file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
LowStar.PrefixFreezableBuffer.fsti
LowStar.PrefixFreezableBuffer.malloc_pre
val malloc_pre : r: FStar.Monotonic.HyperHeap.rid -> len: LowStar.PrefixFreezableBuffer.u32 -> Prims.logical
let malloc_pre (r:HS.rid) (len:u32) = UInt.size (U32.v len + 4) 32 /\ malloc_pre r len
{ "file_name": "ulib/LowStar.PrefixFreezableBuffer.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 121, "start_col": 7, "start_line": 120 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.PrefixFreezableBuffer open FStar.HyperStack.ST include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module ST = FStar.HyperStack.ST (* * A library for prefix freezable buffers of elements of type u8 * * Our monotonicity theory does not easily support preorders and predicates over * multiple references. So instead of keeping the frozen-until counter in a * separate (ghost) reference, the library maintains the frozen-until counter (a u32) * in the first four bytes of the buffer itself * * Buffer contents up to the frozen-until counter are stable and clients can witness * and recall them * *) type u8 = UInt8.t type u32 = U32.t #set-options "--max_fuel 0 --max_ifuel 0" /// This is the frozen until index in the sequence representation of a PrefixFreezableBuffer val le_to_n (s:Seq.seq u8) : Tot nat let frozen_until (s:Seq.seq u8{Seq.length s >= 4}) = le_to_n (Seq.slice s 0 4) /// Preorder for PrefixFreezableBuffers private unfold let pre (s1 s2:Seq.seq u8) = Seq.length s1 == Seq.length s2 /\ //lengths are same (let len = Seq.length s1 in len >= 4 ==> //if length >= 4 then (let frozen_until1 = frozen_until s1 in let frozen_until2 = frozen_until s2 in (4 <= frozen_until1 /\ frozen_until1 <= len) ==> //if frozen_until1 is in the range [4, len] then (frozen_until1 <= frozen_until2 /\ frozen_until2 <= len /\ //frozen until index increases monotonically, but remains <= len (forall (i:nat).{:pattern Seq.index s2 i} (4 <= i /\ i < frozen_until1) ==> Seq.index s2 i == Seq.index s1 i)))) //and the contents until frozen_until1 remain same val prefix_freezable_preorder : srel u8 /// Clients can call the following lemma to reveal the preorder val prefix_freezable_preorder_elim (s1 s2:Seq.seq u8) : Lemma (prefix_freezable_preorder s1 s2 <==> pre s1 s2) /// Predicate for the frozen_until index being at least n /// /// It is stable w.r.t. the prefix_freezable_preorder let frozen_until_at_least (n:nat) : spred u8 = fun s -> Seq.length s >= 4 /\ //it follows from the inequalities below, but we need it for typing of frozen_until 4 <= n /\ n <= frozen_until s /\ frozen_until s <= Seq.length s /// Predicate for the frozen slice with indices in the [4, frozen_until) range /// /// It is stable w.r.t. the prefix_freezable_preorder let slice_is (i j:u32) (snap:G.erased (Seq.seq u8)) : spred u8 = fun s -> let len = Seq.length s in len >= 4 /\ //for typing of frozen_until (let frozen_until = frozen_until s in let i = U32.v i in let j = U32.v j in let snap = G.reveal snap in 4 <= i /\ i <= j /\ j <= frozen_until /\ frozen_until <= len /\ Seq.length snap == j - i /\ Seq.equal (Seq.slice s i j) snap) /// Buffer type for PrefixfreezableBuffers /// /// And abbreviation for the length indexed version type buffer = b:mbuffer u8 (prefix_freezable_preorder) (prefix_freezable_preorder) {length b >= 4 /\ b `witnessed` frozen_until_at_least 4} unfold let lbuffer (len:u32) = b:buffer{length b == U32.v len + 4} /// Allocation precondition for prefix freezable buffers adds an additional constraint /// that the input length + 4 must fit in u32
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowStar.PrefixFreezableBuffer.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.HyperHeap.rid -> len: LowStar.PrefixFreezableBuffer.u32 -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperHeap.rid", "LowStar.PrefixFreezableBuffer.u32", "Prims.l_and", "FStar.UInt.size", "Prims.op_Addition", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.malloc_pre", "Prims.logical" ]
[]
false
false
false
true
true
let malloc_pre (r: HS.rid) (len: u32) =
UInt.size (U32.v len + 4) 32 /\ malloc_pre r len
false
LowStar.PrefixFreezableBuffer.fsti
LowStar.PrefixFreezableBuffer.alloca_pre
val alloca_pre : len: FStar.UInt32.t -> Prims.logical
let alloca_pre (len:U32.t) = //precondition for stack allocated prefix freezable buffers UInt.size (U32.v len + 4) 32 /\ alloca_pre len
{ "file_name": "ulib/LowStar.PrefixFreezableBuffer.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 48, "end_line": 151, "start_col": 7, "start_line": 150 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.PrefixFreezableBuffer open FStar.HyperStack.ST include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module ST = FStar.HyperStack.ST (* * A library for prefix freezable buffers of elements of type u8 * * Our monotonicity theory does not easily support preorders and predicates over * multiple references. So instead of keeping the frozen-until counter in a * separate (ghost) reference, the library maintains the frozen-until counter (a u32) * in the first four bytes of the buffer itself * * Buffer contents up to the frozen-until counter are stable and clients can witness * and recall them * *) type u8 = UInt8.t type u32 = U32.t #set-options "--max_fuel 0 --max_ifuel 0" /// This is the frozen until index in the sequence representation of a PrefixFreezableBuffer val le_to_n (s:Seq.seq u8) : Tot nat let frozen_until (s:Seq.seq u8{Seq.length s >= 4}) = le_to_n (Seq.slice s 0 4) /// Preorder for PrefixFreezableBuffers private unfold let pre (s1 s2:Seq.seq u8) = Seq.length s1 == Seq.length s2 /\ //lengths are same (let len = Seq.length s1 in len >= 4 ==> //if length >= 4 then (let frozen_until1 = frozen_until s1 in let frozen_until2 = frozen_until s2 in (4 <= frozen_until1 /\ frozen_until1 <= len) ==> //if frozen_until1 is in the range [4, len] then (frozen_until1 <= frozen_until2 /\ frozen_until2 <= len /\ //frozen until index increases monotonically, but remains <= len (forall (i:nat).{:pattern Seq.index s2 i} (4 <= i /\ i < frozen_until1) ==> Seq.index s2 i == Seq.index s1 i)))) //and the contents until frozen_until1 remain same val prefix_freezable_preorder : srel u8 /// Clients can call the following lemma to reveal the preorder val prefix_freezable_preorder_elim (s1 s2:Seq.seq u8) : Lemma (prefix_freezable_preorder s1 s2 <==> pre s1 s2) /// Predicate for the frozen_until index being at least n /// /// It is stable w.r.t. the prefix_freezable_preorder let frozen_until_at_least (n:nat) : spred u8 = fun s -> Seq.length s >= 4 /\ //it follows from the inequalities below, but we need it for typing of frozen_until 4 <= n /\ n <= frozen_until s /\ frozen_until s <= Seq.length s /// Predicate for the frozen slice with indices in the [4, frozen_until) range /// /// It is stable w.r.t. the prefix_freezable_preorder let slice_is (i j:u32) (snap:G.erased (Seq.seq u8)) : spred u8 = fun s -> let len = Seq.length s in len >= 4 /\ //for typing of frozen_until (let frozen_until = frozen_until s in let i = U32.v i in let j = U32.v j in let snap = G.reveal snap in 4 <= i /\ i <= j /\ j <= frozen_until /\ frozen_until <= len /\ Seq.length snap == j - i /\ Seq.equal (Seq.slice s i j) snap) /// Buffer type for PrefixfreezableBuffers /// /// And abbreviation for the length indexed version type buffer = b:mbuffer u8 (prefix_freezable_preorder) (prefix_freezable_preorder) {length b >= 4 /\ b `witnessed` frozen_until_at_least 4} unfold let lbuffer (len:u32) = b:buffer{length b == U32.v len + 4} /// Allocation precondition for prefix freezable buffers adds an additional constraint /// that the input length + 4 must fit in u32 unfold let malloc_pre (r:HS.rid) (len:u32) = UInt.size (U32.v len + 4) 32 /\ malloc_pre r len /// The postcondition is also different in that there is no initializer /// and an additional predicate for the initial value of the frozen_until_index unfold let alloc_post_mem_common (h0:HS.mem) (b:buffer) (h1:HS.mem) = live h1 b /\ unused_in b h0 /\ Map.domain (HS.get_hmap h1) `Set.equal` Map.domain (HS.get_hmap h0) /\ HS.get_tip h1 == HS.get_tip h0 /\ modifies loc_none h0 h1 /\ frozen_until (as_seq h1 b) == 4 /// Allocation functions val gcmalloc (r:HS.rid) (len:u32) : ST (b:lbuffer len{frameOf b == r /\ recallable b}) (requires fun _ -> malloc_pre r len) (ensures alloc_post_mem_common) val malloc (r:HS.rid) (len:u32) : ST (b:lbuffer len{frameOf b == r /\ freeable b}) (requires fun _ -> malloc_pre r len) (ensures alloc_post_mem_common)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowStar.PrefixFreezableBuffer.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: FStar.UInt32.t -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.t", "Prims.l_and", "FStar.UInt.size", "Prims.op_Addition", "FStar.UInt32.v", "Prims.b2t", "LowStar.Monotonic.Buffer.alloca_pre", "Prims.logical" ]
[]
false
false
false
true
true
let alloca_pre (len: U32.t) =
UInt.size (U32.v len + 4) 32 /\ alloca_pre len
false
Steel.ST.HigherArray.fst
Steel.ST.HigherArray.free0
val free0 (#elt: Type) (#s: Ghost.erased (Seq.seq elt)) (a: array elt) : ST unit (pts_to a P.full_perm s) (fun _ -> emp) (length a == base_len (base (ptr_of a))) (fun _ -> True)
val free0 (#elt: Type) (#s: Ghost.erased (Seq.seq elt)) (a: array elt) : ST unit (pts_to a P.full_perm s) (fun _ -> emp) (length a == base_len (base (ptr_of a))) (fun _ -> True)
let free0 (#elt: Type) (#s: Ghost.erased (Seq.seq elt)) (a: array elt) : ST unit (pts_to a P.full_perm s) (fun _ -> emp) ( length a == base_len (base (ptr_of a)) ) (fun _ -> True) = drop (pts_to a _ _)
{ "file_name": "lib/steel/Steel.ST.HigherArray.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 21, "end_line": 311, "start_col": 0, "start_line": 300 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.HigherArray module P = Steel.PCMFrac module R = Steel.ST.PCMReference module M = FStar.Map module PM = Steel.PCMMap [@@noextract_to "krml"] let index_t (len: Ghost.erased nat) : Tot Type0 = (i: nat { i < len }) [@@noextract_to "krml"] let carrier (elt: Type u#a) (len: Ghost.erased nat) : Tot Type = PM.map (index_t len) (P.fractional elt) [@@noextract_to "krml"] let pcm (elt: Type u#a) (len: Ghost.erased nat) : Tot (P.pcm (carrier elt len)) = PM.pointwise (index_t len) (P.pcm_frac #elt) [@@noextract_to "krml"] let one (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.one let composable (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.composable [@@noextract_to "krml"] let compose (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.op [@@noextract_to "krml"] let mk_carrier (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p: P.perm) : Tot (carrier elt len) = let f (i: nat) : Tot (P.fractional elt) = if offset + Seq.length s > len || i < offset || i >= offset + Seq.length s then None else Some (Seq.index s (i - offset), p) in M.map_literal f let mk_carrier_inj (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires ( mk_carrier len offset s1 p1 == mk_carrier len offset s2 p2 /\ offset + Seq.length s1 <= len /\ offset + Seq.length s2 <= len )) (ensures ( s1 `Seq.equal` s2 /\ (Seq.length s1 > 0 ==> p1 == p2) )) = assert (forall (i: nat) . i < Seq.length s1 ==> (M.sel (mk_carrier len offset s1 p1) (offset + i) == Some (Seq.index s1 i, p1))); assert (forall (i: nat) . i < Seq.length s2 ==> M.sel (mk_carrier len offset s2 p2) (offset + i) == Some (Seq.index s2 i, p2)) [@@erasable] let base_t (elt: Type u#a) : Tot Type0 = Ghost.erased (base_len: US.t & ref _ (pcm elt (US.v base_len))) let base_len (#elt: Type) (b: base_t elt) : GTot nat = US.v (dfst b) [@@noextract_to "krml"] noeq type ptr (elt: Type u#a) : Type0 = { base_len: Ghost.erased US.t; // U32.t to prove that A.read, A.write offset computation does not overflow. TODO: replace U32.t with size_t base: (r: ref _ (pcm elt (US.v base_len)) { core_ref_is_null r ==> US.v base_len == 0 }); offset: (offset: nat { offset <= US.v base_len }); } let null_ptr a = { base_len = 0sz; base = null #_ #(pcm a 0) ; offset = 0 } let is_null_ptr p = is_null p.base let base (#elt: Type) (p: ptr elt) : Tot (base_t elt) = (| Ghost.reveal p.base_len, p.base |) let offset (#elt: Type) (p: ptr elt) : Ghost nat (requires True) (ensures (fun offset -> offset <= base_len (base p))) = p.offset let ptr_base_offset_inj (#elt: Type) (p1 p2: ptr elt) : Lemma (requires ( base p1 == base p2 /\ offset p1 == offset p2 )) (ensures ( p1 == p2 )) = () let base_len_null_ptr _ = () let length_fits #elt a = () let valid_perm (len: nat) (offset: nat) (slice_len: nat) (p: P.perm) : Tot prop = let open FStar.Real in ((offset + slice_len <= len /\ slice_len > 0) ==> (p.P.v <=. one)) [@__reduce__] let pts_to0 (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : Tot vprop = R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p) `star` pure ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) let pts_to (#elt: Type u#1) (a: array elt) ([@@@ smt_fallback ] p: P.perm) ([@@@ smt_fallback ] s: Seq.seq elt) : Tot vprop = pts_to0 a p s // this lemma is necessary because Steel.PCMReference is marked unfold let change_r_pts_to (#opened: _) (#carrier: Type u#1) (#pcm: P.pcm carrier) (p: ref carrier pcm) (v: carrier) (#carrier': Type u#1) (#pcm': P.pcm carrier') (p': ref carrier' pcm') (v': carrier') : STGhost unit opened (R.pts_to p v) (fun _ -> R.pts_to p' v') (// keep on distinct lines for error messages carrier == carrier' /\ pcm == pcm' /\ p == p' /\ v == v') (fun _ -> True) = rewrite (R.pts_to p v) (R.pts_to p' v') let intro_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (#v: _) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (R.pts_to (ptr_of a).base v) (fun _ -> pts_to a p s) ( v == mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p /\ valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) (fun _ -> True) = change_r_pts_to (ptr_of a).base v (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p); intro_pure _; rewrite (pts_to0 a p s) (pts_to a p s) let elim_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (pts_to a p s) (fun _ -> R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p)) (True) (fun _ -> valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) = rewrite (pts_to a p s) (pts_to0 a p s); elim_pure _ let pts_to_length a s = elim_pts_to a _ s; intro_pts_to a _ s let pts_to_not_null a s = elim_pts_to a _ s; R.pts_to_not_null _ _; intro_pts_to a _ s let mk_carrier_joinable (#elt: Type) (len: nat) (offset: nat) (s1: Seq.seq elt) (p1: P.perm) (s2: Seq.seq elt) (p2: P.perm) : Lemma (requires ( offset + Seq.length s1 <= len /\ Seq.length s1 == Seq.length s2 /\ P.joinable (pcm elt len) (mk_carrier len offset s1 p1) (mk_carrier len offset s2 p2) )) (ensures ( s1 `Seq.equal` s2 )) = let lem (i: nat { 0 <= i /\ i < Seq.length s1 }) : Lemma (Seq.index s1 i == Seq.index s2 i) [SMTPat (Seq.index s1 i); SMTPat (Seq.index s2 i)] = assert ( forall z . ( P.compatible (pcm elt len) (mk_carrier len offset s1 p1) z /\ P.compatible (pcm elt len) (mk_carrier len offset s2 p2) z ) ==> begin match M.sel z (offset + i) with | None -> False | Some (v, _) -> v == Seq.index s1 i /\ v == Seq.index s2 i end ) in () let pure_star_interp' (p:slprop u#a) (q:prop) (m:mem) : Lemma (interp (p `Steel.Memory.star` Steel.Memory.pure q) m <==> interp p m /\ q) = pure_star_interp p q m; emp_unit p let pts_to_inj a p1 s1 p2 s2 m = Classical.forall_intro reveal_pure; pure_star_interp' (hp_of (R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1))) ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s1) p1 /\ Seq.length s1 == length a ) m; pure_star_interp' (hp_of (R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s2 p2))) ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s2) p2 /\ Seq.length s2 == length a ) m; pts_to_join (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1) (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s2 p2) m; mk_carrier_joinable (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1 s2 p2 [@@noextract_to "krml"] let malloc0 (#elt: Type) (x: elt) (n: US.t) : ST (array elt) emp (fun a -> pts_to a P.full_perm (Seq.create (US.v n) x)) (True) (fun a -> length a == US.v n /\ base_len (base (ptr_of a)) == US.v n ) = let c : carrier elt (US.v n) = mk_carrier (US.v n) 0 (Seq.create (US.v n) x) P.full_perm in let base : ref (carrier elt (US.v n)) (pcm elt (US.v n)) = R.alloc c in R.pts_to_not_null base _; let p = { base_len = n; base = base; offset = 0; } in let a = (| p, Ghost.hide (US.v n) |) in change_r_pts_to base c (ptr_of a).base c; intro_pts_to a P.full_perm (Seq.create (US.v n) x); return a let malloc_ptr x n = let a = malloc0 x n in let (| p, _ |) = a in rewrite (pts_to _ _ _) (pts_to (| p, Ghost.hide (US.v n) |) _ _); return p
{ "checked_file": "/", "dependencies": [ "Steel.ST.PCMReference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.PCMMap.fst.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.HigherArray.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMMap", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Steel.ST.PCMReference", "short_module": "R" }, { "abbrev": true, "full_module": "Steel.PCMFrac", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Steel.ST.HigherArray.array elt -> Steel.ST.Effect.ST Prims.unit
Steel.ST.Effect.ST
[]
[]
[ "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Steel.ST.HigherArray.array", "Steel.ST.Util.drop", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.ST.HigherArray.pts_to", "Steel.FractionalPermission.full_perm", "FStar.Ghost.reveal", "Prims.unit", "Steel.Effect.Common.emp", "Steel.Effect.Common.vprop", "Prims.eq2", "Prims.nat", "Steel.ST.HigherArray.length", "Steel.ST.HigherArray.base_len", "Steel.ST.HigherArray.base", "Steel.ST.HigherArray.ptr_of", "Prims.l_True" ]
[]
false
true
false
false
false
let free0 (#elt: Type) (#s: Ghost.erased (Seq.seq elt)) (a: array elt) : ST unit (pts_to a P.full_perm s) (fun _ -> emp) (length a == base_len (base (ptr_of a))) (fun _ -> True) =
drop (pts_to a _ _)
false
LowStar.PrefixFreezableBuffer.fsti
LowStar.PrefixFreezableBuffer.frozen_until
val frozen_until : s: FStar.Seq.Base.seq LowStar.PrefixFreezableBuffer.u8 {FStar.Seq.Base.length s >= 4} -> Prims.nat
let frozen_until (s:Seq.seq u8{Seq.length s >= 4}) = le_to_n (Seq.slice s 0 4)
{ "file_name": "ulib/LowStar.PrefixFreezableBuffer.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 78, "end_line": 55, "start_col": 0, "start_line": 55 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.PrefixFreezableBuffer open FStar.HyperStack.ST include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module ST = FStar.HyperStack.ST (* * A library for prefix freezable buffers of elements of type u8 * * Our monotonicity theory does not easily support preorders and predicates over * multiple references. So instead of keeping the frozen-until counter in a * separate (ghost) reference, the library maintains the frozen-until counter (a u32) * in the first four bytes of the buffer itself * * Buffer contents up to the frozen-until counter are stable and clients can witness * and recall them * *) type u8 = UInt8.t type u32 = U32.t #set-options "--max_fuel 0 --max_ifuel 0" /// This is the frozen until index in the sequence representation of a PrefixFreezableBuffer val le_to_n (s:Seq.seq u8) : Tot nat
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowStar.PrefixFreezableBuffer.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq LowStar.PrefixFreezableBuffer.u8 {FStar.Seq.Base.length s >= 4} -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "LowStar.PrefixFreezableBuffer.u8", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Seq.Base.length", "LowStar.PrefixFreezableBuffer.le_to_n", "FStar.Seq.Base.slice", "Prims.nat" ]
[]
false
false
false
false
false
let frozen_until (s: Seq.seq u8 {Seq.length s >= 4}) =
le_to_n (Seq.slice s 0 4)
false
LowStar.PrefixFreezableBuffer.fsti
LowStar.PrefixFreezableBuffer.pre
val pre : s1: FStar.Seq.Base.seq LowStar.PrefixFreezableBuffer.u8 -> s2: FStar.Seq.Base.seq LowStar.PrefixFreezableBuffer.u8 -> Prims.logical
let pre (s1 s2:Seq.seq u8) = Seq.length s1 == Seq.length s2 /\ //lengths are same (let len = Seq.length s1 in len >= 4 ==> //if length >= 4 then (let frozen_until1 = frozen_until s1 in let frozen_until2 = frozen_until s2 in (4 <= frozen_until1 /\ frozen_until1 <= len) ==> //if frozen_until1 is in the range [4, len] then (frozen_until1 <= frozen_until2 /\ frozen_until2 <= len /\ //frozen until index increases monotonically, but remains <= len (forall (i:nat).{:pattern Seq.index s2 i} (4 <= i /\ i < frozen_until1) ==> Seq.index s2 i == Seq.index s1 i))))
{ "file_name": "ulib/LowStar.PrefixFreezableBuffer.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 78, "end_line": 69, "start_col": 15, "start_line": 60 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.PrefixFreezableBuffer open FStar.HyperStack.ST include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module ST = FStar.HyperStack.ST (* * A library for prefix freezable buffers of elements of type u8 * * Our monotonicity theory does not easily support preorders and predicates over * multiple references. So instead of keeping the frozen-until counter in a * separate (ghost) reference, the library maintains the frozen-until counter (a u32) * in the first four bytes of the buffer itself * * Buffer contents up to the frozen-until counter are stable and clients can witness * and recall them * *) type u8 = UInt8.t type u32 = U32.t #set-options "--max_fuel 0 --max_ifuel 0" /// This is the frozen until index in the sequence representation of a PrefixFreezableBuffer val le_to_n (s:Seq.seq u8) : Tot nat let frozen_until (s:Seq.seq u8{Seq.length s >= 4}) = le_to_n (Seq.slice s 0 4) /// Preorder for PrefixFreezableBuffers
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowStar.PrefixFreezableBuffer.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq LowStar.PrefixFreezableBuffer.u8 -> s2: FStar.Seq.Base.seq LowStar.PrefixFreezableBuffer.u8 -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "LowStar.PrefixFreezableBuffer.u8", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "Prims.l_imp", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThanOrEqual", "Prims.l_Forall", "Prims.op_LessThan", "FStar.Seq.Base.index", "LowStar.PrefixFreezableBuffer.frozen_until", "Prims.logical" ]
[]
false
false
false
true
true
let pre (s1 s2: Seq.seq u8) =
Seq.length s1 == Seq.length s2 /\ (let len = Seq.length s1 in len >= 4 ==> (let frozen_until1 = frozen_until s1 in let frozen_until2 = frozen_until s2 in (4 <= frozen_until1 /\ frozen_until1 <= len) ==> (frozen_until1 <= frozen_until2 /\ frozen_until2 <= len /\ (forall (i: nat). {:pattern Seq.index s2 i} (4 <= i /\ i < frozen_until1) ==> Seq.index s2 i == Seq.index s1 i))))
false
LowStar.PrefixFreezableBuffer.fsti
LowStar.PrefixFreezableBuffer.frozen_until_at_least
val frozen_until_at_least (n: nat) : spred u8
val frozen_until_at_least (n: nat) : spred u8
let frozen_until_at_least (n:nat) : spred u8 = fun s -> Seq.length s >= 4 /\ //it follows from the inequalities below, but we need it for typing of frozen_until 4 <= n /\ n <= frozen_until s /\ frozen_until s <= Seq.length s
{ "file_name": "ulib/LowStar.PrefixFreezableBuffer.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 65, "end_line": 87, "start_col": 0, "start_line": 84 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.PrefixFreezableBuffer open FStar.HyperStack.ST include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module ST = FStar.HyperStack.ST (* * A library for prefix freezable buffers of elements of type u8 * * Our monotonicity theory does not easily support preorders and predicates over * multiple references. So instead of keeping the frozen-until counter in a * separate (ghost) reference, the library maintains the frozen-until counter (a u32) * in the first four bytes of the buffer itself * * Buffer contents up to the frozen-until counter are stable and clients can witness * and recall them * *) type u8 = UInt8.t type u32 = U32.t #set-options "--max_fuel 0 --max_ifuel 0" /// This is the frozen until index in the sequence representation of a PrefixFreezableBuffer val le_to_n (s:Seq.seq u8) : Tot nat let frozen_until (s:Seq.seq u8{Seq.length s >= 4}) = le_to_n (Seq.slice s 0 4) /// Preorder for PrefixFreezableBuffers private unfold let pre (s1 s2:Seq.seq u8) = Seq.length s1 == Seq.length s2 /\ //lengths are same (let len = Seq.length s1 in len >= 4 ==> //if length >= 4 then (let frozen_until1 = frozen_until s1 in let frozen_until2 = frozen_until s2 in (4 <= frozen_until1 /\ frozen_until1 <= len) ==> //if frozen_until1 is in the range [4, len] then (frozen_until1 <= frozen_until2 /\ frozen_until2 <= len /\ //frozen until index increases monotonically, but remains <= len (forall (i:nat).{:pattern Seq.index s2 i} (4 <= i /\ i < frozen_until1) ==> Seq.index s2 i == Seq.index s1 i)))) //and the contents until frozen_until1 remain same val prefix_freezable_preorder : srel u8 /// Clients can call the following lemma to reveal the preorder val prefix_freezable_preorder_elim (s1 s2:Seq.seq u8) : Lemma (prefix_freezable_preorder s1 s2 <==> pre s1 s2) /// Predicate for the frozen_until index being at least n /// /// It is stable w.r.t. the prefix_freezable_preorder
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowStar.PrefixFreezableBuffer.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> LowStar.Monotonic.Buffer.spred LowStar.PrefixFreezableBuffer.u8
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "FStar.Seq.Base.seq", "LowStar.PrefixFreezableBuffer.u8", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Seq.Base.length", "Prims.op_LessThanOrEqual", "LowStar.PrefixFreezableBuffer.frozen_until", "LowStar.Monotonic.Buffer.spred" ]
[]
false
false
false
true
false
let frozen_until_at_least (n: nat) : spred u8 =
fun s -> Seq.length s >= 4 /\ 4 <= n /\ n <= frozen_until s /\ frozen_until s <= Seq.length s
false
Steel.ST.HigherArray.fst
Steel.ST.HigherArray.change_r_pts_to
val change_r_pts_to (#opened: _) (#carrier: Type u#1) (#pcm: P.pcm carrier) (p: ref carrier pcm) (v: carrier) (#carrier': Type u#1) (#pcm': P.pcm carrier') (p': ref carrier' pcm') (v': carrier') : STGhost unit opened (R.pts_to p v) (fun _ -> R.pts_to p' v') (carrier == carrier' /\ pcm == pcm' /\ p == p' /\ v == v') (fun _ -> True)
val change_r_pts_to (#opened: _) (#carrier: Type u#1) (#pcm: P.pcm carrier) (p: ref carrier pcm) (v: carrier) (#carrier': Type u#1) (#pcm': P.pcm carrier') (p': ref carrier' pcm') (v': carrier') : STGhost unit opened (R.pts_to p v) (fun _ -> R.pts_to p' v') (carrier == carrier' /\ pcm == pcm' /\ p == p' /\ v == v') (fun _ -> True)
let change_r_pts_to (#opened: _) (#carrier: Type u#1) (#pcm: P.pcm carrier) (p: ref carrier pcm) (v: carrier) (#carrier': Type u#1) (#pcm': P.pcm carrier') (p': ref carrier' pcm') (v': carrier') : STGhost unit opened (R.pts_to p v) (fun _ -> R.pts_to p' v') (// keep on distinct lines for error messages carrier == carrier' /\ pcm == pcm' /\ p == p' /\ v == v') (fun _ -> True) = rewrite (R.pts_to p v) (R.pts_to p' v')
{ "file_name": "lib/steel/Steel.ST.HigherArray.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 20, "end_line": 150, "start_col": 0, "start_line": 129 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.HigherArray module P = Steel.PCMFrac module R = Steel.ST.PCMReference module M = FStar.Map module PM = Steel.PCMMap [@@noextract_to "krml"] let index_t (len: Ghost.erased nat) : Tot Type0 = (i: nat { i < len }) [@@noextract_to "krml"] let carrier (elt: Type u#a) (len: Ghost.erased nat) : Tot Type = PM.map (index_t len) (P.fractional elt) [@@noextract_to "krml"] let pcm (elt: Type u#a) (len: Ghost.erased nat) : Tot (P.pcm (carrier elt len)) = PM.pointwise (index_t len) (P.pcm_frac #elt) [@@noextract_to "krml"] let one (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.one let composable (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.composable [@@noextract_to "krml"] let compose (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.op [@@noextract_to "krml"] let mk_carrier (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p: P.perm) : Tot (carrier elt len) = let f (i: nat) : Tot (P.fractional elt) = if offset + Seq.length s > len || i < offset || i >= offset + Seq.length s then None else Some (Seq.index s (i - offset), p) in M.map_literal f let mk_carrier_inj (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires ( mk_carrier len offset s1 p1 == mk_carrier len offset s2 p2 /\ offset + Seq.length s1 <= len /\ offset + Seq.length s2 <= len )) (ensures ( s1 `Seq.equal` s2 /\ (Seq.length s1 > 0 ==> p1 == p2) )) = assert (forall (i: nat) . i < Seq.length s1 ==> (M.sel (mk_carrier len offset s1 p1) (offset + i) == Some (Seq.index s1 i, p1))); assert (forall (i: nat) . i < Seq.length s2 ==> M.sel (mk_carrier len offset s2 p2) (offset + i) == Some (Seq.index s2 i, p2)) [@@erasable] let base_t (elt: Type u#a) : Tot Type0 = Ghost.erased (base_len: US.t & ref _ (pcm elt (US.v base_len))) let base_len (#elt: Type) (b: base_t elt) : GTot nat = US.v (dfst b) [@@noextract_to "krml"] noeq type ptr (elt: Type u#a) : Type0 = { base_len: Ghost.erased US.t; // U32.t to prove that A.read, A.write offset computation does not overflow. TODO: replace U32.t with size_t base: (r: ref _ (pcm elt (US.v base_len)) { core_ref_is_null r ==> US.v base_len == 0 }); offset: (offset: nat { offset <= US.v base_len }); } let null_ptr a = { base_len = 0sz; base = null #_ #(pcm a 0) ; offset = 0 } let is_null_ptr p = is_null p.base let base (#elt: Type) (p: ptr elt) : Tot (base_t elt) = (| Ghost.reveal p.base_len, p.base |) let offset (#elt: Type) (p: ptr elt) : Ghost nat (requires True) (ensures (fun offset -> offset <= base_len (base p))) = p.offset let ptr_base_offset_inj (#elt: Type) (p1 p2: ptr elt) : Lemma (requires ( base p1 == base p2 /\ offset p1 == offset p2 )) (ensures ( p1 == p2 )) = () let base_len_null_ptr _ = () let length_fits #elt a = () let valid_perm (len: nat) (offset: nat) (slice_len: nat) (p: P.perm) : Tot prop = let open FStar.Real in ((offset + slice_len <= len /\ slice_len > 0) ==> (p.P.v <=. one)) [@__reduce__] let pts_to0 (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : Tot vprop = R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p) `star` pure ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) let pts_to (#elt: Type u#1) (a: array elt) ([@@@ smt_fallback ] p: P.perm) ([@@@ smt_fallback ] s: Seq.seq elt) : Tot vprop = pts_to0 a p s
{ "checked_file": "/", "dependencies": [ "Steel.ST.PCMReference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.PCMMap.fst.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.HigherArray.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMMap", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Steel.ST.PCMReference", "short_module": "R" }, { "abbrev": true, "full_module": "Steel.PCMFrac", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Memory.ref carrier pcm -> v: carrier -> p': Steel.Memory.ref carrier' pcm' -> v': carrier' -> Steel.ST.Effect.Ghost.STGhost Prims.unit
Steel.ST.Effect.Ghost.STGhost
[]
[]
[ "Steel.Memory.inames", "FStar.PCM.pcm", "Steel.Memory.ref", "Steel.ST.Util.rewrite", "Steel.ST.PCMReference.pts_to", "Prims.unit", "Steel.Effect.Common.vprop", "Prims.l_and", "Prims.eq2", "Prims.l_True" ]
[]
false
true
false
false
false
let change_r_pts_to (#opened: _) (#carrier: Type u#1) (#pcm: P.pcm carrier) (p: ref carrier pcm) (v: carrier) (#carrier': Type u#1) (#pcm': P.pcm carrier') (p': ref carrier' pcm') (v': carrier') : STGhost unit opened (R.pts_to p v) (fun _ -> R.pts_to p' v') (carrier == carrier' /\ pcm == pcm' /\ p == p' /\ v == v') (fun _ -> True) =
rewrite (R.pts_to p v) (R.pts_to p' v')
false
LowStar.PrefixFreezableBuffer.fsti
LowStar.PrefixFreezableBuffer.slice_is
val slice_is (i j: u32) (snap: G.erased (Seq.seq u8)) : spred u8
val slice_is (i j: u32) (snap: G.erased (Seq.seq u8)) : spred u8
let slice_is (i j:u32) (snap:G.erased (Seq.seq u8)) : spred u8 = fun s -> let len = Seq.length s in len >= 4 /\ //for typing of frozen_until (let frozen_until = frozen_until s in let i = U32.v i in let j = U32.v j in let snap = G.reveal snap in 4 <= i /\ i <= j /\ j <= frozen_until /\ frozen_until <= len /\ Seq.length snap == j - i /\ Seq.equal (Seq.slice s i j) snap)
{ "file_name": "ulib/LowStar.PrefixFreezableBuffer.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 102, "start_col": 0, "start_line": 94 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.PrefixFreezableBuffer open FStar.HyperStack.ST include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module ST = FStar.HyperStack.ST (* * A library for prefix freezable buffers of elements of type u8 * * Our monotonicity theory does not easily support preorders and predicates over * multiple references. So instead of keeping the frozen-until counter in a * separate (ghost) reference, the library maintains the frozen-until counter (a u32) * in the first four bytes of the buffer itself * * Buffer contents up to the frozen-until counter are stable and clients can witness * and recall them * *) type u8 = UInt8.t type u32 = U32.t #set-options "--max_fuel 0 --max_ifuel 0" /// This is the frozen until index in the sequence representation of a PrefixFreezableBuffer val le_to_n (s:Seq.seq u8) : Tot nat let frozen_until (s:Seq.seq u8{Seq.length s >= 4}) = le_to_n (Seq.slice s 0 4) /// Preorder for PrefixFreezableBuffers private unfold let pre (s1 s2:Seq.seq u8) = Seq.length s1 == Seq.length s2 /\ //lengths are same (let len = Seq.length s1 in len >= 4 ==> //if length >= 4 then (let frozen_until1 = frozen_until s1 in let frozen_until2 = frozen_until s2 in (4 <= frozen_until1 /\ frozen_until1 <= len) ==> //if frozen_until1 is in the range [4, len] then (frozen_until1 <= frozen_until2 /\ frozen_until2 <= len /\ //frozen until index increases monotonically, but remains <= len (forall (i:nat).{:pattern Seq.index s2 i} (4 <= i /\ i < frozen_until1) ==> Seq.index s2 i == Seq.index s1 i)))) //and the contents until frozen_until1 remain same val prefix_freezable_preorder : srel u8 /// Clients can call the following lemma to reveal the preorder val prefix_freezable_preorder_elim (s1 s2:Seq.seq u8) : Lemma (prefix_freezable_preorder s1 s2 <==> pre s1 s2) /// Predicate for the frozen_until index being at least n /// /// It is stable w.r.t. the prefix_freezable_preorder let frozen_until_at_least (n:nat) : spred u8 = fun s -> Seq.length s >= 4 /\ //it follows from the inequalities below, but we need it for typing of frozen_until 4 <= n /\ n <= frozen_until s /\ frozen_until s <= Seq.length s /// Predicate for the frozen slice with indices in the [4, frozen_until) range /// /// It is stable w.r.t. the prefix_freezable_preorder
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowStar.PrefixFreezableBuffer.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: LowStar.PrefixFreezableBuffer.u32 -> j: LowStar.PrefixFreezableBuffer.u32 -> snap: FStar.Ghost.erased (FStar.Seq.Base.seq LowStar.PrefixFreezableBuffer.u8) -> LowStar.Monotonic.Buffer.spred LowStar.PrefixFreezableBuffer.u8
Prims.Tot
[ "total" ]
[]
[ "LowStar.PrefixFreezableBuffer.u32", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "LowStar.PrefixFreezableBuffer.u8", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThanOrEqual", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Subtraction", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "FStar.Ghost.reveal", "FStar.UInt.uint_t", "FStar.UInt32.v", "Prims.nat", "LowStar.PrefixFreezableBuffer.frozen_until", "LowStar.Monotonic.Buffer.spred" ]
[]
false
false
false
true
false
let slice_is (i j: u32) (snap: G.erased (Seq.seq u8)) : spred u8 =
fun s -> let len = Seq.length s in len >= 4 /\ (let frozen_until = frozen_until s in let i = U32.v i in let j = U32.v j in let snap = G.reveal snap in 4 <= i /\ i <= j /\ j <= frozen_until /\ frozen_until <= len /\ Seq.length snap == j - i /\ Seq.equal (Seq.slice s i j) snap)
false
LowStar.PrefixFreezableBuffer.fsti
LowStar.PrefixFreezableBuffer.alloc_post_mem_common
val alloc_post_mem_common : h0: FStar.Monotonic.HyperStack.mem -> b: LowStar.PrefixFreezableBuffer.buffer -> h1: FStar.Monotonic.HyperStack.mem -> Prims.logical
let alloc_post_mem_common (h0:HS.mem) (b:buffer) (h1:HS.mem) = live h1 b /\ unused_in b h0 /\ Map.domain (HS.get_hmap h1) `Set.equal` Map.domain (HS.get_hmap h0) /\ HS.get_tip h1 == HS.get_tip h0 /\ modifies loc_none h0 h1 /\ frozen_until (as_seq h1 b) == 4
{ "file_name": "ulib/LowStar.PrefixFreezableBuffer.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 134, "start_col": 7, "start_line": 127 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.PrefixFreezableBuffer open FStar.HyperStack.ST include LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module ST = FStar.HyperStack.ST (* * A library for prefix freezable buffers of elements of type u8 * * Our monotonicity theory does not easily support preorders and predicates over * multiple references. So instead of keeping the frozen-until counter in a * separate (ghost) reference, the library maintains the frozen-until counter (a u32) * in the first four bytes of the buffer itself * * Buffer contents up to the frozen-until counter are stable and clients can witness * and recall them * *) type u8 = UInt8.t type u32 = U32.t #set-options "--max_fuel 0 --max_ifuel 0" /// This is the frozen until index in the sequence representation of a PrefixFreezableBuffer val le_to_n (s:Seq.seq u8) : Tot nat let frozen_until (s:Seq.seq u8{Seq.length s >= 4}) = le_to_n (Seq.slice s 0 4) /// Preorder for PrefixFreezableBuffers private unfold let pre (s1 s2:Seq.seq u8) = Seq.length s1 == Seq.length s2 /\ //lengths are same (let len = Seq.length s1 in len >= 4 ==> //if length >= 4 then (let frozen_until1 = frozen_until s1 in let frozen_until2 = frozen_until s2 in (4 <= frozen_until1 /\ frozen_until1 <= len) ==> //if frozen_until1 is in the range [4, len] then (frozen_until1 <= frozen_until2 /\ frozen_until2 <= len /\ //frozen until index increases monotonically, but remains <= len (forall (i:nat).{:pattern Seq.index s2 i} (4 <= i /\ i < frozen_until1) ==> Seq.index s2 i == Seq.index s1 i)))) //and the contents until frozen_until1 remain same val prefix_freezable_preorder : srel u8 /// Clients can call the following lemma to reveal the preorder val prefix_freezable_preorder_elim (s1 s2:Seq.seq u8) : Lemma (prefix_freezable_preorder s1 s2 <==> pre s1 s2) /// Predicate for the frozen_until index being at least n /// /// It is stable w.r.t. the prefix_freezable_preorder let frozen_until_at_least (n:nat) : spred u8 = fun s -> Seq.length s >= 4 /\ //it follows from the inequalities below, but we need it for typing of frozen_until 4 <= n /\ n <= frozen_until s /\ frozen_until s <= Seq.length s /// Predicate for the frozen slice with indices in the [4, frozen_until) range /// /// It is stable w.r.t. the prefix_freezable_preorder let slice_is (i j:u32) (snap:G.erased (Seq.seq u8)) : spred u8 = fun s -> let len = Seq.length s in len >= 4 /\ //for typing of frozen_until (let frozen_until = frozen_until s in let i = U32.v i in let j = U32.v j in let snap = G.reveal snap in 4 <= i /\ i <= j /\ j <= frozen_until /\ frozen_until <= len /\ Seq.length snap == j - i /\ Seq.equal (Seq.slice s i j) snap) /// Buffer type for PrefixfreezableBuffers /// /// And abbreviation for the length indexed version type buffer = b:mbuffer u8 (prefix_freezable_preorder) (prefix_freezable_preorder) {length b >= 4 /\ b `witnessed` frozen_until_at_least 4} unfold let lbuffer (len:u32) = b:buffer{length b == U32.v len + 4} /// Allocation precondition for prefix freezable buffers adds an additional constraint /// that the input length + 4 must fit in u32 unfold let malloc_pre (r:HS.rid) (len:u32) = UInt.size (U32.v len + 4) 32 /\ malloc_pre r len /// The postcondition is also different in that there is no initializer /// and an additional predicate for the initial value of the frozen_until_index
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowStar.PrefixFreezableBuffer.fsti" }
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h0: FStar.Monotonic.HyperStack.mem -> b: LowStar.PrefixFreezableBuffer.buffer -> h1: FStar.Monotonic.HyperStack.mem -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "LowStar.PrefixFreezableBuffer.buffer", "Prims.l_and", "LowStar.Monotonic.Buffer.live", "LowStar.PrefixFreezableBuffer.u8", "LowStar.PrefixFreezableBuffer.prefix_freezable_preorder", "LowStar.Monotonic.Buffer.unused_in", "FStar.Set.equal", "FStar.Monotonic.HyperHeap.rid", "FStar.Map.domain", "FStar.Monotonic.Heap.heap", "FStar.Monotonic.HyperStack.get_hmap", "Prims.eq2", "FStar.Monotonic.HyperStack.get_tip", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_none", "Prims.int", "LowStar.PrefixFreezableBuffer.frozen_until", "LowStar.Monotonic.Buffer.as_seq", "Prims.logical" ]
[]
false
false
false
true
true
let alloc_post_mem_common (h0: HS.mem) (b: buffer) (h1: HS.mem) =
live h1 b /\ unused_in b h0 /\ (Map.domain (HS.get_hmap h1)) `Set.equal` (Map.domain (HS.get_hmap h0)) /\ HS.get_tip h1 == HS.get_tip h0 /\ modifies loc_none h0 h1 /\ frozen_until (as_seq h1 b) == 4
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_add
val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen
val bn_add: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen
let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 21, "start_col": 0, "start_line": 20 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> Hacl.Spec.Bignum.Base.carry t * Hacl.Spec.Bignum.Definitions.lbignum t aLen
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Addition.bn_add", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Base.carry" ]
[]
false
false
false
false
false
let bn_add #t #aLen #bLen a b =
Hacl.Spec.Bignum.Addition.bn_add a b
false
Steel.MonotonicHigherReference.fst
Steel.MonotonicHigherReference.read_refine
val read_refine (#a:Type) (#q:perm) (#p:Preorder.preorder a) (#frame:a -> vprop) (r:ref a p) : SteelT a (h_exists (fun (v:a) -> pts_to r q v `star` frame v)) (fun v -> pts_to r q v `star` frame v)
val read_refine (#a:Type) (#q:perm) (#p:Preorder.preorder a) (#frame:a -> vprop) (r:ref a p) : SteelT a (h_exists (fun (v:a) -> pts_to r q v `star` frame v)) (fun v -> pts_to r q v `star` frame v)
let read_refine (#a:Type) (#q:perm) (#p:Preorder.preorder a) (#f:a -> vprop) (r:ref a p) : SteelT a (h_exists (fun (v:a) -> pts_to r q v `star` f v)) (fun v -> pts_to r q v `star` f v) = let v = witness_exists () in rewrite_slprop (pts_to r q (Ghost.hide (Ghost.reveal v)) `star` f v) (h_exists (pts_to_body r q v) `star` f v) (fun _ -> ()); let h = witness_exists () in let _ = elim_pure r v h in let hv = read r h in let _:squash (compatible pcm_history h hv) = () in rewrite_slprop (PR.pts_to r h) (pts_to_body r q v h) (fun m -> emp_unit (M.pts_to r h); pure_star_interp (M.pts_to r h) (history_val h v q) m); intro_exists_erased h (pts_to_body r q v); rewrite_erased (fun v -> (pts_to r q v `star` f v)) v (hval_tot hv); let v = hval_tot hv in rewrite_slprop (pts_to r q (hval_tot hv) `star` f (Ghost.reveal (Ghost.hide (hval_tot hv)))) (pts_to r q v `star` f v) (fun _ -> ()); return v
{ "file_name": "lib/steel/Steel.MonotonicHigherReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 12, "end_line": 142, "start_col": 0, "start_line": 116 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.MonotonicHigherReference open FStar.Ghost open FStar.PCM open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.PCMReference open Steel.FractionalPermission open Steel.Preorder module Preorder = FStar.Preorder module Q = Steel.Preorder module M = Steel.Memory module PR = Steel.PCMReference open FStar.Real #set-options "--ide_id_info_off" let ref a p = M.ref (history a p) pcm_history [@@__reduce__] let pts_to_body #a #p (r:ref a p) (f:perm) (v:Ghost.erased a) (h:history a p) = PR.pts_to r h `star` pure (history_val h v f) let pts_to' (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v:Ghost.erased a) = h_exists (pts_to_body r f v) let pts_to_sl r f v = hp_of (pts_to' r f v) let intro_pure #a #p #f (r:ref a p) (v:a) (h:history a p { history_val h v f }) : SteelT unit (PR.pts_to r h) (fun _ -> pts_to_body r f v h) = rewrite_slprop (PR.pts_to r h) (pts_to_body _ _ _ _) (fun m -> emp_unit (M.pts_to r h); pure_star_interp (M.pts_to r h) (history_val h v f) m) let intro_pure_full #a #p #f (r:ref a p) (v:a) (h:history a p { history_val h v f }) : SteelT unit (PR.pts_to r h) (fun _ -> pts_to r f v) = intro_pure #a #p #f r v h; intro_exists h (pts_to_body r f v) let alloc (#a:Type) (p:Preorder.preorder a) (v:a) = let h = Current [v] full_perm in assert (compatible pcm_history h h); let x : ref a p = alloc h in intro_pure_full x v h; x let extract_pure #a #uses #p #f (r:ref a p) (v:Ghost.erased a) (h:Ghost.erased (history a p)) : SteelGhostT (_:unit{history_val h v f}) uses (pts_to_body r f v h) (fun _ -> pts_to_body r f v h) = rewrite_slprop (pts_to_body r f v h) (PR.pts_to r h `star` pure (history_val h v f)) (fun _ -> ()); elim_pure (history_val h v f); rewrite_slprop (PR.pts_to r h) (pts_to_body r f v h) (fun m -> emp_unit (M.pts_to r h); pure_star_interp (M.pts_to r h) (history_val h v f) m ) let elim_pure #a #uses #p #f (r:ref a p) (v:Ghost.erased a) (h:Ghost.erased (history a p)) : SteelGhostT (_:unit{history_val h v f}) uses (pts_to_body r f v h) (fun _ -> PR.pts_to r h) = let _ = extract_pure r v h in drop (pure (history_val h v f)) let rewrite_erased #a (p:erased a -> vprop) (x:erased a) (y:a) : Steel unit (p x) (fun _ -> p (Ghost.hide y)) (requires fun _ -> reveal x == y) (ensures fun _ _ _ -> True) = rewrite_slprop (p x) (p (Ghost.hide y)) (fun _ -> ()) let rewrite_reveal_hide #a (x:a) (p:a -> vprop) () : SteelT unit (p (Ghost.reveal (Ghost.hide x))) (fun _ -> p x) = rewrite_slprop (p (Ghost.reveal (Ghost.hide x))) (p x) (fun _ -> ())
{ "checked_file": "/", "dependencies": [ "Steel.Preorder.fst.checked", "Steel.PCMReference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.MonotonicHigherReference.fst" }
[ { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "PR" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "M" }, { "abbrev": true, "full_module": "Steel.Preorder", "short_module": "Q" }, { "abbrev": false, "full_module": "Steel.Preorder", "short_module": null }, { "abbrev": false, "full_module": "Steel.PCMReference", "short_module": null }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.MonotonicHigherReference.ref a p -> Steel.Effect.SteelT a
Steel.Effect.SteelT
[]
[]
[ "Steel.FractionalPermission.perm", "FStar.Preorder.preorder", "Steel.Effect.Common.vprop", "Steel.MonotonicHigherReference.ref", "Steel.Effect.Atomic.return", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Effect.Common.VStar", "Steel.MonotonicHigherReference.pts_to", "Prims.unit", "Steel.Effect.Atomic.rewrite_slprop", "Steel.Effect.Common.star", "Steel.Preorder.hval_tot", "FStar.Ghost.reveal", "Steel.Memory.mem", "Steel.MonotonicHigherReference.rewrite_erased", "FStar.Ghost.erased", "Steel.Effect.Atomic.intro_exists_erased", "Steel.Preorder.history", "Steel.MonotonicHigherReference.pts_to_body", "Steel.PCMReference.pts_to", "Steel.Preorder.pcm_history", "Steel.Memory.pure_star_interp", "Steel.Memory.pts_to", "Steel.Preorder.history_val", "Steel.Memory.emp_unit", "Prims.squash", "FStar.PCM.compatible", "Steel.PCMReference.read", "Steel.MonotonicHigherReference.elim_pure", "Steel.Effect.Atomic.witness_exists", "Steel.Effect.Atomic.h_exists" ]
[]
false
true
false
false
false
let read_refine (#a: Type) (#q: perm) (#p: Preorder.preorder a) (#f: (a -> vprop)) (r: ref a p) : SteelT a (h_exists (fun (v: a) -> (pts_to r q v) `star` (f v))) (fun v -> (pts_to r q v) `star` (f v)) =
let v = witness_exists () in rewrite_slprop ((pts_to r q (Ghost.hide (Ghost.reveal v))) `star` (f v)) ((h_exists (pts_to_body r q v)) `star` (f v)) (fun _ -> ()); let h = witness_exists () in let _ = elim_pure r v h in let hv = read r h in let _:squash (compatible pcm_history h hv) = () in rewrite_slprop (PR.pts_to r h) (pts_to_body r q v h) (fun m -> emp_unit (M.pts_to r h); pure_star_interp (M.pts_to r h) (history_val h v q) m); intro_exists_erased h (pts_to_body r q v); rewrite_erased (fun v -> ((pts_to r q v) `star` (f v))) v (hval_tot hv); let v = hval_tot hv in rewrite_slprop ((pts_to r q (hval_tot hv)) `star` (f (Ghost.reveal (Ghost.hide (hval_tot hv))))) ((pts_to r q v) `star` (f v)) (fun _ -> ()); return v
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_sub
val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen
val bn_sub: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> carry t & lbignum t aLen
let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 27, "start_col": 0, "start_line": 26 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> Hacl.Spec.Bignum.Base.carry t * Hacl.Spec.Bignum.Definitions.lbignum t aLen
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Addition.bn_sub", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Base.carry" ]
[]
false
false
false
false
false
let bn_sub #t #aLen #bLen a b =
Hacl.Spec.Bignum.Addition.bn_sub a b
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_add1
val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> carry t & lbignum t aLen
val bn_add1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> carry t & lbignum t aLen
let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 9, "start_col": 0, "start_line": 8 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b1: Hacl.Spec.Bignum.Definitions.limb t -> Hacl.Spec.Bignum.Base.carry t * Hacl.Spec.Bignum.Definitions.lbignum t aLen
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Addition.bn_add1", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Base.carry" ]
[]
false
false
false
false
false
let bn_add1 #t #aLen a b1 =
Hacl.Spec.Bignum.Addition.bn_add1 a b1
false
LList.ST.fst
LList.ST.cons
val cons (#a:Type0) (#l:G.erased (list a)) (x:a) (ll:llist a) : STT (llist a) (ll `is_list` l) (fun ll -> ll `is_list` (x::l))
val cons (#a:Type0) (#l:G.erased (list a)) (x:a) (ll:llist a) : STT (llist a) (ll `is_list` l) (fun ll -> ll `is_list` (x::l))
let cons #_ #l x ll = let node = { data = x; next = ll; } in let head = alloc node in rewrite (ll `is_list` l) (node.next `is_list` l); intro (x::l) node head (); return head
{ "file_name": "share/steel/examples/steel/LList.ST.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 13, "end_line": 120, "start_col": 0, "start_line": 111 }
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: Aseem Rastogi *) module LList.ST open Steel.Memory open Steel.ST.Effect open Steel.ST.Util open Steel.ST.Reference #set-options "--ide_id_info_off" let rec is_list #a ll l : Tot vprop (decreases l) = match l with | [] -> pure (ll == null) | hd::tl -> exists_ (fun (node:llist_node a) -> pts_to ll full_perm node `star` pure (node.data == hd) `star` is_list node.next tl) let empty a = null module T = FStar.Tactics let intro #_ #_ l node ll _ = intro_pure (node.data == Cons?.hd l); intro_exists node (fun node -> pts_to ll full_perm node `star` pure (node.data == Cons?.hd l) `star` is_list node.next (Cons?.tl l)); assert (exists_ (fun node -> pts_to ll full_perm node `star` pure (node.data == Cons?.hd l) `star` is_list node.next (Cons?.tl l)) == is_list ll (Cons?.hd l::Cons?.tl l)) by (T.norm [delta_only [`%is_list]; zeta; iota]); rewrite (exists_ (fun node -> pts_to ll full_perm node `star` pure (node.data == Cons?.hd l) `star` is_list node.next (Cons?.tl l))) (is_list ll l) let elim_aux (#opened:_) (#a:Type0) (hd:G.erased a) (tl:G.erased (list a)) (ll:llist a) : STGhost (G.erased (llist_node a)) opened (is_list ll (G.reveal hd::tl)) (fun node -> pts_to ll full_perm node `star` is_list node.next tl) (requires True) (ensures fun node -> eq2 #a node.data hd) = assert (is_list ll (G.reveal hd::tl) == exists_ (fun node -> pts_to ll full_perm node `star` pure (eq2 #a node.data hd) `star` is_list node.next tl)) by (T.norm [delta_only [`%is_list]; zeta; iota]); rewrite (is_list ll (G.reveal hd::tl)) (exists_ (fun node -> pts_to ll full_perm node `star` pure (eq2 #a node.data hd) `star` is_list node.next tl)); let node = elim_exists () in elim_pure (eq2 _ _); node let elim #opened #a l ll p = rewrite (is_list ll l) (is_list ll (Cons?.hd l::Cons?.tl l)); elim_aux (Cons?.hd l) (Cons?.tl l) ll let empty_pts_to #_ a = intro_pure (empty a == null); rewrite (pure _) (is_list (empty a) [])
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Reference.fsti.checked", "Steel.ST.Effect.fsti.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "LList.ST.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.ST.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": false, "full_module": "Steel.ST.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "LList", "short_module": null }, { "abbrev": false, "full_module": "LList", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> ll: LList.ST.llist a -> Steel.ST.Effect.STT (LList.ST.llist a)
Steel.ST.Effect.STT
[]
[]
[ "FStar.Ghost.erased", "Prims.list", "LList.ST.llist", "Steel.ST.Util.return", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "LList.ST.is_list", "Prims.Cons", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop", "Prims.unit", "LList.ST.intro", "Steel.ST.Util.rewrite", "LList.ST.__proj__Mkllist_node__item__next", "Steel.ST.Reference.ref", "LList.ST.llist_node", "Steel.ST.Reference.alloc", "LList.ST.Mkllist_node" ]
[]
false
true
false
false
false
let cons #_ #l x ll =
let node = { data = x; next = ll } in let head = alloc node in rewrite (ll `is_list` l) (node.next `is_list` l); intro (x :: l) node head (); return head
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_add1_lemma
val bn_add1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_add1 a b1 in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + v b1)
val bn_add1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_add1 a b1 in v c * pow2 (bits t * aLen) + bn_v res == bn_v a + v b1)
let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 46, "end_line": 12, "start_col": 0, "start_line": 11 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b1: Hacl.Spec.Bignum.Definitions.limb t -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.bn_add1 a b1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * aLen) + Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.bn_v a + Lib.IntTypes.v b1) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Addition.bn_add1_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_add1_lemma #t #aLen a b1 =
Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_sub1
val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> carry t & lbignum t aLen
val bn_sub1: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> carry t & lbignum t aLen
let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 15, "start_col": 0, "start_line": 14 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b1: Hacl.Spec.Bignum.Definitions.limb t -> Hacl.Spec.Bignum.Base.carry t * Hacl.Spec.Bignum.Definitions.lbignum t aLen
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Addition.bn_sub1", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Base.carry" ]
[]
false
false
false
false
false
let bn_sub1 #t #aLen a b1 =
Hacl.Spec.Bignum.Addition.bn_sub1 a b1
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_mul1
val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b1:limb t -> limb t & lbignum t aLen
val bn_mul1: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b1:limb t -> limb t & lbignum t aLen
let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 46, "end_line": 118, "start_col": 0, "start_line": 117 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b1: Hacl.Spec.Bignum.Definitions.limb t -> Hacl.Spec.Bignum.Definitions.limb t * Hacl.Spec.Bignum.Definitions.lbignum t aLen
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Multiplication.bn_mul1", "FStar.Pervasives.Native.tuple2" ]
[]
false
false
false
false
false
let bn_mul1 #t #aLen a b1 =
Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_sub1_lemma
val bn_sub1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_sub1 a b1 in bn_v res - v c * pow2 (bits t * aLen) == bn_v a - v b1)
val bn_sub1_lemma: #t:limb_t -> #aLen:size_pos -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_sub1 a b1 in bn_v res - v c * pow2 (bits t * aLen) == bn_v a - v b1)
let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 46, "end_line": 18, "start_col": 0, "start_line": 17 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b1: Hacl.Spec.Bignum.Definitions.limb t -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.bn_sub1 a b1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in Hacl.Spec.Bignum.Definitions.bn_v res - Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * aLen) == Hacl.Spec.Bignum.Definitions.bn_v a - Lib.IntTypes.v b1) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Addition.bn_sub1_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_sub1_lemma #t #aLen a b1 =
Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_add_lemma
val bn_add_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c_out, res) = bn_add a b in bn_v res + v c_out * pow2 (bits t * aLen) == bn_v a + bn_v b)
val bn_add_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c_out, res) = bn_add a b in bn_v res + v c_out * pow2 (bits t * aLen) == bn_v a + bn_v b)
let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 24, "start_col": 0, "start_line": 23 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.bn_add a b in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c_out res = _ in Hacl.Spec.Bignum.Definitions.bn_v res + Lib.IntTypes.v c_out * Prims.pow2 (Lib.IntTypes.bits t * aLen) == Hacl.Spec.Bignum.Definitions.bn_v a + Hacl.Spec.Bignum.Definitions.bn_v b) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Addition.bn_add_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_add_lemma #t #aLen #bLen a b =
Hacl.Spec.Bignum.Addition.bn_add_lemma a b
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_add_mod_n
val bn_add_mod_n: #t:limb_t -> #len:size_nat -> n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> lbignum t len
val bn_add_mod_n: #t:limb_t -> #len:size_nat -> n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> lbignum t len
let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 70, "start_col": 0, "start_line": 68 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Hacl.Spec.Bignum.Definitions.lbignum t len -> a: Hacl.Spec.Bignum.Definitions.lbignum t len -> b: Hacl.Spec.Bignum.Definitions.lbignum t len -> Hacl.Spec.Bignum.Definitions.lbignum t len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Hacl.Spec.Bignum.bn_reduce_once", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.bn_add" ]
[]
false
false
false
false
false
let bn_add_mod_n #t #len n a b =
let c0, res0 = bn_add a b in bn_reduce_once n c0 res0
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_sub_lemma
val bn_sub_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c_out, res) = bn_sub a b in bn_v res - v c_out * pow2 (bits t * aLen) == bn_v a - bn_v b)
val bn_sub_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{bLen <= aLen} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (let (c_out, res) = bn_sub a b in bn_v res - v c_out * pow2 (bits t * aLen) == bn_v a - bn_v b)
let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 30, "start_col": 0, "start_line": 29 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.bn_sub a b in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c_out res = _ in Hacl.Spec.Bignum.Definitions.bn_v res - Lib.IntTypes.v c_out * Prims.pow2 (Lib.IntTypes.bits t * aLen) == Hacl.Spec.Bignum.Definitions.bn_v a - Hacl.Spec.Bignum.Definitions.bn_v b) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Addition.bn_sub_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_sub_lemma #t #aLen #bLen a b =
Hacl.Spec.Bignum.Addition.bn_sub_lemma a b
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_reduce_once
val bn_reduce_once: #t:limb_t -> #len:size_nat -> n:lbignum t len -> c:carry t -> a:lbignum t len -> lbignum t len
val bn_reduce_once: #t:limb_t -> #len:size_nat -> n:lbignum t len -> c:carry t -> a:lbignum t len -> lbignum t len
let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 28, "end_line": 35, "start_col": 0, "start_line": 32 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Hacl.Spec.Bignum.Definitions.lbignum t len -> c: Hacl.Spec.Bignum.Base.carry t -> a: Hacl.Spec.Bignum.Definitions.lbignum t len -> Hacl.Spec.Bignum.Definitions.lbignum t len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Lib.Sequence.map2", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Base.mask_select", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Subtraction_Dot", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.bn_sub" ]
[]
false
false
false
false
false
let bn_reduce_once #t #len n c0 a =
let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_sub_mod_n
val bn_sub_mod_n: #t:limb_t -> #len:size_nat -> n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> lbignum t len
val bn_sub_mod_n: #t:limb_t -> #len:size_nat -> n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> lbignum t len
let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 83, "start_col": 0, "start_line": 79 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Hacl.Spec.Bignum.Definitions.lbignum t len -> a: Hacl.Spec.Bignum.Definitions.lbignum t len -> b: Hacl.Spec.Bignum.Definitions.lbignum t len -> Hacl.Spec.Bignum.Definitions.lbignum t len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Lib.Sequence.map2", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Base.mask_select", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.uint", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.bn_add", "Hacl.Spec.Bignum.bn_sub" ]
[]
false
false
false
false
false
let bn_sub_mod_n #t #len n a b =
let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_add_mod_n_lemma
val bn_add_mod_n_lemma: #t:limb_t -> #len:size_nat -> n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> Lemma (requires bn_v a < bn_v n /\ bn_v b < bn_v n) (ensures bn_v (bn_add_mod_n n a b) == (bn_v a + bn_v b) % bn_v n)
val bn_add_mod_n_lemma: #t:limb_t -> #len:size_nat -> n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> Lemma (requires bn_v a < bn_v n /\ bn_v b < bn_v n) (ensures bn_v (bn_add_mod_n n a b) == (bn_v a + bn_v b) % bn_v n)
let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 76, "start_col": 0, "start_line": 73 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Hacl.Spec.Bignum.Definitions.lbignum t len -> a: Hacl.Spec.Bignum.Definitions.lbignum t len -> b: Hacl.Spec.Bignum.Definitions.lbignum t len -> FStar.Pervasives.Lemma (requires Hacl.Spec.Bignum.Definitions.bn_v a < Hacl.Spec.Bignum.Definitions.bn_v n /\ Hacl.Spec.Bignum.Definitions.bn_v b < Hacl.Spec.Bignum.Definitions.bn_v n) (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.bn_add_mod_n n a b) == (Hacl.Spec.Bignum.Definitions.bn_v a + Hacl.Spec.Bignum.Definitions.bn_v b) % Hacl.Spec.Bignum.Definitions.bn_v n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Hacl.Spec.Bignum.bn_reduce_once_lemma", "Prims.unit", "Hacl.Spec.Bignum.bn_add_lemma", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.bn_add" ]
[]
false
false
true
false
false
let bn_add_mod_n_lemma #t #len n a b =
let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_mul
val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen)
val bn_mul: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> lbignum t (aLen + bLen)
let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 124, "start_col": 0, "start_line": 123 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> Hacl.Spec.Bignum.Definitions.lbignum t (aLen + bLen)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Multiplication.bn_mul" ]
[]
false
false
false
false
false
let bn_mul #t #aLen #bLen a b =
Hacl.Spec.Bignum.Multiplication.bn_mul a b
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_mul1_lshift_add
val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b:limb t -> j:size_nat{j + aLen <= resLen} -> acc:lbignum t resLen -> limb t & lbignum t resLen
val bn_mul1_lshift_add: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b:limb t -> j:size_nat{j + aLen <= resLen} -> acc:lbignum t resLen -> limb t & lbignum t resLen
let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 148, "start_col": 0, "start_line": 147 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.limb t -> j: Lib.IntTypes.size_nat{j + aLen <= resLen} -> acc: Hacl.Spec.Bignum.Definitions.lbignum t resLen -> Hacl.Spec.Bignum.Definitions.limb t * Hacl.Spec.Bignum.Definitions.lbignum t resLen
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add", "FStar.Pervasives.Native.tuple2" ]
[]
false
false
false
false
false
let bn_mul1_lshift_add #t #aLen #resLen a b j acc =
Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc
false
Steel.ST.HigherArray.fst
Steel.ST.HigherArray.pts_to_length
val pts_to_length (#opened: _) (#elt: Type u#1) (#p: P.perm) (a: array elt) (s: Seq.seq elt) : STGhost unit opened (pts_to a p s) (fun _ -> pts_to a p s) (True) (fun _ -> Seq.length s == length a)
val pts_to_length (#opened: _) (#elt: Type u#1) (#p: P.perm) (a: array elt) (s: Seq.seq elt) : STGhost unit opened (pts_to a p s) (fun _ -> pts_to a p s) (True) (fun _ -> Seq.length s == length a)
let pts_to_length a s = elim_pts_to a _ s; intro_pts_to a _ s
{ "file_name": "lib/steel/Steel.ST.HigherArray.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 20, "end_line": 184, "start_col": 0, "start_line": 180 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.HigherArray module P = Steel.PCMFrac module R = Steel.ST.PCMReference module M = FStar.Map module PM = Steel.PCMMap [@@noextract_to "krml"] let index_t (len: Ghost.erased nat) : Tot Type0 = (i: nat { i < len }) [@@noextract_to "krml"] let carrier (elt: Type u#a) (len: Ghost.erased nat) : Tot Type = PM.map (index_t len) (P.fractional elt) [@@noextract_to "krml"] let pcm (elt: Type u#a) (len: Ghost.erased nat) : Tot (P.pcm (carrier elt len)) = PM.pointwise (index_t len) (P.pcm_frac #elt) [@@noextract_to "krml"] let one (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.one let composable (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.composable [@@noextract_to "krml"] let compose (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.op [@@noextract_to "krml"] let mk_carrier (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p: P.perm) : Tot (carrier elt len) = let f (i: nat) : Tot (P.fractional elt) = if offset + Seq.length s > len || i < offset || i >= offset + Seq.length s then None else Some (Seq.index s (i - offset), p) in M.map_literal f let mk_carrier_inj (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires ( mk_carrier len offset s1 p1 == mk_carrier len offset s2 p2 /\ offset + Seq.length s1 <= len /\ offset + Seq.length s2 <= len )) (ensures ( s1 `Seq.equal` s2 /\ (Seq.length s1 > 0 ==> p1 == p2) )) = assert (forall (i: nat) . i < Seq.length s1 ==> (M.sel (mk_carrier len offset s1 p1) (offset + i) == Some (Seq.index s1 i, p1))); assert (forall (i: nat) . i < Seq.length s2 ==> M.sel (mk_carrier len offset s2 p2) (offset + i) == Some (Seq.index s2 i, p2)) [@@erasable] let base_t (elt: Type u#a) : Tot Type0 = Ghost.erased (base_len: US.t & ref _ (pcm elt (US.v base_len))) let base_len (#elt: Type) (b: base_t elt) : GTot nat = US.v (dfst b) [@@noextract_to "krml"] noeq type ptr (elt: Type u#a) : Type0 = { base_len: Ghost.erased US.t; // U32.t to prove that A.read, A.write offset computation does not overflow. TODO: replace U32.t with size_t base: (r: ref _ (pcm elt (US.v base_len)) { core_ref_is_null r ==> US.v base_len == 0 }); offset: (offset: nat { offset <= US.v base_len }); } let null_ptr a = { base_len = 0sz; base = null #_ #(pcm a 0) ; offset = 0 } let is_null_ptr p = is_null p.base let base (#elt: Type) (p: ptr elt) : Tot (base_t elt) = (| Ghost.reveal p.base_len, p.base |) let offset (#elt: Type) (p: ptr elt) : Ghost nat (requires True) (ensures (fun offset -> offset <= base_len (base p))) = p.offset let ptr_base_offset_inj (#elt: Type) (p1 p2: ptr elt) : Lemma (requires ( base p1 == base p2 /\ offset p1 == offset p2 )) (ensures ( p1 == p2 )) = () let base_len_null_ptr _ = () let length_fits #elt a = () let valid_perm (len: nat) (offset: nat) (slice_len: nat) (p: P.perm) : Tot prop = let open FStar.Real in ((offset + slice_len <= len /\ slice_len > 0) ==> (p.P.v <=. one)) [@__reduce__] let pts_to0 (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : Tot vprop = R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p) `star` pure ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) let pts_to (#elt: Type u#1) (a: array elt) ([@@@ smt_fallback ] p: P.perm) ([@@@ smt_fallback ] s: Seq.seq elt) : Tot vprop = pts_to0 a p s // this lemma is necessary because Steel.PCMReference is marked unfold let change_r_pts_to (#opened: _) (#carrier: Type u#1) (#pcm: P.pcm carrier) (p: ref carrier pcm) (v: carrier) (#carrier': Type u#1) (#pcm': P.pcm carrier') (p': ref carrier' pcm') (v': carrier') : STGhost unit opened (R.pts_to p v) (fun _ -> R.pts_to p' v') (// keep on distinct lines for error messages carrier == carrier' /\ pcm == pcm' /\ p == p' /\ v == v') (fun _ -> True) = rewrite (R.pts_to p v) (R.pts_to p' v') let intro_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (#v: _) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (R.pts_to (ptr_of a).base v) (fun _ -> pts_to a p s) ( v == mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p /\ valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) (fun _ -> True) = change_r_pts_to (ptr_of a).base v (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p); intro_pure _; rewrite (pts_to0 a p s) (pts_to a p s) let elim_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (pts_to a p s) (fun _ -> R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p)) (True) (fun _ -> valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) = rewrite (pts_to a p s) (pts_to0 a p s); elim_pure _
{ "checked_file": "/", "dependencies": [ "Steel.ST.PCMReference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.PCMMap.fst.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.HigherArray.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMMap", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Steel.ST.PCMReference", "short_module": "R" }, { "abbrev": true, "full_module": "Steel.PCMFrac", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Steel.ST.HigherArray.array elt -> s: FStar.Seq.Base.seq elt -> Steel.ST.Effect.Ghost.STGhost Prims.unit
Steel.ST.Effect.Ghost.STGhost
[]
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "Steel.ST.HigherArray.array", "FStar.Seq.Base.seq", "Steel.ST.HigherArray.intro_pts_to", "Steel.ST.HigherArray.mk_carrier", "FStar.SizeT.v", "FStar.Ghost.reveal", "FStar.SizeT.t", "Steel.ST.HigherArray.__proj__Mkptr__item__base_len", "Steel.ST.HigherArray.ptr_of", "Steel.ST.HigherArray.__proj__Mkptr__item__offset", "Prims.unit", "Steel.ST.HigherArray.elim_pts_to" ]
[]
false
true
false
false
false
let pts_to_length a s =
elim_pts_to a _ s; intro_pts_to a _ s
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_mul1_lemma
val bn_mul1_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_mul1 a b1 in v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v b1)
val bn_mul1_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> b1:limb t -> Lemma (let (c, res) = bn_mul1 a b1 in v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v b1)
let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 121, "start_col": 0, "start_line": 120 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b1: Hacl.Spec.Bignum.Definitions.limb t -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.bn_mul1 a b1 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * aLen) + Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.bn_v a * Lib.IntTypes.v b1) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_mul1_lemma #t #aLen a b1 =
Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_sub_mod_n_lemma
val bn_sub_mod_n_lemma: #t:limb_t -> #len:size_nat -> n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> Lemma (requires bn_v a < bn_v n /\ bn_v b < bn_v n) (ensures bn_v (bn_sub_mod_n n a b) == (bn_v a - bn_v b) % bn_v n)
val bn_sub_mod_n_lemma: #t:limb_t -> #len:size_nat -> n:lbignum t len -> a:lbignum t len -> b:lbignum t len -> Lemma (requires bn_v a < bn_v n /\ bn_v b < bn_v n) (ensures bn_v (bn_sub_mod_n n a b) == (bn_v a - bn_v b) % bn_v n)
let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 114, "start_col": 0, "start_line": 86 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Hacl.Spec.Bignum.Definitions.lbignum t len -> a: Hacl.Spec.Bignum.Definitions.lbignum t len -> b: Hacl.Spec.Bignum.Definitions.lbignum t len -> FStar.Pervasives.Lemma (requires Hacl.Spec.Bignum.Definitions.bn_v a < Hacl.Spec.Bignum.Definitions.bn_v n /\ Hacl.Spec.Bignum.Definitions.bn_v b < Hacl.Spec.Bignum.Definitions.bn_v n) (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.bn_sub_mod_n n a b) == (Hacl.Spec.Bignum.Definitions.bn_v a - Hacl.Spec.Bignum.Definitions.bn_v b) % Hacl.Spec.Bignum.Definitions.bn_v n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.unit", "Prims._assert", "Prims.eq2", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.op_Modulus", "Prims.op_Subtraction", "FStar.Math.Lemmas.small_mod", "Prims.bool", "FStar.Math.Lemmas.modulo_addition_lemma", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Addition", "Hacl.Spec.Bignum.Definitions.bn_eval_bound", "FStar.Mul.op_Star", "Prims.pow2", "Lib.IntTypes.bits", "Hacl.Spec.Bignum.bn_add_lemma", "Hacl.Spec.Bignum.Base.lseq_mask_select_lemma", "Lib.Sequence.lseq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Lib.Sequence.index", "Hacl.Spec.Bignum.Base.mask_select", "Lib.Sequence.map2", "Prims.l_or", "Lib.IntTypes.range_t", "Lib.IntTypes.ones", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.uint", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.bn_add", "Hacl.Spec.Bignum.bn_sub_lemma", "Hacl.Spec.Bignum.bn_sub" ]
[]
false
false
true
false
false
let bn_sub_mod_n_lemma #t #len n a b =
let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then (assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); ()) else (bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); ())
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_mul_lemma
val bn_mul_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (bn_v (bn_mul a b) == bn_v a * bn_v b)
val bn_mul_lemma: #t:limb_t -> #aLen:size_nat -> #bLen:size_nat{aLen + bLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t bLen -> Lemma (bn_v (bn_mul a b) == bn_v a * bn_v b)
let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 50, "end_line": 127, "start_col": 0, "start_line": 126 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t bLen -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.bn_mul a b) == Hacl.Spec.Bignum.Definitions.bn_v a * Hacl.Spec.Bignum.Definitions.bn_v b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Multiplication.bn_mul_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_mul_lemma #t #aLen #bLen a b =
Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_karatsuba_mul
val bn_karatsuba_mul: #t:limb_t -> #aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t aLen -> lbignum t (aLen + aLen)
val bn_karatsuba_mul: #t:limb_t -> #aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t aLen -> lbignum t (aLen + aLen)
let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 130, "start_col": 0, "start_line": 129 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> Hacl.Spec.Bignum.Definitions.lbignum t (aLen + aLen)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul" ]
[]
false
false
false
false
false
let bn_karatsuba_mul #t #aLen a b =
Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_sqr
val bn_sqr: #t:limb_t -> #aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen -> lbignum t (aLen + aLen)
val bn_sqr: #t:limb_t -> #aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen -> lbignum t (aLen + aLen)
let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 36, "end_line": 136, "start_col": 0, "start_line": 135 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> Hacl.Spec.Bignum.Definitions.lbignum t (aLen + aLen)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Squaring.bn_sqr" ]
[]
false
false
false
false
false
let bn_sqr #t #aLen a =
Hacl.Spec.Bignum.Squaring.bn_sqr a
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_reduce_once_lemma
val bn_reduce_once_lemma: #t:limb_t -> #len:size_nat -> n:lbignum t len -> c:carry t -> a:lbignum t len -> Lemma (requires v c * pow2 (bits t * len) + bn_v a < 2 * bn_v n) (ensures bn_v (bn_reduce_once n c a) == (v c * pow2 (bits t * len) + bn_v a) % bn_v n)
val bn_reduce_once_lemma: #t:limb_t -> #len:size_nat -> n:lbignum t len -> c:carry t -> a:lbignum t len -> Lemma (requires v c * pow2 (bits t * len) + bn_v a < 2 * bn_v n) (ensures bn_v (bn_reduce_once n c a) == (v c * pow2 (bits t * len) + bn_v a) % bn_v n)
let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 65, "start_col": 0, "start_line": 38 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Hacl.Spec.Bignum.Definitions.lbignum t len -> c: Hacl.Spec.Bignum.Base.carry t -> a: Hacl.Spec.Bignum.Definitions.lbignum t len -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * len) + Hacl.Spec.Bignum.Definitions.bn_v a < 2 * Hacl.Spec.Bignum.Definitions.bn_v n) (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.bn_reduce_once n c a) == (Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * len) + Hacl.Spec.Bignum.Definitions.bn_v a) % Hacl.Spec.Bignum.Definitions.bn_v n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "Prims.unit", "FStar.Math.Lemmas.small_mod", "Prims.nat", "Hacl.Spec.Bignum.Base.lseq_mask_select_lemma", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.op_Subtraction", "Prims.pow2", "Prims.bool", "FStar.Math.Lemmas.modulo_addition_lemma", "Prims.op_Minus", "Hacl.Spec.Bignum.Definitions.bn_eval_bound", "Prims.b2t", "Lib.Sequence.lseq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.l_Forall", "Prims.l_imp", "Lib.Sequence.index", "Hacl.Spec.Bignum.Base.mask_select", "Lib.Sequence.map2", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Subtraction_Dot", "Hacl.Spec.Bignum.bn_sub_lemma", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.bn_sub", "Lib.IntTypes.bits" ]
[]
false
false
true
false
false
let bn_reduce_once_lemma #t #len n c0 res0 =
let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then (assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n)) else (assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n))
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_karatsuba_sqr
val bn_karatsuba_sqr: #t:limb_t -> #aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen -> lbignum t (aLen + aLen)
val bn_karatsuba_sqr: #t:limb_t -> #aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen -> lbignum t (aLen + aLen)
let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 142, "start_col": 0, "start_line": 141 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> Hacl.Spec.Bignum.Definitions.lbignum t (aLen + aLen)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr" ]
[]
false
false
false
false
false
let bn_karatsuba_sqr #t #aLen a =
Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_sqr_lemma
val bn_sqr_lemma: #t:limb_t -> #aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen -> Lemma (bn_sqr a == bn_mul a a /\ bn_v (bn_sqr a) == bn_v a * bn_v a)
val bn_sqr_lemma: #t:limb_t -> #aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen -> Lemma (bn_sqr a == bn_mul a a /\ bn_v (bn_sqr a) == bn_v a * bn_v a)
let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 42, "end_line": 139, "start_col": 0, "start_line": 138 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.bn_sqr a == Hacl.Spec.Bignum.bn_mul a a /\ Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.bn_sqr a) == Hacl.Spec.Bignum.Definitions.bn_v a * Hacl.Spec.Bignum.Definitions.bn_v a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Squaring.bn_sqr_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_sqr_lemma #t #aLen a =
Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_karatsuba_mul_lemma
val bn_karatsuba_mul_lemma: #t:limb_t -> #aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t aLen -> Lemma (bn_karatsuba_mul a b == bn_mul a b /\ bn_v (bn_karatsuba_mul a b) == bn_v a * bn_v b)
val bn_karatsuba_mul_lemma: #t:limb_t -> #aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen -> b:lbignum t aLen -> Lemma (bn_karatsuba_mul a b == bn_mul a b /\ bn_v (bn_karatsuba_mul a b) == bn_v a * bn_v b)
let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 55, "end_line": 133, "start_col": 0, "start_line": 132 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.bn_karatsuba_mul a b == Hacl.Spec.Bignum.bn_mul a b /\ Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.bn_karatsuba_mul a b) == Hacl.Spec.Bignum.Definitions.bn_v a * Hacl.Spec.Bignum.Definitions.bn_v b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_karatsuba_mul_lemma #t #aLen a b =
Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b
false
Steel.ST.HigherArray.fst
Steel.ST.HigherArray.blit_ptr
val blit_ptr (#t:_) (#p0:perm) (#s0 #s1:Ghost.erased (Seq.seq t)) (src:ptr t) (len_src: Ghost.erased nat { offset src + len_src <= base_len (base src) }) (idx_src: US.t) (dst:ptr t) (len_dst: Ghost.erased nat { offset dst + len_dst <= base_len (base dst) }) (idx_dst: US.t) (len: US.t) : ST unit (pts_to (| src, len_src |) p0 s0 `star` pts_to (| dst, len_dst |) full_perm s1) (fun _ -> pts_to (| src, len_src |) p0 s0 `star` exists_ (fun s1' -> pts_to (| dst, len_dst |) full_perm s1' `star` pure (blit_post s0 s1 (| src, len_src |) idx_src (| dst, len_dst |) idx_dst len s1') )) ( US.v idx_src + US.v len <= len_src /\ US.v idx_dst + US.v len <= len_dst ) (fun _ -> True)
val blit_ptr (#t:_) (#p0:perm) (#s0 #s1:Ghost.erased (Seq.seq t)) (src:ptr t) (len_src: Ghost.erased nat { offset src + len_src <= base_len (base src) }) (idx_src: US.t) (dst:ptr t) (len_dst: Ghost.erased nat { offset dst + len_dst <= base_len (base dst) }) (idx_dst: US.t) (len: US.t) : ST unit (pts_to (| src, len_src |) p0 s0 `star` pts_to (| dst, len_dst |) full_perm s1) (fun _ -> pts_to (| src, len_src |) p0 s0 `star` exists_ (fun s1' -> pts_to (| dst, len_dst |) full_perm s1' `star` pure (blit_post s0 s1 (| src, len_src |) idx_src (| dst, len_dst |) idx_dst len s1') )) ( US.v idx_src + US.v len <= len_src /\ US.v idx_dst + US.v len <= len_dst ) (fun _ -> True)
let blit_ptr src len_src idx_src dst len_dst idx_dst len = blit0 _ idx_src _ idx_dst len
{ "file_name": "lib/steel/Steel.ST.HigherArray.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 31, "end_line": 690, "start_col": 0, "start_line": 688 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.HigherArray module P = Steel.PCMFrac module R = Steel.ST.PCMReference module M = FStar.Map module PM = Steel.PCMMap [@@noextract_to "krml"] let index_t (len: Ghost.erased nat) : Tot Type0 = (i: nat { i < len }) [@@noextract_to "krml"] let carrier (elt: Type u#a) (len: Ghost.erased nat) : Tot Type = PM.map (index_t len) (P.fractional elt) [@@noextract_to "krml"] let pcm (elt: Type u#a) (len: Ghost.erased nat) : Tot (P.pcm (carrier elt len)) = PM.pointwise (index_t len) (P.pcm_frac #elt) [@@noextract_to "krml"] let one (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.one let composable (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.composable [@@noextract_to "krml"] let compose (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.op [@@noextract_to "krml"] let mk_carrier (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p: P.perm) : Tot (carrier elt len) = let f (i: nat) : Tot (P.fractional elt) = if offset + Seq.length s > len || i < offset || i >= offset + Seq.length s then None else Some (Seq.index s (i - offset), p) in M.map_literal f let mk_carrier_inj (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires ( mk_carrier len offset s1 p1 == mk_carrier len offset s2 p2 /\ offset + Seq.length s1 <= len /\ offset + Seq.length s2 <= len )) (ensures ( s1 `Seq.equal` s2 /\ (Seq.length s1 > 0 ==> p1 == p2) )) = assert (forall (i: nat) . i < Seq.length s1 ==> (M.sel (mk_carrier len offset s1 p1) (offset + i) == Some (Seq.index s1 i, p1))); assert (forall (i: nat) . i < Seq.length s2 ==> M.sel (mk_carrier len offset s2 p2) (offset + i) == Some (Seq.index s2 i, p2)) [@@erasable] let base_t (elt: Type u#a) : Tot Type0 = Ghost.erased (base_len: US.t & ref _ (pcm elt (US.v base_len))) let base_len (#elt: Type) (b: base_t elt) : GTot nat = US.v (dfst b) [@@noextract_to "krml"] noeq type ptr (elt: Type u#a) : Type0 = { base_len: Ghost.erased US.t; // U32.t to prove that A.read, A.write offset computation does not overflow. TODO: replace U32.t with size_t base: (r: ref _ (pcm elt (US.v base_len)) { core_ref_is_null r ==> US.v base_len == 0 }); offset: (offset: nat { offset <= US.v base_len }); } let null_ptr a = { base_len = 0sz; base = null #_ #(pcm a 0) ; offset = 0 } let is_null_ptr p = is_null p.base let base (#elt: Type) (p: ptr elt) : Tot (base_t elt) = (| Ghost.reveal p.base_len, p.base |) let offset (#elt: Type) (p: ptr elt) : Ghost nat (requires True) (ensures (fun offset -> offset <= base_len (base p))) = p.offset let ptr_base_offset_inj (#elt: Type) (p1 p2: ptr elt) : Lemma (requires ( base p1 == base p2 /\ offset p1 == offset p2 )) (ensures ( p1 == p2 )) = () let base_len_null_ptr _ = () let length_fits #elt a = () let valid_perm (len: nat) (offset: nat) (slice_len: nat) (p: P.perm) : Tot prop = let open FStar.Real in ((offset + slice_len <= len /\ slice_len > 0) ==> (p.P.v <=. one)) [@__reduce__] let pts_to0 (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : Tot vprop = R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p) `star` pure ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) let pts_to (#elt: Type u#1) (a: array elt) ([@@@ smt_fallback ] p: P.perm) ([@@@ smt_fallback ] s: Seq.seq elt) : Tot vprop = pts_to0 a p s // this lemma is necessary because Steel.PCMReference is marked unfold let change_r_pts_to (#opened: _) (#carrier: Type u#1) (#pcm: P.pcm carrier) (p: ref carrier pcm) (v: carrier) (#carrier': Type u#1) (#pcm': P.pcm carrier') (p': ref carrier' pcm') (v': carrier') : STGhost unit opened (R.pts_to p v) (fun _ -> R.pts_to p' v') (// keep on distinct lines for error messages carrier == carrier' /\ pcm == pcm' /\ p == p' /\ v == v') (fun _ -> True) = rewrite (R.pts_to p v) (R.pts_to p' v') let intro_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (#v: _) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (R.pts_to (ptr_of a).base v) (fun _ -> pts_to a p s) ( v == mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p /\ valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) (fun _ -> True) = change_r_pts_to (ptr_of a).base v (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p); intro_pure _; rewrite (pts_to0 a p s) (pts_to a p s) let elim_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (pts_to a p s) (fun _ -> R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p)) (True) (fun _ -> valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) = rewrite (pts_to a p s) (pts_to0 a p s); elim_pure _ let pts_to_length a s = elim_pts_to a _ s; intro_pts_to a _ s let pts_to_not_null a s = elim_pts_to a _ s; R.pts_to_not_null _ _; intro_pts_to a _ s let mk_carrier_joinable (#elt: Type) (len: nat) (offset: nat) (s1: Seq.seq elt) (p1: P.perm) (s2: Seq.seq elt) (p2: P.perm) : Lemma (requires ( offset + Seq.length s1 <= len /\ Seq.length s1 == Seq.length s2 /\ P.joinable (pcm elt len) (mk_carrier len offset s1 p1) (mk_carrier len offset s2 p2) )) (ensures ( s1 `Seq.equal` s2 )) = let lem (i: nat { 0 <= i /\ i < Seq.length s1 }) : Lemma (Seq.index s1 i == Seq.index s2 i) [SMTPat (Seq.index s1 i); SMTPat (Seq.index s2 i)] = assert ( forall z . ( P.compatible (pcm elt len) (mk_carrier len offset s1 p1) z /\ P.compatible (pcm elt len) (mk_carrier len offset s2 p2) z ) ==> begin match M.sel z (offset + i) with | None -> False | Some (v, _) -> v == Seq.index s1 i /\ v == Seq.index s2 i end ) in () let pure_star_interp' (p:slprop u#a) (q:prop) (m:mem) : Lemma (interp (p `Steel.Memory.star` Steel.Memory.pure q) m <==> interp p m /\ q) = pure_star_interp p q m; emp_unit p let pts_to_inj a p1 s1 p2 s2 m = Classical.forall_intro reveal_pure; pure_star_interp' (hp_of (R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1))) ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s1) p1 /\ Seq.length s1 == length a ) m; pure_star_interp' (hp_of (R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s2 p2))) ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s2) p2 /\ Seq.length s2 == length a ) m; pts_to_join (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1) (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s2 p2) m; mk_carrier_joinable (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1 s2 p2 [@@noextract_to "krml"] let malloc0 (#elt: Type) (x: elt) (n: US.t) : ST (array elt) emp (fun a -> pts_to a P.full_perm (Seq.create (US.v n) x)) (True) (fun a -> length a == US.v n /\ base_len (base (ptr_of a)) == US.v n ) = let c : carrier elt (US.v n) = mk_carrier (US.v n) 0 (Seq.create (US.v n) x) P.full_perm in let base : ref (carrier elt (US.v n)) (pcm elt (US.v n)) = R.alloc c in R.pts_to_not_null base _; let p = { base_len = n; base = base; offset = 0; } in let a = (| p, Ghost.hide (US.v n) |) in change_r_pts_to base c (ptr_of a).base c; intro_pts_to a P.full_perm (Seq.create (US.v n) x); return a let malloc_ptr x n = let a = malloc0 x n in let (| p, _ |) = a in rewrite (pts_to _ _ _) (pts_to (| p, Ghost.hide (US.v n) |) _ _); return p [@@noextract_to "krml"] let free0 (#elt: Type) (#s: Ghost.erased (Seq.seq elt)) (a: array elt) : ST unit (pts_to a P.full_perm s) (fun _ -> emp) ( length a == base_len (base (ptr_of a)) ) (fun _ -> True) = drop (pts_to a _ _) let free_ptr a = free0 _ let valid_sum_perm (len: nat) (offset: nat) (slice_len: nat) (p1 p2: P.perm) : Tot prop = let open FStar.Real in valid_perm len offset slice_len (P.sum_perm p1 p2) let mk_carrier_share (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires (valid_sum_perm len offset (Seq.length s) p1 p2)) (ensures ( let c1 = mk_carrier len offset s p1 in let c2 = mk_carrier len offset s p2 in composable c1 c2 /\ mk_carrier len offset s (p1 `P.sum_perm` p2) `M.equal` (c1 `compose` c2) )) = () let share #_ #_ #x a p p1 p2 = elim_pts_to a p x; mk_carrier_share (US.v (ptr_of a).base_len) (ptr_of a).offset x p1 p2; R.split (ptr_of a).base _ (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset x p1) (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset x p2); intro_pts_to a p1 x; intro_pts_to a p2 x let mk_carrier_gather (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires ( let c1 = mk_carrier len offset s1 p1 in let c2 = mk_carrier len offset s2 p2 in composable c1 c2 /\ Seq.length s1 == Seq.length s2 /\ offset + Seq.length s1 <= len )) (ensures ( let c1 = mk_carrier len offset s1 p1 in let c2 = mk_carrier len offset s2 p2 in composable c1 c2 /\ mk_carrier len offset s1 (p1 `P.sum_perm` p2) == (c1 `compose` c2) /\ mk_carrier len offset s2 (p1 `P.sum_perm` p2) == (c1 `compose` c2) /\ s1 == s2 )) = let c1 = mk_carrier len offset s1 p1 in let c2 = mk_carrier len offset s2 p2 in assert (composable c1 c2); assert (mk_carrier len offset s1 (p1 `P.sum_perm` p2) `M.equal` (c1 `compose` c2)); assert (mk_carrier len offset s2 (p1 `P.sum_perm` p2) `M.equal` (c1 `compose` c2)); mk_carrier_inj len offset s1 s2 (p1 `P.sum_perm` p2) (p1 `P.sum_perm` p2) let mk_carrier_valid_sum_perm (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p1 p2: P.perm) : Lemma (let c1 = mk_carrier len offset s p1 in let c2 = mk_carrier len offset s p2 in composable c1 c2 <==> valid_sum_perm len offset (Seq.length s) p1 p2) = let c1 = mk_carrier len offset s p1 in let c2 = mk_carrier len offset s p2 in if Seq.length s > 0 && offset + Seq.length s <= len then let open FStar.Real in assert (P.composable (M.sel c1 offset) (M.sel c2 offset) <==> valid_perm len offset (Seq.length s) (P.sum_perm p1 p2)) else () let gather a #x1 p1 #x2 p2 = elim_pts_to a p1 x1; elim_pts_to a p2 x2; let _ = R.gather (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) ((ptr_of a).offset) x1 p1) (mk_carrier (US.v (ptr_of a).base_len) ((ptr_of a).offset) x2 p2) in mk_carrier_gather (US.v (ptr_of a).base_len) ((ptr_of a).offset) x1 x2 p1 p2; mk_carrier_valid_sum_perm (US.v (ptr_of a).base_len) ((ptr_of a).offset) x1 p1 p2; intro_pts_to a (p1 `P.sum_perm` p2) x1 #push-options "--z3rlimit 16" [@@noextract_to "krml"] let index0 (#t: Type) (#p: P.perm) (a: array t) (#s: Ghost.erased (Seq.seq t)) (i: US.t) : ST t (pts_to a p s) (fun _ -> pts_to a p s) (US.v i < length a \/ US.v i < Seq.length s) (fun res -> Seq.length s == length a /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i)) = elim_pts_to a p s; let s' = R.read (ptr_of a).base _ in let res = fst (Some?.v (M.sel s' ((ptr_of a).offset + US.v i))) in intro_pts_to a p s; return res #pop-options let index_ptr a i = index0 _ i let mk_carrier_upd (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (i: nat) (v: elt) (_: squash ( offset + Seq.length s <= len /\ i < Seq.length s )) : Lemma (ensures ( let o = mk_carrier len offset s P.full_perm in let o' = mk_carrier len offset (Seq.upd s i v) P.full_perm in o' `Map.equal` Map.upd o (offset + i) (Some (v, P.full_perm)) )) = () #push-options "--z3rlimit 20" [@@noextract_to "krml"] let upd0 (#t: Type) (a: array t) (#s: Ghost.erased (Seq.seq t)) (i: US.t { US.v i < Seq.length s }) (v: t) : STT unit (pts_to a P.full_perm s) (fun res -> pts_to a P.full_perm (Seq.upd s (US.v i) v)) = elim_pts_to a _ _; mk_carrier_upd (US.v (ptr_of a).base_len) ((ptr_of a).offset) s (US.v i) v (); R.upd_gen (ptr_of a).base _ _ (PM.lift_frame_preserving_upd _ _ (P.mk_frame_preserving_upd (Seq.index s (US.v i)) v ) _ ((ptr_of a).offset + US.v i) ); intro_pts_to a _ _ #pop-options let upd_ptr a i v = upd0 _ i v; rewrite (pts_to _ _ _) (pts_to _ _ _) let mk_carrier_merge (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p: P.perm) : Lemma (requires ( offset + Seq.length s1 + Seq.length s2 <= len )) (ensures ( let c1 = mk_carrier len offset s1 p in let c2 = mk_carrier len (offset + Seq.length s1) s2 p in composable c1 c2 /\ mk_carrier len offset (s1 `Seq.append` s2) p `M.equal` (c1 `compose` c2) )) = () let ghost_join #_ #_ #x1 #x2 #p a1 a2 h = elim_pts_to a1 p x1; elim_pts_to a2 p x2; mk_carrier_merge (US.v (ptr_of a1).base_len) ((ptr_of a1).offset) x1 x2 (p); change_r_pts_to (ptr_of a2).base _ (ptr_of a1).base (mk_carrier (US.v (ptr_of a1).base_len) ((ptr_of a1).offset + Seq.length x1) x2 p); R.gather (ptr_of a1).base (mk_carrier (US.v (ptr_of a1).base_len) ((ptr_of a1).offset) x1 (p)) (mk_carrier (US.v (ptr_of a1).base_len) ((ptr_of a1).offset + Seq.length x1) x2 (p)); change_r_pts_to (ptr_of a1).base _ (ptr_of (merge a1 a2)).base (mk_carrier (US.v (ptr_of (merge a1 a2)).base_len) ((ptr_of (merge a1 a2)).offset) (x1 `Seq.append` x2) (p)); intro_pts_to (merge a1 a2) p (Seq.append x1 x2) let mk_carrier_split (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p: P.perm) (i: nat) : Lemma (requires ( offset + Seq.length s <= len /\ i <= Seq.length s )) (ensures ( let c1 = mk_carrier len offset (Seq.slice s 0 i) p in let c2 = mk_carrier len (offset + i) (Seq.slice s i (Seq.length s)) p in composable c1 c2 /\ mk_carrier len offset s p `M.equal` (c1 `compose` c2) )) = () // TODO: replace with Ghost, introduce pointer shifting operations in SteelAtomicBase Unobservable [@@noextract_to "krml"] let ptr_shift (#elt: Type) (p: ptr elt) (off: US.t) : Pure (ptr elt) (requires (offset p + US.v off <= base_len (base p))) (ensures (fun p' -> base p' == base p /\ offset p' == offset p + US.v off )) = { base_len = p.base_len; base = p.base; offset = p.offset + US.v off; } let ghost_split #_ #_ #x #p a i = elim_pts_to a p x; mk_carrier_split (US.v (ptr_of a).base_len) ((ptr_of a).offset) x (p) (US.v i); Seq.lemma_split x (US.v i); let xl = Seq.slice x 0 (US.v i) in let xr = Seq.slice x (US.v i) (Seq.length x) in let vl = mk_carrier (US.v (ptr_of a).base_len) ((ptr_of a).offset) xl (p) in let vr = mk_carrier (US.v (ptr_of a).base_len) ((ptr_of a).offset + US.v i) xr (p) in R.split (ptr_of a).base _ vl vr; change_r_pts_to (ptr_of a).base vl (ptr_of (split_l a i)).base vl; intro_pts_to (split_l a i) #vl p (Seq.slice x 0 (US.v i)); change_r_pts_to (ptr_of a).base vr (ptr_of (split_r a i)).base vr; intro_pts_to (split_r a i) #vr p (Seq.slice x (US.v i) (Seq.length x)) //////////////////////////////////////////////////////////////////////////////// // memcpy //////////////////////////////////////////////////////////////////////////////// let prefix_copied #t (e0:Seq.seq t) (e1:Seq.seq t) (i:nat { i <= Seq.length e0 /\ Seq.length e0 == Seq.length e1}) : Seq.seq t = (Seq.append (Seq.slice e0 0 i) (Seq.slice e1 i (Seq.length e1))) #push-options "--z3rlimit 32" val memcpy0 (#t:_) (#p0:perm) (a0 a1:array t) (#s0 #s1:Ghost.erased (Seq.seq t)) (l:US.t { US.v l == length a0 /\ length a0 == length a1 } ) : STT unit (pts_to a0 p0 s0 `star` pts_to a1 full_perm s1) (fun _ -> pts_to a0 p0 s0 `star` pts_to a1 full_perm s0) let memcpy0 #t #p0 a0 a1 #e0 #e1 i = pts_to_length a0 _; pts_to_length a1 _; let inv (j:Steel.ST.Loops.nat_at_most i) : vprop = pts_to a0 p0 e0 `star` pts_to a1 full_perm (prefix_copied e0 e1 j) in assert (prefix_copied e0 e1 0 `Seq.equal` e1); rewrite (pts_to a1 full_perm e1) (pts_to a1 full_perm (prefix_copied e0 e1 0)); rewrite (pts_to a0 _ e0 `star` pts_to a1 full_perm (prefix_copied e0 e1 0)) (inv (US.v 0sz)); let body (j:Steel.ST.Loops.u32_between 0sz i) : STT unit (inv (US.v j)) (fun _ -> inv (US.v j + 1)) = rewrite (inv (US.v j)) (pts_to a0 p0 e0 `star` pts_to a1 full_perm (prefix_copied e0 e1 (US.v j))); let z = index a0 j in upd a1 j z; assert (Seq.upd (prefix_copied e0 e1 (US.v j)) (US.v j) z `Seq.equal` prefix_copied e0 e1 (US.v j + 1)); rewrite (pts_to a0 _ e0 `star` pts_to a1 _ _) (inv (US.v j + 1)); return () in Steel.ST.Loops.for_loop 0sz i inv body; assert_ (inv (US.v i)); rewrite (inv (US.v i)) (pts_to a0 p0 e0 `star` pts_to a1 full_perm (prefix_copied e0 e1 (US.v i))); assert (prefix_copied e0 e1 (US.v i) `Seq.equal` e0); rewrite (pts_to a1 _ (prefix_copied e0 e1 (US.v i))) (pts_to a1 _ e0); return () #pop-options #push-options "--z3rlimit 48" #push-options "--z3rlimit 75" let blit0 (#t:_) (#p0:perm) (#s0 #s1:Ghost.erased (Seq.seq t)) (src:array t) (idx_src: US.t) (dst:array t) (idx_dst: US.t) (len: US.t) : ST unit (pts_to src p0 s0 `star` pts_to dst full_perm s1) (fun _ -> pts_to src p0 s0 `star` exists_ (fun s1' -> pts_to dst full_perm s1' `star` pure (blit_post s0 s1 src idx_src dst idx_dst len s1') )) ( US.v idx_src + US.v len <= length src /\ US.v idx_dst + US.v len <= length dst ) (fun _ -> True) = pts_to_length src s0; pts_to_length dst s1; let _ = ghost_split src idx_src in let _ = ghost_split (split_r src idx_src) len in let _ = ghost_split dst idx_dst in let _ = ghost_split (split_r dst idx_dst) len in memcpy0 (split_l (split_r src idx_src) len) (split_l (split_r dst idx_dst) len) len; ghost_join (split_l (split_r dst _) _) (split_r (split_r dst _) _) (); ghost_join (split_l dst _) (merge _ _) (); vpattern_rewrite #_ #_ #(merge _ _) (fun a -> pts_to a _ _) dst; ghost_join (split_l (split_r src _) _) (split_r (split_r src _) _) (); ghost_join (split_l src _) (merge _ _) (); vpattern_rewrite #_ #_ #(merge _ _) (fun a -> pts_to a _ _) src; vpattern_rewrite (pts_to src _) (Ghost.reveal s0); noop () #pop-options #pop-options
{ "checked_file": "/", "dependencies": [ "Steel.ST.PCMReference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.PCMMap.fst.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.HigherArray.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMMap", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Steel.ST.PCMReference", "short_module": "R" }, { "abbrev": true, "full_module": "Steel.PCMFrac", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
src: Steel.ST.HigherArray.ptr t -> len_src: FStar.Ghost.erased Prims.nat { Steel.ST.HigherArray.offset src + FStar.Ghost.reveal len_src <= Steel.ST.HigherArray.base_len (Steel.ST.HigherArray.base src) } -> idx_src: FStar.SizeT.t -> dst: Steel.ST.HigherArray.ptr t -> len_dst: FStar.Ghost.erased Prims.nat { Steel.ST.HigherArray.offset dst + FStar.Ghost.reveal len_dst <= Steel.ST.HigherArray.base_len (Steel.ST.HigherArray.base dst) } -> idx_dst: FStar.SizeT.t -> len: FStar.SizeT.t -> Steel.ST.Effect.ST Prims.unit
Steel.ST.Effect.ST
[]
[]
[ "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Steel.ST.HigherArray.ptr", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Steel.ST.HigherArray.offset", "FStar.Ghost.reveal", "Steel.ST.HigherArray.base_len", "Steel.ST.HigherArray.base", "FStar.SizeT.t", "Steel.ST.HigherArray.blit0", "Prims.Mkdtuple2", "Prims.unit" ]
[]
false
true
false
false
false
let blit_ptr src len_src idx_src dst len_dst idx_dst len =
blit0 _ idx_src _ idx_dst len
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_karatsuba_sqr_lemma
val bn_karatsuba_sqr_lemma: #t:limb_t -> #aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen -> Lemma (bn_karatsuba_sqr a == bn_mul a a /\ bn_v (bn_karatsuba_sqr a) == bn_v a * bn_v a)
val bn_karatsuba_sqr_lemma: #t:limb_t -> #aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen -> Lemma (bn_karatsuba_sqr a == bn_mul a a /\ bn_v (bn_karatsuba_sqr a) == bn_v a * bn_v a)
let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 145, "start_col": 0, "start_line": 144 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.bn_karatsuba_sqr a == Hacl.Spec.Bignum.bn_mul a a /\ Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.bn_karatsuba_sqr a) == Hacl.Spec.Bignum.Definitions.bn_v a * Hacl.Spec.Bignum.Definitions.bn_v a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_karatsuba_sqr_lemma #t #aLen a =
Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a
false
Steel.ST.HigherArray.fst
Steel.ST.HigherArray.ptrdiff_ptr
val ptrdiff_ptr (#t:_) (#p0 #p1:perm) (#s0 #s1:Ghost.erased (Seq.seq t)) (a0:ptr t) (len0: Ghost.erased nat { offset a0 + len0 <= base_len (base a0) }) (a1:ptr t) (len1: Ghost.erased nat { offset a1 + len1 <= base_len (base a1) }) : ST UP.t (pts_to (| a0, len0 |) p0 s0 `star` pts_to (| a1, len1 |) p1 s1) (fun _ -> pts_to (| a0, len0 |) p0 s0 `star` pts_to (| a1, len1 |) p1 s1) (base a0 == base a1 /\ UP.fits (offset a0 - offset a1)) (fun r -> UP.v r == offset a0 - offset a1)
val ptrdiff_ptr (#t:_) (#p0 #p1:perm) (#s0 #s1:Ghost.erased (Seq.seq t)) (a0:ptr t) (len0: Ghost.erased nat { offset a0 + len0 <= base_len (base a0) }) (a1:ptr t) (len1: Ghost.erased nat { offset a1 + len1 <= base_len (base a1) }) : ST UP.t (pts_to (| a0, len0 |) p0 s0 `star` pts_to (| a1, len1 |) p1 s1) (fun _ -> pts_to (| a0, len0 |) p0 s0 `star` pts_to (| a1, len1 |) p1 s1) (base a0 == base a1 /\ UP.fits (offset a0 - offset a1)) (fun r -> UP.v r == offset a0 - offset a1)
let ptrdiff_ptr a0 len0 a1 len1 = let res = a0.offset - a1.offset in return (UP.int_to_t res)
{ "file_name": "lib/steel/Steel.ST.HigherArray.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 26, "end_line": 700, "start_col": 0, "start_line": 698 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.HigherArray module P = Steel.PCMFrac module R = Steel.ST.PCMReference module M = FStar.Map module PM = Steel.PCMMap [@@noextract_to "krml"] let index_t (len: Ghost.erased nat) : Tot Type0 = (i: nat { i < len }) [@@noextract_to "krml"] let carrier (elt: Type u#a) (len: Ghost.erased nat) : Tot Type = PM.map (index_t len) (P.fractional elt) [@@noextract_to "krml"] let pcm (elt: Type u#a) (len: Ghost.erased nat) : Tot (P.pcm (carrier elt len)) = PM.pointwise (index_t len) (P.pcm_frac #elt) [@@noextract_to "krml"] let one (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.one let composable (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.composable [@@noextract_to "krml"] let compose (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.op [@@noextract_to "krml"] let mk_carrier (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p: P.perm) : Tot (carrier elt len) = let f (i: nat) : Tot (P.fractional elt) = if offset + Seq.length s > len || i < offset || i >= offset + Seq.length s then None else Some (Seq.index s (i - offset), p) in M.map_literal f let mk_carrier_inj (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires ( mk_carrier len offset s1 p1 == mk_carrier len offset s2 p2 /\ offset + Seq.length s1 <= len /\ offset + Seq.length s2 <= len )) (ensures ( s1 `Seq.equal` s2 /\ (Seq.length s1 > 0 ==> p1 == p2) )) = assert (forall (i: nat) . i < Seq.length s1 ==> (M.sel (mk_carrier len offset s1 p1) (offset + i) == Some (Seq.index s1 i, p1))); assert (forall (i: nat) . i < Seq.length s2 ==> M.sel (mk_carrier len offset s2 p2) (offset + i) == Some (Seq.index s2 i, p2)) [@@erasable] let base_t (elt: Type u#a) : Tot Type0 = Ghost.erased (base_len: US.t & ref _ (pcm elt (US.v base_len))) let base_len (#elt: Type) (b: base_t elt) : GTot nat = US.v (dfst b) [@@noextract_to "krml"] noeq type ptr (elt: Type u#a) : Type0 = { base_len: Ghost.erased US.t; // U32.t to prove that A.read, A.write offset computation does not overflow. TODO: replace U32.t with size_t base: (r: ref _ (pcm elt (US.v base_len)) { core_ref_is_null r ==> US.v base_len == 0 }); offset: (offset: nat { offset <= US.v base_len }); } let null_ptr a = { base_len = 0sz; base = null #_ #(pcm a 0) ; offset = 0 } let is_null_ptr p = is_null p.base let base (#elt: Type) (p: ptr elt) : Tot (base_t elt) = (| Ghost.reveal p.base_len, p.base |) let offset (#elt: Type) (p: ptr elt) : Ghost nat (requires True) (ensures (fun offset -> offset <= base_len (base p))) = p.offset let ptr_base_offset_inj (#elt: Type) (p1 p2: ptr elt) : Lemma (requires ( base p1 == base p2 /\ offset p1 == offset p2 )) (ensures ( p1 == p2 )) = () let base_len_null_ptr _ = () let length_fits #elt a = () let valid_perm (len: nat) (offset: nat) (slice_len: nat) (p: P.perm) : Tot prop = let open FStar.Real in ((offset + slice_len <= len /\ slice_len > 0) ==> (p.P.v <=. one)) [@__reduce__] let pts_to0 (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : Tot vprop = R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p) `star` pure ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) let pts_to (#elt: Type u#1) (a: array elt) ([@@@ smt_fallback ] p: P.perm) ([@@@ smt_fallback ] s: Seq.seq elt) : Tot vprop = pts_to0 a p s // this lemma is necessary because Steel.PCMReference is marked unfold let change_r_pts_to (#opened: _) (#carrier: Type u#1) (#pcm: P.pcm carrier) (p: ref carrier pcm) (v: carrier) (#carrier': Type u#1) (#pcm': P.pcm carrier') (p': ref carrier' pcm') (v': carrier') : STGhost unit opened (R.pts_to p v) (fun _ -> R.pts_to p' v') (// keep on distinct lines for error messages carrier == carrier' /\ pcm == pcm' /\ p == p' /\ v == v') (fun _ -> True) = rewrite (R.pts_to p v) (R.pts_to p' v') let intro_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (#v: _) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (R.pts_to (ptr_of a).base v) (fun _ -> pts_to a p s) ( v == mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p /\ valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) (fun _ -> True) = change_r_pts_to (ptr_of a).base v (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p); intro_pure _; rewrite (pts_to0 a p s) (pts_to a p s) let elim_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (pts_to a p s) (fun _ -> R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p)) (True) (fun _ -> valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) = rewrite (pts_to a p s) (pts_to0 a p s); elim_pure _ let pts_to_length a s = elim_pts_to a _ s; intro_pts_to a _ s let pts_to_not_null a s = elim_pts_to a _ s; R.pts_to_not_null _ _; intro_pts_to a _ s let mk_carrier_joinable (#elt: Type) (len: nat) (offset: nat) (s1: Seq.seq elt) (p1: P.perm) (s2: Seq.seq elt) (p2: P.perm) : Lemma (requires ( offset + Seq.length s1 <= len /\ Seq.length s1 == Seq.length s2 /\ P.joinable (pcm elt len) (mk_carrier len offset s1 p1) (mk_carrier len offset s2 p2) )) (ensures ( s1 `Seq.equal` s2 )) = let lem (i: nat { 0 <= i /\ i < Seq.length s1 }) : Lemma (Seq.index s1 i == Seq.index s2 i) [SMTPat (Seq.index s1 i); SMTPat (Seq.index s2 i)] = assert ( forall z . ( P.compatible (pcm elt len) (mk_carrier len offset s1 p1) z /\ P.compatible (pcm elt len) (mk_carrier len offset s2 p2) z ) ==> begin match M.sel z (offset + i) with | None -> False | Some (v, _) -> v == Seq.index s1 i /\ v == Seq.index s2 i end ) in () let pure_star_interp' (p:slprop u#a) (q:prop) (m:mem) : Lemma (interp (p `Steel.Memory.star` Steel.Memory.pure q) m <==> interp p m /\ q) = pure_star_interp p q m; emp_unit p let pts_to_inj a p1 s1 p2 s2 m = Classical.forall_intro reveal_pure; pure_star_interp' (hp_of (R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1))) ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s1) p1 /\ Seq.length s1 == length a ) m; pure_star_interp' (hp_of (R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s2 p2))) ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s2) p2 /\ Seq.length s2 == length a ) m; pts_to_join (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1) (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s2 p2) m; mk_carrier_joinable (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1 s2 p2 [@@noextract_to "krml"] let malloc0 (#elt: Type) (x: elt) (n: US.t) : ST (array elt) emp (fun a -> pts_to a P.full_perm (Seq.create (US.v n) x)) (True) (fun a -> length a == US.v n /\ base_len (base (ptr_of a)) == US.v n ) = let c : carrier elt (US.v n) = mk_carrier (US.v n) 0 (Seq.create (US.v n) x) P.full_perm in let base : ref (carrier elt (US.v n)) (pcm elt (US.v n)) = R.alloc c in R.pts_to_not_null base _; let p = { base_len = n; base = base; offset = 0; } in let a = (| p, Ghost.hide (US.v n) |) in change_r_pts_to base c (ptr_of a).base c; intro_pts_to a P.full_perm (Seq.create (US.v n) x); return a let malloc_ptr x n = let a = malloc0 x n in let (| p, _ |) = a in rewrite (pts_to _ _ _) (pts_to (| p, Ghost.hide (US.v n) |) _ _); return p [@@noextract_to "krml"] let free0 (#elt: Type) (#s: Ghost.erased (Seq.seq elt)) (a: array elt) : ST unit (pts_to a P.full_perm s) (fun _ -> emp) ( length a == base_len (base (ptr_of a)) ) (fun _ -> True) = drop (pts_to a _ _) let free_ptr a = free0 _ let valid_sum_perm (len: nat) (offset: nat) (slice_len: nat) (p1 p2: P.perm) : Tot prop = let open FStar.Real in valid_perm len offset slice_len (P.sum_perm p1 p2) let mk_carrier_share (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires (valid_sum_perm len offset (Seq.length s) p1 p2)) (ensures ( let c1 = mk_carrier len offset s p1 in let c2 = mk_carrier len offset s p2 in composable c1 c2 /\ mk_carrier len offset s (p1 `P.sum_perm` p2) `M.equal` (c1 `compose` c2) )) = () let share #_ #_ #x a p p1 p2 = elim_pts_to a p x; mk_carrier_share (US.v (ptr_of a).base_len) (ptr_of a).offset x p1 p2; R.split (ptr_of a).base _ (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset x p1) (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset x p2); intro_pts_to a p1 x; intro_pts_to a p2 x let mk_carrier_gather (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires ( let c1 = mk_carrier len offset s1 p1 in let c2 = mk_carrier len offset s2 p2 in composable c1 c2 /\ Seq.length s1 == Seq.length s2 /\ offset + Seq.length s1 <= len )) (ensures ( let c1 = mk_carrier len offset s1 p1 in let c2 = mk_carrier len offset s2 p2 in composable c1 c2 /\ mk_carrier len offset s1 (p1 `P.sum_perm` p2) == (c1 `compose` c2) /\ mk_carrier len offset s2 (p1 `P.sum_perm` p2) == (c1 `compose` c2) /\ s1 == s2 )) = let c1 = mk_carrier len offset s1 p1 in let c2 = mk_carrier len offset s2 p2 in assert (composable c1 c2); assert (mk_carrier len offset s1 (p1 `P.sum_perm` p2) `M.equal` (c1 `compose` c2)); assert (mk_carrier len offset s2 (p1 `P.sum_perm` p2) `M.equal` (c1 `compose` c2)); mk_carrier_inj len offset s1 s2 (p1 `P.sum_perm` p2) (p1 `P.sum_perm` p2) let mk_carrier_valid_sum_perm (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p1 p2: P.perm) : Lemma (let c1 = mk_carrier len offset s p1 in let c2 = mk_carrier len offset s p2 in composable c1 c2 <==> valid_sum_perm len offset (Seq.length s) p1 p2) = let c1 = mk_carrier len offset s p1 in let c2 = mk_carrier len offset s p2 in if Seq.length s > 0 && offset + Seq.length s <= len then let open FStar.Real in assert (P.composable (M.sel c1 offset) (M.sel c2 offset) <==> valid_perm len offset (Seq.length s) (P.sum_perm p1 p2)) else () let gather a #x1 p1 #x2 p2 = elim_pts_to a p1 x1; elim_pts_to a p2 x2; let _ = R.gather (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) ((ptr_of a).offset) x1 p1) (mk_carrier (US.v (ptr_of a).base_len) ((ptr_of a).offset) x2 p2) in mk_carrier_gather (US.v (ptr_of a).base_len) ((ptr_of a).offset) x1 x2 p1 p2; mk_carrier_valid_sum_perm (US.v (ptr_of a).base_len) ((ptr_of a).offset) x1 p1 p2; intro_pts_to a (p1 `P.sum_perm` p2) x1 #push-options "--z3rlimit 16" [@@noextract_to "krml"] let index0 (#t: Type) (#p: P.perm) (a: array t) (#s: Ghost.erased (Seq.seq t)) (i: US.t) : ST t (pts_to a p s) (fun _ -> pts_to a p s) (US.v i < length a \/ US.v i < Seq.length s) (fun res -> Seq.length s == length a /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i)) = elim_pts_to a p s; let s' = R.read (ptr_of a).base _ in let res = fst (Some?.v (M.sel s' ((ptr_of a).offset + US.v i))) in intro_pts_to a p s; return res #pop-options let index_ptr a i = index0 _ i let mk_carrier_upd (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (i: nat) (v: elt) (_: squash ( offset + Seq.length s <= len /\ i < Seq.length s )) : Lemma (ensures ( let o = mk_carrier len offset s P.full_perm in let o' = mk_carrier len offset (Seq.upd s i v) P.full_perm in o' `Map.equal` Map.upd o (offset + i) (Some (v, P.full_perm)) )) = () #push-options "--z3rlimit 20" [@@noextract_to "krml"] let upd0 (#t: Type) (a: array t) (#s: Ghost.erased (Seq.seq t)) (i: US.t { US.v i < Seq.length s }) (v: t) : STT unit (pts_to a P.full_perm s) (fun res -> pts_to a P.full_perm (Seq.upd s (US.v i) v)) = elim_pts_to a _ _; mk_carrier_upd (US.v (ptr_of a).base_len) ((ptr_of a).offset) s (US.v i) v (); R.upd_gen (ptr_of a).base _ _ (PM.lift_frame_preserving_upd _ _ (P.mk_frame_preserving_upd (Seq.index s (US.v i)) v ) _ ((ptr_of a).offset + US.v i) ); intro_pts_to a _ _ #pop-options let upd_ptr a i v = upd0 _ i v; rewrite (pts_to _ _ _) (pts_to _ _ _) let mk_carrier_merge (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p: P.perm) : Lemma (requires ( offset + Seq.length s1 + Seq.length s2 <= len )) (ensures ( let c1 = mk_carrier len offset s1 p in let c2 = mk_carrier len (offset + Seq.length s1) s2 p in composable c1 c2 /\ mk_carrier len offset (s1 `Seq.append` s2) p `M.equal` (c1 `compose` c2) )) = () let ghost_join #_ #_ #x1 #x2 #p a1 a2 h = elim_pts_to a1 p x1; elim_pts_to a2 p x2; mk_carrier_merge (US.v (ptr_of a1).base_len) ((ptr_of a1).offset) x1 x2 (p); change_r_pts_to (ptr_of a2).base _ (ptr_of a1).base (mk_carrier (US.v (ptr_of a1).base_len) ((ptr_of a1).offset + Seq.length x1) x2 p); R.gather (ptr_of a1).base (mk_carrier (US.v (ptr_of a1).base_len) ((ptr_of a1).offset) x1 (p)) (mk_carrier (US.v (ptr_of a1).base_len) ((ptr_of a1).offset + Seq.length x1) x2 (p)); change_r_pts_to (ptr_of a1).base _ (ptr_of (merge a1 a2)).base (mk_carrier (US.v (ptr_of (merge a1 a2)).base_len) ((ptr_of (merge a1 a2)).offset) (x1 `Seq.append` x2) (p)); intro_pts_to (merge a1 a2) p (Seq.append x1 x2) let mk_carrier_split (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p: P.perm) (i: nat) : Lemma (requires ( offset + Seq.length s <= len /\ i <= Seq.length s )) (ensures ( let c1 = mk_carrier len offset (Seq.slice s 0 i) p in let c2 = mk_carrier len (offset + i) (Seq.slice s i (Seq.length s)) p in composable c1 c2 /\ mk_carrier len offset s p `M.equal` (c1 `compose` c2) )) = () // TODO: replace with Ghost, introduce pointer shifting operations in SteelAtomicBase Unobservable [@@noextract_to "krml"] let ptr_shift (#elt: Type) (p: ptr elt) (off: US.t) : Pure (ptr elt) (requires (offset p + US.v off <= base_len (base p))) (ensures (fun p' -> base p' == base p /\ offset p' == offset p + US.v off )) = { base_len = p.base_len; base = p.base; offset = p.offset + US.v off; } let ghost_split #_ #_ #x #p a i = elim_pts_to a p x; mk_carrier_split (US.v (ptr_of a).base_len) ((ptr_of a).offset) x (p) (US.v i); Seq.lemma_split x (US.v i); let xl = Seq.slice x 0 (US.v i) in let xr = Seq.slice x (US.v i) (Seq.length x) in let vl = mk_carrier (US.v (ptr_of a).base_len) ((ptr_of a).offset) xl (p) in let vr = mk_carrier (US.v (ptr_of a).base_len) ((ptr_of a).offset + US.v i) xr (p) in R.split (ptr_of a).base _ vl vr; change_r_pts_to (ptr_of a).base vl (ptr_of (split_l a i)).base vl; intro_pts_to (split_l a i) #vl p (Seq.slice x 0 (US.v i)); change_r_pts_to (ptr_of a).base vr (ptr_of (split_r a i)).base vr; intro_pts_to (split_r a i) #vr p (Seq.slice x (US.v i) (Seq.length x)) //////////////////////////////////////////////////////////////////////////////// // memcpy //////////////////////////////////////////////////////////////////////////////// let prefix_copied #t (e0:Seq.seq t) (e1:Seq.seq t) (i:nat { i <= Seq.length e0 /\ Seq.length e0 == Seq.length e1}) : Seq.seq t = (Seq.append (Seq.slice e0 0 i) (Seq.slice e1 i (Seq.length e1))) #push-options "--z3rlimit 32" val memcpy0 (#t:_) (#p0:perm) (a0 a1:array t) (#s0 #s1:Ghost.erased (Seq.seq t)) (l:US.t { US.v l == length a0 /\ length a0 == length a1 } ) : STT unit (pts_to a0 p0 s0 `star` pts_to a1 full_perm s1) (fun _ -> pts_to a0 p0 s0 `star` pts_to a1 full_perm s0) let memcpy0 #t #p0 a0 a1 #e0 #e1 i = pts_to_length a0 _; pts_to_length a1 _; let inv (j:Steel.ST.Loops.nat_at_most i) : vprop = pts_to a0 p0 e0 `star` pts_to a1 full_perm (prefix_copied e0 e1 j) in assert (prefix_copied e0 e1 0 `Seq.equal` e1); rewrite (pts_to a1 full_perm e1) (pts_to a1 full_perm (prefix_copied e0 e1 0)); rewrite (pts_to a0 _ e0 `star` pts_to a1 full_perm (prefix_copied e0 e1 0)) (inv (US.v 0sz)); let body (j:Steel.ST.Loops.u32_between 0sz i) : STT unit (inv (US.v j)) (fun _ -> inv (US.v j + 1)) = rewrite (inv (US.v j)) (pts_to a0 p0 e0 `star` pts_to a1 full_perm (prefix_copied e0 e1 (US.v j))); let z = index a0 j in upd a1 j z; assert (Seq.upd (prefix_copied e0 e1 (US.v j)) (US.v j) z `Seq.equal` prefix_copied e0 e1 (US.v j + 1)); rewrite (pts_to a0 _ e0 `star` pts_to a1 _ _) (inv (US.v j + 1)); return () in Steel.ST.Loops.for_loop 0sz i inv body; assert_ (inv (US.v i)); rewrite (inv (US.v i)) (pts_to a0 p0 e0 `star` pts_to a1 full_perm (prefix_copied e0 e1 (US.v i))); assert (prefix_copied e0 e1 (US.v i) `Seq.equal` e0); rewrite (pts_to a1 _ (prefix_copied e0 e1 (US.v i))) (pts_to a1 _ e0); return () #pop-options #push-options "--z3rlimit 48" #push-options "--z3rlimit 75" let blit0 (#t:_) (#p0:perm) (#s0 #s1:Ghost.erased (Seq.seq t)) (src:array t) (idx_src: US.t) (dst:array t) (idx_dst: US.t) (len: US.t) : ST unit (pts_to src p0 s0 `star` pts_to dst full_perm s1) (fun _ -> pts_to src p0 s0 `star` exists_ (fun s1' -> pts_to dst full_perm s1' `star` pure (blit_post s0 s1 src idx_src dst idx_dst len s1') )) ( US.v idx_src + US.v len <= length src /\ US.v idx_dst + US.v len <= length dst ) (fun _ -> True) = pts_to_length src s0; pts_to_length dst s1; let _ = ghost_split src idx_src in let _ = ghost_split (split_r src idx_src) len in let _ = ghost_split dst idx_dst in let _ = ghost_split (split_r dst idx_dst) len in memcpy0 (split_l (split_r src idx_src) len) (split_l (split_r dst idx_dst) len) len; ghost_join (split_l (split_r dst _) _) (split_r (split_r dst _) _) (); ghost_join (split_l dst _) (merge _ _) (); vpattern_rewrite #_ #_ #(merge _ _) (fun a -> pts_to a _ _) dst; ghost_join (split_l (split_r src _) _) (split_r (split_r src _) _) (); ghost_join (split_l src _) (merge _ _) (); vpattern_rewrite #_ #_ #(merge _ _) (fun a -> pts_to a _ _) src; vpattern_rewrite (pts_to src _) (Ghost.reveal s0); noop () #pop-options #pop-options let blit_ptr src len_src idx_src dst len_dst idx_dst len = blit0 _ idx_src _ idx_dst len /// These functions will be natively extracted, we can simply admit them let intro_fits_u32 () = admit_ () let intro_fits_u64 () = admit_ () let intro_fits_ptrdiff32 () = admit_ () let intro_fits_ptrdiff64 () = admit_ ()
{ "checked_file": "/", "dependencies": [ "Steel.ST.PCMReference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.PCMMap.fst.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.HigherArray.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMMap", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Steel.ST.PCMReference", "short_module": "R" }, { "abbrev": true, "full_module": "Steel.PCMFrac", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a0: Steel.ST.HigherArray.ptr t -> len0: FStar.Ghost.erased Prims.nat { Steel.ST.HigherArray.offset a0 + FStar.Ghost.reveal len0 <= Steel.ST.HigherArray.base_len (Steel.ST.HigherArray.base a0) } -> a1: Steel.ST.HigherArray.ptr t -> len1: FStar.Ghost.erased Prims.nat { Steel.ST.HigherArray.offset a1 + FStar.Ghost.reveal len1 <= Steel.ST.HigherArray.base_len (Steel.ST.HigherArray.base a1) } -> Steel.ST.Effect.ST FStar.PtrdiffT.t
Steel.ST.Effect.ST
[]
[]
[ "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Steel.ST.HigherArray.ptr", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Steel.ST.HigherArray.offset", "FStar.Ghost.reveal", "Steel.ST.HigherArray.base_len", "Steel.ST.HigherArray.base", "Steel.ST.Util.return", "FStar.PtrdiffT.t", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Effect.Common.VStar", "Steel.ST.HigherArray.pts_to", "Prims.Mkdtuple2", "Steel.Effect.Common.vprop", "FStar.PtrdiffT.int_to_t", "Prims.int", "Prims.op_Subtraction", "Steel.ST.HigherArray.__proj__Mkptr__item__offset" ]
[]
false
true
false
false
false
let ptrdiff_ptr a0 len0 a1 len1 =
let res = a0.offset - a1.offset in return (UP.int_to_t res)
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_rshift
val bn_rshift: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> lbignum t (len - i)
val bn_rshift: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> lbignum t (len - i)
let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 154, "start_col": 0, "start_line": 153 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> i: Lib.IntTypes.size_nat{i < len} -> Hacl.Spec.Bignum.Definitions.lbignum t (len - i)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Lib.bn_div_pow2", "Prims.op_Subtraction" ]
[]
false
false
false
false
false
let bn_rshift #t #len b i =
Hacl.Spec.Bignum.Lib.bn_div_pow2 b i
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.cswap2
val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len)
val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len)
let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 205, "start_col": 0, "start_line": 204 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bit: Hacl.Spec.Bignum.Definitions.limb t -> b1: Hacl.Spec.Bignum.Definitions.lbignum t len -> b2: Hacl.Spec.Bignum.Definitions.lbignum t len -> Hacl.Spec.Bignum.Definitions.lbignum t len * Hacl.Spec.Bignum.Definitions.lbignum t len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Lib.cswap2", "FStar.Pervasives.Native.tuple2" ]
[]
false
false
false
false
false
let cswap2 #t #len bit b1 b2 =
Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_eq_mask
val bn_eq_mask: #t:limb_t -> #len:size_nat -> a:lbignum t len -> b:lbignum t len -> limb t
val bn_eq_mask: #t:limb_t -> #len:size_nat -> a:lbignum t len -> b:lbignum t len -> limb t
let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 219, "start_col": 0, "start_line": 218 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t len -> b: Hacl.Spec.Bignum.Definitions.lbignum t len -> Hacl.Spec.Bignum.Definitions.limb t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Comparison.bn_eq_mask", "Hacl.Spec.Bignum.Definitions.limb" ]
[]
false
false
false
false
false
let bn_eq_mask #t #len a b =
Hacl.Spec.Bignum.Comparison.bn_eq_mask a b
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_rshift_lemma
val bn_rshift_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_rshift b i) == bn_v b / pow2 (bits t * i))
val bn_rshift_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_rshift b i) == bn_v b / pow2 (bits t * i))
let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 157, "start_col": 0, "start_line": 156 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> i: Lib.IntTypes.size_nat{i < len} -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.bn_rshift b i) == Hacl.Spec.Bignum.Definitions.bn_v b / Prims.pow2 (Lib.IntTypes.bits t * i))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_rshift_lemma #t #len c i =
Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_is_zero_mask
val bn_is_zero_mask: #t:limb_t -> #len:size_nat -> a:lbignum t len -> limb t
val bn_is_zero_mask: #t:limb_t -> #len:size_nat -> a:lbignum t len -> limb t
let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 225, "start_col": 0, "start_line": 224 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t len -> Hacl.Spec.Bignum.Definitions.limb t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Comparison.bn_is_zero_mask", "Hacl.Spec.Bignum.Definitions.limb" ]
[]
false
false
false
false
false
let bn_is_zero_mask #t #len b =
Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_mul1_lshift_add_lemma
val bn_mul1_lshift_add_lemma: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b:limb t -> j:size_nat{j + aLen <= resLen} -> acc:lbignum t resLen -> Lemma (let (c_out, res) = bn_mul1_lshift_add a b j acc in v c_out * pow2 (bits t * (aLen + j)) + eval_ resLen res (aLen + j) == eval_ resLen acc (aLen + j) + bn_v a * v b * pow2 (bits t * j) /\ slice res (aLen + j) resLen == slice acc (aLen + j) resLen)
val bn_mul1_lshift_add_lemma: #t:limb_t -> #aLen:size_nat -> #resLen:size_nat -> a:lbignum t aLen -> b:limb t -> j:size_nat{j + aLen <= resLen} -> acc:lbignum t resLen -> Lemma (let (c_out, res) = bn_mul1_lshift_add a b j acc in v c_out * pow2 (bits t * (aLen + j)) + eval_ resLen res (aLen + j) == eval_ resLen acc (aLen + j) + bn_v a * v b * pow2 (bits t * j) /\ slice res (aLen + j) resLen == slice acc (aLen + j) resLen)
let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 68, "end_line": 151, "start_col": 0, "start_line": 150 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.limb t -> j: Lib.IntTypes.size_nat{j + aLen <= resLen} -> acc: Hacl.Spec.Bignum.Definitions.lbignum t resLen -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.bn_mul1_lshift_add a b j acc in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c_out res = _ in Lib.IntTypes.v c_out * Prims.pow2 (Lib.IntTypes.bits t * (aLen + j)) + Hacl.Spec.Bignum.Definitions.eval_ resLen res (aLen + j) == Hacl.Spec.Bignum.Definitions.eval_ resLen acc (aLen + j) + (Hacl.Spec.Bignum.Definitions.bn_v a * Lib.IntTypes.v b) * Prims.pow2 (Lib.IntTypes.bits t * j) /\ Lib.Sequence.slice res (aLen + j) resLen == Lib.Sequence.slice acc (aLen + j) resLen) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.limb", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc =
Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_lt_mask
val bn_lt_mask: #t:limb_t -> #len:size_nat -> a:lbignum t len -> b:lbignum t len -> limb t
val bn_lt_mask: #t:limb_t -> #len:size_nat -> a:lbignum t len -> b:lbignum t len -> limb t
let bn_lt_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask a b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 231, "start_col": 0, "start_line": 230 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t len -> b: Hacl.Spec.Bignum.Definitions.lbignum t len -> Hacl.Spec.Bignum.Definitions.limb t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Comparison.bn_lt_mask", "Hacl.Spec.Bignum.Definitions.limb" ]
[]
false
false
false
false
false
let bn_lt_mask #t #len a b =
Hacl.Spec.Bignum.Comparison.bn_lt_mask a b
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_sub_mask
val bn_sub_mask: #t:limb_t -> #len:size_nat -> n:lbignum t len -> a:lbignum t len -> lbignum t len
val bn_sub_mask: #t:limb_t -> #len:size_nat -> n:lbignum t len -> a:lbignum t len -> lbignum t len
let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 163, "start_col": 0, "start_line": 159 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Hacl.Spec.Bignum.Definitions.lbignum t len -> a: Hacl.Spec.Bignum.Definitions.lbignum t len -> Hacl.Spec.Bignum.Definitions.lbignum t len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Base.carry", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Addition.bn_sub", "Lib.Sequence.lseq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "Prims.eq2", "Lib.Sequence.index", "Lib.IntTypes.logand", "Lib.IntTypes.SEC", "Lib.Sequence.map", "Lib.IntTypes.int_t", "Prims.l_and", "Prims.l_or", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Addition", "FStar.Seq.Base.index", "Lib.Sequence.sub", "Prims.int", "Lib.IntTypes.range", "Lib.IntTypes.v", "Lib.IntTypes.ones", "Prims.l_not", "Lib.IntTypes.zeros", "Lib.ByteSequence.seq_eq_mask" ]
[]
false
false
false
false
false
let bn_sub_mask #t #len n a =
let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_get_bits
val bn_get_bits: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> i:size_nat -> l:size_nat{l < bits t /\ i / bits t < nLen} -> limb t
val bn_get_bits: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> i:size_nat -> l:size_nat{l < bits t /\ i / bits t < nLen} -> limb t
let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 191, "start_col": 0, "start_line": 190 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Hacl.Spec.Bignum.Definitions.lbignum t nLen -> i: Lib.IntTypes.size_nat -> l: Lib.IntTypes.size_nat{l < Lib.IntTypes.bits t /\ i / Lib.IntTypes.bits t < nLen} -> Hacl.Spec.Bignum.Definitions.limb t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.bits", "Prims.op_Division", "Hacl.Spec.Bignum.Lib.bn_get_bits", "Hacl.Spec.Bignum.Definitions.limb" ]
[]
false
false
false
false
false
let bn_get_bits #t #nLen n i l =
Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_get_ith_bit_lemma
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 188, "start_col": 0, "start_line": 187 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> i: Lib.IntTypes.size_nat{i / Lib.IntTypes.bits t < len} -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Hacl.Spec.Bignum.bn_get_ith_bit b i) == Hacl.Spec.Bignum.Definitions.bn_v b / Prims.pow2 i % 2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Lib.IntTypes.bits", "Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_get_ith_bit_lemma #t #len b ind =
Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_lt_pow2_mask
val bn_lt_pow2_mask: #t:limb_t -> #len:size_nat -> b:lbignum t len -> x:size_nat{x < bits t * len} -> limb t
val bn_lt_pow2_mask: #t:limb_t -> #len:size_nat -> b:lbignum t len -> x:size_nat{x < bits t * len} -> limb t
let bn_lt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask b x
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 237, "start_col": 0, "start_line": 236 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b let bn_lt_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask a b let bn_lt_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma a b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> x: Lib.IntTypes.size_nat{x < Lib.IntTypes.bits t * len} -> Hacl.Spec.Bignum.Definitions.limb t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask", "Hacl.Spec.Bignum.Definitions.limb" ]
[]
false
false
false
false
false
let bn_lt_pow2_mask #t #len b x =
Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask b x
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_is_odd
val bn_is_odd: #t:limb_t -> #len:size_pos -> a:lbignum t len -> limb t
val bn_is_odd: #t:limb_t -> #len:size_pos -> a:lbignum t len -> limb t
let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 41, "end_line": 213, "start_col": 0, "start_line": 212 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t len -> Hacl.Spec.Bignum.Definitions.limb t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Comparison.bn_is_odd", "Hacl.Spec.Bignum.Definitions.limb" ]
[]
false
false
false
false
false
let bn_is_odd #t #len b =
Hacl.Spec.Bignum.Comparison.bn_is_odd b
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.cswap2_lemma
val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 208, "start_col": 0, "start_line": 207 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bit: Hacl.Spec.Bignum.Definitions.limb t {Lib.IntTypes.v bit <= 1} -> b1: Hacl.Spec.Bignum.Definitions.lbignum t len -> b2: Hacl.Spec.Bignum.Definitions.lbignum t len -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.cswap2 bit b1 b2 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ p1 p2 = _ in (match Lib.IntTypes.v bit = 1 with | true -> p1 == b2 /\ p2 == b1 | _ -> p1 == b1 /\ p2 == b2) <: Type0) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.limb", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Lib.cswap2_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let cswap2_lemma #t #len bit b1 b2 =
Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_get_ith_bit
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 185, "start_col": 0, "start_line": 184 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> i: Lib.IntTypes.size_nat{i / Lib.IntTypes.bits t < len} -> Hacl.Spec.Bignum.Definitions.limb t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Lib.IntTypes.bits", "Hacl.Spec.Bignum.Lib.bn_get_ith_bit", "Hacl.Spec.Bignum.Definitions.limb" ]
[]
false
false
false
false
false
let bn_get_ith_bit #t #len input ind =
Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_gt_pow2_mask
val bn_gt_pow2_mask: #t:limb_t -> #len:size_nat -> b:lbignum t len -> x:size_nat{x < bits t * len} -> limb t
val bn_gt_pow2_mask: #t:limb_t -> #len:size_nat -> b:lbignum t len -> x:size_nat{x < bits t * len} -> limb t
let bn_gt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask b x
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 243, "start_col": 0, "start_line": 242 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b let bn_lt_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask a b let bn_lt_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma a b let bn_lt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask b x let bn_lt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask_lemma b x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> x: Lib.IntTypes.size_nat{x < Lib.IntTypes.bits t * len} -> Hacl.Spec.Bignum.Definitions.limb t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask", "Hacl.Spec.Bignum.Definitions.limb" ]
[]
false
false
false
false
false
let bn_gt_pow2_mask #t #len b x =
Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask b x
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_is_odd_lemma
val bn_is_odd_lemma: #t:limb_t -> #len:size_pos -> a:lbignum t len -> Lemma (v (bn_is_odd a) == (bn_v a % 2))
val bn_is_odd_lemma: #t:limb_t -> #len:size_pos -> a:lbignum t len -> Lemma (v (bn_is_odd a) == (bn_v a % 2))
let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 216, "start_col": 0, "start_line": 215 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t len -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Hacl.Spec.Bignum.bn_is_odd a) == Hacl.Spec.Bignum.Definitions.bn_v a % 2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_is_odd_lemma #t #len b =
Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_eq_mask_lemma
val bn_eq_mask_lemma: #t:limb_t -> #len:size_nat -> a:lbignum t len -> b:lbignum t len -> Lemma (mask_values (bn_eq_mask a b) /\ (if v (bn_eq_mask a b) = 0 then bn_v a <> bn_v b else bn_v a = bn_v b))
val bn_eq_mask_lemma: #t:limb_t -> #len:size_nat -> a:lbignum t len -> b:lbignum t len -> Lemma (mask_values (bn_eq_mask a b) /\ (if v (bn_eq_mask a b) = 0 then bn_v a <> bn_v b else bn_v a = bn_v b))
let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 50, "end_line": 222, "start_col": 0, "start_line": 221 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t len -> b: Hacl.Spec.Bignum.Definitions.lbignum t len -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Base.mask_values (Hacl.Spec.Bignum.bn_eq_mask a b) /\ (match Lib.IntTypes.v (Hacl.Spec.Bignum.bn_eq_mask a b) = 0 with | true -> Hacl.Spec.Bignum.Definitions.bn_v a <> Hacl.Spec.Bignum.Definitions.bn_v b | _ -> Hacl.Spec.Bignum.Definitions.bn_v a = Hacl.Spec.Bignum.Definitions.bn_v b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_eq_mask_lemma #t #len a b =
Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_set_ith_bit_lemma
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i)
let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 200, "start_col": 0, "start_line": 199 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> i: Lib.IntTypes.size_nat{i / Lib.IntTypes.bits t < len} -> FStar.Pervasives.Lemma (requires Hacl.Spec.Bignum.Definitions.bn_v b < Prims.pow2 i) (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.bn_set_ith_bit b i) == Hacl.Spec.Bignum.Definitions.bn_v b + Prims.pow2 i)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Lib.IntTypes.bits", "Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_set_ith_bit_lemma #t #len input ind =
Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind
false
LList.ST.fst
LList.ST.peek
val peek (#a:Type0) (#l:G.erased (list a)) (ll:llist a) (_:squash (Cons? l)) : ST a (ll `is_list` l) (fun _ -> ll `is_list` l) (requires True) (ensures fun x -> x == Cons?.hd l)
val peek (#a:Type0) (#l:G.erased (list a)) (ll:llist a) (_:squash (Cons? l)) : ST a (ll `is_list` l) (fun _ -> ll `is_list` l) (requires True) (ensures fun x -> x == Cons?.hd l)
let peek #_ #l ll p = let w = elim l ll p in let node = read ll in intro l w ll p; return node.data
{ "file_name": "share/steel/examples/steel/LList.ST.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 18, "end_line": 126, "start_col": 0, "start_line": 122 }
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: Aseem Rastogi *) module LList.ST open Steel.Memory open Steel.ST.Effect open Steel.ST.Util open Steel.ST.Reference #set-options "--ide_id_info_off" let rec is_list #a ll l : Tot vprop (decreases l) = match l with | [] -> pure (ll == null) | hd::tl -> exists_ (fun (node:llist_node a) -> pts_to ll full_perm node `star` pure (node.data == hd) `star` is_list node.next tl) let empty a = null module T = FStar.Tactics let intro #_ #_ l node ll _ = intro_pure (node.data == Cons?.hd l); intro_exists node (fun node -> pts_to ll full_perm node `star` pure (node.data == Cons?.hd l) `star` is_list node.next (Cons?.tl l)); assert (exists_ (fun node -> pts_to ll full_perm node `star` pure (node.data == Cons?.hd l) `star` is_list node.next (Cons?.tl l)) == is_list ll (Cons?.hd l::Cons?.tl l)) by (T.norm [delta_only [`%is_list]; zeta; iota]); rewrite (exists_ (fun node -> pts_to ll full_perm node `star` pure (node.data == Cons?.hd l) `star` is_list node.next (Cons?.tl l))) (is_list ll l) let elim_aux (#opened:_) (#a:Type0) (hd:G.erased a) (tl:G.erased (list a)) (ll:llist a) : STGhost (G.erased (llist_node a)) opened (is_list ll (G.reveal hd::tl)) (fun node -> pts_to ll full_perm node `star` is_list node.next tl) (requires True) (ensures fun node -> eq2 #a node.data hd) = assert (is_list ll (G.reveal hd::tl) == exists_ (fun node -> pts_to ll full_perm node `star` pure (eq2 #a node.data hd) `star` is_list node.next tl)) by (T.norm [delta_only [`%is_list]; zeta; iota]); rewrite (is_list ll (G.reveal hd::tl)) (exists_ (fun node -> pts_to ll full_perm node `star` pure (eq2 #a node.data hd) `star` is_list node.next tl)); let node = elim_exists () in elim_pure (eq2 _ _); node let elim #opened #a l ll p = rewrite (is_list ll l) (is_list ll (Cons?.hd l::Cons?.tl l)); elim_aux (Cons?.hd l) (Cons?.tl l) ll let empty_pts_to #_ a = intro_pure (empty a == null); rewrite (pure _) (is_list (empty a) []) let cons #_ #l x ll = let node = { data = x; next = ll; } in let head = alloc node in rewrite (ll `is_list` l) (node.next `is_list` l); intro (x::l) node head (); return head
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Reference.fsti.checked", "Steel.ST.Effect.fsti.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "LList.ST.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.ST.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": false, "full_module": "Steel.ST.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "LList", "short_module": null }, { "abbrev": false, "full_module": "LList", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ll: LList.ST.llist a -> p: Prims.squash (Cons? (FStar.Ghost.reveal l)) -> Steel.ST.Effect.ST a
Steel.ST.Effect.ST
[]
[]
[ "FStar.Ghost.erased", "Prims.list", "LList.ST.llist", "Prims.squash", "Prims.b2t", "Prims.uu___is_Cons", "FStar.Ghost.reveal", "Steel.ST.Util.return", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "LList.ST.is_list", "Steel.Effect.Common.vprop", "LList.ST.__proj__Mkllist_node__item__data", "Prims.unit", "LList.ST.intro", "LList.ST.llist_node", "Steel.ST.Reference.read", "Steel.FractionalPermission.full_perm", "LList.ST.elim" ]
[]
false
true
false
false
false
let peek #_ #l ll p =
let w = elim l ll p in let node = read ll in intro l w ll p; return node.data
false
SteelFramingTestSuite.fst
SteelFramingTestSuite.test8
val test8 (b1 b2 b3: ref) : SteelT unit (((ptr b1) `star` (ptr b2)) `star` (ptr b3)) (fun _ -> ((ptr b2) `star` (ptr b1)) `star` (ptr b3))
val test8 (b1 b2 b3: ref) : SteelT unit (((ptr b1) `star` (ptr b2)) `star` (ptr b3)) (fun _ -> ((ptr b2) `star` (ptr b1)) `star` (ptr b3))
let test8 (b1 b2 b3:ref) : SteelT unit (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b2 `star` ptr b1 `star` ptr b3) = write b2 0
{ "file_name": "share/steel/tests/SteelFramingTestSuite.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 14, "end_line": 108, "start_col": 0, "start_line": 105 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module SteelFramingTestSuite open Steel.Memory open Steel.Effect /// A collection of small unit tests for the framing tactic assume val p : vprop assume val f (x:int) : SteelT unit p (fun _ -> p) let test () : SteelT unit (p `star` p `star` p) (fun _ -> p `star` p `star` p) = f 0; () assume val ref : Type0 assume val ptr (_:ref) : vprop assume val alloc (x:int) : SteelT ref emp (fun y -> ptr y) assume val free (r:ref) : SteelT unit (ptr r) (fun _ -> emp) assume val read (r:ref) : SteelT int (ptr r) (fun _ -> ptr r) assume val write (r:ref) (v: int) : SteelT unit (ptr r) (fun _ -> ptr r) let unused x = x // work around another gensym heisenbug let test0 (b1 b2 b3: ref) : SteelT int (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b1 `star` ptr b2 `star` ptr b3) = let x = read b1 in x let test1 (b1 b2 b3: ref) : SteelT int (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b1 `star` ptr b2 `star` ptr b3) = let x = (let y = read b1 in y) in x let test2 (b1 b2 b3: ref) : SteelT int (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b3 `star` ptr b2 `star` ptr b1) = let x = read b1 in x let test3 (b1 b2 b3: ref) : SteelT int (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b2 `star` ptr b1 `star` ptr b3) = let x = read b3 in x let test4 (b1 b2 b3: ref) : SteelT unit (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b2 `star` ptr b1 `star` ptr b3) = let x = read b3 in write b2 x let test5 (b1 b2 b3: ref) : SteelT unit (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b2 `star` ptr b1 `star` ptr b3) = let x = read b3 in write b2 (x + 1) let test6 (b1 b2 b3: ref) : SteelT unit (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b2 `star` ptr b1 `star` ptr b3) = let x = read b3 in let b4 = alloc x in write b2 (x + 1); free b4 // With the formalism relying on can_be_split_post, this example fails if we normalize return_pre eqs goals before unification // When solving this equality, we have the goal // (*?u19*) _ _ == return_pre ((fun x -> (fun x -> (*?u758*) _ x x) x) r) // with x and r in the context of ?u19 // Not normalizing allows us to solve it as a function applied to x and r // Normalizing would lead to solve it to an slprop with x and r in the context, // but which would later fail when trying to prove the equivalence with (fun r -> ptr r) // in the postcondition let test7 (_:unit) : SteelT ref emp ptr = let r = alloc 0 in let x = read r in write r 0; r
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "SteelFramingTestSuite.fst" }
[ { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b1: SteelFramingTestSuite.ref -> b2: SteelFramingTestSuite.ref -> b3: SteelFramingTestSuite.ref -> Steel.Effect.SteelT Prims.unit
Steel.Effect.SteelT
[]
[]
[ "SteelFramingTestSuite.ref", "SteelFramingTestSuite.write", "Prims.unit", "Steel.Effect.Common.star", "SteelFramingTestSuite.ptr", "Steel.Effect.Common.vprop" ]
[]
false
true
false
false
false
let test8 (b1 b2 b3: ref) : SteelT unit (((ptr b1) `star` (ptr b2)) `star` (ptr b3)) (fun _ -> ((ptr b2) `star` (ptr b1)) `star` (ptr b3)) =
write b2 0
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_is_zero_mask_lemma
val bn_is_zero_mask_lemma: #t:limb_t -> #len:size_nat -> a:lbignum t len -> Lemma (mask_values (bn_is_zero_mask a) /\ (if v (bn_is_zero_mask a) = 0 then bn_v a <> 0 else bn_v a = 0))
val bn_is_zero_mask_lemma: #t:limb_t -> #len:size_nat -> a:lbignum t len -> Lemma (mask_values (bn_is_zero_mask a) /\ (if v (bn_is_zero_mask a) = 0 then bn_v a <> 0 else bn_v a = 0))
let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 228, "start_col": 0, "start_line": 227 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t len -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Base.mask_values (Hacl.Spec.Bignum.bn_is_zero_mask a) /\ (match Lib.IntTypes.v (Hacl.Spec.Bignum.bn_is_zero_mask a) = 0 with | true -> Hacl.Spec.Bignum.Definitions.bn_v a <> 0 | _ -> Hacl.Spec.Bignum.Definitions.bn_v a = 0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_is_zero_mask_lemma #t #len b =
Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_get_bits_lemma
val bn_get_bits_lemma: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> i:size_nat -> l:size_nat{l < bits t /\ i / bits t < nLen} -> Lemma (v (bn_get_bits n i l) == (bn_v n / pow2 i) % pow2 l)
val bn_get_bits_lemma: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> i:size_nat -> l:size_nat{l < bits t /\ i / bits t < nLen} -> Lemma (v (bn_get_bits n i l) == (bn_v n / pow2 i) % pow2 l)
let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 55, "end_line": 194, "start_col": 0, "start_line": 193 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Hacl.Spec.Bignum.Definitions.lbignum t nLen -> i: Lib.IntTypes.size_nat -> l: Lib.IntTypes.size_nat{l < Lib.IntTypes.bits t /\ i / Lib.IntTypes.bits t < nLen} -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Hacl.Spec.Bignum.bn_get_bits n i l) == Hacl.Spec.Bignum.Definitions.bn_v n / Prims.pow2 i % Prims.pow2 l)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.bits", "Prims.op_Division", "Hacl.Spec.Bignum.Lib.bn_get_bits_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_get_bits_lemma #t #nLen n i l =
Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_set_ith_bit
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 197, "start_col": 0, "start_line": 196 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> i: Lib.IntTypes.size_nat{i / Lib.IntTypes.bits t < len} -> Hacl.Spec.Bignum.Definitions.lbignum t len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Lib.IntTypes.bits", "Hacl.Spec.Bignum.Lib.bn_set_ith_bit" ]
[]
false
false
false
false
false
let bn_set_ith_bit #t #len input ind =
Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_lt_mask_lemma
val bn_lt_mask_lemma: #t:limb_t -> #len:size_nat -> a:lbignum t len -> b:lbignum t len -> Lemma (mask_values (bn_lt_mask a b) /\ (if v (bn_lt_mask a b) = 0 then bn_v a >= bn_v b else bn_v a < bn_v b))
val bn_lt_mask_lemma: #t:limb_t -> #len:size_nat -> a:lbignum t len -> b:lbignum t len -> Lemma (mask_values (bn_lt_mask a b) /\ (if v (bn_lt_mask a b) = 0 then bn_v a >= bn_v b else bn_v a < bn_v b))
let bn_lt_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma a b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 50, "end_line": 234, "start_col": 0, "start_line": 233 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b let bn_lt_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask a b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t len -> b: Hacl.Spec.Bignum.Definitions.lbignum t len -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Base.mask_values (Hacl.Spec.Bignum.bn_lt_mask a b) /\ (match Lib.IntTypes.v (Hacl.Spec.Bignum.bn_lt_mask a b) = 0 with | true -> Hacl.Spec.Bignum.Definitions.bn_v a >= Hacl.Spec.Bignum.Definitions.bn_v b | _ -> Hacl.Spec.Bignum.Definitions.bn_v a < Hacl.Spec.Bignum.Definitions.bn_v b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_lt_mask_lemma #t #len a b =
Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma a b
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_lt_pow2_mask_lemma
val bn_lt_pow2_mask_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> x:size_nat{x < bits t * len} -> Lemma (mask_values (bn_lt_pow2_mask b x) /\ (if v (bn_lt_pow2_mask b x) = 0 then bn_v b >= pow2 x else bn_v b < pow2 x))
val bn_lt_pow2_mask_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> x:size_nat{x < bits t * len} -> Lemma (mask_values (bn_lt_pow2_mask b x) /\ (if v (bn_lt_pow2_mask b x) = 0 then bn_v b >= pow2 x else bn_v b < pow2 x))
let bn_lt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask_lemma b x
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 55, "end_line": 240, "start_col": 0, "start_line": 239 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b let bn_lt_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask a b let bn_lt_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma a b let bn_lt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask b x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> x: Lib.IntTypes.size_nat{x < Lib.IntTypes.bits t * len} -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Base.mask_values (Hacl.Spec.Bignum.bn_lt_pow2_mask b x) /\ (match Lib.IntTypes.v (Hacl.Spec.Bignum.bn_lt_pow2_mask b x) = 0 with | true -> Hacl.Spec.Bignum.Definitions.bn_v b >= Prims.pow2 x | _ -> Hacl.Spec.Bignum.Definitions.bn_v b < Prims.pow2 x))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_lt_pow2_mask_lemma #t #len b x =
Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask_lemma b x
false
Bane.Test.fst
Bane.Test.test
val test : Prims.unit
let test = assert for_you by Bane.Lib.mytac ()
{ "file_name": "examples/tactics/Bane.Test.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 21, "start_col": 0, "start_line": 20 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Bane.Test open FStar.Tactics.V2 open Bane.Lib
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked", "Bane.Lib.fst.checked" ], "interface_file": false, "source_file": "Bane.Test.fst" }
[ { "abbrev": false, "full_module": "Bane.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "Bane", "short_module": null }, { "abbrev": false, "full_module": "Bane", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.unit
Prims.Tot
[ "total" ]
[]
[ "FStar.Tactics.Effect.assert_by_tactic", "Bane.Lib.for_you", "Prims.unit", "Bane.Lib.mytac" ]
[]
false
false
false
true
false
let test =
FStar.Tactics.Effect.assert_by_tactic for_you (fun _ -> (); Bane.Lib.mytac ())
false
LList.Invariant.fsti
LList.Invariant.t
val t : a: Type0 -> Type0
let t (a:Type0) = ref (cell a)
{ "file_name": "share/steel/examples/steel/LList.Invariant.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 30, "end_line": 26, "start_col": 0, "start_line": 26 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author(s): N. Swamy, A. Fromherz *) module LList.Invariant open Steel.Memory open Steel.Effect open Steel.FractionalPermission open Steel.Reference module L = FStar.List.Tot
{ "checked_file": "/", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LList.Invariant.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "LList", "short_module": null }, { "abbrev": false, "full_module": "LList", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type0 -> Type0
Prims.Tot
[ "total" ]
[]
[ "Steel.Reference.ref", "LList.Invariant.cell" ]
[]
false
false
false
true
true
let t (a: Type0) =
ref (cell a)
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_gt_pow2_mask_lemma
val bn_gt_pow2_mask_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> x:size_nat{x < bits t * len} -> Lemma (mask_values (bn_gt_pow2_mask b x) /\ (if v (bn_gt_pow2_mask b x) = 0 then pow2 x >= bn_v b else pow2 x < bn_v b))
val bn_gt_pow2_mask_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> x:size_nat{x < bits t * len} -> Lemma (mask_values (bn_gt_pow2_mask b x) /\ (if v (bn_gt_pow2_mask b x) = 0 then pow2 x >= bn_v b else pow2 x < bn_v b))
let bn_gt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask_lemma b x
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 55, "end_line": 246, "start_col": 0, "start_line": 245 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b let bn_lt_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask a b let bn_lt_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma a b let bn_lt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask b x let bn_lt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask_lemma b x let bn_gt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask b x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> x: Lib.IntTypes.size_nat{x < Lib.IntTypes.bits t * len} -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Base.mask_values (Hacl.Spec.Bignum.bn_gt_pow2_mask b x) /\ (match Lib.IntTypes.v (Hacl.Spec.Bignum.bn_gt_pow2_mask b x) = 0 with | true -> Prims.pow2 x >= Hacl.Spec.Bignum.Definitions.bn_v b | _ -> Prims.pow2 x < Hacl.Spec.Bignum.Definitions.bn_v b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_gt_pow2_mask_lemma #t #len b x =
Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask_lemma b x
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_from_uint
val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len
val bn_from_uint: #t:limb_t -> len:size_pos -> x:limb t -> lbignum t len
let bn_from_uint #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint len x
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 251, "start_col": 0, "start_line": 250 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b let bn_lt_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask a b let bn_lt_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma a b let bn_lt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask b x let bn_lt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask_lemma b x let bn_gt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask b x let bn_gt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask_lemma b x (* Conversion functions *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos -> x: Hacl.Spec.Bignum.Definitions.limb t -> Hacl.Spec.Bignum.Definitions.lbignum t len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Convert.bn_from_uint", "Hacl.Spec.Bignum.Definitions.lbignum" ]
[]
false
false
false
false
false
let bn_from_uint #t len x =
Hacl.Spec.Bignum.Convert.bn_from_uint len x
false
Vale.Transformers.PrefetchElim.fst
Vale.Transformers.PrefetchElim.prefetch_elim_ph
val prefetch_elim_ph : Vale.Transformers.PeepHole.pre_peephole
let prefetch_elim_ph = { ph = (function | [Instr i oprs (AnnotatePrefetchnta ())] -> Some [] | _ -> None); input_hint = 1; }
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.PrefetchElim.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 1, "end_line": 20, "start_col": 0, "start_line": 14 }
module Vale.Transformers.PrefetchElim open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s open Vale.Transformers.InstructionReorder open Vale.X64.InsLemmas open Vale.Transformers.PeepHole
{ "checked_file": "/", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Transformers.PeepHole.fsti.checked", "Vale.Transformers.InstructionReorder.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.Transformers.PrefetchElim.fst" }
[ { "abbrev": false, "full_module": "Vale.Transformers.PeepHole", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Vale.Transformers.PeepHole.pre_peephole
Prims.Tot
[ "total" ]
[]
[ "Vale.Transformers.PeepHole.Mkpre_peephole", "Prims.list", "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.Instruction_s.instr_t_record", "Vale.X64.Instruction_s.instr_operands_t", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__outs", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__args", "FStar.Pervasives.Native.Some", "Prims.Nil", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option" ]
[]
false
false
false
true
false
let prefetch_elim_ph =
{ ph = (function | [Instr i oprs (AnnotatePrefetchnta ())] -> Some [] | _ -> None); input_hint = 1 }
false
Steel.ST.HigherArray.fst
Steel.ST.HigherArray.upd_ptr
val upd_ptr (#t: Type) (a: ptr t) (#len: Ghost.erased nat { offset a + len <= base_len (base a) }) (#s: Ghost.erased (Seq.seq t)) (i: US.t { US.v i < Seq.length s }) (v: t) : STT unit (pts_to (| a, len |) P.full_perm s) (fun res -> pts_to (| a, len |) P.full_perm (Seq.upd s (US.v i) v))
val upd_ptr (#t: Type) (a: ptr t) (#len: Ghost.erased nat { offset a + len <= base_len (base a) }) (#s: Ghost.erased (Seq.seq t)) (i: US.t { US.v i < Seq.length s }) (v: t) : STT unit (pts_to (| a, len |) P.full_perm s) (fun res -> pts_to (| a, len |) P.full_perm (Seq.upd s (US.v i) v))
let upd_ptr a i v = upd0 _ i v; rewrite (pts_to _ _ _) (pts_to _ _ _)
{ "file_name": "lib/steel/Steel.ST.HigherArray.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 18, "end_line": 487, "start_col": 0, "start_line": 483 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.HigherArray module P = Steel.PCMFrac module R = Steel.ST.PCMReference module M = FStar.Map module PM = Steel.PCMMap [@@noextract_to "krml"] let index_t (len: Ghost.erased nat) : Tot Type0 = (i: nat { i < len }) [@@noextract_to "krml"] let carrier (elt: Type u#a) (len: Ghost.erased nat) : Tot Type = PM.map (index_t len) (P.fractional elt) [@@noextract_to "krml"] let pcm (elt: Type u#a) (len: Ghost.erased nat) : Tot (P.pcm (carrier elt len)) = PM.pointwise (index_t len) (P.pcm_frac #elt) [@@noextract_to "krml"] let one (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.one let composable (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.composable [@@noextract_to "krml"] let compose (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.op [@@noextract_to "krml"] let mk_carrier (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p: P.perm) : Tot (carrier elt len) = let f (i: nat) : Tot (P.fractional elt) = if offset + Seq.length s > len || i < offset || i >= offset + Seq.length s then None else Some (Seq.index s (i - offset), p) in M.map_literal f let mk_carrier_inj (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires ( mk_carrier len offset s1 p1 == mk_carrier len offset s2 p2 /\ offset + Seq.length s1 <= len /\ offset + Seq.length s2 <= len )) (ensures ( s1 `Seq.equal` s2 /\ (Seq.length s1 > 0 ==> p1 == p2) )) = assert (forall (i: nat) . i < Seq.length s1 ==> (M.sel (mk_carrier len offset s1 p1) (offset + i) == Some (Seq.index s1 i, p1))); assert (forall (i: nat) . i < Seq.length s2 ==> M.sel (mk_carrier len offset s2 p2) (offset + i) == Some (Seq.index s2 i, p2)) [@@erasable] let base_t (elt: Type u#a) : Tot Type0 = Ghost.erased (base_len: US.t & ref _ (pcm elt (US.v base_len))) let base_len (#elt: Type) (b: base_t elt) : GTot nat = US.v (dfst b) [@@noextract_to "krml"] noeq type ptr (elt: Type u#a) : Type0 = { base_len: Ghost.erased US.t; // U32.t to prove that A.read, A.write offset computation does not overflow. TODO: replace U32.t with size_t base: (r: ref _ (pcm elt (US.v base_len)) { core_ref_is_null r ==> US.v base_len == 0 }); offset: (offset: nat { offset <= US.v base_len }); } let null_ptr a = { base_len = 0sz; base = null #_ #(pcm a 0) ; offset = 0 } let is_null_ptr p = is_null p.base let base (#elt: Type) (p: ptr elt) : Tot (base_t elt) = (| Ghost.reveal p.base_len, p.base |) let offset (#elt: Type) (p: ptr elt) : Ghost nat (requires True) (ensures (fun offset -> offset <= base_len (base p))) = p.offset let ptr_base_offset_inj (#elt: Type) (p1 p2: ptr elt) : Lemma (requires ( base p1 == base p2 /\ offset p1 == offset p2 )) (ensures ( p1 == p2 )) = () let base_len_null_ptr _ = () let length_fits #elt a = () let valid_perm (len: nat) (offset: nat) (slice_len: nat) (p: P.perm) : Tot prop = let open FStar.Real in ((offset + slice_len <= len /\ slice_len > 0) ==> (p.P.v <=. one)) [@__reduce__] let pts_to0 (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : Tot vprop = R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p) `star` pure ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) let pts_to (#elt: Type u#1) (a: array elt) ([@@@ smt_fallback ] p: P.perm) ([@@@ smt_fallback ] s: Seq.seq elt) : Tot vprop = pts_to0 a p s // this lemma is necessary because Steel.PCMReference is marked unfold let change_r_pts_to (#opened: _) (#carrier: Type u#1) (#pcm: P.pcm carrier) (p: ref carrier pcm) (v: carrier) (#carrier': Type u#1) (#pcm': P.pcm carrier') (p': ref carrier' pcm') (v': carrier') : STGhost unit opened (R.pts_to p v) (fun _ -> R.pts_to p' v') (// keep on distinct lines for error messages carrier == carrier' /\ pcm == pcm' /\ p == p' /\ v == v') (fun _ -> True) = rewrite (R.pts_to p v) (R.pts_to p' v') let intro_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (#v: _) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (R.pts_to (ptr_of a).base v) (fun _ -> pts_to a p s) ( v == mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p /\ valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) (fun _ -> True) = change_r_pts_to (ptr_of a).base v (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p); intro_pure _; rewrite (pts_to0 a p s) (pts_to a p s) let elim_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (pts_to a p s) (fun _ -> R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p)) (True) (fun _ -> valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) = rewrite (pts_to a p s) (pts_to0 a p s); elim_pure _ let pts_to_length a s = elim_pts_to a _ s; intro_pts_to a _ s let pts_to_not_null a s = elim_pts_to a _ s; R.pts_to_not_null _ _; intro_pts_to a _ s let mk_carrier_joinable (#elt: Type) (len: nat) (offset: nat) (s1: Seq.seq elt) (p1: P.perm) (s2: Seq.seq elt) (p2: P.perm) : Lemma (requires ( offset + Seq.length s1 <= len /\ Seq.length s1 == Seq.length s2 /\ P.joinable (pcm elt len) (mk_carrier len offset s1 p1) (mk_carrier len offset s2 p2) )) (ensures ( s1 `Seq.equal` s2 )) = let lem (i: nat { 0 <= i /\ i < Seq.length s1 }) : Lemma (Seq.index s1 i == Seq.index s2 i) [SMTPat (Seq.index s1 i); SMTPat (Seq.index s2 i)] = assert ( forall z . ( P.compatible (pcm elt len) (mk_carrier len offset s1 p1) z /\ P.compatible (pcm elt len) (mk_carrier len offset s2 p2) z ) ==> begin match M.sel z (offset + i) with | None -> False | Some (v, _) -> v == Seq.index s1 i /\ v == Seq.index s2 i end ) in () let pure_star_interp' (p:slprop u#a) (q:prop) (m:mem) : Lemma (interp (p `Steel.Memory.star` Steel.Memory.pure q) m <==> interp p m /\ q) = pure_star_interp p q m; emp_unit p let pts_to_inj a p1 s1 p2 s2 m = Classical.forall_intro reveal_pure; pure_star_interp' (hp_of (R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1))) ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s1) p1 /\ Seq.length s1 == length a ) m; pure_star_interp' (hp_of (R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s2 p2))) ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s2) p2 /\ Seq.length s2 == length a ) m; pts_to_join (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1) (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s2 p2) m; mk_carrier_joinable (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1 s2 p2 [@@noextract_to "krml"] let malloc0 (#elt: Type) (x: elt) (n: US.t) : ST (array elt) emp (fun a -> pts_to a P.full_perm (Seq.create (US.v n) x)) (True) (fun a -> length a == US.v n /\ base_len (base (ptr_of a)) == US.v n ) = let c : carrier elt (US.v n) = mk_carrier (US.v n) 0 (Seq.create (US.v n) x) P.full_perm in let base : ref (carrier elt (US.v n)) (pcm elt (US.v n)) = R.alloc c in R.pts_to_not_null base _; let p = { base_len = n; base = base; offset = 0; } in let a = (| p, Ghost.hide (US.v n) |) in change_r_pts_to base c (ptr_of a).base c; intro_pts_to a P.full_perm (Seq.create (US.v n) x); return a let malloc_ptr x n = let a = malloc0 x n in let (| p, _ |) = a in rewrite (pts_to _ _ _) (pts_to (| p, Ghost.hide (US.v n) |) _ _); return p [@@noextract_to "krml"] let free0 (#elt: Type) (#s: Ghost.erased (Seq.seq elt)) (a: array elt) : ST unit (pts_to a P.full_perm s) (fun _ -> emp) ( length a == base_len (base (ptr_of a)) ) (fun _ -> True) = drop (pts_to a _ _) let free_ptr a = free0 _ let valid_sum_perm (len: nat) (offset: nat) (slice_len: nat) (p1 p2: P.perm) : Tot prop = let open FStar.Real in valid_perm len offset slice_len (P.sum_perm p1 p2) let mk_carrier_share (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires (valid_sum_perm len offset (Seq.length s) p1 p2)) (ensures ( let c1 = mk_carrier len offset s p1 in let c2 = mk_carrier len offset s p2 in composable c1 c2 /\ mk_carrier len offset s (p1 `P.sum_perm` p2) `M.equal` (c1 `compose` c2) )) = () let share #_ #_ #x a p p1 p2 = elim_pts_to a p x; mk_carrier_share (US.v (ptr_of a).base_len) (ptr_of a).offset x p1 p2; R.split (ptr_of a).base _ (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset x p1) (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset x p2); intro_pts_to a p1 x; intro_pts_to a p2 x let mk_carrier_gather (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires ( let c1 = mk_carrier len offset s1 p1 in let c2 = mk_carrier len offset s2 p2 in composable c1 c2 /\ Seq.length s1 == Seq.length s2 /\ offset + Seq.length s1 <= len )) (ensures ( let c1 = mk_carrier len offset s1 p1 in let c2 = mk_carrier len offset s2 p2 in composable c1 c2 /\ mk_carrier len offset s1 (p1 `P.sum_perm` p2) == (c1 `compose` c2) /\ mk_carrier len offset s2 (p1 `P.sum_perm` p2) == (c1 `compose` c2) /\ s1 == s2 )) = let c1 = mk_carrier len offset s1 p1 in let c2 = mk_carrier len offset s2 p2 in assert (composable c1 c2); assert (mk_carrier len offset s1 (p1 `P.sum_perm` p2) `M.equal` (c1 `compose` c2)); assert (mk_carrier len offset s2 (p1 `P.sum_perm` p2) `M.equal` (c1 `compose` c2)); mk_carrier_inj len offset s1 s2 (p1 `P.sum_perm` p2) (p1 `P.sum_perm` p2) let mk_carrier_valid_sum_perm (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p1 p2: P.perm) : Lemma (let c1 = mk_carrier len offset s p1 in let c2 = mk_carrier len offset s p2 in composable c1 c2 <==> valid_sum_perm len offset (Seq.length s) p1 p2) = let c1 = mk_carrier len offset s p1 in let c2 = mk_carrier len offset s p2 in if Seq.length s > 0 && offset + Seq.length s <= len then let open FStar.Real in assert (P.composable (M.sel c1 offset) (M.sel c2 offset) <==> valid_perm len offset (Seq.length s) (P.sum_perm p1 p2)) else () let gather a #x1 p1 #x2 p2 = elim_pts_to a p1 x1; elim_pts_to a p2 x2; let _ = R.gather (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) ((ptr_of a).offset) x1 p1) (mk_carrier (US.v (ptr_of a).base_len) ((ptr_of a).offset) x2 p2) in mk_carrier_gather (US.v (ptr_of a).base_len) ((ptr_of a).offset) x1 x2 p1 p2; mk_carrier_valid_sum_perm (US.v (ptr_of a).base_len) ((ptr_of a).offset) x1 p1 p2; intro_pts_to a (p1 `P.sum_perm` p2) x1 #push-options "--z3rlimit 16" [@@noextract_to "krml"] let index0 (#t: Type) (#p: P.perm) (a: array t) (#s: Ghost.erased (Seq.seq t)) (i: US.t) : ST t (pts_to a p s) (fun _ -> pts_to a p s) (US.v i < length a \/ US.v i < Seq.length s) (fun res -> Seq.length s == length a /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i)) = elim_pts_to a p s; let s' = R.read (ptr_of a).base _ in let res = fst (Some?.v (M.sel s' ((ptr_of a).offset + US.v i))) in intro_pts_to a p s; return res #pop-options let index_ptr a i = index0 _ i let mk_carrier_upd (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (i: nat) (v: elt) (_: squash ( offset + Seq.length s <= len /\ i < Seq.length s )) : Lemma (ensures ( let o = mk_carrier len offset s P.full_perm in let o' = mk_carrier len offset (Seq.upd s i v) P.full_perm in o' `Map.equal` Map.upd o (offset + i) (Some (v, P.full_perm)) )) = () #push-options "--z3rlimit 20" [@@noextract_to "krml"] let upd0 (#t: Type) (a: array t) (#s: Ghost.erased (Seq.seq t)) (i: US.t { US.v i < Seq.length s }) (v: t) : STT unit (pts_to a P.full_perm s) (fun res -> pts_to a P.full_perm (Seq.upd s (US.v i) v)) = elim_pts_to a _ _; mk_carrier_upd (US.v (ptr_of a).base_len) ((ptr_of a).offset) s (US.v i) v (); R.upd_gen (ptr_of a).base _ _ (PM.lift_frame_preserving_upd _ _ (P.mk_frame_preserving_upd (Seq.index s (US.v i)) v ) _ ((ptr_of a).offset + US.v i) ); intro_pts_to a _ _ #pop-options
{ "checked_file": "/", "dependencies": [ "Steel.ST.PCMReference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.PCMMap.fst.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.HigherArray.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMMap", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Steel.ST.PCMReference", "short_module": "R" }, { "abbrev": true, "full_module": "Steel.PCMFrac", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Steel.ST.HigherArray.ptr t -> i: FStar.SizeT.t{FStar.SizeT.v i < FStar.Seq.Base.length (FStar.Ghost.reveal s)} -> v: t -> Steel.ST.Effect.STT Prims.unit
Steel.ST.Effect.STT
[]
[]
[ "Steel.ST.HigherArray.ptr", "FStar.Ghost.erased", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Steel.ST.HigherArray.offset", "FStar.Ghost.reveal", "Steel.ST.HigherArray.base_len", "Steel.ST.HigherArray.base", "FStar.Seq.Base.seq", "FStar.SizeT.t", "Prims.op_LessThan", "FStar.SizeT.v", "FStar.Seq.Base.length", "Steel.ST.Util.rewrite", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.ST.HigherArray.pts_to", "Prims.Mkdtuple2", "Steel.FractionalPermission.full_perm", "FStar.Seq.Base.upd", "Prims.unit", "Steel.ST.HigherArray.upd0" ]
[]
false
true
false
false
false
let upd_ptr a i v =
upd0 _ i v; rewrite (pts_to _ _ _) (pts_to _ _ _)
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_from_uint_lemma
val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x)
val bn_from_uint_lemma: #t:limb_t -> len:size_pos -> x:limb t -> Lemma (bn_v (bn_from_uint len x) == uint_v x)
let bn_from_uint_lemma #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint_lemma len x
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 51, "end_line": 254, "start_col": 0, "start_line": 253 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b let bn_lt_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask a b let bn_lt_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma a b let bn_lt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask b x let bn_lt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask_lemma b x let bn_gt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask b x let bn_gt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask_lemma b x (* Conversion functions *) let bn_from_uint #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint len x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos -> x: Hacl.Spec.Bignum.Definitions.limb t -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.bn_from_uint len x) == Lib.IntTypes.uint_v x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Convert.bn_from_uint_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_from_uint_lemma #t len x =
Hacl.Spec.Bignum.Convert.bn_from_uint_lemma len x
false
Selectors.LList2.fst
Selectors.LList2.intro_llist_cons
val intro_llist_cons (#a:Type0) (ptr1 ptr2:t a) : Steel unit (vptr ptr1 `star` llist ptr2) (fun _ -> llist ptr1) (requires fun h -> next (sel ptr1 h) == ptr2) (ensures fun h0 _ h1 -> v_llist ptr1 h1 == (data (sel ptr1 h0)) :: v_llist ptr2 h0)
val intro_llist_cons (#a:Type0) (ptr1 ptr2:t a) : Steel unit (vptr ptr1 `star` llist ptr2) (fun _ -> llist ptr1) (requires fun h -> next (sel ptr1 h) == ptr2) (ensures fun h0 _ h1 -> v_llist ptr1 h1 == (data (sel ptr1 h0)) :: v_llist ptr2 h0)
let intro_llist_cons #a ptr1 ptr2 = llist0_of_llist ptr2; let n = nllist_of_llist0 ptr2 in (* set the fuel of the new cons cell *) let c = read ptr1 in let c' = {c with tail_fuel = n} in write ptr1 c' ; (* actually cons the cell *) vptr_not_null ptr1; intro_vdep (vptr ptr1) (nllist a n ptr2) (llist_vdep ptr1); intro_vrewrite (vptr ptr1 `vdep` llist_vdep ptr1) (llist_vrewrite ptr1); change_equal_slprop ((vptr ptr1 `vdep` llist_vdep ptr1) `vrewrite` llist_vrewrite ptr1) (llist0 ptr1); llist_of_llist0 ptr1
{ "file_name": "share/steel/examples/steel/Selectors.LList2.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 22, "end_line": 293, "start_col": 0, "start_line": 272 }
module Selectors.LList2 open Steel.FractionalPermission module Mem = Steel.Memory #push-options "--__no_positivity" noeq type cell (a: Type0) = { tail_fuel: Ghost.erased nat; next: ref (cell a); data: a; } #pop-options let next #a (c:cell a) : t a = c.next let data #a (c:cell a) : a = c.data let mk_cell #a (n: t a) (d:a) = { tail_fuel = Ghost.hide 0; next = n; data = d } let null_llist #a = null let is_null #a ptr = is_null ptr let v_null_rewrite (a: Type0) (_: t_of emp) : GTot (list a) = [] let v_c (n: Ghost.erased nat) (#a: Type0) (r: t a) (c: normal (t_of (vptr r))) : GTot prop = (Ghost.reveal c.tail_fuel < Ghost.reveal n) == true // to ensure vprop termination let v_c_dep (n: Ghost.erased nat) (#a: Type0) (r: t a) (nllist: (n': Ghost.erased nat) -> (r: t a { Ghost.reveal n' < Ghost.reveal n }) -> Pure vprop (requires True) (ensures (fun y -> t_of y == list a))) (c: normal (t_of (vrefine (vptr r) (v_c n r)))) : Tot vprop = nllist c.tail_fuel c.next let v_c_l_rewrite (n: Ghost.erased nat) (#a: Type0) (r: t a) (nllist: (n': Ghost.erased nat) -> (r: t a { Ghost.reveal n' < Ghost.reveal n }) -> Pure vprop (requires True) (ensures (fun y -> t_of y == list a))) (res: normal (t_of ((vptr r `vrefine` v_c n r) `vdep` v_c_dep n r nllist))) : Tot (list a) = let (| c, l |) = res in c.data :: l let rec nllist (a: Type0) (n: Ghost.erased nat) (r: t a) : Pure vprop (requires True) (ensures (fun y -> t_of y == list a)) (decreases (Ghost.reveal n)) = if is_null r then emp `vrewrite` v_null_rewrite a else ((vptr r `vrefine` v_c n r) `vdep` v_c_dep n r (nllist a)) `vrewrite` v_c_l_rewrite n r (nllist a) let nllist_eq_not_null (a: Type0) (n: Ghost.erased nat) (r: t a) : Lemma (requires (is_null r == false)) (ensures ( nllist a n r == ((vptr r `vrefine` v_c n r) `vdep` v_c_dep n r (nllist a)) `vrewrite` v_c_l_rewrite n r (nllist a) )) = assert_norm (nllist a n r == begin if is_null r then emp `vrewrite` v_null_rewrite a else ((vptr r `vrefine` v_c n r) `vdep` v_c_dep n r (nllist a)) `vrewrite` v_c_l_rewrite n r (nllist a) end ) let llist_vdep (#a: Type0) (r: t a) (c: normal (t_of (vptr r))) : Tot vprop = nllist a c.tail_fuel c.next let llist_vrewrite (#a: Type0) (r: t a) (cl: normal (t_of (vptr r `vdep` llist_vdep r))) : GTot (list a) = (dfst cl).data :: dsnd cl let llist0 (#a: Type0) (r: t a) : Pure vprop (requires True) (ensures (fun y -> t_of y == list a)) = if is_null r then emp `vrewrite` v_null_rewrite a else (vptr r `vdep` llist_vdep r) `vrewrite` llist_vrewrite r let nllist_of_llist0 (#opened: _) (#a: Type0) (r: t a) : SteelGhost (Ghost.erased nat) opened (llist0 r) (fun res -> nllist a res r) (fun _ -> True) (fun h0 res h1 -> h0 (llist0 r) == h1 (nllist a res r) ) = if is_null r then begin let res = Ghost.hide 0 in change_equal_slprop (llist0 r) (nllist a res r); res end else begin change_equal_slprop (llist0 r) ((vptr r `vdep` llist_vdep r) `vrewrite` llist_vrewrite r); elim_vrewrite (vptr r `vdep` llist_vdep r) (llist_vrewrite r); let gk : normal (Ghost.erased (t_of (vptr r))) = elim_vdep (vptr r) (llist_vdep r) in let res = Ghost.hide (Ghost.reveal (Ghost.reveal gk).tail_fuel + 1) in intro_vrefine (vptr r) (v_c res r); intro_vdep (vptr r `vrefine` v_c res r) (llist_vdep r (Ghost.reveal gk)) (v_c_dep res r (nllist a)); intro_vrewrite ((vptr r `vrefine` v_c res r) `vdep` v_c_dep res r (nllist a)) (v_c_l_rewrite res r (nllist a)); nllist_eq_not_null a res r; change_equal_slprop (((vptr r `vrefine` v_c res r) `vdep` v_c_dep res r (nllist a)) `vrewrite` v_c_l_rewrite res r (nllist a)) (nllist a res r); res end let llist0_of_nllist (#opened: _) (#a: Type0) (n: Ghost.erased nat) (r: t a) : SteelGhost unit opened (nllist a n r) (fun _ -> llist0 r) (fun _ -> True) (fun h0 res h1 -> h1 (llist0 r) == h0 (nllist a n r) ) = if is_null r then begin change_equal_slprop (nllist a n r) (llist0 r); () end else begin nllist_eq_not_null a n r; change_equal_slprop (nllist a n r) (((vptr r `vrefine` v_c n r) `vdep` v_c_dep n r (nllist a)) `vrewrite` v_c_l_rewrite n r (nllist a)); elim_vrewrite ((vptr r `vrefine` v_c n r) `vdep` v_c_dep n r (nllist a)) (v_c_l_rewrite n r (nllist a)); let gk = elim_vdep (vptr r `vrefine` v_c n r) (v_c_dep n r (nllist a)) in elim_vrefine (vptr r) (v_c n r); intro_vdep (vptr r) (v_c_dep n r (nllist a) (Ghost.reveal gk)) (llist_vdep r); intro_vrewrite (vptr r `vdep` llist_vdep r) (llist_vrewrite r); change_equal_slprop ((vptr r `vdep` llist_vdep r) `vrewrite` llist_vrewrite r) (llist0 r) end let llist_sl #a r = hp_of (llist0 r) let llist_sel #a r = fun m -> sel_of (llist0 r) m // eta necessary because sel_of is GTot let llist_of_llist0 (#opened: _) (#a: Type) (r: t a) : SteelGhost unit opened (llist0 r) (fun _ -> llist r) (fun _ -> True) (fun h0 _ h1 -> h1 (llist r) == h0 (llist0 r)) = change_slprop_rel (llist0 r) (llist r) (fun x y -> x == y) (fun _ -> ()) let llist0_of_llist (#opened: _) (#a: Type) (r: t a) : SteelGhost unit opened (llist r) (fun _ -> llist0 r) (fun _ -> True) (fun h0 _ h1 -> h1 (llist0 r) == h0 (llist r)) = change_slprop_rel (llist r) (llist0 r) (fun x y -> x == y) (fun _ -> ()) let intro_llist_nil a = intro_vrewrite emp (v_null_rewrite a); change_equal_slprop (emp `vrewrite` v_null_rewrite a) (llist0 (null_llist #a)); llist_of_llist0 (null_llist #a) let is_nil' (#opened: _) (#a:Type0) (ptr:t a) : SteelGhost unit opened (llist ptr) (fun _ -> llist ptr) (requires fun _ -> True) (ensures fun h0 _ h1 -> let res = is_null ptr in (res == true <==> ptr == null_llist #a) /\ v_llist ptr h0 == v_llist ptr h1 /\ res == Nil? (v_llist ptr h1)) = let res = is_null ptr in llist0_of_llist ptr; if res then begin change_equal_slprop (llist0 ptr) (emp `vrewrite` v_null_rewrite a); elim_vrewrite emp (v_null_rewrite a); intro_vrewrite emp (v_null_rewrite a); change_equal_slprop (emp `vrewrite` v_null_rewrite a) (llist0 ptr) end else begin change_equal_slprop (llist0 ptr) ((vptr ptr `vdep` llist_vdep ptr) `vrewrite` llist_vrewrite ptr); elim_vrewrite (vptr ptr `vdep` llist_vdep ptr) (llist_vrewrite ptr); intro_vrewrite (vptr ptr `vdep` llist_vdep ptr) (llist_vrewrite ptr); change_equal_slprop ((vptr ptr `vdep` llist_vdep ptr) `vrewrite` llist_vrewrite ptr) (llist0 ptr) end; llist_of_llist0 ptr let is_nil #a ptr = is_nil' ptr; return (is_null ptr)
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Selectors.LList2.fst" }
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Selectors", "short_module": null }, { "abbrev": false, "full_module": "Selectors", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ptr1: Selectors.LList2.t a -> ptr2: Selectors.LList2.t a -> Steel.Effect.Steel Prims.unit
Steel.Effect.Steel
[]
[]
[ "Selectors.LList2.t", "Selectors.LList2.llist_of_llist0", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Prims.unit", "Steel.Effect.Atomic.change_equal_slprop", "Steel.Effect.Common.vrewrite", "Steel.Effect.Common.vdep", "Steel.Reference.vptr", "Selectors.LList2.cell", "Selectors.LList2.llist_vdep", "Prims.list", "Selectors.LList2.llist_vrewrite", "Selectors.LList2.llist0", "Steel.Effect.Atomic.intro_vrewrite", "Steel.Effect.Atomic.intro_vdep", "Selectors.LList2.nllist", "Steel.Reference.vptr_not_null", "Steel.Reference.write", "Selectors.LList2.Mkcell", "Selectors.LList2.__proj__Mkcell__item__next", "Selectors.LList2.__proj__Mkcell__item__data", "Steel.Reference.read", "FStar.Ghost.erased", "Prims.nat", "Selectors.LList2.nllist_of_llist0", "Selectors.LList2.llist0_of_llist" ]
[]
false
true
false
false
false
let intro_llist_cons #a ptr1 ptr2 =
llist0_of_llist ptr2; let n = nllist_of_llist0 ptr2 in let c = read ptr1 in let c' = { c with tail_fuel = n } in write ptr1 c'; vptr_not_null ptr1; intro_vdep (vptr ptr1) (nllist a n ptr2) (llist_vdep ptr1); intro_vrewrite ((vptr ptr1) `vdep` (llist_vdep ptr1)) (llist_vrewrite ptr1); change_equal_slprop (((vptr ptr1) `vdep` (llist_vdep ptr1)) `vrewrite` (llist_vrewrite ptr1)) (llist0 ptr1); llist_of_llist0 ptr1
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_from_bytes_be_lemma
val bn_from_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_be #t len b) == BSeq.nat_from_bytes_be b)
val bn_from_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_be #t len b) == BSeq.nat_from_bytes_be b)
let bn_from_bytes_be_lemma #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_be_lemma #t len b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 58, "end_line": 260, "start_col": 0, "start_line": 259 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b let bn_lt_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask a b let bn_lt_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma a b let bn_lt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask b x let bn_lt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask_lemma b x let bn_gt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask b x let bn_gt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask_lemma b x (* Conversion functions *) let bn_from_uint #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint len x let bn_from_uint_lemma #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint_lemma len x let bn_from_bytes_be #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_be len b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t } -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.bn_from_bytes_be len b) == Lib.ByteSequence.nat_from_bytes_be b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Convert.bn_from_bytes_be_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_from_bytes_be_lemma #t len b =
Hacl.Spec.Bignum.Convert.bn_from_bytes_be_lemma #t len b
false
LowParse.SLow.Enum.fst
LowParse.SLow.Enum.parse32_maybe_enum_key
val parse32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_maybe_enum_key p e))
val parse32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_maybe_enum_key p e))
let parse32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_maybe_enum_key p e)) = parse32_maybe_enum_key_gen p32 e _ _ (parse_maybe_enum_key p e) () () () f
{ "file_name": "src/lowparse/LowParse.SLow.Enum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 76, "end_line": 36, "start_col": 0, "start_line": 28 }
module LowParse.SLow.Enum include LowParse.Spec.Enum include LowParse.SLow.Combinators module L = FStar.List.Tot module U32 = FStar.UInt32 (* Parser for enums *) inline_for_extraction let parse32_maybe_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (u1: unit { k' == k }) (u15: unit { t' == maybe_enum_key e } ) (u2: unit { p' == parse_maybe_enum_key p e } ) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 p') = parse32_synth p (maybe_enum_key_of_repr e) f p32 ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.SLow.Combinators.fst.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Enum.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.SLow.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p32: LowParse.SLow.Base.parser32 p -> e: LowParse.Spec.Enum.enum key repr -> f: LowParse.Spec.Enum.maybe_enum_key_of_repr'_t e -> LowParse.SLow.Base.parser32 (LowParse.Spec.Enum.parse_maybe_enum_key p e)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.SLow.Base.parser32", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.maybe_enum_key_of_repr'_t", "LowParse.SLow.Enum.parse32_maybe_enum_key_gen", "LowParse.Spec.Enum.maybe_enum_key", "LowParse.Spec.Enum.parse_maybe_enum_key" ]
[]
false
false
false
false
false
let parse32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_maybe_enum_key p e)) =
parse32_maybe_enum_key_gen p32 e _ _ (parse_maybe_enum_key p e) () () () f
false
Pulse.Lib.PCM.Array.fst
Pulse.Lib.PCM.Array.index_t
val index_t (len: Ghost.erased nat) : Type0
val index_t (len: Ghost.erased nat) : Type0
let index_t (len: Ghost.erased nat) : Type0 = i: nat { i < len }
{ "file_name": "share/steel/examples/pulse/lib/Pulse.Lib.PCM.Array.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 20, "end_line": 10, "start_col": 0, "start_line": 8 }
module Pulse.Lib.PCM.Array module P = Pulse.Lib.PCM.Fraction module M = FStar.Map module PM = Pulse.Lib.PCM.Map module Seq = FStar.Seq open PulseCore.FractionalPermission
{ "checked_file": "/", "dependencies": [ "PulseCore.FractionalPermission.fst.checked", "Pulse.Lib.PCM.Map.fst.checked", "Pulse.Lib.PCM.Fraction.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Lib.PCM.Array.fst" }
[ { "abbrev": false, "full_module": "PulseCore.FractionalPermission", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "Pulse.Lib.PCM.Map", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Pulse.Lib.PCM.Fraction", "short_module": "P" }, { "abbrev": false, "full_module": "Pulse.Lib.PCM", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.PCM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: FStar.Ghost.erased Prims.nat -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Ghost.erased", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Ghost.reveal" ]
[]
false
false
false
true
true
let index_t (len: Ghost.erased nat) : Type0 =
i: nat{i < len}
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_to_bytes_be
val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)) -> lseq uint8 len
val bn_to_bytes_be: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)) -> lseq uint8 len
let bn_to_bytes_be #t len b = Hacl.Spec.Bignum.Convert.bn_to_bytes_be len b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 269, "start_col": 0, "start_line": 268 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b let bn_lt_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask a b let bn_lt_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma a b let bn_lt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask b x let bn_lt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask_lemma b x let bn_gt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask b x let bn_gt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask_lemma b x (* Conversion functions *) let bn_from_uint #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint len x let bn_from_uint_lemma #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint_lemma len x let bn_from_bytes_be #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_be len b let bn_from_bytes_be_lemma #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_be_lemma #t len b let bn_from_bytes_le #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_le #t len b let bn_from_bytes_le_lemma #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_le_lemma #t len b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t } -> b: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t)) -> Lib.Sequence.lseq Lib.IntTypes.uint8 len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Convert.bn_to_bytes_be", "Lib.Sequence.lseq", "Lib.IntTypes.uint8" ]
[]
false
false
false
false
false
let bn_to_bytes_be #t len b =
Hacl.Spec.Bignum.Convert.bn_to_bytes_be len b
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_from_bytes_be
val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lseq uint8 len -> lbignum t (blocks len (numbytes t))
val bn_from_bytes_be: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lseq uint8 len -> lbignum t (blocks len (numbytes t))
let bn_from_bytes_be #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_be len b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 257, "start_col": 0, "start_line": 256 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b let bn_lt_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask a b let bn_lt_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma a b let bn_lt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask b x let bn_lt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask_lemma b x let bn_gt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask b x let bn_gt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask_lemma b x (* Conversion functions *) let bn_from_uint #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint len x let bn_from_uint_lemma #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint_lemma len x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t } -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len -> Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Convert.bn_from_bytes_be", "Hacl.Spec.Bignum.Definitions.lbignum" ]
[]
false
false
false
false
false
let bn_from_bytes_be #t len b =
Hacl.Spec.Bignum.Convert.bn_from_bytes_be len b
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_from_bytes_le_lemma
val bn_from_bytes_le_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_le #t len b) == BSeq.nat_from_bytes_le b)
val bn_from_bytes_le_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lseq uint8 len -> Lemma (bn_v (bn_from_bytes_le #t len b) == BSeq.nat_from_bytes_le b)
let bn_from_bytes_le_lemma #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_le_lemma #t len b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 58, "end_line": 266, "start_col": 0, "start_line": 265 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b let bn_lt_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask a b let bn_lt_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma a b let bn_lt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask b x let bn_lt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask_lemma b x let bn_gt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask b x let bn_gt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask_lemma b x (* Conversion functions *) let bn_from_uint #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint len x let bn_from_uint_lemma #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint_lemma len x let bn_from_bytes_be #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_be len b let bn_from_bytes_be_lemma #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_be_lemma #t len b let bn_from_bytes_le #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_le #t len b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t } -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.bn_from_bytes_le len b) == Lib.ByteSequence.nat_from_bytes_le b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Convert.bn_from_bytes_le_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_from_bytes_le_lemma #t len b =
Hacl.Spec.Bignum.Convert.bn_from_bytes_le_lemma #t len b
false
LowParse.SLow.Enum.fst
LowParse.SLow.Enum.parse32_enum_key
val parse32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_enum_key p e))
val parse32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_enum_key p e))
let parse32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_enum_key p e)) = parse32_enum_key_gen p e _ _ (parse_enum_key p e) () () () (parse32_maybe_enum_key p32 e f)
{ "file_name": "src/lowparse/LowParse.SLow.Enum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 93, "end_line": 78, "start_col": 0, "start_line": 70 }
module LowParse.SLow.Enum include LowParse.Spec.Enum include LowParse.SLow.Combinators module L = FStar.List.Tot module U32 = FStar.UInt32 (* Parser for enums *) inline_for_extraction let parse32_maybe_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (u1: unit { k' == k }) (u15: unit { t' == maybe_enum_key e } ) (u2: unit { p' == parse_maybe_enum_key p e } ) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 p') = parse32_synth p (maybe_enum_key_of_repr e) f p32 () inline_for_extraction let parse32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_maybe_enum_key p e)) = parse32_maybe_enum_key_gen p32 e _ _ (parse_maybe_enum_key p e) () () () f module B32 = LowParse.Bytes32 inline_for_extraction let parse32_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (u1: unit { k' == parse_filter_kind k } ) (u15: unit { t' == enum_key e } ) (u2: unit { p' == parse_enum_key p e } ) (pe: parser32 (parse_maybe_enum_key p e)) : Tot (parser32 p') = (fun (input: bytes32) -> (( [@inline_let] let _ = parse_enum_key_eq p e (B32.reveal input); parse_maybe_enum_key_eq p e (B32.reveal input) in match pe input with | Some (k, consumed) -> begin match k with | Known k' -> Some (k', consumed) | _ -> None end | _ -> None ) <: (res: option (enum_key e * U32.t) { parser32_correct (parse_enum_key p e) input res } )))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.SLow.Combinators.fst.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Enum.fst" }
[ { "abbrev": true, "full_module": "LowParse.Bytes32", "short_module": "B32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.SLow.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p32: LowParse.SLow.Base.parser32 p -> e: LowParse.Spec.Enum.enum key repr -> f: LowParse.Spec.Enum.maybe_enum_key_of_repr'_t e -> LowParse.SLow.Base.parser32 (LowParse.Spec.Enum.parse_enum_key p e)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.SLow.Base.parser32", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.maybe_enum_key_of_repr'_t", "LowParse.SLow.Enum.parse32_enum_key_gen", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Enum.parse_enum_key", "LowParse.SLow.Enum.parse32_maybe_enum_key" ]
[]
false
false
false
false
false
let parse32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_enum_key p e)) =
parse32_enum_key_gen p e _ _ (parse_enum_key p e) () () () (parse32_maybe_enum_key p32 e f)
false
LowParse.SLow.Enum.fst
LowParse.SLow.Enum.serialize32_enum_key
val serialize32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (serializer32 (serialize_enum_key p s e))
val serialize32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (serializer32 (serialize_enum_key p s e))
let serialize32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (serializer32 (serialize_enum_key p s e)) = serialize32_enum_key_gen s32 e _ _ _ (serialize_enum_key p s e) () () () () f
{ "file_name": "src/lowparse/LowParse.SLow.Enum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 79, "end_line": 113, "start_col": 0, "start_line": 104 }
module LowParse.SLow.Enum include LowParse.Spec.Enum include LowParse.SLow.Combinators module L = FStar.List.Tot module U32 = FStar.UInt32 (* Parser for enums *) inline_for_extraction let parse32_maybe_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (u1: unit { k' == k }) (u15: unit { t' == maybe_enum_key e } ) (u2: unit { p' == parse_maybe_enum_key p e } ) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 p') = parse32_synth p (maybe_enum_key_of_repr e) f p32 () inline_for_extraction let parse32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_maybe_enum_key p e)) = parse32_maybe_enum_key_gen p32 e _ _ (parse_maybe_enum_key p e) () () () f module B32 = LowParse.Bytes32 inline_for_extraction let parse32_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (u1: unit { k' == parse_filter_kind k } ) (u15: unit { t' == enum_key e } ) (u2: unit { p' == parse_enum_key p e } ) (pe: parser32 (parse_maybe_enum_key p e)) : Tot (parser32 p') = (fun (input: bytes32) -> (( [@inline_let] let _ = parse_enum_key_eq p e (B32.reveal input); parse_maybe_enum_key_eq p e (B32.reveal input) in match pe input with | Some (k, consumed) -> begin match k with | Known k' -> Some (k', consumed) | _ -> None end | _ -> None ) <: (res: option (enum_key e * U32.t) { parser32_correct (parse_enum_key p e) input res } ))) inline_for_extraction let parse32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_enum_key p e)) = parse32_enum_key_gen p e _ _ (parse_enum_key p e) () () () (parse32_maybe_enum_key p32 e f) inline_for_extraction let serialize32_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (s' : serializer p') (u1: unit { k' == parse_filter_kind k } ) (u15: unit { t' == enum_key e } ) (u2: unit { p' == parse_enum_key p e } ) (u3: unit { s' == serialize_enum_key p s e } ) (f: enum_repr_of_key'_t e) : Tot (serializer32 s') = fun (input: enum_key e) -> ( [@inline_let] let _ = serialize_enum_key_eq s e input in (s32 (f input)) <: (r: bytes32 { serializer32_correct (serialize_enum_key p s e) input r } ))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.SLow.Combinators.fst.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Enum.fst" }
[ { "abbrev": true, "full_module": "LowParse.Bytes32", "short_module": "B32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.SLow.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s32: LowParse.SLow.Base.serializer32 s -> e: LowParse.Spec.Enum.enum key repr -> f: LowParse.Spec.Enum.enum_repr_of_key'_t e -> LowParse.SLow.Base.serializer32 (LowParse.Spec.Enum.serialize_enum_key p s e)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "LowParse.SLow.Base.serializer32", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_repr_of_key'_t", "LowParse.SLow.Enum.serialize32_enum_key_gen", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Enum.parse_enum_key", "LowParse.Spec.Enum.serialize_enum_key" ]
[]
false
false
false
false
false
let serialize32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (serializer32 (serialize_enum_key p s e)) =
serialize32_enum_key_gen s32 e _ _ _ (serialize_enum_key p s e) () () () () f
false
Pulse.Lib.PCM.Array.fst
Pulse.Lib.PCM.Array.one
val one : Pulse.Lib.PCM.Array.carrier elt len
let one (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).p.one
{ "file_name": "share/steel/examples/pulse/lib/Pulse.Lib.PCM.Array.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 67, "end_line": 20, "start_col": 0, "start_line": 20 }
module Pulse.Lib.PCM.Array module P = Pulse.Lib.PCM.Fraction module M = FStar.Map module PM = Pulse.Lib.PCM.Map module Seq = FStar.Seq open PulseCore.FractionalPermission let index_t (len: Ghost.erased nat) : Type0 = i: nat { i < len } let carrier (elt: Type u#a) (len: Ghost.erased nat) : Type u#a = PM.map (index_t len) (P.fractional elt) let pcm (elt: Type u#a) (len: Ghost.erased nat) : FStar.PCM.pcm (carrier elt len) = PM.pointwise (index_t len) (P.pcm_frac #elt)
{ "checked_file": "/", "dependencies": [ "PulseCore.FractionalPermission.fst.checked", "Pulse.Lib.PCM.Map.fst.checked", "Pulse.Lib.PCM.Fraction.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Lib.PCM.Array.fst" }
[ { "abbrev": false, "full_module": "PulseCore.FractionalPermission", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "Pulse.Lib.PCM.Map", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Pulse.Lib.PCM.Fraction", "short_module": "P" }, { "abbrev": false, "full_module": "Pulse.Lib.PCM", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.PCM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Pulse.Lib.PCM.Array.carrier elt len
Prims.Tot
[ "total" ]
[]
[ "FStar.Ghost.erased", "Prims.nat", "FStar.PCM.__proj__Mkpcm'__item__one", "Pulse.Lib.PCM.Array.carrier", "FStar.PCM.__proj__Mkpcm__item__p", "Pulse.Lib.PCM.Array.pcm" ]
[]
false
false
false
false
false
let one (#elt: Type) (#len: Ghost.erased nat) =
(pcm elt len).p.one
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_to_bytes_le
val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)) -> lseq uint8 len
val bn_to_bytes_le: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)) -> lseq uint8 len
let bn_to_bytes_le #t len b = Hacl.Spec.Bignum.Convert.bn_to_bytes_le len b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 275, "start_col": 0, "start_line": 274 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b let bn_lt_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask a b let bn_lt_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma a b let bn_lt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask b x let bn_lt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask_lemma b x let bn_gt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask b x let bn_gt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask_lemma b x (* Conversion functions *) let bn_from_uint #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint len x let bn_from_uint_lemma #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint_lemma len x let bn_from_bytes_be #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_be len b let bn_from_bytes_be_lemma #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_be_lemma #t len b let bn_from_bytes_le #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_le #t len b let bn_from_bytes_le_lemma #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_le_lemma #t len b let bn_to_bytes_be #t len b = Hacl.Spec.Bignum.Convert.bn_to_bytes_be len b let bn_to_bytes_be_lemma #t len b = Hacl.Spec.Bignum.Convert.bn_to_bytes_be_lemma len b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t } -> b: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t)) -> Lib.Sequence.lseq Lib.IntTypes.uint8 len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Convert.bn_to_bytes_le", "Lib.Sequence.lseq", "Lib.IntTypes.uint8" ]
[]
false
false
false
false
false
let bn_to_bytes_le #t len b =
Hacl.Spec.Bignum.Convert.bn_to_bytes_le len b
false
Pulse.Lib.PCM.Array.fst
Pulse.Lib.PCM.Array.compose
val compose : x: Pulse.Lib.PCM.Array.carrier elt len -> y: Pulse.Lib.PCM.Array.carrier elt len {Mkpcm'?.composable (Mkpcm?.p (Pulse.Lib.PCM.Array.pcm elt len)) x y} -> Pulse.Lib.PCM.Array.carrier elt len
let compose (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).p.op
{ "file_name": "share/steel/examples/pulse/lib/Pulse.Lib.PCM.Array.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 70, "end_line": 24, "start_col": 0, "start_line": 24 }
module Pulse.Lib.PCM.Array module P = Pulse.Lib.PCM.Fraction module M = FStar.Map module PM = Pulse.Lib.PCM.Map module Seq = FStar.Seq open PulseCore.FractionalPermission let index_t (len: Ghost.erased nat) : Type0 = i: nat { i < len } let carrier (elt: Type u#a) (len: Ghost.erased nat) : Type u#a = PM.map (index_t len) (P.fractional elt) let pcm (elt: Type u#a) (len: Ghost.erased nat) : FStar.PCM.pcm (carrier elt len) = PM.pointwise (index_t len) (P.pcm_frac #elt) let one (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).p.one let composable (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).p.composable
{ "checked_file": "/", "dependencies": [ "PulseCore.FractionalPermission.fst.checked", "Pulse.Lib.PCM.Map.fst.checked", "Pulse.Lib.PCM.Fraction.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Lib.PCM.Array.fst" }
[ { "abbrev": false, "full_module": "PulseCore.FractionalPermission", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "Pulse.Lib.PCM.Map", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Pulse.Lib.PCM.Fraction", "short_module": "P" }, { "abbrev": false, "full_module": "Pulse.Lib.PCM", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.PCM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Pulse.Lib.PCM.Array.carrier elt len -> y: Pulse.Lib.PCM.Array.carrier elt len {Mkpcm'?.composable (Mkpcm?.p (Pulse.Lib.PCM.Array.pcm elt len)) x y} -> Pulse.Lib.PCM.Array.carrier elt len
Prims.Tot
[ "total" ]
[]
[ "FStar.Ghost.erased", "Prims.nat", "FStar.PCM.__proj__Mkpcm'__item__op", "Pulse.Lib.PCM.Array.carrier", "FStar.PCM.__proj__Mkpcm__item__p", "Pulse.Lib.PCM.Array.pcm", "FStar.PCM.__proj__Mkpcm'__item__composable" ]
[]
false
false
false
false
false
let compose (#elt: Type) (#len: Ghost.erased nat) =
(pcm elt len).p.op
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_from_bytes_le
val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lseq uint8 len -> lbignum t (blocks len (numbytes t))
val bn_from_bytes_le: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lseq uint8 len -> lbignum t (blocks len (numbytes t))
let bn_from_bytes_le #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_le #t len b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 263, "start_col": 0, "start_line": 262 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b let bn_lt_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask a b let bn_lt_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma a b let bn_lt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask b x let bn_lt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask_lemma b x let bn_gt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask b x let bn_gt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask_lemma b x (* Conversion functions *) let bn_from_uint #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint len x let bn_from_uint_lemma #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint_lemma len x let bn_from_bytes_be #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_be len b let bn_from_bytes_be_lemma #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_be_lemma #t len b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t } -> b: Lib.Sequence.lseq Lib.IntTypes.uint8 len -> Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t))
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Hacl.Spec.Bignum.Convert.bn_from_bytes_le", "Hacl.Spec.Bignum.Definitions.lbignum" ]
[]
false
false
false
false
false
let bn_from_bytes_le #t len b =
Hacl.Spec.Bignum.Convert.bn_from_bytes_le #t len b
false
Pulse.Lib.PCM.Array.fst
Pulse.Lib.PCM.Array.composable
val composable : FStar.PCM.symrel (Pulse.Lib.PCM.Array.carrier elt len)
let composable (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).p.composable
{ "file_name": "share/steel/examples/pulse/lib/Pulse.Lib.PCM.Array.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 81, "end_line": 22, "start_col": 0, "start_line": 22 }
module Pulse.Lib.PCM.Array module P = Pulse.Lib.PCM.Fraction module M = FStar.Map module PM = Pulse.Lib.PCM.Map module Seq = FStar.Seq open PulseCore.FractionalPermission let index_t (len: Ghost.erased nat) : Type0 = i: nat { i < len } let carrier (elt: Type u#a) (len: Ghost.erased nat) : Type u#a = PM.map (index_t len) (P.fractional elt) let pcm (elt: Type u#a) (len: Ghost.erased nat) : FStar.PCM.pcm (carrier elt len) = PM.pointwise (index_t len) (P.pcm_frac #elt) let one (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).p.one
{ "checked_file": "/", "dependencies": [ "PulseCore.FractionalPermission.fst.checked", "Pulse.Lib.PCM.Map.fst.checked", "Pulse.Lib.PCM.Fraction.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Lib.PCM.Array.fst" }
[ { "abbrev": false, "full_module": "PulseCore.FractionalPermission", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "Pulse.Lib.PCM.Map", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Pulse.Lib.PCM.Fraction", "short_module": "P" }, { "abbrev": false, "full_module": "Pulse.Lib.PCM", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.PCM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.PCM.symrel (Pulse.Lib.PCM.Array.carrier elt len)
Prims.Tot
[ "total" ]
[]
[ "FStar.Ghost.erased", "Prims.nat", "FStar.PCM.__proj__Mkpcm'__item__composable", "Pulse.Lib.PCM.Array.carrier", "FStar.PCM.__proj__Mkpcm__item__p", "Pulse.Lib.PCM.Array.pcm", "FStar.PCM.symrel" ]
[]
false
false
false
false
false
let composable (#elt: Type) (#len: Ghost.erased nat) =
(pcm elt len).p.composable
false
LowParse.SLow.Enum.fst
LowParse.SLow.Enum.serialize32_maybe_enum_key
val serialize32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (serializer32 (serialize_maybe_enum_key p s e))
val serialize32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (serializer32 (serialize_maybe_enum_key p s e))
let serialize32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (serializer32 (serialize_maybe_enum_key p s e)) = serialize32_maybe_enum_key_gen s32 e _ _ _ (serialize_maybe_enum_key p s e) () () () () f
{ "file_name": "src/lowparse/LowParse.SLow.Enum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 91, "end_line": 202, "start_col": 0, "start_line": 193 }
module LowParse.SLow.Enum include LowParse.Spec.Enum include LowParse.SLow.Combinators module L = FStar.List.Tot module U32 = FStar.UInt32 (* Parser for enums *) inline_for_extraction let parse32_maybe_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (u1: unit { k' == k }) (u15: unit { t' == maybe_enum_key e } ) (u2: unit { p' == parse_maybe_enum_key p e } ) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 p') = parse32_synth p (maybe_enum_key_of_repr e) f p32 () inline_for_extraction let parse32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_maybe_enum_key p e)) = parse32_maybe_enum_key_gen p32 e _ _ (parse_maybe_enum_key p e) () () () f module B32 = LowParse.Bytes32 inline_for_extraction let parse32_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (u1: unit { k' == parse_filter_kind k } ) (u15: unit { t' == enum_key e } ) (u2: unit { p' == parse_enum_key p e } ) (pe: parser32 (parse_maybe_enum_key p e)) : Tot (parser32 p') = (fun (input: bytes32) -> (( [@inline_let] let _ = parse_enum_key_eq p e (B32.reveal input); parse_maybe_enum_key_eq p e (B32.reveal input) in match pe input with | Some (k, consumed) -> begin match k with | Known k' -> Some (k', consumed) | _ -> None end | _ -> None ) <: (res: option (enum_key e * U32.t) { parser32_correct (parse_enum_key p e) input res } ))) inline_for_extraction let parse32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_enum_key p e)) = parse32_enum_key_gen p e _ _ (parse_enum_key p e) () () () (parse32_maybe_enum_key p32 e f) inline_for_extraction let serialize32_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (s' : serializer p') (u1: unit { k' == parse_filter_kind k } ) (u15: unit { t' == enum_key e } ) (u2: unit { p' == parse_enum_key p e } ) (u3: unit { s' == serialize_enum_key p s e } ) (f: enum_repr_of_key'_t e) : Tot (serializer32 s') = fun (input: enum_key e) -> ( [@inline_let] let _ = serialize_enum_key_eq s e input in (s32 (f input)) <: (r: bytes32 { serializer32_correct (serialize_enum_key p s e) input r } )) inline_for_extraction let serialize32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (serializer32 (serialize_enum_key p s e)) = serialize32_enum_key_gen s32 e _ _ _ (serialize_enum_key p s e) () () () () f inline_for_extraction let size32_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: size32 s) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (s' : serializer p') (u1: unit { k' == parse_filter_kind k } ) (u15: unit { t' == enum_key e } ) (u2: unit { p' == parse_enum_key p e } ) (u3: unit { s' == serialize_enum_key p s e } ) (f: enum_repr_of_key'_t e) : Tot (size32 s') = fun (input: enum_key e) -> ( [@inline_let] let _ = serialize_enum_key_eq s e input in (s32 (f input)) <: (r: UInt32.t { size32_postcond (serialize_enum_key p s e) input r } )) inline_for_extraction let size32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: size32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (size32 (serialize_enum_key p s e)) = size32_enum_key_gen s32 e _ _ _ (serialize_enum_key p s e) () () () () f inline_for_extraction let serialize32_maybe_enum_key_gen' (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (f: serializer32 (serialize_enum_key p s e)) : Tot (serializer32 (serialize_maybe_enum_key p s e)) = fun (input: maybe_enum_key e) -> (( [@inline_let] let _ = serialize_maybe_enum_key_eq s e input in match input with | Known k -> [@inline_let] let _ = serialize_enum_key_eq s e k in f k | Unknown r -> s32 r ) <: (r: bytes32 { serializer32_correct (serialize_maybe_enum_key p s e) input r } )) inline_for_extraction let serialize32_maybe_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (s' : serializer p') (u1: unit { k == k' } ) (u15: unit { t' == maybe_enum_key e } ) (u2: unit { p' == parse_maybe_enum_key p e } ) (u3: unit { s' == serialize_maybe_enum_key p s e } ) (f: enum_repr_of_key'_t e) : Tot (serializer32 s') = serialize32_maybe_enum_key_gen' s32 e (serialize32_enum_key_gen s32 e _ _ _ (serialize_enum_key _ s e) () () () () f)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.SLow.Combinators.fst.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Enum.fst" }
[ { "abbrev": true, "full_module": "LowParse.Bytes32", "short_module": "B32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.SLow.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s32: LowParse.SLow.Base.serializer32 s -> e: LowParse.Spec.Enum.enum key repr -> f: LowParse.Spec.Enum.enum_repr_of_key'_t e -> LowParse.SLow.Base.serializer32 (LowParse.Spec.Enum.serialize_maybe_enum_key p s e)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "LowParse.SLow.Base.serializer32", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_repr_of_key'_t", "LowParse.SLow.Enum.serialize32_maybe_enum_key_gen", "LowParse.Spec.Enum.maybe_enum_key", "LowParse.Spec.Enum.parse_maybe_enum_key", "LowParse.Spec.Enum.serialize_maybe_enum_key" ]
[]
false
false
false
false
false
let serialize32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (serializer32 (serialize_maybe_enum_key p s e)) =
serialize32_maybe_enum_key_gen s32 e _ _ _ (serialize_maybe_enum_key p s e) () () () () f
false
LowParse.SLow.Enum.fst
LowParse.SLow.Enum.size32_enum_key
val size32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: size32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (size32 (serialize_enum_key p s e))
val size32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: size32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (size32 (serialize_enum_key p s e))
let size32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: size32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (size32 (serialize_enum_key p s e)) = size32_enum_key_gen s32 e _ _ _ (serialize_enum_key p s e) () () () () f
{ "file_name": "src/lowparse/LowParse.SLow.Enum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 74, "end_line": 148, "start_col": 0, "start_line": 139 }
module LowParse.SLow.Enum include LowParse.Spec.Enum include LowParse.SLow.Combinators module L = FStar.List.Tot module U32 = FStar.UInt32 (* Parser for enums *) inline_for_extraction let parse32_maybe_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (u1: unit { k' == k }) (u15: unit { t' == maybe_enum_key e } ) (u2: unit { p' == parse_maybe_enum_key p e } ) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 p') = parse32_synth p (maybe_enum_key_of_repr e) f p32 () inline_for_extraction let parse32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_maybe_enum_key p e)) = parse32_maybe_enum_key_gen p32 e _ _ (parse_maybe_enum_key p e) () () () f module B32 = LowParse.Bytes32 inline_for_extraction let parse32_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (u1: unit { k' == parse_filter_kind k } ) (u15: unit { t' == enum_key e } ) (u2: unit { p' == parse_enum_key p e } ) (pe: parser32 (parse_maybe_enum_key p e)) : Tot (parser32 p') = (fun (input: bytes32) -> (( [@inline_let] let _ = parse_enum_key_eq p e (B32.reveal input); parse_maybe_enum_key_eq p e (B32.reveal input) in match pe input with | Some (k, consumed) -> begin match k with | Known k' -> Some (k', consumed) | _ -> None end | _ -> None ) <: (res: option (enum_key e * U32.t) { parser32_correct (parse_enum_key p e) input res } ))) inline_for_extraction let parse32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_enum_key p e)) = parse32_enum_key_gen p e _ _ (parse_enum_key p e) () () () (parse32_maybe_enum_key p32 e f) inline_for_extraction let serialize32_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (s' : serializer p') (u1: unit { k' == parse_filter_kind k } ) (u15: unit { t' == enum_key e } ) (u2: unit { p' == parse_enum_key p e } ) (u3: unit { s' == serialize_enum_key p s e } ) (f: enum_repr_of_key'_t e) : Tot (serializer32 s') = fun (input: enum_key e) -> ( [@inline_let] let _ = serialize_enum_key_eq s e input in (s32 (f input)) <: (r: bytes32 { serializer32_correct (serialize_enum_key p s e) input r } )) inline_for_extraction let serialize32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (serializer32 (serialize_enum_key p s e)) = serialize32_enum_key_gen s32 e _ _ _ (serialize_enum_key p s e) () () () () f inline_for_extraction let size32_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: size32 s) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (s' : serializer p') (u1: unit { k' == parse_filter_kind k } ) (u15: unit { t' == enum_key e } ) (u2: unit { p' == parse_enum_key p e } ) (u3: unit { s' == serialize_enum_key p s e } ) (f: enum_repr_of_key'_t e) : Tot (size32 s') = fun (input: enum_key e) -> ( [@inline_let] let _ = serialize_enum_key_eq s e input in (s32 (f input)) <: (r: UInt32.t { size32_postcond (serialize_enum_key p s e) input r } ))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.SLow.Combinators.fst.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Enum.fst" }
[ { "abbrev": true, "full_module": "LowParse.Bytes32", "short_module": "B32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.SLow.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s32: LowParse.SLow.Base.size32 s -> e: LowParse.Spec.Enum.enum key repr -> f: LowParse.Spec.Enum.enum_repr_of_key'_t e -> LowParse.SLow.Base.size32 (LowParse.Spec.Enum.serialize_enum_key p s e)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "LowParse.SLow.Base.size32", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_repr_of_key'_t", "LowParse.SLow.Enum.size32_enum_key_gen", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Enum.parse_enum_key", "LowParse.Spec.Enum.serialize_enum_key" ]
[]
false
false
false
false
false
let size32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: size32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (size32 (serialize_enum_key p s e)) =
size32_enum_key_gen s32 e _ _ _ (serialize_enum_key p s e) () () () () f
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_to_bytes_le_lemma
val bn_to_bytes_le_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_le len b == BSeq.nat_to_intseq_le #U8 len (bn_v b))
val bn_to_bytes_le_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_le len b == BSeq.nat_to_intseq_le #U8 len (bn_v b))
let bn_to_bytes_le_lemma #t len b = Hacl.Spec.Bignum.Convert.bn_to_bytes_le_lemma len b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 278, "start_col": 0, "start_line": 277 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b let bn_lt_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask a b let bn_lt_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma a b let bn_lt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask b x let bn_lt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask_lemma b x let bn_gt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask b x let bn_gt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask_lemma b x (* Conversion functions *) let bn_from_uint #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint len x let bn_from_uint_lemma #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint_lemma len x let bn_from_bytes_be #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_be len b let bn_from_bytes_be_lemma #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_be_lemma #t len b let bn_from_bytes_le #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_le #t len b let bn_from_bytes_le_lemma #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_le_lemma #t len b let bn_to_bytes_be #t len b = Hacl.Spec.Bignum.Convert.bn_to_bytes_be len b let bn_to_bytes_be_lemma #t len b = Hacl.Spec.Bignum.Convert.bn_to_bytes_be_lemma len b let bn_to_bytes_le #t len b = Hacl.Spec.Bignum.Convert.bn_to_bytes_le len b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t } -> b: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t)) {Hacl.Spec.Bignum.Definitions.bn_v b < Prims.pow2 (8 * len)} -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.bn_to_bytes_le len b == Lib.ByteSequence.nat_to_intseq_le len (Hacl.Spec.Bignum.Definitions.bn_v b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Hacl.Spec.Bignum.Convert.bn_to_bytes_le_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_to_bytes_le_lemma #t len b =
Hacl.Spec.Bignum.Convert.bn_to_bytes_le_lemma len b
false
Pulse.Lib.PCM.Array.fst
Pulse.Lib.PCM.Array.carrier
val carrier (elt: Type u#a) (len: Ghost.erased nat) : Type u#a
val carrier (elt: Type u#a) (len: Ghost.erased nat) : Type u#a
let carrier (elt: Type u#a) (len: Ghost.erased nat) : Type u#a = PM.map (index_t len) (P.fractional elt)
{ "file_name": "share/steel/examples/pulse/lib/Pulse.Lib.PCM.Array.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 41, "end_line": 14, "start_col": 0, "start_line": 12 }
module Pulse.Lib.PCM.Array module P = Pulse.Lib.PCM.Fraction module M = FStar.Map module PM = Pulse.Lib.PCM.Map module Seq = FStar.Seq open PulseCore.FractionalPermission let index_t (len: Ghost.erased nat) : Type0 = i: nat { i < len }
{ "checked_file": "/", "dependencies": [ "PulseCore.FractionalPermission.fst.checked", "Pulse.Lib.PCM.Map.fst.checked", "Pulse.Lib.PCM.Fraction.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Lib.PCM.Array.fst" }
[ { "abbrev": false, "full_module": "PulseCore.FractionalPermission", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "Pulse.Lib.PCM.Map", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Pulse.Lib.PCM.Fraction", "short_module": "P" }, { "abbrev": false, "full_module": "Pulse.Lib.PCM", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.PCM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
elt: Type -> len: FStar.Ghost.erased Prims.nat -> Type
Prims.Tot
[ "total" ]
[]
[ "FStar.Ghost.erased", "Prims.nat", "Pulse.Lib.PCM.Map.map", "Pulse.Lib.PCM.Array.index_t", "Pulse.Lib.PCM.Fraction.fractional" ]
[]
false
false
false
true
true
let carrier (elt: Type u#a) (len: Ghost.erased nat) : Type u#a =
PM.map (index_t len) (P.fractional elt)
false
Pulse.Lib.PCM.Array.fst
Pulse.Lib.PCM.Array.pcm
val pcm (elt: Type u#a) (len: Ghost.erased nat) : FStar.PCM.pcm (carrier elt len)
val pcm (elt: Type u#a) (len: Ghost.erased nat) : FStar.PCM.pcm (carrier elt len)
let pcm (elt: Type u#a) (len: Ghost.erased nat) : FStar.PCM.pcm (carrier elt len) = PM.pointwise (index_t len) (P.pcm_frac #elt)
{ "file_name": "share/steel/examples/pulse/lib/Pulse.Lib.PCM.Array.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 46, "end_line": 18, "start_col": 0, "start_line": 16 }
module Pulse.Lib.PCM.Array module P = Pulse.Lib.PCM.Fraction module M = FStar.Map module PM = Pulse.Lib.PCM.Map module Seq = FStar.Seq open PulseCore.FractionalPermission let index_t (len: Ghost.erased nat) : Type0 = i: nat { i < len } let carrier (elt: Type u#a) (len: Ghost.erased nat) : Type u#a = PM.map (index_t len) (P.fractional elt)
{ "checked_file": "/", "dependencies": [ "PulseCore.FractionalPermission.fst.checked", "Pulse.Lib.PCM.Map.fst.checked", "Pulse.Lib.PCM.Fraction.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Lib.PCM.Array.fst" }
[ { "abbrev": false, "full_module": "PulseCore.FractionalPermission", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "Pulse.Lib.PCM.Map", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Pulse.Lib.PCM.Fraction", "short_module": "P" }, { "abbrev": false, "full_module": "Pulse.Lib.PCM", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.PCM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
elt: Type -> len: FStar.Ghost.erased Prims.nat -> FStar.PCM.pcm (Pulse.Lib.PCM.Array.carrier elt len)
Prims.Tot
[ "total" ]
[]
[ "FStar.Ghost.erased", "Prims.nat", "Pulse.Lib.PCM.Map.pointwise", "Pulse.Lib.PCM.Fraction.fractional", "Pulse.Lib.PCM.Array.index_t", "Pulse.Lib.PCM.Fraction.pcm_frac", "FStar.PCM.pcm", "Pulse.Lib.PCM.Array.carrier" ]
[]
false
false
false
false
false
let pcm (elt: Type u#a) (len: Ghost.erased nat) : FStar.PCM.pcm (carrier elt len) =
PM.pointwise (index_t len) (P.pcm_frac #elt)
false
LowParse.SLow.Enum.fst
LowParse.SLow.Enum.size32_maybe_enum_key
val size32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: size32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (size32 (serialize_maybe_enum_key p s e))
val size32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: size32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (size32 (serialize_maybe_enum_key p s e))
let size32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: size32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (size32 (serialize_maybe_enum_key p s e)) = size32_maybe_enum_key_gen s32 e _ _ _ (serialize_maybe_enum_key p s e) () () () () f
{ "file_name": "src/lowparse/LowParse.SLow.Enum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 87, "end_line": 256, "start_col": 0, "start_line": 247 }
module LowParse.SLow.Enum include LowParse.Spec.Enum include LowParse.SLow.Combinators module L = FStar.List.Tot module U32 = FStar.UInt32 (* Parser for enums *) inline_for_extraction let parse32_maybe_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (u1: unit { k' == k }) (u15: unit { t' == maybe_enum_key e } ) (u2: unit { p' == parse_maybe_enum_key p e } ) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 p') = parse32_synth p (maybe_enum_key_of_repr e) f p32 () inline_for_extraction let parse32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_maybe_enum_key p e)) = parse32_maybe_enum_key_gen p32 e _ _ (parse_maybe_enum_key p e) () () () f module B32 = LowParse.Bytes32 inline_for_extraction let parse32_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (u1: unit { k' == parse_filter_kind k } ) (u15: unit { t' == enum_key e } ) (u2: unit { p' == parse_enum_key p e } ) (pe: parser32 (parse_maybe_enum_key p e)) : Tot (parser32 p') = (fun (input: bytes32) -> (( [@inline_let] let _ = parse_enum_key_eq p e (B32.reveal input); parse_maybe_enum_key_eq p e (B32.reveal input) in match pe input with | Some (k, consumed) -> begin match k with | Known k' -> Some (k', consumed) | _ -> None end | _ -> None ) <: (res: option (enum_key e * U32.t) { parser32_correct (parse_enum_key p e) input res } ))) inline_for_extraction let parse32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 (parse_enum_key p e)) = parse32_enum_key_gen p e _ _ (parse_enum_key p e) () () () (parse32_maybe_enum_key p32 e f) inline_for_extraction let serialize32_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (s' : serializer p') (u1: unit { k' == parse_filter_kind k } ) (u15: unit { t' == enum_key e } ) (u2: unit { p' == parse_enum_key p e } ) (u3: unit { s' == serialize_enum_key p s e } ) (f: enum_repr_of_key'_t e) : Tot (serializer32 s') = fun (input: enum_key e) -> ( [@inline_let] let _ = serialize_enum_key_eq s e input in (s32 (f input)) <: (r: bytes32 { serializer32_correct (serialize_enum_key p s e) input r } )) inline_for_extraction let serialize32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (serializer32 (serialize_enum_key p s e)) = serialize32_enum_key_gen s32 e _ _ _ (serialize_enum_key p s e) () () () () f inline_for_extraction let size32_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: size32 s) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (s' : serializer p') (u1: unit { k' == parse_filter_kind k } ) (u15: unit { t' == enum_key e } ) (u2: unit { p' == parse_enum_key p e } ) (u3: unit { s' == serialize_enum_key p s e } ) (f: enum_repr_of_key'_t e) : Tot (size32 s') = fun (input: enum_key e) -> ( [@inline_let] let _ = serialize_enum_key_eq s e input in (s32 (f input)) <: (r: UInt32.t { size32_postcond (serialize_enum_key p s e) input r } )) inline_for_extraction let size32_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: size32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (size32 (serialize_enum_key p s e)) = size32_enum_key_gen s32 e _ _ _ (serialize_enum_key p s e) () () () () f inline_for_extraction let serialize32_maybe_enum_key_gen' (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (f: serializer32 (serialize_enum_key p s e)) : Tot (serializer32 (serialize_maybe_enum_key p s e)) = fun (input: maybe_enum_key e) -> (( [@inline_let] let _ = serialize_maybe_enum_key_eq s e input in match input with | Known k -> [@inline_let] let _ = serialize_enum_key_eq s e k in f k | Unknown r -> s32 r ) <: (r: bytes32 { serializer32_correct (serialize_maybe_enum_key p s e) input r } )) inline_for_extraction let serialize32_maybe_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (s' : serializer p') (u1: unit { k == k' } ) (u15: unit { t' == maybe_enum_key e } ) (u2: unit { p' == parse_maybe_enum_key p e } ) (u3: unit { s' == serialize_maybe_enum_key p s e } ) (f: enum_repr_of_key'_t e) : Tot (serializer32 s') = serialize32_maybe_enum_key_gen' s32 e (serialize32_enum_key_gen s32 e _ _ _ (serialize_enum_key _ s e) () () () () f) inline_for_extraction let serialize32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: serializer32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (serializer32 (serialize_maybe_enum_key p s e)) = serialize32_maybe_enum_key_gen s32 e _ _ _ (serialize_maybe_enum_key p s e) () () () () f inline_for_extraction let size32_maybe_enum_key_gen' (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: size32 s) (e: enum key repr) (f: size32 (serialize_enum_key p s e)) : Tot (size32 (serialize_maybe_enum_key p s e)) = fun (input: maybe_enum_key e) -> (( [@inline_let] let _ = serialize_maybe_enum_key_eq s e input in match input with | Known k -> [@inline_let] let _ = serialize_enum_key_eq s e k in f k | Unknown r -> s32 r ) <: (r: U32.t { size32_postcond (serialize_maybe_enum_key p s e) input r } )) inline_for_extraction let size32_maybe_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: size32 s) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (s' : serializer p') (u1: unit { k == k' } ) (u15: unit { t' == maybe_enum_key e } ) (u2: unit { p' == parse_maybe_enum_key p e } ) (u3: unit { s' == serialize_maybe_enum_key p s e } ) (f: enum_repr_of_key'_t e) : Tot (size32 s') = size32_maybe_enum_key_gen' s32 e (size32_enum_key_gen s32 e _ _ _ (serialize_enum_key _ s e) () () () () f)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.SLow.Combinators.fst.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Enum.fst" }
[ { "abbrev": true, "full_module": "LowParse.Bytes32", "short_module": "B32" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.SLow.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s32: LowParse.SLow.Base.size32 s -> e: LowParse.Spec.Enum.enum key repr -> f: LowParse.Spec.Enum.enum_repr_of_key'_t e -> LowParse.SLow.Base.size32 (LowParse.Spec.Enum.serialize_maybe_enum_key p s e)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "LowParse.SLow.Base.size32", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_repr_of_key'_t", "LowParse.SLow.Enum.size32_maybe_enum_key_gen", "LowParse.Spec.Enum.maybe_enum_key", "LowParse.Spec.Enum.parse_maybe_enum_key", "LowParse.Spec.Enum.serialize_maybe_enum_key" ]
[]
false
false
false
false
false
let size32_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (#s: serializer p) (s32: size32 s) (e: enum key repr) (f: enum_repr_of_key'_t e) : Tot (size32 (serialize_maybe_enum_key p s e)) =
size32_maybe_enum_key_gen s32 e _ _ _ (serialize_maybe_enum_key p s e) () () () () f
false
Hacl.Spec.Bignum.fst
Hacl.Spec.Bignum.bn_to_bytes_be_lemma
val bn_to_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_be #t len b == BSeq.nat_to_intseq_be #U8 len (bn_v b))
val bn_to_bytes_be_lemma: #t:limb_t -> len:size_pos{numbytes t * (blocks len (numbytes t)) <= max_size_t} -> b:lbignum t (blocks len (numbytes t)){bn_v b < pow2 (8 * len)} -> Lemma (bn_to_bytes_be #t len b == BSeq.nat_to_intseq_be #U8 len (bn_v b))
let bn_to_bytes_be_lemma #t len b = Hacl.Spec.Bignum.Convert.bn_to_bytes_be_lemma len b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 272, "start_col": 0, "start_line": 271 }
module Hacl.Spec.Bignum module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" let bn_add1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1 a b1 let bn_add1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_add1_lemma a b1 let bn_sub1 #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1 a b1 let bn_sub1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Addition.bn_sub1_lemma a b1 let bn_add #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add a b let bn_add_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_add_lemma a b let bn_sub #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub a b let bn_sub_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Addition.bn_sub_lemma a b let bn_reduce_once #t #len n c0 a = let c1, res = bn_sub a n in let c = c0 -. c1 in map2 (mask_select c) a res let bn_reduce_once_lemma #t #len n c0 res0 = let pbits = bits t in let tmp = bn_v res0 + v c0 * pow2 (pbits * len) in let c1, res1 = bn_sub res0 n in bn_sub_lemma res0 n; assert (bn_v res1 - v c1 * pow2 (pbits * len) == bn_v res0 - bn_v n); let c = c0 -. c1 in assert (bn_v res1 + (v c0 - v c1) * pow2 (pbits * len) == tmp - bn_v n); let res = map2 (mask_select c) res0 res1 in if tmp < bn_v n then begin assert (v c0 == 0); assert (v c1 == 1); assert (v c == pow2 pbits - 1); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res0); Math.Lemmas.small_mod tmp (bn_v n); assert (bn_v res == tmp % bn_v n) end else begin assert (tmp - bn_v n < bn_v n); bn_eval_bound res1 len; bn_eval_bound n len; assert (v c == 0); lseq_mask_select_lemma res0 res1 c; assert (bn_v res == bn_v res1); Math.Lemmas.modulo_addition_lemma tmp (bn_v n) (- 1); assert (bn_v res % bn_v n == tmp % bn_v n); Math.Lemmas.small_mod (bn_v res) (bn_v n) end let bn_add_mod_n #t #len n a b = let c0, res0 = bn_add a b in bn_reduce_once n c0 res0 let bn_add_mod_n_lemma #t #len n a b = let c0, res0 = bn_add a b in bn_add_lemma a b; bn_reduce_once_lemma n c0 res0 let bn_sub_mod_n #t #len n a b = let c0, res0 = bn_sub a b in let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in map2 (mask_select c) res1 res0 let bn_sub_mod_n_lemma #t #len n a b = let c0, res0 = bn_sub a b in bn_sub_lemma a b; assert (bn_v res0 - v c0 * pow2 (bits t * len) == bn_v a - bn_v b); let c1, res1 = bn_add res0 n in let c = uint #t 0 -. c0 in assert (v c == 0 \/ v c == v (ones t SEC)); let res = map2 (mask_select c) res1 res0 in lseq_mask_select_lemma res1 res0 c; if v c0 = 0 then begin assert (bn_v res0 == bn_v a - bn_v b); Math.Lemmas.small_mod (bn_v res0) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end else begin bn_add_lemma res0 n; assert (bn_v res1 + v c1 * pow2 (bits t * len) == bn_v res0 + bn_v n); bn_eval_bound res0 len; bn_eval_bound res1 len; bn_eval_bound n len; assert (v c0 - v c1 = 0); assert (bn_v res1 == bn_v a - bn_v b + bn_v n); assert (bn_v res1 < bn_v n); Math.Lemmas.modulo_addition_lemma (bn_v a - bn_v b) (bn_v n) 1; Math.Lemmas.small_mod (bn_v res1) (bn_v n); assert (bn_v res == (bn_v a - bn_v b) % bn_v n); () end let bn_mul1 #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1 a b1 let bn_mul1_lemma #t #aLen a b1 = Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma a b1 let bn_mul #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul a b let bn_mul_lemma #t #aLen #bLen a b = Hacl.Spec.Bignum.Multiplication.bn_mul_lemma a b let bn_karatsuba_mul #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b let bn_karatsuba_mul_lemma #t #aLen a b = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma a b let bn_sqr #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr a let bn_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Squaring.bn_sqr_lemma a let bn_karatsuba_sqr #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a let bn_karatsuba_sqr_lemma #t #aLen a = Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma a let bn_mul1_lshift_add #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b j acc let bn_mul1_lshift_add_lemma #t #aLen #resLen a b j acc = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma a b j acc let bn_rshift #t #len b i = Hacl.Spec.Bignum.Lib.bn_div_pow2 b i let bn_rshift_lemma #t #len c i = Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma c i let bn_sub_mask #t #len n a = let mask = BSeq.seq_eq_mask n a len in let mod_mask = map (logand mask) n in let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in res let bn_sub_mask_lemma #t #len n a = let mask = Lib.ByteSequence.seq_eq_mask n a len in assert (n == a ==> v mask == v (ones t SEC)); assert (n =!= a ==> v mask == v (zeros t SEC)); let mod_mask = map (logand mask) n in bn_mask_lemma n mask; assert (n == a ==> bn_v mod_mask == bn_v n); assert (n =!= a ==> bn_v mod_mask == 0); let c, res = Hacl.Spec.Bignum.Addition.bn_sub a mod_mask in Hacl.Spec.Bignum.Addition.bn_sub_lemma a mod_mask; assert (bn_v res - v c * pow2 (bits t * len) == bn_v a - bn_v mod_mask); bn_eval_bound res len; assert (bn_v res == bn_v a - bn_v mod_mask); Classical.move_requires_2 (bn_eval_inj len) n a (* get and set i-th bit of a bignum *) let bn_get_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit input ind let bn_get_ith_bit_lemma #t #len b ind = Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma b ind let bn_get_bits #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits #t #nLen n i l let bn_get_bits_lemma #t #nLen n i l = Hacl.Spec.Bignum.Lib.bn_get_bits_lemma #t #nLen n i l let bn_set_ith_bit #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit input ind let bn_set_ith_bit_lemma #t #len input ind = Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma input ind (* conditional swap *) let cswap2 #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 let cswap2_lemma #t #len bit b1 b2 = Hacl.Spec.Bignum.Lib.cswap2_lemma bit b1 b2 (* Bignum comparison and test functions *) let bn_is_odd #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd b let bn_is_odd_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_odd_lemma b let bn_eq_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask a b let bn_eq_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_eq_mask_lemma a b let bn_is_zero_mask #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask b let bn_is_zero_mask_lemma #t #len b = Hacl.Spec.Bignum.Comparison.bn_is_zero_mask_lemma b let bn_lt_mask #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask a b let bn_lt_mask_lemma #t #len a b = Hacl.Spec.Bignum.Comparison.bn_lt_mask_lemma a b let bn_lt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask b x let bn_lt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_lt_pow2_mask_lemma b x let bn_gt_pow2_mask #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask b x let bn_gt_pow2_mask_lemma #t #len b x = Hacl.Spec.Bignum.Comparison.bn_gt_pow2_mask_lemma b x (* Conversion functions *) let bn_from_uint #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint len x let bn_from_uint_lemma #t len x = Hacl.Spec.Bignum.Convert.bn_from_uint_lemma len x let bn_from_bytes_be #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_be len b let bn_from_bytes_be_lemma #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_be_lemma #t len b let bn_from_bytes_le #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_le #t len b let bn_from_bytes_le_lemma #t len b = Hacl.Spec.Bignum.Convert.bn_from_bytes_le_lemma #t len b let bn_to_bytes_be #t len b = Hacl.Spec.Bignum.Convert.bn_to_bytes_be len b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Squaring.fst.checked", "Hacl.Spec.Bignum.Multiplication.fst.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Spec.Bignum.Karatsuba.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Spec.Bignum.Comparison.fst.checked", "Hacl.Spec.Bignum.Addition.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Spec.Bignum.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_pos { Lib.IntTypes.numbytes t * Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t) <= Lib.IntTypes.max_size_t } -> b: Hacl.Spec.Bignum.Definitions.lbignum t (Hacl.Spec.Bignum.Definitions.blocks len (Lib.IntTypes.numbytes t)) {Hacl.Spec.Bignum.Definitions.bn_v b < Prims.pow2 (8 * len)} -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.bn_to_bytes_be len b == Lib.ByteSequence.nat_to_intseq_be len (Hacl.Spec.Bignum.Definitions.bn_v b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Hacl.Spec.Bignum.Convert.bn_to_bytes_be_lemma", "Prims.unit" ]
[]
true
false
true
false
false
let bn_to_bytes_be_lemma #t len b =
Hacl.Spec.Bignum.Convert.bn_to_bytes_be_lemma len b
false
SteelFramingTestSuite.fst
SteelFramingTestSuite.test
val test: Prims.unit -> SteelT unit ((p `star` p) `star` p) (fun _ -> (p `star` p) `star` p)
val test: Prims.unit -> SteelT unit ((p `star` p) `star` p) (fun _ -> (p `star` p) `star` p)
let test () : SteelT unit (p `star` p `star` p) (fun _ -> p `star` p `star` p) = f 0; ()
{ "file_name": "share/steel/tests/SteelFramingTestSuite.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 11, "end_line": 28, "start_col": 0, "start_line": 27 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module SteelFramingTestSuite open Steel.Memory open Steel.Effect /// A collection of small unit tests for the framing tactic assume val p : vprop assume val f (x:int) : SteelT unit p (fun _ -> p)
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "SteelFramingTestSuite.fst" }
[ { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Steel.Effect.SteelT Prims.unit
Steel.Effect.SteelT
[]
[]
[ "Prims.unit", "SteelFramingTestSuite.f", "Steel.Effect.Common.star", "SteelFramingTestSuite.p", "Steel.Effect.Common.vprop" ]
[]
false
true
false
false
false
let test () : SteelT unit ((p `star` p) `star` p) (fun _ -> (p `star` p) `star` p) =
f 0; ()
false
Vale.Transformers.PrefetchElim.fst
Vale.Transformers.PrefetchElim.prefetch_elim_correct
val prefetch_elim_correct (is: list ins) (s: machine_state) : Lemma (peephole_correct prefetch_elim_ph is s) [SMTPat (peephole_correct prefetch_elim_ph is s)]
val prefetch_elim_correct (is: list ins) (s: machine_state) : Lemma (peephole_correct prefetch_elim_ph is s) [SMTPat (peephole_correct prefetch_elim_ph is s)]
let prefetch_elim_correct (is:list ins) (s:machine_state) : Lemma (peephole_correct prefetch_elim_ph is s) [SMTPat (peephole_correct prefetch_elim_ph is s)] = match is with | [Instr i oprs (AnnotatePrefetchnta ())] -> () | _ -> ()
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.PrefetchElim.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 28, "start_col": 0, "start_line": 23 }
module Vale.Transformers.PrefetchElim open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s open Vale.Transformers.InstructionReorder open Vale.X64.InsLemmas open Vale.Transformers.PeepHole let prefetch_elim_ph = { ph = (function | [Instr i oprs (AnnotatePrefetchnta ())] -> Some [] | _ -> None); input_hint = 1; }
{ "checked_file": "/", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Transformers.PeepHole.fsti.checked", "Vale.Transformers.InstructionReorder.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.Transformers.PrefetchElim.fst" }
[ { "abbrev": false, "full_module": "Vale.Transformers.PeepHole", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 3, "max_fuel": 2, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
is: Prims.list Vale.X64.Machine_Semantics_s.ins -> s: Vale.X64.Machine_Semantics_s.machine_state -> FStar.Pervasives.Lemma (ensures Vale.Transformers.PeepHole.peephole_correct Vale.Transformers.PrefetchElim.prefetch_elim_ph is s) [ SMTPat (Vale.Transformers.PeepHole.peephole_correct Vale.Transformers.PrefetchElim.prefetch_elim_ph is s) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Instruction_s.instr_t_record", "Vale.X64.Instruction_s.instr_operands_t", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__outs", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__args", "Prims.unit", "Prims.l_True", "Prims.squash", "Vale.Transformers.PeepHole.peephole_correct", "Vale.Transformers.PrefetchElim.prefetch_elim_ph", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
false
false
true
false
false
let prefetch_elim_correct (is: list ins) (s: machine_state) : Lemma (peephole_correct prefetch_elim_ph is s) [SMTPat (peephole_correct prefetch_elim_ph is s)] =
match is with | [Instr i oprs (AnnotatePrefetchnta ())] -> () | _ -> ()
false
Pulse.Lib.PCM.Array.fst
Pulse.Lib.PCM.Array.mk_carrier_inj
val mk_carrier_inj (#elt: Type) (len offset: nat) (s1 s2: Seq.seq elt) (p1 p2: perm) : Lemma (requires (mk_carrier len offset s1 p1 == mk_carrier len offset s2 p2 /\ offset + Seq.length s1 <= len /\ offset + Seq.length s2 <= len)) (ensures (s1 `Seq.equal` s2 /\ (Seq.length s1 > 0 ==> p1 == p2)))
val mk_carrier_inj (#elt: Type) (len offset: nat) (s1 s2: Seq.seq elt) (p1 p2: perm) : Lemma (requires (mk_carrier len offset s1 p1 == mk_carrier len offset s2 p2 /\ offset + Seq.length s1 <= len /\ offset + Seq.length s2 <= len)) (ensures (s1 `Seq.equal` s2 /\ (Seq.length s1 > 0 ==> p1 == p2)))
let mk_carrier_inj (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p1 p2: perm) : Lemma (requires ( mk_carrier len offset s1 p1 == mk_carrier len offset s2 p2 /\ offset + Seq.length s1 <= len /\ offset + Seq.length s2 <= len )) (ensures ( s1 `Seq.equal` s2 /\ (Seq.length s1 > 0 ==> p1 == p2) )) = assert (forall (i: nat) . i < Seq.length s1 ==> (M.sel (mk_carrier len offset s1 p1) (offset + i) == Some (Seq.index s1 i, p1))); assert (forall (i: nat) . i < Seq.length s2 ==> M.sel (mk_carrier len offset s2 p2) (offset + i) == Some (Seq.index s2 i, p2))
{ "file_name": "share/steel/examples/pulse/lib/Pulse.Lib.PCM.Array.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 83, "end_line": 59, "start_col": 0, "start_line": 40 }
module Pulse.Lib.PCM.Array module P = Pulse.Lib.PCM.Fraction module M = FStar.Map module PM = Pulse.Lib.PCM.Map module Seq = FStar.Seq open PulseCore.FractionalPermission let index_t (len: Ghost.erased nat) : Type0 = i: nat { i < len } let carrier (elt: Type u#a) (len: Ghost.erased nat) : Type u#a = PM.map (index_t len) (P.fractional elt) let pcm (elt: Type u#a) (len: Ghost.erased nat) : FStar.PCM.pcm (carrier elt len) = PM.pointwise (index_t len) (P.pcm_frac #elt) let one (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).p.one let composable (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).p.composable let compose (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).p.op let mk_carrier (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p: perm) : Tot (carrier elt len) = let f (i: nat) : Tot (P.fractional elt) = if offset + Seq.length s > len || i < offset || i >= offset + Seq.length s then None else Some (Seq.index s (i - offset), p) in M.map_literal f
{ "checked_file": "/", "dependencies": [ "PulseCore.FractionalPermission.fst.checked", "Pulse.Lib.PCM.Map.fst.checked", "Pulse.Lib.PCM.Fraction.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Lib.PCM.Array.fst" }
[ { "abbrev": false, "full_module": "PulseCore.FractionalPermission", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "Pulse.Lib.PCM.Map", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Pulse.Lib.PCM.Fraction", "short_module": "P" }, { "abbrev": false, "full_module": "Pulse.Lib.PCM", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.PCM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> offset: Prims.nat -> s1: FStar.Seq.Base.seq elt -> s2: FStar.Seq.Base.seq elt -> p1: PulseCore.FractionalPermission.perm -> p2: PulseCore.FractionalPermission.perm -> FStar.Pervasives.Lemma (requires Pulse.Lib.PCM.Array.mk_carrier len offset s1 p1 == Pulse.Lib.PCM.Array.mk_carrier len offset s2 p2 /\ offset + FStar.Seq.Base.length s1 <= len /\ offset + FStar.Seq.Base.length s2 <= len) (ensures FStar.Seq.Base.equal s1 s2 /\ (FStar.Seq.Base.length s1 > 0 ==> p1 == p2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.Seq.Base.seq", "PulseCore.FractionalPermission.perm", "Prims._assert", "Prims.l_Forall", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "FStar.Map.sel", "Pulse.Lib.PCM.Array.index_t", "FStar.Ghost.hide", "Pulse.Lib.PCM.Fraction.fractional", "Pulse.Lib.PCM.Array.mk_carrier", "Prims.op_Addition", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "FStar.Seq.Base.index", "Prims.unit", "Prims.l_and", "Pulse.Lib.PCM.Array.carrier", "Prims.op_LessThanOrEqual", "Prims.squash", "FStar.Seq.Base.equal", "Prims.op_GreaterThan", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let mk_carrier_inj (#elt: Type) (len offset: nat) (s1 s2: Seq.seq elt) (p1 p2: perm) : Lemma (requires (mk_carrier len offset s1 p1 == mk_carrier len offset s2 p2 /\ offset + Seq.length s1 <= len /\ offset + Seq.length s2 <= len)) (ensures (s1 `Seq.equal` s2 /\ (Seq.length s1 > 0 ==> p1 == p2))) =
assert (forall (i: nat). i < Seq.length s1 ==> (M.sel (mk_carrier len offset s1 p1) (offset + i) == Some (Seq.index s1 i, p1))); assert (forall (i: nat). i < Seq.length s2 ==> M.sel (mk_carrier len offset s2 p2) (offset + i) == Some (Seq.index s2 i, p2))
false
SteelFramingTestSuite.fst
SteelFramingTestSuite.test_subcomp_dep
val test_subcomp_dep (n: int) : SteelT unit (int_sl n) (fun _ -> int_sl n)
val test_subcomp_dep (n: int) : SteelT unit (int_sl n) (fun _ -> int_sl n)
let test_subcomp_dep (n:int) : SteelT unit (int_sl n) (fun _ -> int_sl n) = int_f (n - 1 + 1); int_f n
{ "file_name": "share/steel/tests/SteelFramingTestSuite.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 9, "end_line": 189, "start_col": 0, "start_line": 187 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module SteelFramingTestSuite open Steel.Memory open Steel.Effect /// A collection of small unit tests for the framing tactic assume val p : vprop assume val f (x:int) : SteelT unit p (fun _ -> p) let test () : SteelT unit (p `star` p `star` p) (fun _ -> p `star` p `star` p) = f 0; () assume val ref : Type0 assume val ptr (_:ref) : vprop assume val alloc (x:int) : SteelT ref emp (fun y -> ptr y) assume val free (r:ref) : SteelT unit (ptr r) (fun _ -> emp) assume val read (r:ref) : SteelT int (ptr r) (fun _ -> ptr r) assume val write (r:ref) (v: int) : SteelT unit (ptr r) (fun _ -> ptr r) let unused x = x // work around another gensym heisenbug let test0 (b1 b2 b3: ref) : SteelT int (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b1 `star` ptr b2 `star` ptr b3) = let x = read b1 in x let test1 (b1 b2 b3: ref) : SteelT int (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b1 `star` ptr b2 `star` ptr b3) = let x = (let y = read b1 in y) in x let test2 (b1 b2 b3: ref) : SteelT int (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b3 `star` ptr b2 `star` ptr b1) = let x = read b1 in x let test3 (b1 b2 b3: ref) : SteelT int (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b2 `star` ptr b1 `star` ptr b3) = let x = read b3 in x let test4 (b1 b2 b3: ref) : SteelT unit (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b2 `star` ptr b1 `star` ptr b3) = let x = read b3 in write b2 x let test5 (b1 b2 b3: ref) : SteelT unit (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b2 `star` ptr b1 `star` ptr b3) = let x = read b3 in write b2 (x + 1) let test6 (b1 b2 b3: ref) : SteelT unit (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b2 `star` ptr b1 `star` ptr b3) = let x = read b3 in let b4 = alloc x in write b2 (x + 1); free b4 // With the formalism relying on can_be_split_post, this example fails if we normalize return_pre eqs goals before unification // When solving this equality, we have the goal // (*?u19*) _ _ == return_pre ((fun x -> (fun x -> (*?u758*) _ x x) x) r) // with x and r in the context of ?u19 // Not normalizing allows us to solve it as a function applied to x and r // Normalizing would lead to solve it to an slprop with x and r in the context, // but which would later fail when trying to prove the equivalence with (fun r -> ptr r) // in the postcondition let test7 (_:unit) : SteelT ref emp ptr = let r = alloc 0 in let x = read r in write r 0; r let test8 (b1 b2 b3:ref) : SteelT unit (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b2 `star` ptr b1 `star` ptr b3) = write b2 0 open Steel.Effect.Atomic let test_if1 (b:bool) : SteelT unit emp (fun _ -> emp) = if b then noop () else noop () let test_if2 (b:bool) (r: ref) : SteelT unit (ptr r) (fun _ -> ptr r) = if b then write r 0 else write r 1 let test_if3 (b:bool) (r:ref) : SteelT unit (ptr r) (fun _ -> ptr r) = if b then noop () else noop () let test_if4 (b:bool) : SteelT unit emp (fun _ -> emp) = if b then (let r = alloc 0 in free r) else (noop ()) let test_if5 (b:bool) : SteelT ref emp (fun r -> ptr r) = if b then alloc 0 else alloc 1 let test_if6 (b:bool) : SteelT ref emp (fun r -> ptr r) = let r = if b then alloc 0 else alloc 1 in let x = read r in write r 0; r (* First test with different (but equivalent) slprops in both branches *) let test_if7 (b:bool) (r1 r2: ref) : SteelT unit (ptr r1 `star` ptr r2) (fun _ -> ptr r1 `star` ptr r2) = if b then (write r1 0; write r2 0) else (write r2 0; write r1 0); write r2 0 (* Test with different slprops in both branches. The second branch captures the outer frame in its context *) let test_if8 (b:bool) (r1 r2: ref) : SteelT unit (ptr r1 `star` ptr r2) (fun _ -> ptr r1 `star` ptr r2) = if b then (write r1 0; write r2 0) else (write r2 0); write r2 0 let test_if9 (b:bool) (r1 r2: ref) : SteelT unit (ptr r1 `star` ptr r2) (fun _ -> ptr r1 `star` ptr r2) = write r1 0; if b then (write r1 0) else (write r2 0); write r2 0; if b then (write r1 0) else (write r2 0); write r1 0 (* Leave out some extra slprop outside of if_then_else *) let test_if10 (b:bool) (r1 r2 r3: ref) : SteelT unit (ptr r1 `star` ptr r2 `star` ptr r3) (fun _ -> ptr r1 `star` ptr r2 `star` ptr r3) = if b then (write r1 0; write r2 0) else (write r2 0; write r1 0); write r2 0 (* Tests if_then_else depending on previously created local var *) let test_if11 () : SteelT ref emp ptr = let r = alloc 0 in if true then return r else return r // Test for refinement types in return values. cf PR 2227 assume val f_ref (p:prop) : SteelT (u:unit{p}) emp (fun _ -> emp) let g (p:prop) : Steel unit emp (fun _ -> emp) (requires fun _ -> True) (ensures fun _ _ _ -> p) = let f2 (p:prop) : SteelT (u:unit{p}) emp (fun _ -> emp) = f_ref p in let x = f2 p in x assume val int_sl ([@@@smt_fallback] n:int) : vprop assume val int_f (n:int) : SteelT unit (int_sl n) (fun _ -> int_sl n)
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "SteelFramingTestSuite.fst" }
[ { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.int -> Steel.Effect.SteelT Prims.unit
Steel.Effect.SteelT
[]
[]
[ "Prims.int", "SteelFramingTestSuite.int_f", "Prims.unit", "Prims.op_Addition", "Prims.op_Subtraction", "SteelFramingTestSuite.int_sl", "Steel.Effect.Common.vprop" ]
[]
false
true
false
false
false
let test_subcomp_dep (n: int) : SteelT unit (int_sl n) (fun _ -> int_sl n) =
int_f (n - 1 + 1); int_f n
false
Steel.ST.HigherArray.fst
Steel.ST.HigherArray.elim_pts_to
val elim_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (pts_to a p s) (fun _ -> R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p)) (True) (fun _ -> valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a)
val elim_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (pts_to a p s) (fun _ -> R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p)) (True) (fun _ -> valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a)
let elim_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (pts_to a p s) (fun _ -> R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p)) (True) (fun _ -> valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) = rewrite (pts_to a p s) (pts_to0 a p s); elim_pure _
{ "file_name": "lib/steel/Steel.ST.HigherArray.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 13, "end_line": 178, "start_col": 0, "start_line": 167 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.HigherArray module P = Steel.PCMFrac module R = Steel.ST.PCMReference module M = FStar.Map module PM = Steel.PCMMap [@@noextract_to "krml"] let index_t (len: Ghost.erased nat) : Tot Type0 = (i: nat { i < len }) [@@noextract_to "krml"] let carrier (elt: Type u#a) (len: Ghost.erased nat) : Tot Type = PM.map (index_t len) (P.fractional elt) [@@noextract_to "krml"] let pcm (elt: Type u#a) (len: Ghost.erased nat) : Tot (P.pcm (carrier elt len)) = PM.pointwise (index_t len) (P.pcm_frac #elt) [@@noextract_to "krml"] let one (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.one let composable (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.composable [@@noextract_to "krml"] let compose (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.op [@@noextract_to "krml"] let mk_carrier (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p: P.perm) : Tot (carrier elt len) = let f (i: nat) : Tot (P.fractional elt) = if offset + Seq.length s > len || i < offset || i >= offset + Seq.length s then None else Some (Seq.index s (i - offset), p) in M.map_literal f let mk_carrier_inj (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires ( mk_carrier len offset s1 p1 == mk_carrier len offset s2 p2 /\ offset + Seq.length s1 <= len /\ offset + Seq.length s2 <= len )) (ensures ( s1 `Seq.equal` s2 /\ (Seq.length s1 > 0 ==> p1 == p2) )) = assert (forall (i: nat) . i < Seq.length s1 ==> (M.sel (mk_carrier len offset s1 p1) (offset + i) == Some (Seq.index s1 i, p1))); assert (forall (i: nat) . i < Seq.length s2 ==> M.sel (mk_carrier len offset s2 p2) (offset + i) == Some (Seq.index s2 i, p2)) [@@erasable] let base_t (elt: Type u#a) : Tot Type0 = Ghost.erased (base_len: US.t & ref _ (pcm elt (US.v base_len))) let base_len (#elt: Type) (b: base_t elt) : GTot nat = US.v (dfst b) [@@noextract_to "krml"] noeq type ptr (elt: Type u#a) : Type0 = { base_len: Ghost.erased US.t; // U32.t to prove that A.read, A.write offset computation does not overflow. TODO: replace U32.t with size_t base: (r: ref _ (pcm elt (US.v base_len)) { core_ref_is_null r ==> US.v base_len == 0 }); offset: (offset: nat { offset <= US.v base_len }); } let null_ptr a = { base_len = 0sz; base = null #_ #(pcm a 0) ; offset = 0 } let is_null_ptr p = is_null p.base let base (#elt: Type) (p: ptr elt) : Tot (base_t elt) = (| Ghost.reveal p.base_len, p.base |) let offset (#elt: Type) (p: ptr elt) : Ghost nat (requires True) (ensures (fun offset -> offset <= base_len (base p))) = p.offset let ptr_base_offset_inj (#elt: Type) (p1 p2: ptr elt) : Lemma (requires ( base p1 == base p2 /\ offset p1 == offset p2 )) (ensures ( p1 == p2 )) = () let base_len_null_ptr _ = () let length_fits #elt a = () let valid_perm (len: nat) (offset: nat) (slice_len: nat) (p: P.perm) : Tot prop = let open FStar.Real in ((offset + slice_len <= len /\ slice_len > 0) ==> (p.P.v <=. one)) [@__reduce__] let pts_to0 (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : Tot vprop = R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p) `star` pure ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) let pts_to (#elt: Type u#1) (a: array elt) ([@@@ smt_fallback ] p: P.perm) ([@@@ smt_fallback ] s: Seq.seq elt) : Tot vprop = pts_to0 a p s // this lemma is necessary because Steel.PCMReference is marked unfold let change_r_pts_to (#opened: _) (#carrier: Type u#1) (#pcm: P.pcm carrier) (p: ref carrier pcm) (v: carrier) (#carrier': Type u#1) (#pcm': P.pcm carrier') (p': ref carrier' pcm') (v': carrier') : STGhost unit opened (R.pts_to p v) (fun _ -> R.pts_to p' v') (// keep on distinct lines for error messages carrier == carrier' /\ pcm == pcm' /\ p == p' /\ v == v') (fun _ -> True) = rewrite (R.pts_to p v) (R.pts_to p' v') let intro_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (#v: _) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (R.pts_to (ptr_of a).base v) (fun _ -> pts_to a p s) ( v == mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p /\ valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) (fun _ -> True) = change_r_pts_to (ptr_of a).base v (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p); intro_pure _; rewrite (pts_to0 a p s) (pts_to a p s)
{ "checked_file": "/", "dependencies": [ "Steel.ST.PCMReference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.PCMMap.fst.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.HigherArray.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMMap", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Steel.ST.PCMReference", "short_module": "R" }, { "abbrev": true, "full_module": "Steel.PCMFrac", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Steel.ST.HigherArray.array elt -> p: Steel.FractionalPermission.perm -> s: FStar.Seq.Base.seq elt -> Steel.ST.Effect.Ghost.STGhost Prims.unit
Steel.ST.Effect.Ghost.STGhost
[]
[]
[ "Steel.Memory.inames", "Steel.ST.HigherArray.array", "Steel.FractionalPermission.perm", "FStar.Seq.Base.seq", "Steel.ST.Util.elim_pure", "Prims.l_and", "Steel.ST.HigherArray.valid_perm", "FStar.SizeT.v", "FStar.Ghost.reveal", "FStar.SizeT.t", "Steel.ST.HigherArray.__proj__Mkptr__item__base_len", "Steel.ST.HigherArray.ptr_of", "Steel.ST.HigherArray.__proj__Mkptr__item__offset", "FStar.Seq.Base.length", "Prims.eq2", "Prims.nat", "Steel.ST.HigherArray.length", "Prims.unit", "Steel.ST.Util.rewrite", "Steel.ST.HigherArray.pts_to", "Steel.ST.HigherArray.pts_to0", "Steel.ST.PCMReference.pts_to", "Steel.ST.HigherArray.carrier", "FStar.Ghost.hide", "Steel.ST.HigherArray.pcm", "Steel.ST.HigherArray.__proj__Mkptr__item__base", "Steel.ST.HigherArray.mk_carrier", "Steel.Effect.Common.vprop", "Prims.l_True" ]
[]
false
true
false
false
false
let elim_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (pts_to a p s) (fun _ -> R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p)) (True) (fun _ -> valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a) =
rewrite (pts_to a p s) (pts_to0 a p s); elim_pure _
false
Pulse.Lib.PCM.Array.fst
Pulse.Lib.PCM.Array.mk_carrier
val mk_carrier (#elt: Type) (len offset: nat) (s: Seq.seq elt) (p: perm) : Tot (carrier elt len)
val mk_carrier (#elt: Type) (len offset: nat) (s: Seq.seq elt) (p: perm) : Tot (carrier elt len)
let mk_carrier (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p: perm) : Tot (carrier elt len) = let f (i: nat) : Tot (P.fractional elt) = if offset + Seq.length s > len || i < offset || i >= offset + Seq.length s then None else Some (Seq.index s (i - offset), p) in M.map_literal f
{ "file_name": "share/steel/examples/pulse/lib/Pulse.Lib.PCM.Array.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 17, "end_line": 38, "start_col": 0, "start_line": 26 }
module Pulse.Lib.PCM.Array module P = Pulse.Lib.PCM.Fraction module M = FStar.Map module PM = Pulse.Lib.PCM.Map module Seq = FStar.Seq open PulseCore.FractionalPermission let index_t (len: Ghost.erased nat) : Type0 = i: nat { i < len } let carrier (elt: Type u#a) (len: Ghost.erased nat) : Type u#a = PM.map (index_t len) (P.fractional elt) let pcm (elt: Type u#a) (len: Ghost.erased nat) : FStar.PCM.pcm (carrier elt len) = PM.pointwise (index_t len) (P.pcm_frac #elt) let one (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).p.one let composable (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).p.composable let compose (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).p.op
{ "checked_file": "/", "dependencies": [ "PulseCore.FractionalPermission.fst.checked", "Pulse.Lib.PCM.Map.fst.checked", "Pulse.Lib.PCM.Fraction.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Lib.PCM.Array.fst" }
[ { "abbrev": false, "full_module": "PulseCore.FractionalPermission", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "Pulse.Lib.PCM.Map", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Pulse.Lib.PCM.Fraction", "short_module": "P" }, { "abbrev": false, "full_module": "Pulse.Lib.PCM", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.PCM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Prims.nat -> offset: Prims.nat -> s: FStar.Seq.Base.seq elt -> p: PulseCore.FractionalPermission.perm -> Pulse.Lib.PCM.Array.carrier elt (FStar.Ghost.hide len)
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "FStar.Seq.Base.seq", "PulseCore.FractionalPermission.perm", "FStar.Map.map_literal", "Pulse.Lib.PCM.Array.index_t", "FStar.Ghost.hide", "Pulse.Lib.PCM.Fraction.fractional", "Prims.op_BarBar", "Prims.op_GreaterThan", "Prims.op_Addition", "FStar.Seq.Base.length", "Prims.op_LessThan", "Prims.op_GreaterThanOrEqual", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.tuple2", "Prims.bool", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "FStar.Seq.Base.index", "Prims.op_Subtraction", "Pulse.Lib.PCM.Array.carrier" ]
[]
false
false
false
false
false
let mk_carrier (#elt: Type) (len offset: nat) (s: Seq.seq elt) (p: perm) : Tot (carrier elt len) =
let f (i: nat) : Tot (P.fractional elt) = if offset + Seq.length s > len || i < offset || i >= offset + Seq.length s then None else Some (Seq.index s (i - offset), p) in M.map_literal f
false
Hacl.Bignum.Lib.fst
Hacl.Bignum.Lib.bn_get_top_index_u32
val bn_get_top_index_u32 (len: _) : bn_get_top_index_st U32 len
val bn_get_top_index_u32 (len: _) : bn_get_top_index_st U32 len
let bn_get_top_index_u32 len: bn_get_top_index_st U32 len = mk_bn_get_top_index #U32 len
{ "file_name": "code/bignum/Hacl.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 88, "end_line": 136, "start_col": 0, "start_line": 136 }
module Hacl.Bignum.Lib open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Base open Hacl.Bignum.Definitions module S = Hacl.Spec.Bignum.Lib module ST = FStar.HyperStack.ST module Loops = Lib.LoopCombinators module LSeq = Lib.Sequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// inline_for_extraction noextract val bn_get_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> h0 == h1 /\ r == S.bn_get_ith_bit (as_seq h0 b) (v i)) let bn_get_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); let tmp = input.(i) in (tmp >>. j) &. uint #t 1 inline_for_extraction noextract val bn_set_ith_bit: #t:limb_t -> len:size_t -> b:lbignum t len -> i:size_t{v i / bits t < v len} -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_set_ith_bit (as_seq h0 b) (v i)) let bn_set_ith_bit #t len input ind = [@inline_let] let pbits = size (bits t) in let i = ind /. pbits in assert (v i == v ind / bits t); let j = ind %. pbits in assert (v j == v ind % bits t); input.(i) <- input.(i) |. (uint #t 1 <<. j) inline_for_extraction noextract val cswap2_st: #t:limb_t -> len:size_t -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> Stack unit (requires fun h -> live h b1 /\ live h b2 /\ disjoint b1 b2) (ensures fun h0 _ h1 -> modifies (loc b1 |+| loc b2) h0 h1 /\ (as_seq h1 b1, as_seq h1 b2) == S.cswap2 bit (as_seq h0 b1) (as_seq h0 b2)) let cswap2_st #t len bit b1 b2 = [@inline_let] let mask = uint #t 0 -. bit in [@inline_let] let spec h0 = S.cswap2_f mask in let h0 = ST.get () in loop2 h0 len b1 b2 spec (fun i -> Loops.unfold_repeati (v len) (spec h0) (as_seq h0 b1, as_seq h0 b2) (v i); let dummy = mask &. (b1.(i) ^. b2.(i)) in b1.(i) <- b1.(i) ^. dummy; b2.(i) <- b2.(i) ^. dummy ) inline_for_extraction noextract let bn_get_top_index_st (t:limb_t) (len:size_t{0 < v len}) = b:lbignum t len -> Stack (limb t) (requires fun h -> live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ v r == S.bn_get_top_index (as_seq h0 b)) inline_for_extraction noextract val mk_bn_get_top_index: #t:limb_t -> len:size_t{0 < v len} -> bn_get_top_index_st t len let mk_bn_get_top_index #t len b = push_frame (); let priv = create 1ul (uint #t 0) in let h0 = ST.get () in [@ inline_let] let refl h i = v (LSeq.index (as_seq h priv) 0) in [@ inline_let] let spec h0 = S.bn_get_top_index_f (as_seq h0 b) in [@ inline_let] let inv h (i:nat{i <= v len}) = modifies1 priv h0 h /\ live h priv /\ live h b /\ disjoint priv b /\ refl h i == Loops.repeat_gen i (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0) in Loops.eq_repeat_gen0 (v len) (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0); Lib.Loops.for 0ul len inv (fun i -> Loops.unfold_repeat_gen (v len) (S.bn_get_top_index_t (v len)) (spec h0) (refl h0 0) (v i); let mask = eq_mask b.(i) (zeros t SEC) in let h1 = ST.get () in priv.(0ul) <- mask_select mask priv.(0ul) (size_to_limb i); mask_select_lemma mask (LSeq.index (as_seq h1 priv) 0) (size_to_limb i)); let res = priv.(0ul) in pop_frame (); res
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Lib.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Lib", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_t{0 < Lib.IntTypes.v len} -> Hacl.Bignum.Lib.bn_get_top_index_st Lib.IntTypes.U32 len
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.Lib.mk_bn_get_top_index", "Hacl.Bignum.Lib.bn_get_top_index_st" ]
[]
false
false
false
false
false
let bn_get_top_index_u32 len : bn_get_top_index_st U32 len =
mk_bn_get_top_index #U32 len
false
LowParse.SLow.Enum.fst
LowParse.SLow.Enum.parse32_maybe_enum_key_gen
val parse32_maybe_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (k': parser_kind) (t': Type) (p': parser k' t') (u1: unit{k' == k}) (u15: unit{t' == maybe_enum_key e}) (u2: unit{p' == parse_maybe_enum_key p e}) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 p')
val parse32_maybe_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (k': parser_kind) (t': Type) (p': parser k' t') (u1: unit{k' == k}) (u15: unit{t' == maybe_enum_key e}) (u2: unit{p' == parse_maybe_enum_key p e}) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 p')
let parse32_maybe_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (k' : parser_kind) (t' : Type) (p' : parser k' t') (u1: unit { k' == k }) (u15: unit { t' == maybe_enum_key e } ) (u2: unit { p' == parse_maybe_enum_key p e } ) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 p') = parse32_synth p (maybe_enum_key_of_repr e) f p32 ()
{ "file_name": "src/lowparse/LowParse.SLow.Enum.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 53, "end_line": 25, "start_col": 0, "start_line": 11 }
module LowParse.SLow.Enum include LowParse.Spec.Enum include LowParse.SLow.Combinators module L = FStar.List.Tot module U32 = FStar.UInt32 (* Parser for enums *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Enum.fst.checked", "LowParse.SLow.Combinators.fst.checked", "LowParse.Bytes32.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.SLow.Enum.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.SLow.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Enum", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p32: LowParse.SLow.Base.parser32 p -> e: LowParse.Spec.Enum.enum key repr -> k': LowParse.Spec.Base.parser_kind -> t': Type0 -> p': LowParse.Spec.Base.parser k' t' -> u1: Prims.unit{k' == k} -> u15: Prims.unit{t' == LowParse.Spec.Enum.maybe_enum_key e} -> u2: Prims.unit{p' == LowParse.Spec.Enum.parse_maybe_enum_key p e} -> f: LowParse.Spec.Enum.maybe_enum_key_of_repr'_t e -> LowParse.SLow.Base.parser32 p'
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.SLow.Base.parser32", "LowParse.Spec.Enum.enum", "Prims.unit", "Prims.eq2", "LowParse.Spec.Enum.maybe_enum_key", "LowParse.Spec.Enum.parse_maybe_enum_key", "LowParse.Spec.Enum.maybe_enum_key_of_repr'_t", "LowParse.SLow.Combinators.parse32_synth", "LowParse.Spec.Enum.maybe_enum_key_of_repr" ]
[]
false
false
false
false
false
let parse32_maybe_enum_key_gen (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (p32: parser32 p) (e: enum key repr) (k': parser_kind) (t': Type) (p': parser k' t') (u1: unit{k' == k}) (u15: unit{t' == maybe_enum_key e}) (u2: unit{p' == parse_maybe_enum_key p e}) (f: maybe_enum_key_of_repr'_t e) : Tot (parser32 p') =
parse32_synth p (maybe_enum_key_of_repr e) f p32 ()
false