #c #len f s1 s2) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: a -> Prims.bool) -> x: Lib.Sequence.lseq a len -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_nat",
"Prims.bool",
"Lib.Sequence.lseq",
"FStar.Seq.Properties.for_all"
] | [] | false | false | false | false | false | let for_all #a #len f x =
| Seq.for_all f x | false |
Lib.Sequence.fst | Lib.Sequence.concat | val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)}) | val concat:
#a:Type
-> #len0:size_nat
-> #len1:size_nat{len0 + len1 <= max_size_t}
-> s0:lseq a len0
-> s1:lseq a len1 ->
Tot (s2:lseq a (len0 + len1){to_seq s2 == Seq.append (to_seq s0) (to_seq s1)}) | let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1 | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 50,
"end_line": 13,
"start_col": 0,
"start_line": 13
} | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s0: Lib.Sequence.lseq a len0 -> s1: Lib.Sequence.lseq a len1
-> s2:
Lib.Sequence.lseq a (len0 + len1)
{ Lib.Sequence.to_seq s2 ==
FStar.Seq.Base.append (Lib.Sequence.to_seq s0) (Lib.Sequence.to_seq s1) } | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Lib.Sequence.lseq",
"FStar.Seq.Base.append",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq"
] | [] | false | false | false | false | false | let concat #a #len0 #len1 s0 s1 =
| Seq.append s0 s1 | false |
Lib.Sequence.fst | Lib.Sequence.to_list | val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s}) | val to_list:
#a:Type
-> s:seq a ->
Tot (l:list a{List.Tot.length l = length s /\ l == Seq.seq_to_list s}) | let to_list #a s = Seq.seq_to_list s | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 36,
"end_line": 15,
"start_col": 0,
"start_line": 15
} | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Lib.Sequence.seq a
-> l:
Prims.list a
{FStar.List.Tot.Base.length l = Lib.Sequence.length s /\ l == FStar.Seq.Base.seq_to_list s} | Prims.Tot | [
"total"
] | [] | [
"Lib.Sequence.seq",
"FStar.Seq.Base.seq_to_list",
"Prims.list",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Prims.nat",
"FStar.List.Tot.Base.length",
"Lib.Sequence.length",
"Prims.eq2"
] | [] | false | false | false | false | false | let to_list #a s =
| Seq.seq_to_list s | false |
LowParse.Low.IfThenElse.fst | LowParse.Low.IfThenElse.accessor_ifthenelse_payload | val accessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
: Tot (accessor (gaccessor_ifthenelse_payload s b)) | val accessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
: Tot (accessor (gaccessor_ifthenelse_payload s b)) | let accessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
: Tot (accessor (gaccessor_ifthenelse_payload s b))
= fun #rrel #rel -> accessor_ifthenelse_payload' s j b #rrel #rel | {
"file_name": "src/lowparse/LowParse.Low.IfThenElse.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 65,
"end_line": 292,
"start_col": 0,
"start_line": 286
} | module LowParse.Low.IfThenElse
include LowParse.Spec.IfThenElse
include LowParse.Low.Combinators
module U32 = FStar.UInt32
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module B = LowStar.Buffer
module Cast = FStar.Int.Cast
module U64 = FStar.UInt64
let valid_ifthenelse_intro
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
)))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos)
let valid_ifthenelse_elim
(p: parse_ifthenelse_param)
(h: HS.mem)
(#rrel #rel: _)
(sl: slice rrel rel)
(pos: U32.t)
: Lemma
(requires (valid (parse_ifthenelse p) h sl pos))
(ensures (
valid p.parse_ifthenelse_tag_parser h sl pos /\ (
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t /\
valid_content_pos
(parse_ifthenelse p) h sl pos
(p.parse_ifthenelse_synth
t
(contents (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)
(get_valid_pos (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t)
)))
= valid_facts (parse_ifthenelse p) h sl pos;
parse_ifthenelse_eq p (bytes_of_slice_from h sl pos);
valid_facts p.parse_ifthenelse_tag_parser h sl pos;
let pos_after_t = get_valid_pos p.parse_ifthenelse_tag_parser h sl pos in
let t = contents p.parse_ifthenelse_tag_parser h sl pos in
let b = p.parse_ifthenelse_tag_cond t in
valid_facts (dsnd (p.parse_ifthenelse_payload_parser b)) h sl pos_after_t
inline_for_extraction
type test_ifthenelse_tag
(p: parse_ifthenelse_param)
= (#rrel: _) -> (#rel: _) ->
(input: slice rrel rel) ->
(pos: U32.t) ->
HST.Stack bool
(requires (fun h -> valid p.parse_ifthenelse_tag_parser h input pos))
(ensures (fun h res h' ->
B.modifies B.loc_none h h' /\
res == p.parse_ifthenelse_tag_cond (contents p.parse_ifthenelse_tag_parser h input pos)
))
inline_for_extraction
let validate_ifthenelse
(p: parse_ifthenelse_param)
(vt: validator p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (validator (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (validator (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_intro p h input) (uint64_to_uint32 pos);
Classical.move_requires (valid_ifthenelse_elim p h input) (uint64_to_uint32 pos)
in
let pos_after_t = vt input pos in
if is_error pos_after_t
then pos_after_t
else
let b = test input (uint64_to_uint32 pos) in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
inline_for_extraction
let jump_ifthenelse
(p: parse_ifthenelse_param)
(vt: jumper p.parse_ifthenelse_tag_parser)
(test: test_ifthenelse_tag p)
(vp: (b: bool) -> Tot (jumper (dsnd (p.parse_ifthenelse_payload_parser b))))
: Tot (jumper (parse_ifthenelse p))
= fun #rrel #rel input pos ->
let h = HST.get () in
[@inline_let] let _ =
Classical.move_requires (valid_ifthenelse_elim p h input) pos
in
let pos_after_t = vt input pos in
let b = test input pos in
if b (* eta-expansion here *)
then vp true input pos_after_t
else vp false input pos_after_t
let clens_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (clens p.parse_ifthenelse_t p.parse_ifthenelse_tag_t)
= {
clens_cond = (fun _ -> True);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dfst (s.serialize_ifthenelse_synth_recip x));
}
let gaccessor_ifthenelse_tag'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor' (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= fun input ->
parse_ifthenelse_eq p input;
if Some? (parse (parse_ifthenelse p) input)
then parse_ifthenelse_parse_tag_payload s input;
0
let gaccessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (gaccessor (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s))
= gaccessor_prop_equiv (parse_ifthenelse p) p.parse_ifthenelse_tag_parser (clens_ifthenelse_tag s) (gaccessor_ifthenelse_tag' s);
gaccessor_ifthenelse_tag' s
inline_for_extraction
let accessor_ifthenelse_tag
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
: Tot (accessor (gaccessor_ifthenelse_tag s))
= fun #rrel #rel sl pos ->
let h = HST.get () in
slice_access_eq h (gaccessor_ifthenelse_tag s) sl pos;
pos
let clens_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (clens p.parse_ifthenelse_t (p.parse_ifthenelse_payload_t b))
= {
clens_cond = (fun (x: p.parse_ifthenelse_t) -> p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b);
clens_get = (fun (x: p.parse_ifthenelse_t) -> dsnd (s.serialize_ifthenelse_synth_recip x) <: Ghost (p.parse_ifthenelse_payload_t b) (requires (p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) == b)) (ensures (fun _ -> True)));
}
let gaccessor_ifthenelse_payload''
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(input: bytes)
: Ghost nat
(requires (
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input
))
(ensures (fun res ->
gaccessor_post' (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) input res
))
= parse_ifthenelse_eq p input;
parse_ifthenelse_parse_tag_payload s input;
let Some (t, consumed) = parse p.parse_ifthenelse_tag_parser input in
consumed
let gaccessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (gaccessor' (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b))
= fun (input: bytes) ->
match parse (parse_ifthenelse p) input with
| Some (x, _) ->
if p.parse_ifthenelse_tag_cond (dfst (s.serialize_ifthenelse_synth_recip x)) = b
then gaccessor_ifthenelse_payload'' s b input
else 0 (* dummy *)
| _ -> 0 (* dummy *)
let gaccessor_ifthenelse_payload_injective
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl' : bytes)
: Lemma
(requires (
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl' /\
injective_precond (parse_ifthenelse p) sl sl'
))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl'))
= parse_ifthenelse_eq p sl;
parse_ifthenelse_eq p sl';
parse_ifthenelse_parse_tag_payload s sl;
parse_ifthenelse_parse_tag_payload s sl' ;
parse_injective p.parse_ifthenelse_tag_parser sl sl'
let gaccessor_ifthenelse_payload_no_lookahead
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
(sl sl' : bytes)
: Lemma
(requires (
(parse_ifthenelse_kind p).parser_kind_subkind == Some ParserStrong /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl /\
gaccessor_pre (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) sl' /\
no_lookahead_on_precond (parse_ifthenelse p) sl sl'
))
(ensures (gaccessor_ifthenelse_payload' s b sl == gaccessor_ifthenelse_payload' s b sl'))
= parse_ifthenelse_eq p sl;
parse_ifthenelse_eq p sl';
parse_ifthenelse_parse_tag_payload s sl;
parse_ifthenelse_parse_tag_payload s sl' ;
parse_strong_prefix (parse_ifthenelse p) sl sl';
parse_injective p.parse_ifthenelse_tag_parser sl sl'
let gaccessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(b: bool)
: Tot (gaccessor (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b))
= Classical.forall_intro_2 (fun x -> Classical.move_requires (gaccessor_ifthenelse_payload_injective s b x));
Classical.forall_intro_2 (fun x -> Classical.move_requires (gaccessor_ifthenelse_payload_no_lookahead s b x));
gaccessor_prop_equiv (parse_ifthenelse p) (dsnd (p.parse_ifthenelse_payload_parser b)) (clens_ifthenelse_payload s b) (gaccessor_ifthenelse_payload' s b);
gaccessor_ifthenelse_payload' s b
inline_for_extraction
let accessor_ifthenelse_payload'
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
(#rrel #rel: _)
(input: slice rrel rel)
(pos: U32.t)
: HST.Stack U32.t
(requires (fun h ->
valid (parse_ifthenelse p) h input pos /\
(clens_ifthenelse_payload s b).clens_cond (contents (parse_ifthenelse p) h input pos)
))
(ensures (fun h pos' h' ->
B.modifies B.loc_none h h' /\
pos' == slice_access h (gaccessor_ifthenelse_payload s b) input pos
))
= let h = HST.get () in
[@inline_let]
let _ =
let pos' = get_valid_pos (parse_ifthenelse p) h input pos in
let large = bytes_of_slice_from h input pos in
slice_access_eq h (gaccessor_ifthenelse_payload s b) input pos;
valid_facts (parse_ifthenelse p) h input pos;
parse_ifthenelse_eq p large;
valid_facts p.parse_ifthenelse_tag_parser h input pos
in
j input pos | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Spec.IfThenElse.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Int.Cast.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.IfThenElse.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.Int.Cast",
"short_module": "Cast"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.IfThenElse",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: LowParse.Spec.IfThenElse.serialize_ifthenelse_param p ->
j: LowParse.Low.Base.jumper (Mkparse_ifthenelse_param?.parse_ifthenelse_tag_parser p) ->
b: Prims.bool
-> LowParse.Low.Base.accessor (LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload s b) | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.IfThenElse.parse_ifthenelse_param",
"LowParse.Spec.IfThenElse.serialize_ifthenelse_param",
"LowParse.Low.Base.jumper",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_t",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_tag_parser",
"Prims.bool",
"LowParse.Slice.srel",
"LowParse.Bytes.byte",
"LowParse.Low.IfThenElse.accessor_ifthenelse_payload'",
"LowParse.Slice.slice",
"FStar.UInt32.t",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowParse.Low.Base.Spec.valid",
"LowParse.Spec.IfThenElse.parse_ifthenelse_kind",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_t",
"LowParse.Spec.IfThenElse.parse_ifthenelse",
"LowParse.Low.Base.Spec.__proj__Mkclens__item__clens_cond",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_t",
"LowParse.Low.IfThenElse.clens_ifthenelse_payload",
"LowParse.Low.Base.Spec.contents",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_none",
"Prims.eq2",
"LowParse.Low.Base.Spec.slice_access",
"Prims.__proj__Mkdtuple2__item___1",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.IfThenElse.__proj__Mkparse_ifthenelse_param__item__parse_ifthenelse_payload_parser",
"FStar.Pervasives.dsnd",
"LowParse.Low.IfThenElse.gaccessor_ifthenelse_payload",
"LowParse.Low.Base.accessor"
] | [] | false | false | false | false | false | let accessor_ifthenelse_payload
(#p: parse_ifthenelse_param)
(s: serialize_ifthenelse_param p)
(j: jumper p.parse_ifthenelse_tag_parser)
(b: bool)
: Tot (accessor (gaccessor_ifthenelse_payload s b)) =
| fun #rrel #rel -> accessor_ifthenelse_payload' s j b #rrel #rel | false |
Lib.Sequence.fst | Lib.Sequence.index | val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i}) | val index:
#a:Type
-> #len:size_nat
-> s:lseq a len
-> i:size_nat{i < len} ->
Tot (r:a{r == Seq.index (to_seq s) i}) | let index #a #len s n = Seq.index s n | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 37,
"end_line": 9,
"start_col": 0,
"start_line": 9
} | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Lib.Sequence.lseq a len -> i: Lib.IntTypes.size_nat{i < len}
-> r: a{r == FStar.Seq.Base.index (Lib.Sequence.to_seq s) i} | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Prims.eq2",
"Lib.Sequence.to_seq"
] | [] | false | false | false | false | false | let index #a #len s n =
| Seq.index s n | false |
Lib.Sequence.fst | Lib.Sequence.create | val create:
#a:Type
-> len:size_nat
-> init:a ->
Tot (s:lseq a len{to_seq s == Seq.create len init /\ (forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init)}) | val create:
#a:Type
-> len:size_nat
-> init:a ->
Tot (s:lseq a len{to_seq s == Seq.create len init /\ (forall (i:nat).
{:pattern (index s i)} i < len ==> index s i == init)}) | let create #a len init = Seq.create #a len init | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 47,
"end_line": 11,
"start_col": 0,
"start_line": 11
} | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Lib.IntTypes.size_nat -> init: a
-> s:
Lib.Sequence.lseq a len
{ Lib.Sequence.to_seq s == FStar.Seq.Base.create len init /\
(forall (i: Prims.nat). {:pattern Lib.Sequence.index s i}
i < len ==> Lib.Sequence.index s i == init) } | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_nat",
"FStar.Seq.Base.create",
"Lib.Sequence.lseq",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.index"
] | [] | false | false | false | false | false | let create #a len init =
| Seq.create #a len init | false |
Lib.Sequence.fst | Lib.Sequence.mapi_inner | val mapi_inner : f: (i: Prims.nat{i < len} -> _: a -> b) ->
s: Lib.Sequence.lseq a len ->
i: Lib.IntTypes.size_nat{i < len}
-> b | let mapi_inner (#a:Type) (#b:Type) (#len:size_nat)
(f:(i:nat{i < len} -> a -> b)) (s:lseq a len) (i:size_nat{i < len}) =
f i s.[i] | {
"file_name": "lib/Lib.Sequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 11,
"end_line": 99,
"start_col": 0,
"start_line": 97
} | module Lib.Sequence
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0 --using_facts_from '-* +Prims +FStar.Pervasives +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence'"
let index #a #len s n = Seq.index s n
let create #a len init = Seq.create #a len init
let concat #a #len0 #len1 s0 s1 = Seq.append s0 s1
let to_list #a s = Seq.seq_to_list s
let of_list #a l = Seq.seq_of_list #a l
let of_list_index #a l i =
Seq.lemma_seq_of_list_index #a l i
let equal #a #len s1 s2 =
forall (i:size_nat{i < len}).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i
let eq_intro #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_intro #a (to_seq s1) (to_seq s2)
let eq_elim #a #len s1 s2 =
assert (forall (i:nat{i < len}).{:pattern (Seq.index s1 i); (Seq.index s2 i)}
index s1 i == index s2 i);
Seq.lemma_eq_elim #a s1 s2
let upd #a #len s n x = Seq.upd #a s n x
let member #a #len x l = Seq.count x l > 0
let sub #a #len s start n = Seq.slice #a s start (start + n)
let update_sub #a #len s start n x =
let o =
Seq.append
(Seq.append (Seq.slice s 0 start) x)
(Seq.slice s (start + n) (length s)) in
Seq.lemma_eq_intro (Seq.slice o start (start + n)) x;
o
let lemma_update_sub #a #len dst start n src res =
let res1 = update_sub dst start n src in
Seq.lemma_split (sub res 0 (start + n)) start;
Seq.lemma_split (sub res1 0 (start + n)) start;
Seq.lemma_split res (start + n);
Seq.lemma_split res1 (start + n);
Seq.lemma_eq_intro res (update_sub dst start n src)
let lemma_concat2 #a len0 s0 len1 s1 s =
Seq.Properties.lemma_split s len0;
Seq.Properties.lemma_split (concat s0 s1) len0;
Seq.lemma_eq_intro s (concat s0 s1)
let lemma_concat3 #a len0 s0 len1 s1 len2 s2 s =
let s' = concat (concat s0 s1) s2 in
Seq.Properties.lemma_split (sub s 0 (len0 + len1)) len0;
Seq.Properties.lemma_split (sub s' 0 (len0 + len1)) len0;
Seq.Properties.lemma_split s (len0 + len1);
Seq.Properties.lemma_split s' (len0 + len1);
Seq.lemma_eq_intro s (concat (concat s0 s1) s2)
let createi_a (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len}) =
lseq a k
let createi_pred (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (k:nat{k <= len})
(s:createi_a a len init k) =
forall (i:nat).{:pattern (index s i)} i < k ==> index s i == init i
let createi_step (a:Type) (len:size_nat) (init:(i:nat{i < len} -> a)) (i:nat{i < len})
(si:createi_a a len init i)
: r:createi_a a len init (i + 1)
{createi_pred a len init i si ==> createi_pred a len init (i + 1) r}
=
assert (createi_pred a len init i si ==> (forall (j:nat). j < i ==> index si j == init j));
Seq.snoc si (init i)
#push-options "--max_fuel 1 --using_facts_from '+Lib.LoopCombinators +FStar.List'"
let createi #a len init_f =
repeat_gen_inductive len
(createi_a a len init_f)
(createi_pred a len init_f)
(createi_step a len init_f)
(of_list [])
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.Properties.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.Sequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f: (i: Prims.nat{i < len} -> _: a -> b) ->
s: Lib.Sequence.lseq a len ->
i: Lib.IntTypes.size_nat{i < len}
-> b | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.lseq",
"Lib.Sequence.op_String_Access"
] | [] | false | false | false | false | false | let mapi_inner
(#a #b: Type)
(#len: size_nat)
(f: (i: nat{i < len} -> a -> b))
(s: lseq a len)
(i: size_nat{i < len})
=
| f i s.[ i ] | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.