file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
listlengths 0
2
| mutual_with
listlengths 0
11
| ideal_premises
listlengths 0
236
| proof_features
listlengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FStar.UInt8.fsti | FStar.UInt8.op_Star_Hat | val op_Star_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | let op_Star_Hat = mul | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 322,
"start_col": 7,
"start_line": 322
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | Prims.Pure | [] | [] | [
"FStar.UInt8.mul"
] | [] | false | false | false | false | false | let op_Star_Hat =
| mul | false |
|
FStar.UInt8.fsti | FStar.UInt8.op_Star_Percent_Hat | val op_Star_Percent_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | let op_Star_Percent_Hat = mul_mod | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 324,
"start_col": 7,
"start_line": 324
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | Prims.Pure | [] | [] | [
"FStar.UInt8.mul_mod"
] | [] | false | false | false | false | false | let op_Star_Percent_Hat =
| mul_mod | false |
|
Lib.NatMod.fst | Lib.NatMod.lemma_mul_mod_prime_zero | val lemma_mul_mod_prime_zero: #m:prime -> a:nat_mod m -> b:nat_mod m ->
Lemma (a * b % m == 0 <==> (a % m == 0 \/ b % m == 0)) | val lemma_mul_mod_prime_zero: #m:prime -> a:nat_mod m -> b:nat_mod m ->
Lemma (a * b % m == 0 <==> (a % m == 0 \/ b % m == 0)) | let lemma_mul_mod_prime_zero #m a b =
Classical.move_requires_3 Euclid.euclid_prime m a b;
Classical.move_requires_3 lemma_mul_mod_zero2 m a b | {
"file_name": "lib/Lib.NatMod.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 53,
"end_line": 415,
"start_col": 0,
"start_line": 413
} | module Lib.NatMod
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
#push-options "--fuel 2"
let lemma_pow0 a = ()
let lemma_pow1 a = ()
let lemma_pow_unfold a b = ()
#pop-options
let rec lemma_pow_gt_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_gt_zero a (b - 1) end
let rec lemma_pow_ge_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_ge_zero a (b - 1) end
let rec lemma_pow_nat_is_pow a b =
let k = mk_nat_comm_monoid in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
lemma_pow_unfold a b;
lemma_pow_nat_is_pow a (b - 1);
LE.lemma_pow_unfold k a b;
() end
let lemma_pow_zero b =
lemma_pow_unfold 0 b
let lemma_pow_one b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_one k b;
lemma_pow_nat_is_pow 1 b
let lemma_pow_add x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_add k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow x m;
lemma_pow_nat_is_pow x (n + m)
let lemma_pow_mul x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow (pow x n) m;
lemma_pow_nat_is_pow x (n * m)
let lemma_pow_double a b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_double k a b;
lemma_pow_nat_is_pow (a * a) b;
lemma_pow_nat_is_pow a (b + b)
let lemma_pow_mul_base a b n =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul_base k a b n;
lemma_pow_nat_is_pow a n;
lemma_pow_nat_is_pow b n;
lemma_pow_nat_is_pow (a * b) n
let rec lemma_pow_mod_base a b n =
if b = 0 then begin
lemma_pow0 a;
lemma_pow0 (a % n) end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_mod_base a (b - 1) n }
a * (pow (a % n) (b - 1) % n) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n }
a * pow (a % n) (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n }
a % n * pow (a % n) (b - 1) % n;
(==) { lemma_pow_unfold (a % n) b }
pow (a % n) b % n;
};
assert (pow a b % n == pow (a % n) b % n)
end
let lemma_mul_mod_one #m a = ()
let lemma_mul_mod_assoc #m a b c =
calc (==) {
(a * b % m) * c % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m }
(a * b) * c % m;
(==) { Math.Lemmas.paren_mul_right a b c }
a * (b * c) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m }
a * (b * c % m) % m;
}
let lemma_mul_mod_comm #m a b = ()
let pow_mod #m a b = pow_mod_ #m a b
let pow_mod_def #m a b = ()
#push-options "--fuel 2"
val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1)
let lemma_pow_mod0 #n a = ()
val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma
(pow_mod #n a b == pow_mod (mul_mod a a) (b / 2))
let lemma_pow_mod_unfold0 n a b = ()
val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma
(pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2)))
let lemma_pow_mod_unfold1 n a b = ()
#pop-options
val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma
(ensures (pow_mod #n a b == pow a b % n))
(decreases b)
let rec lemma_pow_mod_ n a b =
if b = 0 then begin
lemma_pow0 a;
lemma_pow_mod0 a end
else begin
if b % 2 = 0 then begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold0 n a b }
pow_mod #n (mul_mod #n a a) (b / 2);
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
pow (mul_mod #n a a) (b / 2) % n;
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
pow (a * a) (b / 2) % n;
(==) { lemma_pow_double a (b / 2) }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
else begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold1 n a b }
mul_mod a (pow_mod (mul_mod #n a a) (b / 2));
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
mul_mod a (pow (mul_mod #n a a) (b / 2) % n);
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
mul_mod a (pow (a * a) (b / 2) % n);
(==) { lemma_pow_double a (b / 2) }
mul_mod a (pow a (b / 2 * 2) % n);
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n }
a * pow a (b / 2 * 2) % n;
(==) { lemma_pow1 a }
pow a 1 * pow a (b / 2 * 2) % n;
(==) { lemma_pow_add a 1 (b / 2 * 2) }
pow a (b / 2 * 2 + 1) % n;
(==) { Math.Lemmas.euclidean_division_definition b 2 }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
end
let lemma_pow_mod #n a b = lemma_pow_mod_ n a b
let rec lemma_pow_nat_mod_is_pow #n a b =
let k = mk_nat_mod_comm_monoid n in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_nat_mod_is_pow #n a (b - 1) }
a * LE.pow k a (b - 1) % n;
(==) { }
k.LE.mul a (LE.pow k a (b - 1));
(==) { LE.lemma_pow_unfold k a b }
LE.pow k a b;
}; () end
let lemma_add_mod_one #m a =
Math.Lemmas.small_mod a m
let lemma_add_mod_assoc #m a b c =
calc (==) {
add_mod (add_mod a b) c;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m }
((a + b) + c) % m;
(==) { }
(a + (b + c)) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m }
add_mod a (add_mod b c);
}
let lemma_add_mod_comm #m a b = ()
let lemma_mod_distributivity_add_right #m a b c =
calc (==) {
mul_mod a (add_mod b c);
(==) { }
a * ((b + c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m }
a * (b + c) % m;
(==) { Math.Lemmas.distributivity_add_right a b c }
(a * b + a * c) % m;
(==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m }
add_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_add_left #m a b c =
lemma_mod_distributivity_add_right c a b
let lemma_mod_distributivity_sub_right #m a b c =
calc (==) {
mul_mod a (sub_mod b c);
(==) { }
a * ((b - c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m }
a * (b - c) % m;
(==) { Math.Lemmas.distributivity_sub_right a b c }
(a * b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m }
(mul_mod a b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m }
sub_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_sub_left #m a b c =
lemma_mod_distributivity_sub_right c a b
let lemma_inv_mod_both #m a b =
let p1 = pow a (m - 2) in
let p2 = pow b (m - 2) in
calc (==) {
mul_mod (inv_mod a) (inv_mod b);
(==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) }
p1 % m * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m }
p1 * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m }
p1 * p2 % m;
(==) { lemma_pow_mul_base a b (m - 2) }
pow (a * b) (m - 2) % m;
(==) { lemma_pow_mod_base (a * b) (m - 2) m }
pow (mul_mod a b) (m - 2) % m;
(==) { lemma_pow_mod #m (mul_mod a b) (m - 2) }
inv_mod (mul_mod a b);
}
#push-options "--fuel 1"
val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n)
let rec pow_eq a n =
if n = 0 then ()
else pow_eq a (n - 1)
#pop-options
let lemma_div_mod_prime #m a =
Math.Lemmas.small_mod a m;
assert (a == a % m);
assert (a <> 0 /\ a % m <> 0);
calc (==) {
pow_mod #m a (m - 2) * a % m;
(==) { lemma_pow_mod #m a (m - 2) }
pow a (m - 2) % m * a % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m }
pow a (m - 2) * a % m;
(==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 }
pow a (m - 1) % m;
(==) { pow_eq a (m - 1) }
Fermat.pow a (m - 1) % m;
(==) { Fermat.fermat_alt m a }
1;
}
let lemma_div_mod_prime_one #m a =
lemma_pow_mod #m 1 (m - 2);
lemma_pow_one (m - 2);
Math.Lemmas.small_mod 1 m
let lemma_div_mod_prime_cancel #m a b c =
calc (==) {
mul_mod (mul_mod a c) (inv_mod (mul_mod c b));
(==) { lemma_inv_mod_both c b }
mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b));
(==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) }
mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b);
(==) { lemma_mul_mod_assoc a c (inv_mod c) }
mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b);
(==) { lemma_div_mod_prime c }
mul_mod (mul_mod a 1) (inv_mod b);
(==) { Math.Lemmas.small_mod a m }
mul_mod a (inv_mod b);
}
let lemma_div_mod_prime_to_one_denominator #m a b c d =
calc (==) {
mul_mod (div_mod a c) (div_mod b d);
(==) { }
mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d));
(==) {
lemma_mul_mod_comm #m b (inv_mod d);
lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b }
mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b;
(==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) }
mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b;
(==) { lemma_inv_mod_both c d }
mul_mod (mul_mod a (inv_mod (mul_mod c d))) b;
(==) {
lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b;
lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b;
lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) }
mul_mod (mul_mod a b) (inv_mod (mul_mod c d));
}
val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (div_mod a b = c ==> a = mul_mod c b)
let lemma_div_mod_eq_mul_mod1 #m a b c =
if div_mod a b = c then begin
assert (mul_mod (div_mod a b) b = mul_mod c b);
calc (==) {
mul_mod (div_mod a b) b;
(==) { lemma_div_mod_prime_one b }
mul_mod (div_mod a b) (div_mod b 1);
(==) { lemma_div_mod_prime_to_one_denominator a b b 1 }
div_mod (mul_mod a b) (mul_mod b 1);
(==) { lemma_div_mod_prime_cancel a 1 b }
div_mod a 1;
(==) { lemma_div_mod_prime_one a }
a;
} end
else ()
val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (a = mul_mod c b ==> div_mod a b = c)
let lemma_div_mod_eq_mul_mod2 #m a b c =
if a = mul_mod c b then begin
assert (div_mod a b == div_mod (mul_mod c b) b);
calc (==) {
div_mod (mul_mod c b) b;
(==) { Math.Lemmas.small_mod b m }
div_mod (mul_mod c b) (mul_mod b 1);
(==) { lemma_div_mod_prime_cancel c 1 b }
div_mod c 1;
(==) { lemma_div_mod_prime_one c }
c;
} end
else ()
let lemma_div_mod_eq_mul_mod #m a b c =
lemma_div_mod_eq_mul_mod1 a b c;
lemma_div_mod_eq_mul_mod2 a b c
val lemma_mul_mod_zero2: n:pos -> x:int -> y:int -> Lemma
(requires x % n == 0 \/ y % n == 0)
(ensures x * y % n == 0)
let lemma_mul_mod_zero2 n x y =
if x % n = 0 then
Math.Lemmas.lemma_mod_mul_distr_l x y n
else
Math.Lemmas.lemma_mod_mul_distr_r x y n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.NatMod.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m
-> FStar.Pervasives.Lemma (ensures a * b % m == 0 <==> a % m == 0 \/ b % m == 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.NatMod.prime",
"Lib.NatMod.nat_mod",
"FStar.Classical.move_requires_3",
"Prims.pos",
"Prims.int",
"Prims.l_or",
"Prims.eq2",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Lib.NatMod.lemma_mul_mod_zero2",
"Prims.unit",
"FStar.Math.Euclid.is_prime",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Math.Euclid.euclid_prime"
] | [] | false | false | true | false | false | let lemma_mul_mod_prime_zero #m a b =
| Classical.move_requires_3 Euclid.euclid_prime m a b;
Classical.move_requires_3 lemma_mul_mod_zero2 m a b | false |
Lib.NatMod.fst | Lib.NatMod.lemma_div_mod_eq_mul_mod2 | val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (a = mul_mod c b ==> div_mod a b = c) | val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (a = mul_mod c b ==> div_mod a b = c) | let lemma_div_mod_eq_mul_mod2 #m a b c =
if a = mul_mod c b then begin
assert (div_mod a b == div_mod (mul_mod c b) b);
calc (==) {
div_mod (mul_mod c b) b;
(==) { Math.Lemmas.small_mod b m }
div_mod (mul_mod c b) (mul_mod b 1);
(==) { lemma_div_mod_prime_cancel c 1 b }
div_mod c 1;
(==) { lemma_div_mod_prime_one c }
c;
} end
else () | {
"file_name": "lib/Lib.NatMod.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 9,
"end_line": 394,
"start_col": 0,
"start_line": 382
} | module Lib.NatMod
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
#push-options "--fuel 2"
let lemma_pow0 a = ()
let lemma_pow1 a = ()
let lemma_pow_unfold a b = ()
#pop-options
let rec lemma_pow_gt_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_gt_zero a (b - 1) end
let rec lemma_pow_ge_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_ge_zero a (b - 1) end
let rec lemma_pow_nat_is_pow a b =
let k = mk_nat_comm_monoid in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
lemma_pow_unfold a b;
lemma_pow_nat_is_pow a (b - 1);
LE.lemma_pow_unfold k a b;
() end
let lemma_pow_zero b =
lemma_pow_unfold 0 b
let lemma_pow_one b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_one k b;
lemma_pow_nat_is_pow 1 b
let lemma_pow_add x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_add k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow x m;
lemma_pow_nat_is_pow x (n + m)
let lemma_pow_mul x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow (pow x n) m;
lemma_pow_nat_is_pow x (n * m)
let lemma_pow_double a b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_double k a b;
lemma_pow_nat_is_pow (a * a) b;
lemma_pow_nat_is_pow a (b + b)
let lemma_pow_mul_base a b n =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul_base k a b n;
lemma_pow_nat_is_pow a n;
lemma_pow_nat_is_pow b n;
lemma_pow_nat_is_pow (a * b) n
let rec lemma_pow_mod_base a b n =
if b = 0 then begin
lemma_pow0 a;
lemma_pow0 (a % n) end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_mod_base a (b - 1) n }
a * (pow (a % n) (b - 1) % n) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n }
a * pow (a % n) (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n }
a % n * pow (a % n) (b - 1) % n;
(==) { lemma_pow_unfold (a % n) b }
pow (a % n) b % n;
};
assert (pow a b % n == pow (a % n) b % n)
end
let lemma_mul_mod_one #m a = ()
let lemma_mul_mod_assoc #m a b c =
calc (==) {
(a * b % m) * c % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m }
(a * b) * c % m;
(==) { Math.Lemmas.paren_mul_right a b c }
a * (b * c) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m }
a * (b * c % m) % m;
}
let lemma_mul_mod_comm #m a b = ()
let pow_mod #m a b = pow_mod_ #m a b
let pow_mod_def #m a b = ()
#push-options "--fuel 2"
val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1)
let lemma_pow_mod0 #n a = ()
val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma
(pow_mod #n a b == pow_mod (mul_mod a a) (b / 2))
let lemma_pow_mod_unfold0 n a b = ()
val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma
(pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2)))
let lemma_pow_mod_unfold1 n a b = ()
#pop-options
val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma
(ensures (pow_mod #n a b == pow a b % n))
(decreases b)
let rec lemma_pow_mod_ n a b =
if b = 0 then begin
lemma_pow0 a;
lemma_pow_mod0 a end
else begin
if b % 2 = 0 then begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold0 n a b }
pow_mod #n (mul_mod #n a a) (b / 2);
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
pow (mul_mod #n a a) (b / 2) % n;
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
pow (a * a) (b / 2) % n;
(==) { lemma_pow_double a (b / 2) }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
else begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold1 n a b }
mul_mod a (pow_mod (mul_mod #n a a) (b / 2));
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
mul_mod a (pow (mul_mod #n a a) (b / 2) % n);
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
mul_mod a (pow (a * a) (b / 2) % n);
(==) { lemma_pow_double a (b / 2) }
mul_mod a (pow a (b / 2 * 2) % n);
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n }
a * pow a (b / 2 * 2) % n;
(==) { lemma_pow1 a }
pow a 1 * pow a (b / 2 * 2) % n;
(==) { lemma_pow_add a 1 (b / 2 * 2) }
pow a (b / 2 * 2 + 1) % n;
(==) { Math.Lemmas.euclidean_division_definition b 2 }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
end
let lemma_pow_mod #n a b = lemma_pow_mod_ n a b
let rec lemma_pow_nat_mod_is_pow #n a b =
let k = mk_nat_mod_comm_monoid n in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_nat_mod_is_pow #n a (b - 1) }
a * LE.pow k a (b - 1) % n;
(==) { }
k.LE.mul a (LE.pow k a (b - 1));
(==) { LE.lemma_pow_unfold k a b }
LE.pow k a b;
}; () end
let lemma_add_mod_one #m a =
Math.Lemmas.small_mod a m
let lemma_add_mod_assoc #m a b c =
calc (==) {
add_mod (add_mod a b) c;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m }
((a + b) + c) % m;
(==) { }
(a + (b + c)) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m }
add_mod a (add_mod b c);
}
let lemma_add_mod_comm #m a b = ()
let lemma_mod_distributivity_add_right #m a b c =
calc (==) {
mul_mod a (add_mod b c);
(==) { }
a * ((b + c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m }
a * (b + c) % m;
(==) { Math.Lemmas.distributivity_add_right a b c }
(a * b + a * c) % m;
(==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m }
add_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_add_left #m a b c =
lemma_mod_distributivity_add_right c a b
let lemma_mod_distributivity_sub_right #m a b c =
calc (==) {
mul_mod a (sub_mod b c);
(==) { }
a * ((b - c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m }
a * (b - c) % m;
(==) { Math.Lemmas.distributivity_sub_right a b c }
(a * b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m }
(mul_mod a b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m }
sub_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_sub_left #m a b c =
lemma_mod_distributivity_sub_right c a b
let lemma_inv_mod_both #m a b =
let p1 = pow a (m - 2) in
let p2 = pow b (m - 2) in
calc (==) {
mul_mod (inv_mod a) (inv_mod b);
(==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) }
p1 % m * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m }
p1 * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m }
p1 * p2 % m;
(==) { lemma_pow_mul_base a b (m - 2) }
pow (a * b) (m - 2) % m;
(==) { lemma_pow_mod_base (a * b) (m - 2) m }
pow (mul_mod a b) (m - 2) % m;
(==) { lemma_pow_mod #m (mul_mod a b) (m - 2) }
inv_mod (mul_mod a b);
}
#push-options "--fuel 1"
val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n)
let rec pow_eq a n =
if n = 0 then ()
else pow_eq a (n - 1)
#pop-options
let lemma_div_mod_prime #m a =
Math.Lemmas.small_mod a m;
assert (a == a % m);
assert (a <> 0 /\ a % m <> 0);
calc (==) {
pow_mod #m a (m - 2) * a % m;
(==) { lemma_pow_mod #m a (m - 2) }
pow a (m - 2) % m * a % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m }
pow a (m - 2) * a % m;
(==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 }
pow a (m - 1) % m;
(==) { pow_eq a (m - 1) }
Fermat.pow a (m - 1) % m;
(==) { Fermat.fermat_alt m a }
1;
}
let lemma_div_mod_prime_one #m a =
lemma_pow_mod #m 1 (m - 2);
lemma_pow_one (m - 2);
Math.Lemmas.small_mod 1 m
let lemma_div_mod_prime_cancel #m a b c =
calc (==) {
mul_mod (mul_mod a c) (inv_mod (mul_mod c b));
(==) { lemma_inv_mod_both c b }
mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b));
(==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) }
mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b);
(==) { lemma_mul_mod_assoc a c (inv_mod c) }
mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b);
(==) { lemma_div_mod_prime c }
mul_mod (mul_mod a 1) (inv_mod b);
(==) { Math.Lemmas.small_mod a m }
mul_mod a (inv_mod b);
}
let lemma_div_mod_prime_to_one_denominator #m a b c d =
calc (==) {
mul_mod (div_mod a c) (div_mod b d);
(==) { }
mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d));
(==) {
lemma_mul_mod_comm #m b (inv_mod d);
lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b }
mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b;
(==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) }
mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b;
(==) { lemma_inv_mod_both c d }
mul_mod (mul_mod a (inv_mod (mul_mod c d))) b;
(==) {
lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b;
lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b;
lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) }
mul_mod (mul_mod a b) (inv_mod (mul_mod c d));
}
val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (div_mod a b = c ==> a = mul_mod c b)
let lemma_div_mod_eq_mul_mod1 #m a b c =
if div_mod a b = c then begin
assert (mul_mod (div_mod a b) b = mul_mod c b);
calc (==) {
mul_mod (div_mod a b) b;
(==) { lemma_div_mod_prime_one b }
mul_mod (div_mod a b) (div_mod b 1);
(==) { lemma_div_mod_prime_to_one_denominator a b b 1 }
div_mod (mul_mod a b) (mul_mod b 1);
(==) { lemma_div_mod_prime_cancel a 1 b }
div_mod a 1;
(==) { lemma_div_mod_prime_one a }
a;
} end
else ()
val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (a = mul_mod c b ==> div_mod a b = c) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.NatMod.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m {b <> 0} -> c: Lib.NatMod.nat_mod m
-> FStar.Pervasives.Lemma (ensures a = Lib.NatMod.mul_mod c b ==> Lib.NatMod.div_mod a b = c) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.NatMod.prime",
"Lib.NatMod.nat_mod",
"Prims.b2t",
"Prims.op_disEquality",
"Prims.int",
"Prims.op_Equality",
"Lib.NatMod.mul_mod",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Lib.NatMod.div_mod",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.small_mod",
"Prims.squash",
"Lib.NatMod.lemma_div_mod_prime_cancel",
"Lib.NatMod.lemma_div_mod_prime_one",
"Prims._assert",
"Prims.bool"
] | [] | false | false | true | false | false | let lemma_div_mod_eq_mul_mod2 #m a b c =
| if a = mul_mod c b
then
(assert (div_mod a b == div_mod (mul_mod c b) b);
calc ( == ) {
div_mod (mul_mod c b) b;
( == ) { Math.Lemmas.small_mod b m }
div_mod (mul_mod c b) (mul_mod b 1);
( == ) { lemma_div_mod_prime_cancel c 1 b }
div_mod c 1;
( == ) { lemma_div_mod_prime_one c }
c;
}) | false |
FStar.UInt8.fsti | FStar.UInt8.op_Percent_Hat | val op_Percent_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t{FStar.UInt8.v b <> 0} -> Prims.Pure FStar.UInt8.t | let op_Percent_Hat = rem | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 326,
"start_col": 7,
"start_line": 326
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt8.t -> b: FStar.UInt8.t{FStar.UInt8.v b <> 0} -> Prims.Pure FStar.UInt8.t | Prims.Pure | [] | [] | [
"FStar.UInt8.rem"
] | [] | false | false | false | false | false | let op_Percent_Hat =
| rem | false |
|
Lib.NatMod.fst | Lib.NatMod.lemma_div_mod_prime_to_one_denominator | val lemma_div_mod_prime_to_one_denominator:
#m:pos{1 < m} -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m{c <> 0} -> d:nat_mod m{d <> 0} ->
Lemma (mul_mod (div_mod a c) (div_mod b d) == div_mod (mul_mod a b) (mul_mod c d)) | val lemma_div_mod_prime_to_one_denominator:
#m:pos{1 < m} -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m{c <> 0} -> d:nat_mod m{d <> 0} ->
Lemma (mul_mod (div_mod a c) (div_mod b d) == div_mod (mul_mod a b) (mul_mod c d)) | let lemma_div_mod_prime_to_one_denominator #m a b c d =
calc (==) {
mul_mod (div_mod a c) (div_mod b d);
(==) { }
mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d));
(==) {
lemma_mul_mod_comm #m b (inv_mod d);
lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b }
mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b;
(==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) }
mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b;
(==) { lemma_inv_mod_both c d }
mul_mod (mul_mod a (inv_mod (mul_mod c d))) b;
(==) {
lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b;
lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b;
lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) }
mul_mod (mul_mod a b) (inv_mod (mul_mod c d));
} | {
"file_name": "lib/Lib.NatMod.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 356,
"start_col": 0,
"start_line": 338
} | module Lib.NatMod
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
#push-options "--fuel 2"
let lemma_pow0 a = ()
let lemma_pow1 a = ()
let lemma_pow_unfold a b = ()
#pop-options
let rec lemma_pow_gt_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_gt_zero a (b - 1) end
let rec lemma_pow_ge_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_ge_zero a (b - 1) end
let rec lemma_pow_nat_is_pow a b =
let k = mk_nat_comm_monoid in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
lemma_pow_unfold a b;
lemma_pow_nat_is_pow a (b - 1);
LE.lemma_pow_unfold k a b;
() end
let lemma_pow_zero b =
lemma_pow_unfold 0 b
let lemma_pow_one b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_one k b;
lemma_pow_nat_is_pow 1 b
let lemma_pow_add x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_add k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow x m;
lemma_pow_nat_is_pow x (n + m)
let lemma_pow_mul x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow (pow x n) m;
lemma_pow_nat_is_pow x (n * m)
let lemma_pow_double a b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_double k a b;
lemma_pow_nat_is_pow (a * a) b;
lemma_pow_nat_is_pow a (b + b)
let lemma_pow_mul_base a b n =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul_base k a b n;
lemma_pow_nat_is_pow a n;
lemma_pow_nat_is_pow b n;
lemma_pow_nat_is_pow (a * b) n
let rec lemma_pow_mod_base a b n =
if b = 0 then begin
lemma_pow0 a;
lemma_pow0 (a % n) end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_mod_base a (b - 1) n }
a * (pow (a % n) (b - 1) % n) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n }
a * pow (a % n) (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n }
a % n * pow (a % n) (b - 1) % n;
(==) { lemma_pow_unfold (a % n) b }
pow (a % n) b % n;
};
assert (pow a b % n == pow (a % n) b % n)
end
let lemma_mul_mod_one #m a = ()
let lemma_mul_mod_assoc #m a b c =
calc (==) {
(a * b % m) * c % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m }
(a * b) * c % m;
(==) { Math.Lemmas.paren_mul_right a b c }
a * (b * c) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m }
a * (b * c % m) % m;
}
let lemma_mul_mod_comm #m a b = ()
let pow_mod #m a b = pow_mod_ #m a b
let pow_mod_def #m a b = ()
#push-options "--fuel 2"
val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1)
let lemma_pow_mod0 #n a = ()
val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma
(pow_mod #n a b == pow_mod (mul_mod a a) (b / 2))
let lemma_pow_mod_unfold0 n a b = ()
val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma
(pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2)))
let lemma_pow_mod_unfold1 n a b = ()
#pop-options
val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma
(ensures (pow_mod #n a b == pow a b % n))
(decreases b)
let rec lemma_pow_mod_ n a b =
if b = 0 then begin
lemma_pow0 a;
lemma_pow_mod0 a end
else begin
if b % 2 = 0 then begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold0 n a b }
pow_mod #n (mul_mod #n a a) (b / 2);
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
pow (mul_mod #n a a) (b / 2) % n;
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
pow (a * a) (b / 2) % n;
(==) { lemma_pow_double a (b / 2) }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
else begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold1 n a b }
mul_mod a (pow_mod (mul_mod #n a a) (b / 2));
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
mul_mod a (pow (mul_mod #n a a) (b / 2) % n);
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
mul_mod a (pow (a * a) (b / 2) % n);
(==) { lemma_pow_double a (b / 2) }
mul_mod a (pow a (b / 2 * 2) % n);
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n }
a * pow a (b / 2 * 2) % n;
(==) { lemma_pow1 a }
pow a 1 * pow a (b / 2 * 2) % n;
(==) { lemma_pow_add a 1 (b / 2 * 2) }
pow a (b / 2 * 2 + 1) % n;
(==) { Math.Lemmas.euclidean_division_definition b 2 }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
end
let lemma_pow_mod #n a b = lemma_pow_mod_ n a b
let rec lemma_pow_nat_mod_is_pow #n a b =
let k = mk_nat_mod_comm_monoid n in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_nat_mod_is_pow #n a (b - 1) }
a * LE.pow k a (b - 1) % n;
(==) { }
k.LE.mul a (LE.pow k a (b - 1));
(==) { LE.lemma_pow_unfold k a b }
LE.pow k a b;
}; () end
let lemma_add_mod_one #m a =
Math.Lemmas.small_mod a m
let lemma_add_mod_assoc #m a b c =
calc (==) {
add_mod (add_mod a b) c;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m }
((a + b) + c) % m;
(==) { }
(a + (b + c)) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m }
add_mod a (add_mod b c);
}
let lemma_add_mod_comm #m a b = ()
let lemma_mod_distributivity_add_right #m a b c =
calc (==) {
mul_mod a (add_mod b c);
(==) { }
a * ((b + c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m }
a * (b + c) % m;
(==) { Math.Lemmas.distributivity_add_right a b c }
(a * b + a * c) % m;
(==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m }
add_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_add_left #m a b c =
lemma_mod_distributivity_add_right c a b
let lemma_mod_distributivity_sub_right #m a b c =
calc (==) {
mul_mod a (sub_mod b c);
(==) { }
a * ((b - c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m }
a * (b - c) % m;
(==) { Math.Lemmas.distributivity_sub_right a b c }
(a * b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m }
(mul_mod a b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m }
sub_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_sub_left #m a b c =
lemma_mod_distributivity_sub_right c a b
let lemma_inv_mod_both #m a b =
let p1 = pow a (m - 2) in
let p2 = pow b (m - 2) in
calc (==) {
mul_mod (inv_mod a) (inv_mod b);
(==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) }
p1 % m * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m }
p1 * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m }
p1 * p2 % m;
(==) { lemma_pow_mul_base a b (m - 2) }
pow (a * b) (m - 2) % m;
(==) { lemma_pow_mod_base (a * b) (m - 2) m }
pow (mul_mod a b) (m - 2) % m;
(==) { lemma_pow_mod #m (mul_mod a b) (m - 2) }
inv_mod (mul_mod a b);
}
#push-options "--fuel 1"
val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n)
let rec pow_eq a n =
if n = 0 then ()
else pow_eq a (n - 1)
#pop-options
let lemma_div_mod_prime #m a =
Math.Lemmas.small_mod a m;
assert (a == a % m);
assert (a <> 0 /\ a % m <> 0);
calc (==) {
pow_mod #m a (m - 2) * a % m;
(==) { lemma_pow_mod #m a (m - 2) }
pow a (m - 2) % m * a % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m }
pow a (m - 2) * a % m;
(==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 }
pow a (m - 1) % m;
(==) { pow_eq a (m - 1) }
Fermat.pow a (m - 1) % m;
(==) { Fermat.fermat_alt m a }
1;
}
let lemma_div_mod_prime_one #m a =
lemma_pow_mod #m 1 (m - 2);
lemma_pow_one (m - 2);
Math.Lemmas.small_mod 1 m
let lemma_div_mod_prime_cancel #m a b c =
calc (==) {
mul_mod (mul_mod a c) (inv_mod (mul_mod c b));
(==) { lemma_inv_mod_both c b }
mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b));
(==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) }
mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b);
(==) { lemma_mul_mod_assoc a c (inv_mod c) }
mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b);
(==) { lemma_div_mod_prime c }
mul_mod (mul_mod a 1) (inv_mod b);
(==) { Math.Lemmas.small_mod a m }
mul_mod a (inv_mod b);
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.NatMod.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Lib.NatMod.nat_mod m ->
b: Lib.NatMod.nat_mod m ->
c: Lib.NatMod.nat_mod m {c <> 0} ->
d: Lib.NatMod.nat_mod m {d <> 0}
-> FStar.Pervasives.Lemma
(ensures
Lib.NatMod.mul_mod (Lib.NatMod.div_mod a c) (Lib.NatMod.div_mod b d) ==
Lib.NatMod.div_mod (Lib.NatMod.mul_mod a b) (Lib.NatMod.mul_mod c d)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.NatMod.nat_mod",
"Prims.op_disEquality",
"Prims.int",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Lib.NatMod.mul_mod",
"Lib.NatMod.div_mod",
"Lib.NatMod.inv_mod",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"Lib.NatMod.lemma_mul_mod_assoc",
"Lib.NatMod.lemma_mul_mod_comm",
"Lib.NatMod.lemma_inv_mod_both"
] | [] | false | false | true | false | false | let lemma_div_mod_prime_to_one_denominator #m a b c d =
| calc ( == ) {
mul_mod (div_mod a c) (div_mod b d);
( == ) { () }
mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d));
( == ) { (lemma_mul_mod_comm #m b (inv_mod d);
lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b) }
mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b;
( == ) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) }
mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b;
( == ) { lemma_inv_mod_both c d }
mul_mod (mul_mod a (inv_mod (mul_mod c d))) b;
( == ) { (lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b;
lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b;
lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d))) }
mul_mod (mul_mod a b) (inv_mod (mul_mod c d));
} | false |
FStar.UInt8.fsti | FStar.UInt8.op_Less_Less_Hat | val op_Less_Less_Hat : a: FStar.UInt8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt8.t | let op_Less_Less_Hat = shift_left | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 330,
"start_col": 7,
"start_line": 330
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt8.t | Prims.Pure | [] | [] | [
"FStar.UInt8.shift_left"
] | [] | false | false | false | false | false | let op_Less_Less_Hat =
| shift_left | false |
|
Lib.NatMod.fst | Lib.NatMod.lemma_div_mod_prime_is_zero2 | val lemma_div_mod_prime_is_zero2: #m:prime{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma
(requires div_mod a b = 0)
(ensures a = 0 || b = 0) | val lemma_div_mod_prime_is_zero2: #m:prime{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma
(requires div_mod a b = 0)
(ensures a = 0 || b = 0) | let lemma_div_mod_prime_is_zero2 #m a b =
lemma_mul_mod_prime_zero a (inv_mod b);
assert (a = 0 || inv_mod b = 0);
lemma_pow_mod_prime_zero #m b (m - 2) | {
"file_name": "lib/Lib.NatMod.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 39,
"end_line": 458,
"start_col": 0,
"start_line": 455
} | module Lib.NatMod
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
#push-options "--fuel 2"
let lemma_pow0 a = ()
let lemma_pow1 a = ()
let lemma_pow_unfold a b = ()
#pop-options
let rec lemma_pow_gt_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_gt_zero a (b - 1) end
let rec lemma_pow_ge_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_ge_zero a (b - 1) end
let rec lemma_pow_nat_is_pow a b =
let k = mk_nat_comm_monoid in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
lemma_pow_unfold a b;
lemma_pow_nat_is_pow a (b - 1);
LE.lemma_pow_unfold k a b;
() end
let lemma_pow_zero b =
lemma_pow_unfold 0 b
let lemma_pow_one b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_one k b;
lemma_pow_nat_is_pow 1 b
let lemma_pow_add x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_add k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow x m;
lemma_pow_nat_is_pow x (n + m)
let lemma_pow_mul x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow (pow x n) m;
lemma_pow_nat_is_pow x (n * m)
let lemma_pow_double a b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_double k a b;
lemma_pow_nat_is_pow (a * a) b;
lemma_pow_nat_is_pow a (b + b)
let lemma_pow_mul_base a b n =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul_base k a b n;
lemma_pow_nat_is_pow a n;
lemma_pow_nat_is_pow b n;
lemma_pow_nat_is_pow (a * b) n
let rec lemma_pow_mod_base a b n =
if b = 0 then begin
lemma_pow0 a;
lemma_pow0 (a % n) end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_mod_base a (b - 1) n }
a * (pow (a % n) (b - 1) % n) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n }
a * pow (a % n) (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n }
a % n * pow (a % n) (b - 1) % n;
(==) { lemma_pow_unfold (a % n) b }
pow (a % n) b % n;
};
assert (pow a b % n == pow (a % n) b % n)
end
let lemma_mul_mod_one #m a = ()
let lemma_mul_mod_assoc #m a b c =
calc (==) {
(a * b % m) * c % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m }
(a * b) * c % m;
(==) { Math.Lemmas.paren_mul_right a b c }
a * (b * c) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m }
a * (b * c % m) % m;
}
let lemma_mul_mod_comm #m a b = ()
let pow_mod #m a b = pow_mod_ #m a b
let pow_mod_def #m a b = ()
#push-options "--fuel 2"
val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1)
let lemma_pow_mod0 #n a = ()
val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma
(pow_mod #n a b == pow_mod (mul_mod a a) (b / 2))
let lemma_pow_mod_unfold0 n a b = ()
val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma
(pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2)))
let lemma_pow_mod_unfold1 n a b = ()
#pop-options
val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma
(ensures (pow_mod #n a b == pow a b % n))
(decreases b)
let rec lemma_pow_mod_ n a b =
if b = 0 then begin
lemma_pow0 a;
lemma_pow_mod0 a end
else begin
if b % 2 = 0 then begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold0 n a b }
pow_mod #n (mul_mod #n a a) (b / 2);
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
pow (mul_mod #n a a) (b / 2) % n;
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
pow (a * a) (b / 2) % n;
(==) { lemma_pow_double a (b / 2) }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
else begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold1 n a b }
mul_mod a (pow_mod (mul_mod #n a a) (b / 2));
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
mul_mod a (pow (mul_mod #n a a) (b / 2) % n);
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
mul_mod a (pow (a * a) (b / 2) % n);
(==) { lemma_pow_double a (b / 2) }
mul_mod a (pow a (b / 2 * 2) % n);
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n }
a * pow a (b / 2 * 2) % n;
(==) { lemma_pow1 a }
pow a 1 * pow a (b / 2 * 2) % n;
(==) { lemma_pow_add a 1 (b / 2 * 2) }
pow a (b / 2 * 2 + 1) % n;
(==) { Math.Lemmas.euclidean_division_definition b 2 }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
end
let lemma_pow_mod #n a b = lemma_pow_mod_ n a b
let rec lemma_pow_nat_mod_is_pow #n a b =
let k = mk_nat_mod_comm_monoid n in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_nat_mod_is_pow #n a (b - 1) }
a * LE.pow k a (b - 1) % n;
(==) { }
k.LE.mul a (LE.pow k a (b - 1));
(==) { LE.lemma_pow_unfold k a b }
LE.pow k a b;
}; () end
let lemma_add_mod_one #m a =
Math.Lemmas.small_mod a m
let lemma_add_mod_assoc #m a b c =
calc (==) {
add_mod (add_mod a b) c;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m }
((a + b) + c) % m;
(==) { }
(a + (b + c)) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m }
add_mod a (add_mod b c);
}
let lemma_add_mod_comm #m a b = ()
let lemma_mod_distributivity_add_right #m a b c =
calc (==) {
mul_mod a (add_mod b c);
(==) { }
a * ((b + c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m }
a * (b + c) % m;
(==) { Math.Lemmas.distributivity_add_right a b c }
(a * b + a * c) % m;
(==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m }
add_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_add_left #m a b c =
lemma_mod_distributivity_add_right c a b
let lemma_mod_distributivity_sub_right #m a b c =
calc (==) {
mul_mod a (sub_mod b c);
(==) { }
a * ((b - c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m }
a * (b - c) % m;
(==) { Math.Lemmas.distributivity_sub_right a b c }
(a * b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m }
(mul_mod a b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m }
sub_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_sub_left #m a b c =
lemma_mod_distributivity_sub_right c a b
let lemma_inv_mod_both #m a b =
let p1 = pow a (m - 2) in
let p2 = pow b (m - 2) in
calc (==) {
mul_mod (inv_mod a) (inv_mod b);
(==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) }
p1 % m * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m }
p1 * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m }
p1 * p2 % m;
(==) { lemma_pow_mul_base a b (m - 2) }
pow (a * b) (m - 2) % m;
(==) { lemma_pow_mod_base (a * b) (m - 2) m }
pow (mul_mod a b) (m - 2) % m;
(==) { lemma_pow_mod #m (mul_mod a b) (m - 2) }
inv_mod (mul_mod a b);
}
#push-options "--fuel 1"
val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n)
let rec pow_eq a n =
if n = 0 then ()
else pow_eq a (n - 1)
#pop-options
let lemma_div_mod_prime #m a =
Math.Lemmas.small_mod a m;
assert (a == a % m);
assert (a <> 0 /\ a % m <> 0);
calc (==) {
pow_mod #m a (m - 2) * a % m;
(==) { lemma_pow_mod #m a (m - 2) }
pow a (m - 2) % m * a % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m }
pow a (m - 2) * a % m;
(==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 }
pow a (m - 1) % m;
(==) { pow_eq a (m - 1) }
Fermat.pow a (m - 1) % m;
(==) { Fermat.fermat_alt m a }
1;
}
let lemma_div_mod_prime_one #m a =
lemma_pow_mod #m 1 (m - 2);
lemma_pow_one (m - 2);
Math.Lemmas.small_mod 1 m
let lemma_div_mod_prime_cancel #m a b c =
calc (==) {
mul_mod (mul_mod a c) (inv_mod (mul_mod c b));
(==) { lemma_inv_mod_both c b }
mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b));
(==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) }
mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b);
(==) { lemma_mul_mod_assoc a c (inv_mod c) }
mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b);
(==) { lemma_div_mod_prime c }
mul_mod (mul_mod a 1) (inv_mod b);
(==) { Math.Lemmas.small_mod a m }
mul_mod a (inv_mod b);
}
let lemma_div_mod_prime_to_one_denominator #m a b c d =
calc (==) {
mul_mod (div_mod a c) (div_mod b d);
(==) { }
mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d));
(==) {
lemma_mul_mod_comm #m b (inv_mod d);
lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b }
mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b;
(==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) }
mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b;
(==) { lemma_inv_mod_both c d }
mul_mod (mul_mod a (inv_mod (mul_mod c d))) b;
(==) {
lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b;
lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b;
lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) }
mul_mod (mul_mod a b) (inv_mod (mul_mod c d));
}
val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (div_mod a b = c ==> a = mul_mod c b)
let lemma_div_mod_eq_mul_mod1 #m a b c =
if div_mod a b = c then begin
assert (mul_mod (div_mod a b) b = mul_mod c b);
calc (==) {
mul_mod (div_mod a b) b;
(==) { lemma_div_mod_prime_one b }
mul_mod (div_mod a b) (div_mod b 1);
(==) { lemma_div_mod_prime_to_one_denominator a b b 1 }
div_mod (mul_mod a b) (mul_mod b 1);
(==) { lemma_div_mod_prime_cancel a 1 b }
div_mod a 1;
(==) { lemma_div_mod_prime_one a }
a;
} end
else ()
val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (a = mul_mod c b ==> div_mod a b = c)
let lemma_div_mod_eq_mul_mod2 #m a b c =
if a = mul_mod c b then begin
assert (div_mod a b == div_mod (mul_mod c b) b);
calc (==) {
div_mod (mul_mod c b) b;
(==) { Math.Lemmas.small_mod b m }
div_mod (mul_mod c b) (mul_mod b 1);
(==) { lemma_div_mod_prime_cancel c 1 b }
div_mod c 1;
(==) { lemma_div_mod_prime_one c }
c;
} end
else ()
let lemma_div_mod_eq_mul_mod #m a b c =
lemma_div_mod_eq_mul_mod1 a b c;
lemma_div_mod_eq_mul_mod2 a b c
val lemma_mul_mod_zero2: n:pos -> x:int -> y:int -> Lemma
(requires x % n == 0 \/ y % n == 0)
(ensures x * y % n == 0)
let lemma_mul_mod_zero2 n x y =
if x % n = 0 then
Math.Lemmas.lemma_mod_mul_distr_l x y n
else
Math.Lemmas.lemma_mod_mul_distr_r x y n
let lemma_mul_mod_prime_zero #m a b =
Classical.move_requires_3 Euclid.euclid_prime m a b;
Classical.move_requires_3 lemma_mul_mod_zero2 m a b
val lemma_pow_mod_prime_zero_: #m:prime -> a:nat_mod m -> b:pos -> Lemma
(requires pow a b % m = 0)
(ensures a = 0)
#push-options "--z3rlimit 150"
let rec lemma_pow_mod_prime_zero_ #m a b =
if b = 1 then lemma_pow1 a
else begin
let r1 = pow a (b - 1) % m in
lemma_pow_unfold a b;
assert (a * pow a (b - 1) % m = 0);
Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) m;
lemma_mul_mod_prime_zero #m a r1;
//assert (a = 0 \/ r1 = 0);
if a = 0 then () else lemma_pow_mod_prime_zero_ #m a (b - 1) end
#pop-options
let lemma_pow_mod_prime_zero #m a b =
lemma_pow_mod #m a b;
Classical.move_requires_2 lemma_pow_mod_prime_zero_ a b;
Classical.move_requires lemma_pow_zero b
val lemma_div_mod_is_zero1: #m:pos{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma
(requires a = 0 || b = 0)
(ensures div_mod a b = 0)
let lemma_div_mod_is_zero1 #m a b =
if a = 0 then ()
else begin
lemma_pow_mod #m b (m - 2);
lemma_pow_zero (m - 2) end
val lemma_div_mod_prime_is_zero2: #m:prime{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma
(requires div_mod a b = 0)
(ensures a = 0 || b = 0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.NatMod.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m
-> FStar.Pervasives.Lemma (requires Lib.NatMod.div_mod a b = 0) (ensures a = 0 || b = 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.NatMod.prime",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.NatMod.nat_mod",
"Lib.NatMod.lemma_pow_mod_prime_zero",
"Prims.op_Subtraction",
"Prims.unit",
"Prims._assert",
"Prims.op_BarBar",
"Prims.op_Equality",
"Prims.int",
"Lib.NatMod.inv_mod",
"Lib.NatMod.lemma_mul_mod_prime_zero"
] | [] | true | false | true | false | false | let lemma_div_mod_prime_is_zero2 #m a b =
| lemma_mul_mod_prime_zero a (inv_mod b);
assert (a = 0 || inv_mod b = 0);
lemma_pow_mod_prime_zero #m b (m - 2) | false |
FStar.UInt8.fsti | FStar.UInt8.op_Star_Question_Hat | val op_Star_Question_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | let op_Star_Question_Hat = mul_underspec | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 323,
"start_col": 7,
"start_line": 323
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | Prims.Pure | [] | [] | [
"FStar.UInt8.mul_underspec"
] | [] | false | false | false | false | false | let op_Star_Question_Hat =
| mul_underspec | false |
|
FStar.UInt8.fsti | FStar.UInt8.n_minus_one | val n_minus_one : FStar.UInt32.t | let n_minus_one = UInt32.uint_to_t (n - 1) | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 42,
"end_line": 244,
"start_col": 0,
"start_line": 244
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | FStar.UInt32.t | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt32.uint_to_t",
"Prims.op_Subtraction",
"FStar.UInt8.n"
] | [] | false | false | false | true | false | let n_minus_one =
| UInt32.uint_to_t (n - 1) | false |
|
FStar.UInt8.fsti | FStar.UInt8.op_Amp_Hat | val op_Amp_Hat : x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | let op_Amp_Hat = logand | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 328,
"start_col": 7,
"start_line": 328
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | Prims.Pure | [] | [] | [
"FStar.UInt8.logand"
] | [] | false | false | false | false | false | let op_Amp_Hat =
| logand | false |
|
Lib.NatMod.fst | Lib.NatMod.lemma_inv_mod_both | val lemma_inv_mod_both: #m:pos{1 < m} -> a:nat_mod m -> b:nat_mod m ->
Lemma (inv_mod (mul_mod a b) == mul_mod (inv_mod a) (inv_mod b)) | val lemma_inv_mod_both: #m:pos{1 < m} -> a:nat_mod m -> b:nat_mod m ->
Lemma (inv_mod (mul_mod a b) == mul_mod (inv_mod a) (inv_mod b)) | let lemma_inv_mod_both #m a b =
let p1 = pow a (m - 2) in
let p2 = pow b (m - 2) in
calc (==) {
mul_mod (inv_mod a) (inv_mod b);
(==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) }
p1 % m * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m }
p1 * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m }
p1 * p2 % m;
(==) { lemma_pow_mul_base a b (m - 2) }
pow (a * b) (m - 2) % m;
(==) { lemma_pow_mod_base (a * b) (m - 2) m }
pow (mul_mod a b) (m - 2) % m;
(==) { lemma_pow_mod #m (mul_mod a b) (m - 2) }
inv_mod (mul_mod a b);
} | {
"file_name": "lib/Lib.NatMod.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 285,
"start_col": 0,
"start_line": 267
} | module Lib.NatMod
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
#push-options "--fuel 2"
let lemma_pow0 a = ()
let lemma_pow1 a = ()
let lemma_pow_unfold a b = ()
#pop-options
let rec lemma_pow_gt_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_gt_zero a (b - 1) end
let rec lemma_pow_ge_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_ge_zero a (b - 1) end
let rec lemma_pow_nat_is_pow a b =
let k = mk_nat_comm_monoid in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
lemma_pow_unfold a b;
lemma_pow_nat_is_pow a (b - 1);
LE.lemma_pow_unfold k a b;
() end
let lemma_pow_zero b =
lemma_pow_unfold 0 b
let lemma_pow_one b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_one k b;
lemma_pow_nat_is_pow 1 b
let lemma_pow_add x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_add k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow x m;
lemma_pow_nat_is_pow x (n + m)
let lemma_pow_mul x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow (pow x n) m;
lemma_pow_nat_is_pow x (n * m)
let lemma_pow_double a b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_double k a b;
lemma_pow_nat_is_pow (a * a) b;
lemma_pow_nat_is_pow a (b + b)
let lemma_pow_mul_base a b n =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul_base k a b n;
lemma_pow_nat_is_pow a n;
lemma_pow_nat_is_pow b n;
lemma_pow_nat_is_pow (a * b) n
let rec lemma_pow_mod_base a b n =
if b = 0 then begin
lemma_pow0 a;
lemma_pow0 (a % n) end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_mod_base a (b - 1) n }
a * (pow (a % n) (b - 1) % n) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n }
a * pow (a % n) (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n }
a % n * pow (a % n) (b - 1) % n;
(==) { lemma_pow_unfold (a % n) b }
pow (a % n) b % n;
};
assert (pow a b % n == pow (a % n) b % n)
end
let lemma_mul_mod_one #m a = ()
let lemma_mul_mod_assoc #m a b c =
calc (==) {
(a * b % m) * c % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m }
(a * b) * c % m;
(==) { Math.Lemmas.paren_mul_right a b c }
a * (b * c) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m }
a * (b * c % m) % m;
}
let lemma_mul_mod_comm #m a b = ()
let pow_mod #m a b = pow_mod_ #m a b
let pow_mod_def #m a b = ()
#push-options "--fuel 2"
val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1)
let lemma_pow_mod0 #n a = ()
val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma
(pow_mod #n a b == pow_mod (mul_mod a a) (b / 2))
let lemma_pow_mod_unfold0 n a b = ()
val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma
(pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2)))
let lemma_pow_mod_unfold1 n a b = ()
#pop-options
val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma
(ensures (pow_mod #n a b == pow a b % n))
(decreases b)
let rec lemma_pow_mod_ n a b =
if b = 0 then begin
lemma_pow0 a;
lemma_pow_mod0 a end
else begin
if b % 2 = 0 then begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold0 n a b }
pow_mod #n (mul_mod #n a a) (b / 2);
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
pow (mul_mod #n a a) (b / 2) % n;
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
pow (a * a) (b / 2) % n;
(==) { lemma_pow_double a (b / 2) }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
else begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold1 n a b }
mul_mod a (pow_mod (mul_mod #n a a) (b / 2));
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
mul_mod a (pow (mul_mod #n a a) (b / 2) % n);
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
mul_mod a (pow (a * a) (b / 2) % n);
(==) { lemma_pow_double a (b / 2) }
mul_mod a (pow a (b / 2 * 2) % n);
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n }
a * pow a (b / 2 * 2) % n;
(==) { lemma_pow1 a }
pow a 1 * pow a (b / 2 * 2) % n;
(==) { lemma_pow_add a 1 (b / 2 * 2) }
pow a (b / 2 * 2 + 1) % n;
(==) { Math.Lemmas.euclidean_division_definition b 2 }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
end
let lemma_pow_mod #n a b = lemma_pow_mod_ n a b
let rec lemma_pow_nat_mod_is_pow #n a b =
let k = mk_nat_mod_comm_monoid n in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_nat_mod_is_pow #n a (b - 1) }
a * LE.pow k a (b - 1) % n;
(==) { }
k.LE.mul a (LE.pow k a (b - 1));
(==) { LE.lemma_pow_unfold k a b }
LE.pow k a b;
}; () end
let lemma_add_mod_one #m a =
Math.Lemmas.small_mod a m
let lemma_add_mod_assoc #m a b c =
calc (==) {
add_mod (add_mod a b) c;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m }
((a + b) + c) % m;
(==) { }
(a + (b + c)) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m }
add_mod a (add_mod b c);
}
let lemma_add_mod_comm #m a b = ()
let lemma_mod_distributivity_add_right #m a b c =
calc (==) {
mul_mod a (add_mod b c);
(==) { }
a * ((b + c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m }
a * (b + c) % m;
(==) { Math.Lemmas.distributivity_add_right a b c }
(a * b + a * c) % m;
(==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m }
add_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_add_left #m a b c =
lemma_mod_distributivity_add_right c a b
let lemma_mod_distributivity_sub_right #m a b c =
calc (==) {
mul_mod a (sub_mod b c);
(==) { }
a * ((b - c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m }
a * (b - c) % m;
(==) { Math.Lemmas.distributivity_sub_right a b c }
(a * b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m }
(mul_mod a b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m }
sub_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_sub_left #m a b c =
lemma_mod_distributivity_sub_right c a b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.NatMod.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m
-> FStar.Pervasives.Lemma
(ensures
Lib.NatMod.inv_mod (Lib.NatMod.mul_mod a b) ==
Lib.NatMod.mul_mod (Lib.NatMod.inv_mod a) (Lib.NatMod.inv_mod b)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.NatMod.nat_mod",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Lib.NatMod.mul_mod",
"Lib.NatMod.inv_mod",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Modulus",
"Lib.NatMod.pow",
"Prims.op_Subtraction",
"FStar.Mul.op_Star",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.NatMod.lemma_pow_mod",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"Lib.NatMod.lemma_pow_mul_base",
"Lib.NatMod.lemma_pow_mod_base",
"Prims.int"
] | [] | false | false | true | false | false | let lemma_inv_mod_both #m a b =
| let p1 = pow a (m - 2) in
let p2 = pow b (m - 2) in
calc ( == ) {
mul_mod (inv_mod a) (inv_mod b);
( == ) { (lemma_pow_mod #m a (m - 2);
lemma_pow_mod #m b (m - 2)) }
(p1 % m) * (p2 % m) % m;
( == ) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m }
p1 * (p2 % m) % m;
( == ) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m }
p1 * p2 % m;
( == ) { lemma_pow_mul_base a b (m - 2) }
pow (a * b) (m - 2) % m;
( == ) { lemma_pow_mod_base (a * b) (m - 2) m }
pow (mul_mod a b) (m - 2) % m;
( == ) { lemma_pow_mod #m (mul_mod a b) (m - 2) }
inv_mod (mul_mod a b);
} | false |
Lib.NatMod.fst | Lib.NatMod.lemma_div_mod_eq_mul_mod1 | val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (div_mod a b = c ==> a = mul_mod c b) | val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (div_mod a b = c ==> a = mul_mod c b) | let lemma_div_mod_eq_mul_mod1 #m a b c =
if div_mod a b = c then begin
assert (mul_mod (div_mod a b) b = mul_mod c b);
calc (==) {
mul_mod (div_mod a b) b;
(==) { lemma_div_mod_prime_one b }
mul_mod (div_mod a b) (div_mod b 1);
(==) { lemma_div_mod_prime_to_one_denominator a b b 1 }
div_mod (mul_mod a b) (mul_mod b 1);
(==) { lemma_div_mod_prime_cancel a 1 b }
div_mod a 1;
(==) { lemma_div_mod_prime_one a }
a;
} end
else () | {
"file_name": "lib/Lib.NatMod.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 9,
"end_line": 376,
"start_col": 0,
"start_line": 362
} | module Lib.NatMod
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
#push-options "--fuel 2"
let lemma_pow0 a = ()
let lemma_pow1 a = ()
let lemma_pow_unfold a b = ()
#pop-options
let rec lemma_pow_gt_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_gt_zero a (b - 1) end
let rec lemma_pow_ge_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_ge_zero a (b - 1) end
let rec lemma_pow_nat_is_pow a b =
let k = mk_nat_comm_monoid in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
lemma_pow_unfold a b;
lemma_pow_nat_is_pow a (b - 1);
LE.lemma_pow_unfold k a b;
() end
let lemma_pow_zero b =
lemma_pow_unfold 0 b
let lemma_pow_one b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_one k b;
lemma_pow_nat_is_pow 1 b
let lemma_pow_add x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_add k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow x m;
lemma_pow_nat_is_pow x (n + m)
let lemma_pow_mul x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow (pow x n) m;
lemma_pow_nat_is_pow x (n * m)
let lemma_pow_double a b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_double k a b;
lemma_pow_nat_is_pow (a * a) b;
lemma_pow_nat_is_pow a (b + b)
let lemma_pow_mul_base a b n =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul_base k a b n;
lemma_pow_nat_is_pow a n;
lemma_pow_nat_is_pow b n;
lemma_pow_nat_is_pow (a * b) n
let rec lemma_pow_mod_base a b n =
if b = 0 then begin
lemma_pow0 a;
lemma_pow0 (a % n) end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_mod_base a (b - 1) n }
a * (pow (a % n) (b - 1) % n) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n }
a * pow (a % n) (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n }
a % n * pow (a % n) (b - 1) % n;
(==) { lemma_pow_unfold (a % n) b }
pow (a % n) b % n;
};
assert (pow a b % n == pow (a % n) b % n)
end
let lemma_mul_mod_one #m a = ()
let lemma_mul_mod_assoc #m a b c =
calc (==) {
(a * b % m) * c % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m }
(a * b) * c % m;
(==) { Math.Lemmas.paren_mul_right a b c }
a * (b * c) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m }
a * (b * c % m) % m;
}
let lemma_mul_mod_comm #m a b = ()
let pow_mod #m a b = pow_mod_ #m a b
let pow_mod_def #m a b = ()
#push-options "--fuel 2"
val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1)
let lemma_pow_mod0 #n a = ()
val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma
(pow_mod #n a b == pow_mod (mul_mod a a) (b / 2))
let lemma_pow_mod_unfold0 n a b = ()
val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma
(pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2)))
let lemma_pow_mod_unfold1 n a b = ()
#pop-options
val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma
(ensures (pow_mod #n a b == pow a b % n))
(decreases b)
let rec lemma_pow_mod_ n a b =
if b = 0 then begin
lemma_pow0 a;
lemma_pow_mod0 a end
else begin
if b % 2 = 0 then begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold0 n a b }
pow_mod #n (mul_mod #n a a) (b / 2);
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
pow (mul_mod #n a a) (b / 2) % n;
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
pow (a * a) (b / 2) % n;
(==) { lemma_pow_double a (b / 2) }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
else begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold1 n a b }
mul_mod a (pow_mod (mul_mod #n a a) (b / 2));
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
mul_mod a (pow (mul_mod #n a a) (b / 2) % n);
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
mul_mod a (pow (a * a) (b / 2) % n);
(==) { lemma_pow_double a (b / 2) }
mul_mod a (pow a (b / 2 * 2) % n);
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n }
a * pow a (b / 2 * 2) % n;
(==) { lemma_pow1 a }
pow a 1 * pow a (b / 2 * 2) % n;
(==) { lemma_pow_add a 1 (b / 2 * 2) }
pow a (b / 2 * 2 + 1) % n;
(==) { Math.Lemmas.euclidean_division_definition b 2 }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
end
let lemma_pow_mod #n a b = lemma_pow_mod_ n a b
let rec lemma_pow_nat_mod_is_pow #n a b =
let k = mk_nat_mod_comm_monoid n in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_nat_mod_is_pow #n a (b - 1) }
a * LE.pow k a (b - 1) % n;
(==) { }
k.LE.mul a (LE.pow k a (b - 1));
(==) { LE.lemma_pow_unfold k a b }
LE.pow k a b;
}; () end
let lemma_add_mod_one #m a =
Math.Lemmas.small_mod a m
let lemma_add_mod_assoc #m a b c =
calc (==) {
add_mod (add_mod a b) c;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m }
((a + b) + c) % m;
(==) { }
(a + (b + c)) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m }
add_mod a (add_mod b c);
}
let lemma_add_mod_comm #m a b = ()
let lemma_mod_distributivity_add_right #m a b c =
calc (==) {
mul_mod a (add_mod b c);
(==) { }
a * ((b + c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m }
a * (b + c) % m;
(==) { Math.Lemmas.distributivity_add_right a b c }
(a * b + a * c) % m;
(==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m }
add_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_add_left #m a b c =
lemma_mod_distributivity_add_right c a b
let lemma_mod_distributivity_sub_right #m a b c =
calc (==) {
mul_mod a (sub_mod b c);
(==) { }
a * ((b - c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m }
a * (b - c) % m;
(==) { Math.Lemmas.distributivity_sub_right a b c }
(a * b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m }
(mul_mod a b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m }
sub_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_sub_left #m a b c =
lemma_mod_distributivity_sub_right c a b
let lemma_inv_mod_both #m a b =
let p1 = pow a (m - 2) in
let p2 = pow b (m - 2) in
calc (==) {
mul_mod (inv_mod a) (inv_mod b);
(==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) }
p1 % m * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m }
p1 * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m }
p1 * p2 % m;
(==) { lemma_pow_mul_base a b (m - 2) }
pow (a * b) (m - 2) % m;
(==) { lemma_pow_mod_base (a * b) (m - 2) m }
pow (mul_mod a b) (m - 2) % m;
(==) { lemma_pow_mod #m (mul_mod a b) (m - 2) }
inv_mod (mul_mod a b);
}
#push-options "--fuel 1"
val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n)
let rec pow_eq a n =
if n = 0 then ()
else pow_eq a (n - 1)
#pop-options
let lemma_div_mod_prime #m a =
Math.Lemmas.small_mod a m;
assert (a == a % m);
assert (a <> 0 /\ a % m <> 0);
calc (==) {
pow_mod #m a (m - 2) * a % m;
(==) { lemma_pow_mod #m a (m - 2) }
pow a (m - 2) % m * a % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m }
pow a (m - 2) * a % m;
(==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 }
pow a (m - 1) % m;
(==) { pow_eq a (m - 1) }
Fermat.pow a (m - 1) % m;
(==) { Fermat.fermat_alt m a }
1;
}
let lemma_div_mod_prime_one #m a =
lemma_pow_mod #m 1 (m - 2);
lemma_pow_one (m - 2);
Math.Lemmas.small_mod 1 m
let lemma_div_mod_prime_cancel #m a b c =
calc (==) {
mul_mod (mul_mod a c) (inv_mod (mul_mod c b));
(==) { lemma_inv_mod_both c b }
mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b));
(==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) }
mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b);
(==) { lemma_mul_mod_assoc a c (inv_mod c) }
mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b);
(==) { lemma_div_mod_prime c }
mul_mod (mul_mod a 1) (inv_mod b);
(==) { Math.Lemmas.small_mod a m }
mul_mod a (inv_mod b);
}
let lemma_div_mod_prime_to_one_denominator #m a b c d =
calc (==) {
mul_mod (div_mod a c) (div_mod b d);
(==) { }
mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d));
(==) {
lemma_mul_mod_comm #m b (inv_mod d);
lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b }
mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b;
(==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) }
mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b;
(==) { lemma_inv_mod_both c d }
mul_mod (mul_mod a (inv_mod (mul_mod c d))) b;
(==) {
lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b;
lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b;
lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) }
mul_mod (mul_mod a b) (inv_mod (mul_mod c d));
}
val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (div_mod a b = c ==> a = mul_mod c b) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.NatMod.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m {b <> 0} -> c: Lib.NatMod.nat_mod m
-> FStar.Pervasives.Lemma (ensures Lib.NatMod.div_mod a b = c ==> a = Lib.NatMod.mul_mod c b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.NatMod.prime",
"Lib.NatMod.nat_mod",
"Prims.b2t",
"Prims.op_disEquality",
"Prims.int",
"Prims.op_Equality",
"Lib.NatMod.div_mod",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Lib.NatMod.mul_mod",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.NatMod.lemma_div_mod_prime_one",
"Prims.squash",
"Lib.NatMod.lemma_div_mod_prime_to_one_denominator",
"Lib.NatMod.lemma_div_mod_prime_cancel",
"Prims._assert",
"Prims.bool"
] | [] | false | false | true | false | false | let lemma_div_mod_eq_mul_mod1 #m a b c =
| if div_mod a b = c
then
(assert (mul_mod (div_mod a b) b = mul_mod c b);
calc ( == ) {
mul_mod (div_mod a b) b;
( == ) { lemma_div_mod_prime_one b }
mul_mod (div_mod a b) (div_mod b 1);
( == ) { lemma_div_mod_prime_to_one_denominator a b b 1 }
div_mod (mul_mod a b) (mul_mod b 1);
( == ) { lemma_div_mod_prime_cancel a 1 b }
div_mod a 1;
( == ) { lemma_div_mod_prime_one a }
a;
}) | false |
FStar.UInt8.fsti | FStar.UInt8.op_Hat_Hat | val op_Hat_Hat : x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | let op_Hat_Hat = logxor | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 327,
"start_col": 7,
"start_line": 327
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | Prims.Pure | [] | [] | [
"FStar.UInt8.logxor"
] | [] | false | false | false | false | false | let op_Hat_Hat =
| logxor | false |
|
FStar.UInt8.fsti | FStar.UInt8.op_Less_Hat | val op_Less_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool | let op_Less_Hat = lt | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 335,
"start_col": 7,
"start_line": 335
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left
unfold let op_Greater_Greater_Hat = shift_right
unfold let op_Equals_Hat = eq
unfold let op_Greater_Hat = gt | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt8.lt"
] | [] | false | false | false | true | false | let op_Less_Hat =
| lt | false |
|
FStar.UInt8.fsti | FStar.UInt8.op_Bar_Hat | val op_Bar_Hat : x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | let op_Bar_Hat = logor | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 329,
"start_col": 7,
"start_line": 329
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | Prims.Pure | [] | [] | [
"FStar.UInt8.logor"
] | [] | false | false | false | false | false | let op_Bar_Hat =
| logor | false |
|
FStar.UInt8.fsti | FStar.UInt8.op_Greater_Greater_Hat | val op_Greater_Greater_Hat : a: FStar.UInt8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt8.t | let op_Greater_Greater_Hat = shift_right | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 331,
"start_col": 7,
"start_line": 331
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt8.t | Prims.Pure | [] | [] | [
"FStar.UInt8.shift_right"
] | [] | false | false | false | false | false | let op_Greater_Greater_Hat =
| shift_right | false |
|
FStar.UInt8.fsti | FStar.UInt8.op_Greater_Equals_Hat | val op_Greater_Equals_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool | let op_Greater_Equals_Hat = gte | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 334,
"start_col": 7,
"start_line": 334
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left
unfold let op_Greater_Greater_Hat = shift_right
unfold let op_Equals_Hat = eq | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt8.gte"
] | [] | false | false | false | true | false | let op_Greater_Equals_Hat =
| gte | false |
|
Lib.NatMod.fst | Lib.NatMod.lemma_div_mod_prime_cancel | val lemma_div_mod_prime_cancel: #m:prime -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m{c <> 0} ->
Lemma (div_mod (mul_mod a c) (mul_mod c b) == div_mod a b) | val lemma_div_mod_prime_cancel: #m:prime -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m{c <> 0} ->
Lemma (div_mod (mul_mod a c) (mul_mod c b) == div_mod a b) | let lemma_div_mod_prime_cancel #m a b c =
calc (==) {
mul_mod (mul_mod a c) (inv_mod (mul_mod c b));
(==) { lemma_inv_mod_both c b }
mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b));
(==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) }
mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b);
(==) { lemma_mul_mod_assoc a c (inv_mod c) }
mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b);
(==) { lemma_div_mod_prime c }
mul_mod (mul_mod a 1) (inv_mod b);
(==) { Math.Lemmas.small_mod a m }
mul_mod a (inv_mod b);
} | {
"file_name": "lib/Lib.NatMod.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 335,
"start_col": 0,
"start_line": 322
} | module Lib.NatMod
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
#push-options "--fuel 2"
let lemma_pow0 a = ()
let lemma_pow1 a = ()
let lemma_pow_unfold a b = ()
#pop-options
let rec lemma_pow_gt_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_gt_zero a (b - 1) end
let rec lemma_pow_ge_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_ge_zero a (b - 1) end
let rec lemma_pow_nat_is_pow a b =
let k = mk_nat_comm_monoid in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
lemma_pow_unfold a b;
lemma_pow_nat_is_pow a (b - 1);
LE.lemma_pow_unfold k a b;
() end
let lemma_pow_zero b =
lemma_pow_unfold 0 b
let lemma_pow_one b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_one k b;
lemma_pow_nat_is_pow 1 b
let lemma_pow_add x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_add k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow x m;
lemma_pow_nat_is_pow x (n + m)
let lemma_pow_mul x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow (pow x n) m;
lemma_pow_nat_is_pow x (n * m)
let lemma_pow_double a b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_double k a b;
lemma_pow_nat_is_pow (a * a) b;
lemma_pow_nat_is_pow a (b + b)
let lemma_pow_mul_base a b n =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul_base k a b n;
lemma_pow_nat_is_pow a n;
lemma_pow_nat_is_pow b n;
lemma_pow_nat_is_pow (a * b) n
let rec lemma_pow_mod_base a b n =
if b = 0 then begin
lemma_pow0 a;
lemma_pow0 (a % n) end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_mod_base a (b - 1) n }
a * (pow (a % n) (b - 1) % n) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n }
a * pow (a % n) (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n }
a % n * pow (a % n) (b - 1) % n;
(==) { lemma_pow_unfold (a % n) b }
pow (a % n) b % n;
};
assert (pow a b % n == pow (a % n) b % n)
end
let lemma_mul_mod_one #m a = ()
let lemma_mul_mod_assoc #m a b c =
calc (==) {
(a * b % m) * c % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m }
(a * b) * c % m;
(==) { Math.Lemmas.paren_mul_right a b c }
a * (b * c) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m }
a * (b * c % m) % m;
}
let lemma_mul_mod_comm #m a b = ()
let pow_mod #m a b = pow_mod_ #m a b
let pow_mod_def #m a b = ()
#push-options "--fuel 2"
val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1)
let lemma_pow_mod0 #n a = ()
val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma
(pow_mod #n a b == pow_mod (mul_mod a a) (b / 2))
let lemma_pow_mod_unfold0 n a b = ()
val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma
(pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2)))
let lemma_pow_mod_unfold1 n a b = ()
#pop-options
val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma
(ensures (pow_mod #n a b == pow a b % n))
(decreases b)
let rec lemma_pow_mod_ n a b =
if b = 0 then begin
lemma_pow0 a;
lemma_pow_mod0 a end
else begin
if b % 2 = 0 then begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold0 n a b }
pow_mod #n (mul_mod #n a a) (b / 2);
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
pow (mul_mod #n a a) (b / 2) % n;
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
pow (a * a) (b / 2) % n;
(==) { lemma_pow_double a (b / 2) }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
else begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold1 n a b }
mul_mod a (pow_mod (mul_mod #n a a) (b / 2));
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
mul_mod a (pow (mul_mod #n a a) (b / 2) % n);
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
mul_mod a (pow (a * a) (b / 2) % n);
(==) { lemma_pow_double a (b / 2) }
mul_mod a (pow a (b / 2 * 2) % n);
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n }
a * pow a (b / 2 * 2) % n;
(==) { lemma_pow1 a }
pow a 1 * pow a (b / 2 * 2) % n;
(==) { lemma_pow_add a 1 (b / 2 * 2) }
pow a (b / 2 * 2 + 1) % n;
(==) { Math.Lemmas.euclidean_division_definition b 2 }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
end
let lemma_pow_mod #n a b = lemma_pow_mod_ n a b
let rec lemma_pow_nat_mod_is_pow #n a b =
let k = mk_nat_mod_comm_monoid n in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_nat_mod_is_pow #n a (b - 1) }
a * LE.pow k a (b - 1) % n;
(==) { }
k.LE.mul a (LE.pow k a (b - 1));
(==) { LE.lemma_pow_unfold k a b }
LE.pow k a b;
}; () end
let lemma_add_mod_one #m a =
Math.Lemmas.small_mod a m
let lemma_add_mod_assoc #m a b c =
calc (==) {
add_mod (add_mod a b) c;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m }
((a + b) + c) % m;
(==) { }
(a + (b + c)) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m }
add_mod a (add_mod b c);
}
let lemma_add_mod_comm #m a b = ()
let lemma_mod_distributivity_add_right #m a b c =
calc (==) {
mul_mod a (add_mod b c);
(==) { }
a * ((b + c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m }
a * (b + c) % m;
(==) { Math.Lemmas.distributivity_add_right a b c }
(a * b + a * c) % m;
(==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m }
add_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_add_left #m a b c =
lemma_mod_distributivity_add_right c a b
let lemma_mod_distributivity_sub_right #m a b c =
calc (==) {
mul_mod a (sub_mod b c);
(==) { }
a * ((b - c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m }
a * (b - c) % m;
(==) { Math.Lemmas.distributivity_sub_right a b c }
(a * b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m }
(mul_mod a b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m }
sub_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_sub_left #m a b c =
lemma_mod_distributivity_sub_right c a b
let lemma_inv_mod_both #m a b =
let p1 = pow a (m - 2) in
let p2 = pow b (m - 2) in
calc (==) {
mul_mod (inv_mod a) (inv_mod b);
(==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) }
p1 % m * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m }
p1 * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m }
p1 * p2 % m;
(==) { lemma_pow_mul_base a b (m - 2) }
pow (a * b) (m - 2) % m;
(==) { lemma_pow_mod_base (a * b) (m - 2) m }
pow (mul_mod a b) (m - 2) % m;
(==) { lemma_pow_mod #m (mul_mod a b) (m - 2) }
inv_mod (mul_mod a b);
}
#push-options "--fuel 1"
val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n)
let rec pow_eq a n =
if n = 0 then ()
else pow_eq a (n - 1)
#pop-options
let lemma_div_mod_prime #m a =
Math.Lemmas.small_mod a m;
assert (a == a % m);
assert (a <> 0 /\ a % m <> 0);
calc (==) {
pow_mod #m a (m - 2) * a % m;
(==) { lemma_pow_mod #m a (m - 2) }
pow a (m - 2) % m * a % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m }
pow a (m - 2) * a % m;
(==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 }
pow a (m - 1) % m;
(==) { pow_eq a (m - 1) }
Fermat.pow a (m - 1) % m;
(==) { Fermat.fermat_alt m a }
1;
}
let lemma_div_mod_prime_one #m a =
lemma_pow_mod #m 1 (m - 2);
lemma_pow_one (m - 2);
Math.Lemmas.small_mod 1 m | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.NatMod.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> c: Lib.NatMod.nat_mod m {c <> 0}
-> FStar.Pervasives.Lemma
(ensures
Lib.NatMod.div_mod (Lib.NatMod.mul_mod a c) (Lib.NatMod.mul_mod c b) == Lib.NatMod.div_mod a b
) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.NatMod.prime",
"Lib.NatMod.nat_mod",
"Prims.b2t",
"Prims.op_disEquality",
"Prims.int",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Lib.NatMod.mul_mod",
"Lib.NatMod.inv_mod",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.NatMod.lemma_inv_mod_both",
"Prims.squash",
"Lib.NatMod.lemma_mul_mod_assoc",
"Lib.NatMod.lemma_div_mod_prime",
"FStar.Math.Lemmas.small_mod"
] | [] | false | false | true | false | false | let lemma_div_mod_prime_cancel #m a b c =
| calc ( == ) {
mul_mod (mul_mod a c) (inv_mod (mul_mod c b));
( == ) { lemma_inv_mod_both c b }
mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b));
( == ) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) }
mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b);
( == ) { lemma_mul_mod_assoc a c (inv_mod c) }
mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b);
( == ) { lemma_div_mod_prime c }
mul_mod (mul_mod a 1) (inv_mod b);
( == ) { Math.Lemmas.small_mod a m }
mul_mod a (inv_mod b);
} | false |
FStar.UInt8.fsti | FStar.UInt8.op_Greater_Hat | val op_Greater_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool | let op_Greater_Hat = gt | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 333,
"start_col": 7,
"start_line": 333
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left
unfold let op_Greater_Greater_Hat = shift_right | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt8.gt"
] | [] | false | false | false | true | false | let op_Greater_Hat =
| gt | false |
|
Lib.NatMod.fst | Lib.NatMod.lemma_pow_mod_ | val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma
(ensures (pow_mod #n a b == pow a b % n))
(decreases b) | val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma
(ensures (pow_mod #n a b == pow a b % n))
(decreases b) | let rec lemma_pow_mod_ n a b =
if b = 0 then begin
lemma_pow0 a;
lemma_pow_mod0 a end
else begin
if b % 2 = 0 then begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold0 n a b }
pow_mod #n (mul_mod #n a a) (b / 2);
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
pow (mul_mod #n a a) (b / 2) % n;
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
pow (a * a) (b / 2) % n;
(==) { lemma_pow_double a (b / 2) }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
else begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold1 n a b }
mul_mod a (pow_mod (mul_mod #n a a) (b / 2));
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
mul_mod a (pow (mul_mod #n a a) (b / 2) % n);
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
mul_mod a (pow (a * a) (b / 2) % n);
(==) { lemma_pow_double a (b / 2) }
mul_mod a (pow a (b / 2 * 2) % n);
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n }
a * pow a (b / 2 * 2) % n;
(==) { lemma_pow1 a }
pow a 1 * pow a (b / 2 * 2) % n;
(==) { lemma_pow_add a 1 (b / 2 * 2) }
pow a (b / 2 * 2 + 1) % n;
(==) { Math.Lemmas.euclidean_division_definition b 2 }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
end | {
"file_name": "lib/Lib.NatMod.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 184,
"start_col": 0,
"start_line": 145
} | module Lib.NatMod
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
#push-options "--fuel 2"
let lemma_pow0 a = ()
let lemma_pow1 a = ()
let lemma_pow_unfold a b = ()
#pop-options
let rec lemma_pow_gt_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_gt_zero a (b - 1) end
let rec lemma_pow_ge_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_ge_zero a (b - 1) end
let rec lemma_pow_nat_is_pow a b =
let k = mk_nat_comm_monoid in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
lemma_pow_unfold a b;
lemma_pow_nat_is_pow a (b - 1);
LE.lemma_pow_unfold k a b;
() end
let lemma_pow_zero b =
lemma_pow_unfold 0 b
let lemma_pow_one b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_one k b;
lemma_pow_nat_is_pow 1 b
let lemma_pow_add x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_add k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow x m;
lemma_pow_nat_is_pow x (n + m)
let lemma_pow_mul x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow (pow x n) m;
lemma_pow_nat_is_pow x (n * m)
let lemma_pow_double a b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_double k a b;
lemma_pow_nat_is_pow (a * a) b;
lemma_pow_nat_is_pow a (b + b)
let lemma_pow_mul_base a b n =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul_base k a b n;
lemma_pow_nat_is_pow a n;
lemma_pow_nat_is_pow b n;
lemma_pow_nat_is_pow (a * b) n
let rec lemma_pow_mod_base a b n =
if b = 0 then begin
lemma_pow0 a;
lemma_pow0 (a % n) end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_mod_base a (b - 1) n }
a * (pow (a % n) (b - 1) % n) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n }
a * pow (a % n) (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n }
a % n * pow (a % n) (b - 1) % n;
(==) { lemma_pow_unfold (a % n) b }
pow (a % n) b % n;
};
assert (pow a b % n == pow (a % n) b % n)
end
let lemma_mul_mod_one #m a = ()
let lemma_mul_mod_assoc #m a b c =
calc (==) {
(a * b % m) * c % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m }
(a * b) * c % m;
(==) { Math.Lemmas.paren_mul_right a b c }
a * (b * c) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m }
a * (b * c % m) % m;
}
let lemma_mul_mod_comm #m a b = ()
let pow_mod #m a b = pow_mod_ #m a b
let pow_mod_def #m a b = ()
#push-options "--fuel 2"
val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1)
let lemma_pow_mod0 #n a = ()
val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma
(pow_mod #n a b == pow_mod (mul_mod a a) (b / 2))
let lemma_pow_mod_unfold0 n a b = ()
val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma
(pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2)))
let lemma_pow_mod_unfold1 n a b = ()
#pop-options
val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma
(ensures (pow_mod #n a b == pow a b % n))
(decreases b) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.NatMod.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.pos{1 < n} -> a: Lib.NatMod.nat_mod n -> b: Prims.nat
-> FStar.Pervasives.Lemma (ensures Lib.NatMod.pow_mod a b == Lib.NatMod.pow a b % n) (decreases b) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.pos",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.NatMod.nat_mod",
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Lib.NatMod.lemma_pow_mod0",
"Prims.unit",
"Lib.NatMod.lemma_pow0",
"Prims.bool",
"Prims.op_Modulus",
"Prims._assert",
"Prims.eq2",
"Lib.NatMod.pow_mod",
"Lib.NatMod.pow",
"FStar.Calc.calc_finish",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Lib.NatMod.mul_mod",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.NatMod.lemma_pow_mod_unfold0",
"Prims.squash",
"Lib.NatMod.lemma_pow_mod_",
"Lib.NatMod.lemma_pow_mod_base",
"Lib.NatMod.lemma_pow_double",
"Prims.op_Addition",
"Lib.NatMod.lemma_pow_mod_unfold1",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"Lib.NatMod.lemma_pow1",
"Lib.NatMod.lemma_pow_add",
"FStar.Math.Lemmas.euclidean_division_definition"
] | [
"recursion"
] | false | false | true | false | false | let rec lemma_pow_mod_ n a b =
| if b = 0
then
(lemma_pow0 a;
lemma_pow_mod0 a)
else
if b % 2 = 0
then
(calc ( == ) {
pow_mod #n a b;
( == ) { lemma_pow_mod_unfold0 n a b }
pow_mod #n (mul_mod #n a a) (b / 2);
( == ) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
pow (mul_mod #n a a) (b / 2) % n;
( == ) { lemma_pow_mod_base (a * a) (b / 2) n }
pow (a * a) (b / 2) % n;
( == ) { lemma_pow_double a (b / 2) }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n))
else
(calc ( == ) {
pow_mod #n a b;
( == ) { lemma_pow_mod_unfold1 n a b }
mul_mod a (pow_mod (mul_mod #n a a) (b / 2));
( == ) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
mul_mod a (pow (mul_mod #n a a) (b / 2) % n);
( == ) { lemma_pow_mod_base (a * a) (b / 2) n }
mul_mod a (pow (a * a) (b / 2) % n);
( == ) { lemma_pow_double a (b / 2) }
mul_mod a (pow a ((b / 2) * 2) % n);
( == ) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a ((b / 2) * 2)) n }
a * pow a ((b / 2) * 2) % n;
( == ) { lemma_pow1 a }
pow a 1 * pow a ((b / 2) * 2) % n;
( == ) { lemma_pow_add a 1 ((b / 2) * 2) }
pow a ((b / 2) * 2 + 1) % n;
( == ) { Math.Lemmas.euclidean_division_definition b 2 }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n)) | false |
FStar.UInt8.fsti | FStar.UInt8.op_Equals_Hat | val op_Equals_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool | let op_Equals_Hat = eq | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 332,
"start_col": 7,
"start_line": 332
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt8.eq"
] | [] | false | false | false | true | false | let op_Equals_Hat =
| eq | false |
|
Lib.NatMod.fst | Lib.NatMod.lemma_div_mod_is_zero1 | val lemma_div_mod_is_zero1: #m:pos{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma
(requires a = 0 || b = 0)
(ensures div_mod a b = 0) | val lemma_div_mod_is_zero1: #m:pos{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma
(requires a = 0 || b = 0)
(ensures div_mod a b = 0) | let lemma_div_mod_is_zero1 #m a b =
if a = 0 then ()
else begin
lemma_pow_mod #m b (m - 2);
lemma_pow_zero (m - 2) end | {
"file_name": "lib/Lib.NatMod.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 30,
"end_line": 449,
"start_col": 0,
"start_line": 445
} | module Lib.NatMod
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
#push-options "--fuel 2"
let lemma_pow0 a = ()
let lemma_pow1 a = ()
let lemma_pow_unfold a b = ()
#pop-options
let rec lemma_pow_gt_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_gt_zero a (b - 1) end
let rec lemma_pow_ge_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_ge_zero a (b - 1) end
let rec lemma_pow_nat_is_pow a b =
let k = mk_nat_comm_monoid in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
lemma_pow_unfold a b;
lemma_pow_nat_is_pow a (b - 1);
LE.lemma_pow_unfold k a b;
() end
let lemma_pow_zero b =
lemma_pow_unfold 0 b
let lemma_pow_one b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_one k b;
lemma_pow_nat_is_pow 1 b
let lemma_pow_add x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_add k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow x m;
lemma_pow_nat_is_pow x (n + m)
let lemma_pow_mul x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow (pow x n) m;
lemma_pow_nat_is_pow x (n * m)
let lemma_pow_double a b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_double k a b;
lemma_pow_nat_is_pow (a * a) b;
lemma_pow_nat_is_pow a (b + b)
let lemma_pow_mul_base a b n =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul_base k a b n;
lemma_pow_nat_is_pow a n;
lemma_pow_nat_is_pow b n;
lemma_pow_nat_is_pow (a * b) n
let rec lemma_pow_mod_base a b n =
if b = 0 then begin
lemma_pow0 a;
lemma_pow0 (a % n) end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_mod_base a (b - 1) n }
a * (pow (a % n) (b - 1) % n) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n }
a * pow (a % n) (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n }
a % n * pow (a % n) (b - 1) % n;
(==) { lemma_pow_unfold (a % n) b }
pow (a % n) b % n;
};
assert (pow a b % n == pow (a % n) b % n)
end
let lemma_mul_mod_one #m a = ()
let lemma_mul_mod_assoc #m a b c =
calc (==) {
(a * b % m) * c % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m }
(a * b) * c % m;
(==) { Math.Lemmas.paren_mul_right a b c }
a * (b * c) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m }
a * (b * c % m) % m;
}
let lemma_mul_mod_comm #m a b = ()
let pow_mod #m a b = pow_mod_ #m a b
let pow_mod_def #m a b = ()
#push-options "--fuel 2"
val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1)
let lemma_pow_mod0 #n a = ()
val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma
(pow_mod #n a b == pow_mod (mul_mod a a) (b / 2))
let lemma_pow_mod_unfold0 n a b = ()
val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma
(pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2)))
let lemma_pow_mod_unfold1 n a b = ()
#pop-options
val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma
(ensures (pow_mod #n a b == pow a b % n))
(decreases b)
let rec lemma_pow_mod_ n a b =
if b = 0 then begin
lemma_pow0 a;
lemma_pow_mod0 a end
else begin
if b % 2 = 0 then begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold0 n a b }
pow_mod #n (mul_mod #n a a) (b / 2);
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
pow (mul_mod #n a a) (b / 2) % n;
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
pow (a * a) (b / 2) % n;
(==) { lemma_pow_double a (b / 2) }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
else begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold1 n a b }
mul_mod a (pow_mod (mul_mod #n a a) (b / 2));
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
mul_mod a (pow (mul_mod #n a a) (b / 2) % n);
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
mul_mod a (pow (a * a) (b / 2) % n);
(==) { lemma_pow_double a (b / 2) }
mul_mod a (pow a (b / 2 * 2) % n);
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n }
a * pow a (b / 2 * 2) % n;
(==) { lemma_pow1 a }
pow a 1 * pow a (b / 2 * 2) % n;
(==) { lemma_pow_add a 1 (b / 2 * 2) }
pow a (b / 2 * 2 + 1) % n;
(==) { Math.Lemmas.euclidean_division_definition b 2 }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
end
let lemma_pow_mod #n a b = lemma_pow_mod_ n a b
let rec lemma_pow_nat_mod_is_pow #n a b =
let k = mk_nat_mod_comm_monoid n in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_nat_mod_is_pow #n a (b - 1) }
a * LE.pow k a (b - 1) % n;
(==) { }
k.LE.mul a (LE.pow k a (b - 1));
(==) { LE.lemma_pow_unfold k a b }
LE.pow k a b;
}; () end
let lemma_add_mod_one #m a =
Math.Lemmas.small_mod a m
let lemma_add_mod_assoc #m a b c =
calc (==) {
add_mod (add_mod a b) c;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m }
((a + b) + c) % m;
(==) { }
(a + (b + c)) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m }
add_mod a (add_mod b c);
}
let lemma_add_mod_comm #m a b = ()
let lemma_mod_distributivity_add_right #m a b c =
calc (==) {
mul_mod a (add_mod b c);
(==) { }
a * ((b + c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m }
a * (b + c) % m;
(==) { Math.Lemmas.distributivity_add_right a b c }
(a * b + a * c) % m;
(==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m }
add_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_add_left #m a b c =
lemma_mod_distributivity_add_right c a b
let lemma_mod_distributivity_sub_right #m a b c =
calc (==) {
mul_mod a (sub_mod b c);
(==) { }
a * ((b - c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m }
a * (b - c) % m;
(==) { Math.Lemmas.distributivity_sub_right a b c }
(a * b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m }
(mul_mod a b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m }
sub_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_sub_left #m a b c =
lemma_mod_distributivity_sub_right c a b
let lemma_inv_mod_both #m a b =
let p1 = pow a (m - 2) in
let p2 = pow b (m - 2) in
calc (==) {
mul_mod (inv_mod a) (inv_mod b);
(==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) }
p1 % m * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m }
p1 * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m }
p1 * p2 % m;
(==) { lemma_pow_mul_base a b (m - 2) }
pow (a * b) (m - 2) % m;
(==) { lemma_pow_mod_base (a * b) (m - 2) m }
pow (mul_mod a b) (m - 2) % m;
(==) { lemma_pow_mod #m (mul_mod a b) (m - 2) }
inv_mod (mul_mod a b);
}
#push-options "--fuel 1"
val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n)
let rec pow_eq a n =
if n = 0 then ()
else pow_eq a (n - 1)
#pop-options
let lemma_div_mod_prime #m a =
Math.Lemmas.small_mod a m;
assert (a == a % m);
assert (a <> 0 /\ a % m <> 0);
calc (==) {
pow_mod #m a (m - 2) * a % m;
(==) { lemma_pow_mod #m a (m - 2) }
pow a (m - 2) % m * a % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m }
pow a (m - 2) * a % m;
(==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 }
pow a (m - 1) % m;
(==) { pow_eq a (m - 1) }
Fermat.pow a (m - 1) % m;
(==) { Fermat.fermat_alt m a }
1;
}
let lemma_div_mod_prime_one #m a =
lemma_pow_mod #m 1 (m - 2);
lemma_pow_one (m - 2);
Math.Lemmas.small_mod 1 m
let lemma_div_mod_prime_cancel #m a b c =
calc (==) {
mul_mod (mul_mod a c) (inv_mod (mul_mod c b));
(==) { lemma_inv_mod_both c b }
mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b));
(==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) }
mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b);
(==) { lemma_mul_mod_assoc a c (inv_mod c) }
mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b);
(==) { lemma_div_mod_prime c }
mul_mod (mul_mod a 1) (inv_mod b);
(==) { Math.Lemmas.small_mod a m }
mul_mod a (inv_mod b);
}
let lemma_div_mod_prime_to_one_denominator #m a b c d =
calc (==) {
mul_mod (div_mod a c) (div_mod b d);
(==) { }
mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d));
(==) {
lemma_mul_mod_comm #m b (inv_mod d);
lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b }
mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b;
(==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) }
mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b;
(==) { lemma_inv_mod_both c d }
mul_mod (mul_mod a (inv_mod (mul_mod c d))) b;
(==) {
lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b;
lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b;
lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) }
mul_mod (mul_mod a b) (inv_mod (mul_mod c d));
}
val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (div_mod a b = c ==> a = mul_mod c b)
let lemma_div_mod_eq_mul_mod1 #m a b c =
if div_mod a b = c then begin
assert (mul_mod (div_mod a b) b = mul_mod c b);
calc (==) {
mul_mod (div_mod a b) b;
(==) { lemma_div_mod_prime_one b }
mul_mod (div_mod a b) (div_mod b 1);
(==) { lemma_div_mod_prime_to_one_denominator a b b 1 }
div_mod (mul_mod a b) (mul_mod b 1);
(==) { lemma_div_mod_prime_cancel a 1 b }
div_mod a 1;
(==) { lemma_div_mod_prime_one a }
a;
} end
else ()
val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (a = mul_mod c b ==> div_mod a b = c)
let lemma_div_mod_eq_mul_mod2 #m a b c =
if a = mul_mod c b then begin
assert (div_mod a b == div_mod (mul_mod c b) b);
calc (==) {
div_mod (mul_mod c b) b;
(==) { Math.Lemmas.small_mod b m }
div_mod (mul_mod c b) (mul_mod b 1);
(==) { lemma_div_mod_prime_cancel c 1 b }
div_mod c 1;
(==) { lemma_div_mod_prime_one c }
c;
} end
else ()
let lemma_div_mod_eq_mul_mod #m a b c =
lemma_div_mod_eq_mul_mod1 a b c;
lemma_div_mod_eq_mul_mod2 a b c
val lemma_mul_mod_zero2: n:pos -> x:int -> y:int -> Lemma
(requires x % n == 0 \/ y % n == 0)
(ensures x * y % n == 0)
let lemma_mul_mod_zero2 n x y =
if x % n = 0 then
Math.Lemmas.lemma_mod_mul_distr_l x y n
else
Math.Lemmas.lemma_mod_mul_distr_r x y n
let lemma_mul_mod_prime_zero #m a b =
Classical.move_requires_3 Euclid.euclid_prime m a b;
Classical.move_requires_3 lemma_mul_mod_zero2 m a b
val lemma_pow_mod_prime_zero_: #m:prime -> a:nat_mod m -> b:pos -> Lemma
(requires pow a b % m = 0)
(ensures a = 0)
#push-options "--z3rlimit 150"
let rec lemma_pow_mod_prime_zero_ #m a b =
if b = 1 then lemma_pow1 a
else begin
let r1 = pow a (b - 1) % m in
lemma_pow_unfold a b;
assert (a * pow a (b - 1) % m = 0);
Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) m;
lemma_mul_mod_prime_zero #m a r1;
//assert (a = 0 \/ r1 = 0);
if a = 0 then () else lemma_pow_mod_prime_zero_ #m a (b - 1) end
#pop-options
let lemma_pow_mod_prime_zero #m a b =
lemma_pow_mod #m a b;
Classical.move_requires_2 lemma_pow_mod_prime_zero_ a b;
Classical.move_requires lemma_pow_zero b
val lemma_div_mod_is_zero1: #m:pos{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma
(requires a = 0 || b = 0)
(ensures div_mod a b = 0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.NatMod.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m
-> FStar.Pervasives.Lemma (requires a = 0 || b = 0) (ensures Lib.NatMod.div_mod a b = 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.NatMod.nat_mod",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Lib.NatMod.lemma_pow_zero",
"Prims.op_Subtraction",
"Prims.unit",
"Lib.NatMod.lemma_pow_mod"
] | [] | false | false | true | false | false | let lemma_div_mod_is_zero1 #m a b =
| if a = 0
then ()
else
(lemma_pow_mod #m b (m - 2);
lemma_pow_zero (m - 2)) | false |
FStar.UInt8.fsti | FStar.UInt8.minus | val minus : a: FStar.UInt8.t -> FStar.UInt8.t | let minus (a:t) = add_mod (lognot a) (uint_to_t 1) | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 50,
"end_line": 239,
"start_col": 0,
"start_line": 239
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt8.t -> FStar.UInt8.t | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt8.t",
"FStar.UInt8.add_mod",
"FStar.UInt8.lognot",
"FStar.UInt8.uint_to_t"
] | [] | false | false | false | true | false | let minus (a: t) =
| add_mod (lognot a) (uint_to_t 1) | false |
|
FStar.UInt8.fsti | FStar.UInt8.op_Less_Equals_Hat | val op_Less_Equals_Hat : a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool | let op_Less_Equals_Hat = lte | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 336,
"start_col": 7,
"start_line": 336
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*)
[@ CNoInline ]
let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c
#reset-options
(*** Infix notations *)
unfold let op_Plus_Hat = add
unfold let op_Plus_Question_Hat = add_underspec
unfold let op_Plus_Percent_Hat = add_mod
unfold let op_Subtraction_Hat = sub
unfold let op_Subtraction_Question_Hat = sub_underspec
unfold let op_Subtraction_Percent_Hat = sub_mod
unfold let op_Star_Hat = mul
unfold let op_Star_Question_Hat = mul_underspec
unfold let op_Star_Percent_Hat = mul_mod
unfold let op_Slash_Hat = div
unfold let op_Percent_Hat = rem
unfold let op_Hat_Hat = logxor
unfold let op_Amp_Hat = logand
unfold let op_Bar_Hat = logor
unfold let op_Less_Less_Hat = shift_left
unfold let op_Greater_Greater_Hat = shift_right
unfold let op_Equals_Hat = eq
unfold let op_Greater_Hat = gt
unfold let op_Greater_Equals_Hat = gte | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt8.lte"
] | [] | false | false | false | true | false | let op_Less_Equals_Hat =
| lte | false |
|
Lib.NatMod.fst | Lib.NatMod.lemma_div_mod_prime_is_zero | val lemma_div_mod_prime_is_zero: #m:prime{2 < m} -> a:nat_mod m -> b:nat_mod m ->
Lemma ((div_mod a b = 0) <==> (a = 0 || b = 0)) | val lemma_div_mod_prime_is_zero: #m:prime{2 < m} -> a:nat_mod m -> b:nat_mod m ->
Lemma ((div_mod a b = 0) <==> (a = 0 || b = 0)) | let lemma_div_mod_prime_is_zero #m a b =
Classical.move_requires_2 lemma_div_mod_is_zero1 a b;
Classical.move_requires_2 lemma_div_mod_prime_is_zero2 a b | {
"file_name": "lib/Lib.NatMod.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 60,
"end_line": 463,
"start_col": 0,
"start_line": 461
} | module Lib.NatMod
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
#push-options "--fuel 2"
let lemma_pow0 a = ()
let lemma_pow1 a = ()
let lemma_pow_unfold a b = ()
#pop-options
let rec lemma_pow_gt_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_gt_zero a (b - 1) end
let rec lemma_pow_ge_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_ge_zero a (b - 1) end
let rec lemma_pow_nat_is_pow a b =
let k = mk_nat_comm_monoid in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
lemma_pow_unfold a b;
lemma_pow_nat_is_pow a (b - 1);
LE.lemma_pow_unfold k a b;
() end
let lemma_pow_zero b =
lemma_pow_unfold 0 b
let lemma_pow_one b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_one k b;
lemma_pow_nat_is_pow 1 b
let lemma_pow_add x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_add k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow x m;
lemma_pow_nat_is_pow x (n + m)
let lemma_pow_mul x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow (pow x n) m;
lemma_pow_nat_is_pow x (n * m)
let lemma_pow_double a b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_double k a b;
lemma_pow_nat_is_pow (a * a) b;
lemma_pow_nat_is_pow a (b + b)
let lemma_pow_mul_base a b n =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul_base k a b n;
lemma_pow_nat_is_pow a n;
lemma_pow_nat_is_pow b n;
lemma_pow_nat_is_pow (a * b) n
let rec lemma_pow_mod_base a b n =
if b = 0 then begin
lemma_pow0 a;
lemma_pow0 (a % n) end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_mod_base a (b - 1) n }
a * (pow (a % n) (b - 1) % n) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n }
a * pow (a % n) (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n }
a % n * pow (a % n) (b - 1) % n;
(==) { lemma_pow_unfold (a % n) b }
pow (a % n) b % n;
};
assert (pow a b % n == pow (a % n) b % n)
end
let lemma_mul_mod_one #m a = ()
let lemma_mul_mod_assoc #m a b c =
calc (==) {
(a * b % m) * c % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m }
(a * b) * c % m;
(==) { Math.Lemmas.paren_mul_right a b c }
a * (b * c) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m }
a * (b * c % m) % m;
}
let lemma_mul_mod_comm #m a b = ()
let pow_mod #m a b = pow_mod_ #m a b
let pow_mod_def #m a b = ()
#push-options "--fuel 2"
val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1)
let lemma_pow_mod0 #n a = ()
val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma
(pow_mod #n a b == pow_mod (mul_mod a a) (b / 2))
let lemma_pow_mod_unfold0 n a b = ()
val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma
(pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2)))
let lemma_pow_mod_unfold1 n a b = ()
#pop-options
val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma
(ensures (pow_mod #n a b == pow a b % n))
(decreases b)
let rec lemma_pow_mod_ n a b =
if b = 0 then begin
lemma_pow0 a;
lemma_pow_mod0 a end
else begin
if b % 2 = 0 then begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold0 n a b }
pow_mod #n (mul_mod #n a a) (b / 2);
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
pow (mul_mod #n a a) (b / 2) % n;
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
pow (a * a) (b / 2) % n;
(==) { lemma_pow_double a (b / 2) }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
else begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold1 n a b }
mul_mod a (pow_mod (mul_mod #n a a) (b / 2));
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
mul_mod a (pow (mul_mod #n a a) (b / 2) % n);
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
mul_mod a (pow (a * a) (b / 2) % n);
(==) { lemma_pow_double a (b / 2) }
mul_mod a (pow a (b / 2 * 2) % n);
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n }
a * pow a (b / 2 * 2) % n;
(==) { lemma_pow1 a }
pow a 1 * pow a (b / 2 * 2) % n;
(==) { lemma_pow_add a 1 (b / 2 * 2) }
pow a (b / 2 * 2 + 1) % n;
(==) { Math.Lemmas.euclidean_division_definition b 2 }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
end
let lemma_pow_mod #n a b = lemma_pow_mod_ n a b
let rec lemma_pow_nat_mod_is_pow #n a b =
let k = mk_nat_mod_comm_monoid n in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_nat_mod_is_pow #n a (b - 1) }
a * LE.pow k a (b - 1) % n;
(==) { }
k.LE.mul a (LE.pow k a (b - 1));
(==) { LE.lemma_pow_unfold k a b }
LE.pow k a b;
}; () end
let lemma_add_mod_one #m a =
Math.Lemmas.small_mod a m
let lemma_add_mod_assoc #m a b c =
calc (==) {
add_mod (add_mod a b) c;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m }
((a + b) + c) % m;
(==) { }
(a + (b + c)) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m }
add_mod a (add_mod b c);
}
let lemma_add_mod_comm #m a b = ()
let lemma_mod_distributivity_add_right #m a b c =
calc (==) {
mul_mod a (add_mod b c);
(==) { }
a * ((b + c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m }
a * (b + c) % m;
(==) { Math.Lemmas.distributivity_add_right a b c }
(a * b + a * c) % m;
(==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m }
add_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_add_left #m a b c =
lemma_mod_distributivity_add_right c a b
let lemma_mod_distributivity_sub_right #m a b c =
calc (==) {
mul_mod a (sub_mod b c);
(==) { }
a * ((b - c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m }
a * (b - c) % m;
(==) { Math.Lemmas.distributivity_sub_right a b c }
(a * b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m }
(mul_mod a b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m }
sub_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_sub_left #m a b c =
lemma_mod_distributivity_sub_right c a b
let lemma_inv_mod_both #m a b =
let p1 = pow a (m - 2) in
let p2 = pow b (m - 2) in
calc (==) {
mul_mod (inv_mod a) (inv_mod b);
(==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) }
p1 % m * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m }
p1 * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m }
p1 * p2 % m;
(==) { lemma_pow_mul_base a b (m - 2) }
pow (a * b) (m - 2) % m;
(==) { lemma_pow_mod_base (a * b) (m - 2) m }
pow (mul_mod a b) (m - 2) % m;
(==) { lemma_pow_mod #m (mul_mod a b) (m - 2) }
inv_mod (mul_mod a b);
}
#push-options "--fuel 1"
val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n)
let rec pow_eq a n =
if n = 0 then ()
else pow_eq a (n - 1)
#pop-options
let lemma_div_mod_prime #m a =
Math.Lemmas.small_mod a m;
assert (a == a % m);
assert (a <> 0 /\ a % m <> 0);
calc (==) {
pow_mod #m a (m - 2) * a % m;
(==) { lemma_pow_mod #m a (m - 2) }
pow a (m - 2) % m * a % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m }
pow a (m - 2) * a % m;
(==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 }
pow a (m - 1) % m;
(==) { pow_eq a (m - 1) }
Fermat.pow a (m - 1) % m;
(==) { Fermat.fermat_alt m a }
1;
}
let lemma_div_mod_prime_one #m a =
lemma_pow_mod #m 1 (m - 2);
lemma_pow_one (m - 2);
Math.Lemmas.small_mod 1 m
let lemma_div_mod_prime_cancel #m a b c =
calc (==) {
mul_mod (mul_mod a c) (inv_mod (mul_mod c b));
(==) { lemma_inv_mod_both c b }
mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b));
(==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) }
mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b);
(==) { lemma_mul_mod_assoc a c (inv_mod c) }
mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b);
(==) { lemma_div_mod_prime c }
mul_mod (mul_mod a 1) (inv_mod b);
(==) { Math.Lemmas.small_mod a m }
mul_mod a (inv_mod b);
}
let lemma_div_mod_prime_to_one_denominator #m a b c d =
calc (==) {
mul_mod (div_mod a c) (div_mod b d);
(==) { }
mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d));
(==) {
lemma_mul_mod_comm #m b (inv_mod d);
lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b }
mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b;
(==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) }
mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b;
(==) { lemma_inv_mod_both c d }
mul_mod (mul_mod a (inv_mod (mul_mod c d))) b;
(==) {
lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b;
lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b;
lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) }
mul_mod (mul_mod a b) (inv_mod (mul_mod c d));
}
val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (div_mod a b = c ==> a = mul_mod c b)
let lemma_div_mod_eq_mul_mod1 #m a b c =
if div_mod a b = c then begin
assert (mul_mod (div_mod a b) b = mul_mod c b);
calc (==) {
mul_mod (div_mod a b) b;
(==) { lemma_div_mod_prime_one b }
mul_mod (div_mod a b) (div_mod b 1);
(==) { lemma_div_mod_prime_to_one_denominator a b b 1 }
div_mod (mul_mod a b) (mul_mod b 1);
(==) { lemma_div_mod_prime_cancel a 1 b }
div_mod a 1;
(==) { lemma_div_mod_prime_one a }
a;
} end
else ()
val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (a = mul_mod c b ==> div_mod a b = c)
let lemma_div_mod_eq_mul_mod2 #m a b c =
if a = mul_mod c b then begin
assert (div_mod a b == div_mod (mul_mod c b) b);
calc (==) {
div_mod (mul_mod c b) b;
(==) { Math.Lemmas.small_mod b m }
div_mod (mul_mod c b) (mul_mod b 1);
(==) { lemma_div_mod_prime_cancel c 1 b }
div_mod c 1;
(==) { lemma_div_mod_prime_one c }
c;
} end
else ()
let lemma_div_mod_eq_mul_mod #m a b c =
lemma_div_mod_eq_mul_mod1 a b c;
lemma_div_mod_eq_mul_mod2 a b c
val lemma_mul_mod_zero2: n:pos -> x:int -> y:int -> Lemma
(requires x % n == 0 \/ y % n == 0)
(ensures x * y % n == 0)
let lemma_mul_mod_zero2 n x y =
if x % n = 0 then
Math.Lemmas.lemma_mod_mul_distr_l x y n
else
Math.Lemmas.lemma_mod_mul_distr_r x y n
let lemma_mul_mod_prime_zero #m a b =
Classical.move_requires_3 Euclid.euclid_prime m a b;
Classical.move_requires_3 lemma_mul_mod_zero2 m a b
val lemma_pow_mod_prime_zero_: #m:prime -> a:nat_mod m -> b:pos -> Lemma
(requires pow a b % m = 0)
(ensures a = 0)
#push-options "--z3rlimit 150"
let rec lemma_pow_mod_prime_zero_ #m a b =
if b = 1 then lemma_pow1 a
else begin
let r1 = pow a (b - 1) % m in
lemma_pow_unfold a b;
assert (a * pow a (b - 1) % m = 0);
Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) m;
lemma_mul_mod_prime_zero #m a r1;
//assert (a = 0 \/ r1 = 0);
if a = 0 then () else lemma_pow_mod_prime_zero_ #m a (b - 1) end
#pop-options
let lemma_pow_mod_prime_zero #m a b =
lemma_pow_mod #m a b;
Classical.move_requires_2 lemma_pow_mod_prime_zero_ a b;
Classical.move_requires lemma_pow_zero b
val lemma_div_mod_is_zero1: #m:pos{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma
(requires a = 0 || b = 0)
(ensures div_mod a b = 0)
let lemma_div_mod_is_zero1 #m a b =
if a = 0 then ()
else begin
lemma_pow_mod #m b (m - 2);
lemma_pow_zero (m - 2) end
val lemma_div_mod_prime_is_zero2: #m:prime{2 < m} -> a:nat_mod m -> b:nat_mod m -> Lemma
(requires div_mod a b = 0)
(ensures a = 0 || b = 0)
let lemma_div_mod_prime_is_zero2 #m a b =
lemma_mul_mod_prime_zero a (inv_mod b);
assert (a = 0 || inv_mod b = 0);
lemma_pow_mod_prime_zero #m b (m - 2) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.NatMod.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m
-> FStar.Pervasives.Lemma (ensures Lib.NatMod.div_mod a b = 0 <==> a = 0 || b = 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.NatMod.prime",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.NatMod.nat_mod",
"FStar.Classical.move_requires_2",
"Prims.op_Equality",
"Prims.int",
"Lib.NatMod.div_mod",
"Prims.op_BarBar",
"Lib.NatMod.lemma_div_mod_prime_is_zero2",
"Prims.unit",
"Lib.NatMod.lemma_div_mod_is_zero1"
] | [] | false | false | true | false | false | let lemma_div_mod_prime_is_zero #m a b =
| Classical.move_requires_2 lemma_div_mod_is_zero1 a b;
Classical.move_requires_2 lemma_div_mod_prime_is_zero2 a b | false |
Lib.NatMod.fst | Lib.NatMod.lemma_pow_mod_prime_zero_ | val lemma_pow_mod_prime_zero_: #m:prime -> a:nat_mod m -> b:pos -> Lemma
(requires pow a b % m = 0)
(ensures a = 0) | val lemma_pow_mod_prime_zero_: #m:prime -> a:nat_mod m -> b:pos -> Lemma
(requires pow a b % m = 0)
(ensures a = 0) | let rec lemma_pow_mod_prime_zero_ #m a b =
if b = 1 then lemma_pow1 a
else begin
let r1 = pow a (b - 1) % m in
lemma_pow_unfold a b;
assert (a * pow a (b - 1) % m = 0);
Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) m;
lemma_mul_mod_prime_zero #m a r1;
//assert (a = 0 \/ r1 = 0);
if a = 0 then () else lemma_pow_mod_prime_zero_ #m a (b - 1) end | {
"file_name": "lib/Lib.NatMod.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 68,
"end_line": 432,
"start_col": 0,
"start_line": 423
} | module Lib.NatMod
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
#push-options "--fuel 2"
let lemma_pow0 a = ()
let lemma_pow1 a = ()
let lemma_pow_unfold a b = ()
#pop-options
let rec lemma_pow_gt_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_gt_zero a (b - 1) end
let rec lemma_pow_ge_zero a b =
if b = 0 then lemma_pow0 a
else begin
lemma_pow_unfold a b;
lemma_pow_ge_zero a (b - 1) end
let rec lemma_pow_nat_is_pow a b =
let k = mk_nat_comm_monoid in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
lemma_pow_unfold a b;
lemma_pow_nat_is_pow a (b - 1);
LE.lemma_pow_unfold k a b;
() end
let lemma_pow_zero b =
lemma_pow_unfold 0 b
let lemma_pow_one b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_one k b;
lemma_pow_nat_is_pow 1 b
let lemma_pow_add x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_add k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow x m;
lemma_pow_nat_is_pow x (n + m)
let lemma_pow_mul x n m =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul k x n m;
lemma_pow_nat_is_pow x n;
lemma_pow_nat_is_pow (pow x n) m;
lemma_pow_nat_is_pow x (n * m)
let lemma_pow_double a b =
let k = mk_nat_comm_monoid in
LE.lemma_pow_double k a b;
lemma_pow_nat_is_pow (a * a) b;
lemma_pow_nat_is_pow a (b + b)
let lemma_pow_mul_base a b n =
let k = mk_nat_comm_monoid in
LE.lemma_pow_mul_base k a b n;
lemma_pow_nat_is_pow a n;
lemma_pow_nat_is_pow b n;
lemma_pow_nat_is_pow (a * b) n
let rec lemma_pow_mod_base a b n =
if b = 0 then begin
lemma_pow0 a;
lemma_pow0 (a % n) end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_mod_base a (b - 1) n }
a * (pow (a % n) (b - 1) % n) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow (a % n) (b - 1)) n }
a * pow (a % n) (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l a (pow (a % n) (b - 1)) n }
a % n * pow (a % n) (b - 1) % n;
(==) { lemma_pow_unfold (a % n) b }
pow (a % n) b % n;
};
assert (pow a b % n == pow (a % n) b % n)
end
let lemma_mul_mod_one #m a = ()
let lemma_mul_mod_assoc #m a b c =
calc (==) {
(a * b % m) * c % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m }
(a * b) * c % m;
(==) { Math.Lemmas.paren_mul_right a b c }
a * (b * c) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m }
a * (b * c % m) % m;
}
let lemma_mul_mod_comm #m a b = ()
let pow_mod #m a b = pow_mod_ #m a b
let pow_mod_def #m a b = ()
#push-options "--fuel 2"
val lemma_pow_mod0: #n:pos{1 < n} -> a:nat_mod n -> Lemma (pow_mod #n a 0 == 1)
let lemma_pow_mod0 #n a = ()
val lemma_pow_mod_unfold0: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 0} -> Lemma
(pow_mod #n a b == pow_mod (mul_mod a a) (b / 2))
let lemma_pow_mod_unfold0 n a b = ()
val lemma_pow_mod_unfold1: n:pos{1 < n} -> a:nat_mod n -> b:pos{b % 2 = 1} -> Lemma
(pow_mod #n a b == mul_mod a (pow_mod (mul_mod a a) (b / 2)))
let lemma_pow_mod_unfold1 n a b = ()
#pop-options
val lemma_pow_mod_: n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma
(ensures (pow_mod #n a b == pow a b % n))
(decreases b)
let rec lemma_pow_mod_ n a b =
if b = 0 then begin
lemma_pow0 a;
lemma_pow_mod0 a end
else begin
if b % 2 = 0 then begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold0 n a b }
pow_mod #n (mul_mod #n a a) (b / 2);
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
pow (mul_mod #n a a) (b / 2) % n;
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
pow (a * a) (b / 2) % n;
(==) { lemma_pow_double a (b / 2) }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
else begin
calc (==) {
pow_mod #n a b;
(==) { lemma_pow_mod_unfold1 n a b }
mul_mod a (pow_mod (mul_mod #n a a) (b / 2));
(==) { lemma_pow_mod_ n (mul_mod #n a a) (b / 2) }
mul_mod a (pow (mul_mod #n a a) (b / 2) % n);
(==) { lemma_pow_mod_base (a * a) (b / 2) n }
mul_mod a (pow (a * a) (b / 2) % n);
(==) { lemma_pow_double a (b / 2) }
mul_mod a (pow a (b / 2 * 2) % n);
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b / 2 * 2)) n }
a * pow a (b / 2 * 2) % n;
(==) { lemma_pow1 a }
pow a 1 * pow a (b / 2 * 2) % n;
(==) { lemma_pow_add a 1 (b / 2 * 2) }
pow a (b / 2 * 2 + 1) % n;
(==) { Math.Lemmas.euclidean_division_definition b 2 }
pow a b % n;
};
assert (pow_mod #n a b == pow a b % n) end
end
let lemma_pow_mod #n a b = lemma_pow_mod_ n a b
let rec lemma_pow_nat_mod_is_pow #n a b =
let k = mk_nat_mod_comm_monoid n in
if b = 0 then begin
lemma_pow0 a;
LE.lemma_pow0 k a end
else begin
calc (==) {
pow a b % n;
(==) { lemma_pow_unfold a b }
a * pow a (b - 1) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) n }
a * (pow a (b - 1) % n) % n;
(==) { lemma_pow_nat_mod_is_pow #n a (b - 1) }
a * LE.pow k a (b - 1) % n;
(==) { }
k.LE.mul a (LE.pow k a (b - 1));
(==) { LE.lemma_pow_unfold k a b }
LE.pow k a b;
}; () end
let lemma_add_mod_one #m a =
Math.Lemmas.small_mod a m
let lemma_add_mod_assoc #m a b c =
calc (==) {
add_mod (add_mod a b) c;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a + b) c m }
((a + b) + c) % m;
(==) { }
(a + (b + c)) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_r a (b + c) m }
add_mod a (add_mod b c);
}
let lemma_add_mod_comm #m a b = ()
let lemma_mod_distributivity_add_right #m a b c =
calc (==) {
mul_mod a (add_mod b c);
(==) { }
a * ((b + c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b + c) m }
a * (b + c) % m;
(==) { Math.Lemmas.distributivity_add_right a b c }
(a * b + a * c) % m;
(==) { Math.Lemmas.modulo_distributivity (a * b) (a * c) m }
add_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_add_left #m a b c =
lemma_mod_distributivity_add_right c a b
let lemma_mod_distributivity_sub_right #m a b c =
calc (==) {
mul_mod a (sub_mod b c);
(==) { }
a * ((b - c) % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b - c) m }
a * (b - c) % m;
(==) { Math.Lemmas.distributivity_sub_right a b c }
(a * b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a * b) (- a * c) m }
(mul_mod a b - a * c) % m;
(==) { Math.Lemmas.lemma_mod_sub_distr (mul_mod a b) (a * c) m }
sub_mod (mul_mod a b) (mul_mod a c);
}
let lemma_mod_distributivity_sub_left #m a b c =
lemma_mod_distributivity_sub_right c a b
let lemma_inv_mod_both #m a b =
let p1 = pow a (m - 2) in
let p2 = pow b (m - 2) in
calc (==) {
mul_mod (inv_mod a) (inv_mod b);
(==) { lemma_pow_mod #m a (m - 2); lemma_pow_mod #m b (m - 2) }
p1 % m * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l p1 (p2 % m) m }
p1 * (p2 % m) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r p1 p2 m }
p1 * p2 % m;
(==) { lemma_pow_mul_base a b (m - 2) }
pow (a * b) (m - 2) % m;
(==) { lemma_pow_mod_base (a * b) (m - 2) m }
pow (mul_mod a b) (m - 2) % m;
(==) { lemma_pow_mod #m (mul_mod a b) (m - 2) }
inv_mod (mul_mod a b);
}
#push-options "--fuel 1"
val pow_eq: a:nat -> n:nat -> Lemma (Fermat.pow a n == pow a n)
let rec pow_eq a n =
if n = 0 then ()
else pow_eq a (n - 1)
#pop-options
let lemma_div_mod_prime #m a =
Math.Lemmas.small_mod a m;
assert (a == a % m);
assert (a <> 0 /\ a % m <> 0);
calc (==) {
pow_mod #m a (m - 2) * a % m;
(==) { lemma_pow_mod #m a (m - 2) }
pow a (m - 2) % m * a % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (pow a (m - 2)) a m }
pow a (m - 2) * a % m;
(==) { lemma_pow1 a; lemma_pow_add a (m - 2) 1 }
pow a (m - 1) % m;
(==) { pow_eq a (m - 1) }
Fermat.pow a (m - 1) % m;
(==) { Fermat.fermat_alt m a }
1;
}
let lemma_div_mod_prime_one #m a =
lemma_pow_mod #m 1 (m - 2);
lemma_pow_one (m - 2);
Math.Lemmas.small_mod 1 m
let lemma_div_mod_prime_cancel #m a b c =
calc (==) {
mul_mod (mul_mod a c) (inv_mod (mul_mod c b));
(==) { lemma_inv_mod_both c b }
mul_mod (mul_mod a c) (mul_mod (inv_mod c) (inv_mod b));
(==) { lemma_mul_mod_assoc (mul_mod a c) (inv_mod c) (inv_mod b) }
mul_mod (mul_mod (mul_mod a c) (inv_mod c)) (inv_mod b);
(==) { lemma_mul_mod_assoc a c (inv_mod c) }
mul_mod (mul_mod a (mul_mod c (inv_mod c))) (inv_mod b);
(==) { lemma_div_mod_prime c }
mul_mod (mul_mod a 1) (inv_mod b);
(==) { Math.Lemmas.small_mod a m }
mul_mod a (inv_mod b);
}
let lemma_div_mod_prime_to_one_denominator #m a b c d =
calc (==) {
mul_mod (div_mod a c) (div_mod b d);
(==) { }
mul_mod (mul_mod a (inv_mod c)) (mul_mod b (inv_mod d));
(==) {
lemma_mul_mod_comm #m b (inv_mod d);
lemma_mul_mod_assoc #m (mul_mod a (inv_mod c)) (inv_mod d) b }
mul_mod (mul_mod (mul_mod a (inv_mod c)) (inv_mod d)) b;
(==) { lemma_mul_mod_assoc #m a (inv_mod c) (inv_mod d) }
mul_mod (mul_mod a (mul_mod (inv_mod c) (inv_mod d))) b;
(==) { lemma_inv_mod_both c d }
mul_mod (mul_mod a (inv_mod (mul_mod c d))) b;
(==) {
lemma_mul_mod_assoc #m a (inv_mod (mul_mod c d)) b;
lemma_mul_mod_comm #m (inv_mod (mul_mod c d)) b;
lemma_mul_mod_assoc #m a b (inv_mod (mul_mod c d)) }
mul_mod (mul_mod a b) (inv_mod (mul_mod c d));
}
val lemma_div_mod_eq_mul_mod1: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (div_mod a b = c ==> a = mul_mod c b)
let lemma_div_mod_eq_mul_mod1 #m a b c =
if div_mod a b = c then begin
assert (mul_mod (div_mod a b) b = mul_mod c b);
calc (==) {
mul_mod (div_mod a b) b;
(==) { lemma_div_mod_prime_one b }
mul_mod (div_mod a b) (div_mod b 1);
(==) { lemma_div_mod_prime_to_one_denominator a b b 1 }
div_mod (mul_mod a b) (mul_mod b 1);
(==) { lemma_div_mod_prime_cancel a 1 b }
div_mod a 1;
(==) { lemma_div_mod_prime_one a }
a;
} end
else ()
val lemma_div_mod_eq_mul_mod2: #m:prime -> a:nat_mod m -> b:nat_mod m{b <> 0} -> c:nat_mod m ->
Lemma (a = mul_mod c b ==> div_mod a b = c)
let lemma_div_mod_eq_mul_mod2 #m a b c =
if a = mul_mod c b then begin
assert (div_mod a b == div_mod (mul_mod c b) b);
calc (==) {
div_mod (mul_mod c b) b;
(==) { Math.Lemmas.small_mod b m }
div_mod (mul_mod c b) (mul_mod b 1);
(==) { lemma_div_mod_prime_cancel c 1 b }
div_mod c 1;
(==) { lemma_div_mod_prime_one c }
c;
} end
else ()
let lemma_div_mod_eq_mul_mod #m a b c =
lemma_div_mod_eq_mul_mod1 a b c;
lemma_div_mod_eq_mul_mod2 a b c
val lemma_mul_mod_zero2: n:pos -> x:int -> y:int -> Lemma
(requires x % n == 0 \/ y % n == 0)
(ensures x * y % n == 0)
let lemma_mul_mod_zero2 n x y =
if x % n = 0 then
Math.Lemmas.lemma_mod_mul_distr_l x y n
else
Math.Lemmas.lemma_mod_mul_distr_r x y n
let lemma_mul_mod_prime_zero #m a b =
Classical.move_requires_3 Euclid.euclid_prime m a b;
Classical.move_requires_3 lemma_mul_mod_zero2 m a b
val lemma_pow_mod_prime_zero_: #m:prime -> a:nat_mod m -> b:pos -> Lemma
(requires pow a b % m = 0)
(ensures a = 0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.NatMod.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 150,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Lib.NatMod.nat_mod m -> b: Prims.pos
-> FStar.Pervasives.Lemma (requires Lib.NatMod.pow a b % m = 0) (ensures a = 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.NatMod.prime",
"Lib.NatMod.nat_mod",
"Prims.pos",
"Prims.op_Equality",
"Prims.int",
"Lib.NatMod.lemma_pow1",
"Prims.bool",
"Lib.NatMod.lemma_pow_mod_prime_zero_",
"Prims.op_Subtraction",
"Prims.unit",
"Lib.NatMod.lemma_mul_mod_prime_zero",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"Lib.NatMod.pow",
"Prims._assert",
"Prims.b2t",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Lib.NatMod.lemma_pow_unfold"
] | [
"recursion"
] | false | false | true | false | false | let rec lemma_pow_mod_prime_zero_ #m a b =
| if b = 1
then lemma_pow1 a
else
let r1 = pow a (b - 1) % m in
lemma_pow_unfold a b;
assert (a * pow a (b - 1) % m = 0);
Math.Lemmas.lemma_mod_mul_distr_r a (pow a (b - 1)) m;
lemma_mul_mod_prime_zero #m a r1;
if a = 0 then () else lemma_pow_mod_prime_zero_ #m a (b - 1) | false |
EverCrypt.AEAD.fsti | EverCrypt.AEAD.freeable | val freeable : h: FStar.Monotonic.HyperStack.mem -> p: EverCrypt.AEAD.state a -> Prims.logical | let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p) | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 42,
"end_line": 54,
"start_col": 0,
"start_line": 53
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0 | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> p: EverCrypt.AEAD.state a -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.alg",
"FStar.Monotonic.HyperStack.mem",
"EverCrypt.AEAD.state",
"Prims.l_and",
"LowStar.Monotonic.Buffer.freeable",
"EverCrypt.AEAD.state_s",
"LowStar.Buffer.trivial_preorder",
"EverCrypt.AEAD.freeable_s",
"LowStar.Monotonic.Buffer.deref",
"Prims.logical"
] | [] | false | false | false | false | true | let freeable (#a: alg) (h: HS.mem) (p: state a) =
| B.freeable p /\ freeable_s (B.deref h p) | false |
|
EverCrypt.AEAD.fsti | EverCrypt.AEAD.footprint | val footprint : m: FStar.Monotonic.HyperStack.mem -> s: EverCrypt.AEAD.state a
-> Prims.GTot LowStar.Monotonic.Buffer.loc | let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s))) | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 66,
"end_line": 62,
"start_col": 0,
"start_line": 61
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: FStar.Monotonic.HyperStack.mem -> s: EverCrypt.AEAD.state a
-> Prims.GTot LowStar.Monotonic.Buffer.loc | Prims.GTot | [
"sometrivial"
] | [] | [
"Spec.Agile.AEAD.alg",
"FStar.Monotonic.HyperStack.mem",
"EverCrypt.AEAD.state",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc_addr_of_buffer",
"EverCrypt.AEAD.state_s",
"LowStar.Buffer.trivial_preorder",
"EverCrypt.AEAD.footprint_s",
"LowStar.Monotonic.Buffer.deref",
"LowStar.Monotonic.Buffer.loc"
] | [] | false | false | false | false | false | let footprint (#a: alg) (m: HS.mem) (s: state a) =
| let open B in loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)) | false |
|
EverCrypt.AEAD.fsti | EverCrypt.AEAD.preserves_freeable | val preserves_freeable (#a: _) (s: state a) (h0 h1: HS.mem) : Type0 | val preserves_freeable (#a: _) (s: state a) (h0 h1: HS.mem) : Type0 | let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 33,
"end_line": 58,
"start_col": 0,
"start_line": 57
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: EverCrypt.AEAD.state a ->
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem
-> Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.alg",
"EverCrypt.AEAD.state",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_imp",
"EverCrypt.AEAD.freeable"
] | [] | false | false | false | false | true | let preserves_freeable #a (s: state a) (h0: HS.mem) (h1: HS.mem) : Type0 =
| freeable h0 s ==> freeable h1 s | false |
EverCrypt.AEAD.fsti | EverCrypt.AEAD.state | val state : alg: Spec.Agile.AEAD.alg -> Type0 | let state alg = B.pointer (state_s alg) | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 39,
"end_line": 47,
"start_col": 0,
"start_line": 47
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0 | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | alg: Spec.Agile.AEAD.alg -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.alg",
"LowStar.Buffer.pointer",
"EverCrypt.AEAD.state_s"
] | [] | false | false | false | true | true | let state alg =
| B.pointer (state_s alg) | false |
|
EverCrypt.AEAD.fsti | EverCrypt.AEAD.config_pre | val config_pre : a: Spec.Agile.AEAD.alg -> Prims.logical | let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 94,
"start_col": 0,
"start_line": 86
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.AEAD.alg -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.alg",
"Prims.l_and",
"Prims.b2t",
"EverCrypt.TargetConfig.hacl_can_compile_vale",
"Vale.X64.CPU_Features_s.aesni_enabled",
"Vale.X64.CPU_Features_s.pclmulqdq_enabled",
"Vale.X64.CPU_Features_s.avx_enabled",
"Vale.X64.CPU_Features_s.movbe_enabled",
"Vale.X64.CPU_Features_s.sse_enabled",
"Prims.l_True",
"Prims.logical"
] | [] | false | false | false | true | true | let config_pre a =
| match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ movbe_enabled /\
sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True | false |
|
EverCrypt.AEAD.fsti | EverCrypt.AEAD.bytes | val bytes : Type0 | let bytes = Seq.seq uint8 | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 25,
"end_line": 129,
"start_col": 0,
"start_line": 129
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// ------------------- | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Seq.Base.seq",
"Spec.Agile.AEAD.uint8"
] | [] | false | false | false | true | true | let bytes =
| Seq.seq uint8 | false |
|
EverCrypt.AEAD.fsti | EverCrypt.AEAD.plain_p | val plain_p : a: Spec.Agile.AEAD.supported_alg -> Type0 | let plain_p a = p:B.buffer uint8 { B.length p <= max_length a } | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 63,
"end_line": 237,
"start_col": 0,
"start_line": 237
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a } | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.AEAD.supported_alg -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"Prims.b2t",
"FStar.Integers.op_Less_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Agile.AEAD.max_length"
] | [] | false | false | false | true | true | let plain_p a =
| p: B.buffer uint8 {B.length p <= max_length a} | false |
|
EverCrypt.AEAD.fsti | EverCrypt.AEAD.cipher_p | val cipher_p : a: Spec.Agile.AEAD.alg{Spec.Agile.AEAD.is_supported_alg a} -> Type0 | let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a } | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 79,
"end_line": 240,
"start_col": 0,
"start_line": 240
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a } | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.AEAD.alg{Spec.Agile.AEAD.is_supported_alg a} -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.alg",
"Prims.b2t",
"Spec.Agile.AEAD.is_supported_alg",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"FStar.Integers.op_Less_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.Integers.op_Plus",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Agile.AEAD.tag_length",
"Spec.Agile.AEAD.max_length"
] | [] | false | false | false | false | true | let cipher_p a =
| p: B.buffer uint8 {B.length p + tag_length a <= max_length a} | false |
|
EverCrypt.AEAD.fsti | EverCrypt.AEAD.ad_p | val ad_p : a: Spec.Agile.AEAD.supported_alg -> Type0 | let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a } | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 62,
"end_line": 234,
"start_col": 0,
"start_line": 234
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)} | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.AEAD.supported_alg -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"Prims.b2t",
"FStar.Integers.op_Less_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Agile.AEAD.max_length"
] | [] | false | false | false | true | true | let ad_p a =
| ad: B.buffer uint8 {B.length ad <= max_length a} | false |
|
EverCrypt.AEAD.fsti | EverCrypt.AEAD.iv_p | val iv_p : a: Spec.Agile.AEAD.supported_alg -> Type0 | let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)} | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 59,
"end_line": 231,
"start_col": 0,
"start_line": 231
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// -------------------------------- | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.AEAD.supported_alg -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"Spec.Agile.AEAD.iv_length",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder"
] | [] | false | false | false | true | true | let iv_p a =
| iv: B.buffer uint8 {iv_length a (B.length iv)} | false |
|
EverCrypt.AEAD.fsti | EverCrypt.AEAD.encrypt_live_disjoint_pre | val encrypt_live_disjoint_pre : a: Spec.Agile.AEAD.supported_alg ->
iv: EverCrypt.AEAD.iv_p a ->
iv_len: FStar.UInt32.t ->
ad: EverCrypt.AEAD.ad_p a ->
ad_len: FStar.UInt32.t ->
plain: EverCrypt.AEAD.plain_p a ->
plain_len: FStar.UInt32.t ->
cipher: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
tag: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
h0: FStar.Monotonic.HyperStack.mem
-> Prims.logical | let encrypt_live_disjoint_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
MB.(all_live h0 [ buf iv; buf ad; buf plain; buf cipher; buf tag ]) /\
(B.disjoint plain cipher \/ plain == cipher) /\
B.disjoint cipher tag /\
B.disjoint iv cipher /\ B.disjoint iv tag /\
B.disjoint plain tag /\
B.disjoint plain ad /\
B.disjoint ad cipher /\ B.disjoint ad tag | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 43,
"end_line": 279,
"start_col": 0,
"start_line": 262
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a }
inline_for_extraction noextract
let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a }
// SNIPPET_START: encrypt_pre
inline_for_extraction noextract
let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
v iv_len = B.length iv /\ v iv_len > 0 /\
v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\
B.length cipher = B.length plain /\
B.length tag = tag_length a | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Agile.AEAD.supported_alg ->
iv: EverCrypt.AEAD.iv_p a ->
iv_len: FStar.UInt32.t ->
ad: EverCrypt.AEAD.ad_p a ->
ad_len: FStar.UInt32.t ->
plain: EverCrypt.AEAD.plain_p a ->
plain_len: FStar.UInt32.t ->
cipher: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
tag: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
h0: FStar.Monotonic.HyperStack.mem
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.supported_alg",
"EverCrypt.AEAD.iv_p",
"FStar.UInt32.t",
"EverCrypt.AEAD.ad_p",
"EverCrypt.AEAD.plain_p",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.all_live",
"Prims.Cons",
"LowStar.Monotonic.Buffer.buf_t",
"LowStar.Monotonic.Buffer.buf",
"LowStar.Buffer.trivial_preorder",
"Prims.Nil",
"Prims.l_or",
"LowStar.Monotonic.Buffer.disjoint",
"Prims.eq2",
"Prims.logical"
] | [] | false | false | false | false | true | let encrypt_live_disjoint_pre
(a: supported_alg)
(iv: iv_p a)
(iv_len: UInt32.t)
(ad: ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher tag: B.buffer uint8)
(h0: HS.mem)
=
| MB.(all_live h0 [buf iv; buf ad; buf plain; buf cipher; buf tag]) /\
(B.disjoint plain cipher \/ plain == cipher) /\ B.disjoint cipher tag /\ B.disjoint iv cipher /\
B.disjoint iv tag /\ B.disjoint plain tag /\ B.disjoint plain ad /\ B.disjoint ad cipher /\
B.disjoint ad tag | false |
|
FStar.UInt8.fsti | FStar.UInt8.eq_mask | val eq_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) | val eq_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) | let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 283,
"start_col": 0,
"start_line": 256
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 80,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | Prims.Pure | [] | [] | [
"FStar.UInt8.t",
"Prims.unit",
"Prims.op_Equality",
"Prims._assert",
"Prims.b2t",
"FStar.UInt.uint_t",
"FStar.UInt8.n",
"FStar.UInt8.v",
"FStar.UInt.ones",
"Prims.l_and",
"Prims.int",
"FStar.UInt.logor_lemma_1",
"FStar.UInt.lognot_lemma_1",
"FStar.UInt.logxor_self",
"Prims.bool",
"FStar.UInt.zero",
"FStar.UInt.lemma_minus_zero",
"FStar.UInt.lemma_msb_pow2",
"FStar.UInt8.lognot",
"FStar.UInt.logxor_neq_nonzero",
"FStar.UInt8.sub_mod",
"FStar.UInt8.uint_to_t",
"FStar.UInt8.shift_right",
"FStar.UInt8.n_minus_one",
"FStar.UInt8.logor",
"FStar.UInt8.minus",
"FStar.UInt8.logxor",
"Prims.l_True",
"Prims.l_imp",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.op_disEquality"
] | [] | false | false | false | false | false | let eq_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\ (v a <> v b ==> v c = 0))) =
| let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b
then
(logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\ v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n))
else
(logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n));
c | false |
FStar.UInt8.fsti | FStar.UInt8.gte_mask | val gte_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) | val gte_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) | let gte_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\
(v a < v b ==> v c = 0)))
= let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c | {
"file_name": "ulib/FStar.UInt8.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 312,
"start_col": 0,
"start_line": 295
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
unfold let n = 8
/// For FStar.UIntN.fstp: anything that you fix/update here should be
/// reflected in [FStar.IntN.fstp], which is mostly a copy-paste of
/// this module.
///
/// Except, as compared to [FStar.IntN.fstp], here:
/// - every occurrence of [int_t] has been replaced with [uint_t]
/// - every occurrence of [@%] has been replaced with [%].
/// - some functions (e.g., add_underspec, etc.) are only defined here, not on signed integers
/// This module provides an abstract type for machine integers of a
/// given signedness and width. The interface is designed to be safe
/// with respect to arithmetic underflow and overflow.
/// Note, we have attempted several times to re-design this module to
/// make it more amenable to normalization and to impose less overhead
/// on the SMT solver when reasoning about machine integer
/// arithmetic. The following github issue reports on the current
/// status of that work.
///
/// https://github.com/FStarLang/FStar/issues/1757
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
(** Abstract type of machine integers, with an underlying
representation using a bounded mathematical integer *)
new val t : eqtype
(** A coercion that projects a bounded mathematical integer from a
machine integer *)
val v (x:t) : Tot (uint_t n)
(** A coercion that injects a bounded mathematical integers into a
machine integer *)
val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
(** Injection/projection inverse *)
val uv_inv (x : t) : Lemma
(ensures (uint_to_t (v x) == x))
[SMTPat (v x)]
(** Projection/injection inverse *)
val vu_inv (x : uint_t n) : Lemma
(ensures (v (uint_to_t x) == x))
[SMTPat (uint_to_t x)]
(** An alternate form of the injectivity of the [v] projection *)
val v_inj (x1 x2: t): Lemma
(requires (v x1 == v x2))
(ensures (x1 == x2))
(** Constants 0 and 1 *)
val zero : x:t{v x = 0}
val one : x:t{v x = 1}
(**** Addition primitives *)
(** Bounds-respecting addition
The precondition enforces that the sum does not overflow,
expressing the bound as an addition on mathematical integers *)
val add (a:t) (b:t) : Pure t
(requires (size (v a + v b) n))
(ensures (fun c -> v a + v b = v c))
(** Underspecified, possibly overflowing addition:
The postcondition only enures that the result is the sum of the
arguments in case there is no overflow *)
val add_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a + v b) n ==> v a + v b = v c))
(** Addition modulo [2^n]
Machine integers can always be added, but the postcondition is now
in terms of addition modulo [2^n] on mathematical integers *)
val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
(**** Subtraction primitives *)
(** Bounds-respecting subtraction
The precondition enforces that the difference does not underflow,
expressing the bound as a difference on mathematical integers *)
val sub (a:t) (b:t) : Pure t
(requires (size (v a - v b) n))
(ensures (fun c -> v a - v b = v c))
(** Underspecified, possibly overflowing subtraction:
The postcondition only enures that the result is the difference of
the arguments in case there is no underflow *)
val sub_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a - v b) n ==> v a - v b = v c))
(** Subtraction modulo [2^n]
Machine integers can always be subtractd, but the postcondition is
now in terms of subtraction modulo [2^n] on mathematical integers *)
val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
(**** Multiplication primitives *)
(** Bounds-respecting multiplication
The precondition enforces that the product does not overflow,
expressing the bound as a product on mathematical integers *)
val mul (a:t) (b:t) : Pure t
(requires (size (v a * v b) n))
(ensures (fun c -> v a * v b = v c))
(** Underspecified, possibly overflowing product
The postcondition only enures that the result is the product of
the arguments in case there is no overflow *)
val mul_underspec (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c ->
size (v a * v b) n ==> v a * v b = v c))
(** Multiplication modulo [2^n]
Machine integers can always be multiplied, but the postcondition
is now in terms of product modulo [2^n] on mathematical integers *)
val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
(**** Division primitives *)
(** Euclidean division of [a] and [b], with [b] non-zero *)
val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
(**** Modulo primitives *)
(** Euclidean remainder
The result is the modulus of [a] with respect to a non-zero [b] *)
val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
(**** Bitwise operators *)
/// Also see FStar.BV
(** Bitwise logical conjunction *)
val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
(** Bitwise logical exclusive-or *)
val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
(** Bitwise logical disjunction *)
val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
(** Bitwise logical negation *)
val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
(**** Shift operators *)
(** Shift right with zero fill, shifting at most the integer width *)
val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
(** Shift left with zero fill, shifting at most the integer width *)
val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
(**** Comparison operators *)
(** Equality
Note, it is safe to also use the polymorphic decidable equality
operator [=] *)
let eq (a:t) (b:t) : Tot bool = eq #n (v a) (v b)
(** Greater than *)
let gt (a:t) (b:t) : Tot bool = gt #n (v a) (v b)
(** Greater than or equal *)
let gte (a:t) (b:t) : Tot bool = gte #n (v a) (v b)
(** Less than *)
let lt (a:t) (b:t) : Tot bool = lt #n (v a) (v b)
(** Less than or equal *)
let lte (a:t) (b:t) : Tot bool = lte #n (v a) (v b)
(** Unary negation *)
inline_for_extraction
let minus (a:t) = add_mod (lognot a) (uint_to_t 1)
(** The maximum shift value for this type, i.e. its width minus one,
as an UInt32. *)
inline_for_extraction
let n_minus_one = UInt32.uint_to_t (n - 1)
#set-options "--z3rlimit 80 --initial_fuel 1 --max_fuel 1"
(** A constant-time way to compute the equality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=2e60bb395c1f589a398ec606d611132ef9ef764b
Note, the branching on [a=b] is just for proof-purposes.
*)
[@ CNoInline ]
let eq_mask (a:t) (b:t)
: Pure t
(requires True)
(ensures (fun c -> (v a = v b ==> v c = pow2 n - 1) /\
(v a <> v b ==> v c = 0)))
= let x = logxor a b in
let minus_x = minus x in
let x_or_minus_x = logor x minus_x in
let xnx = shift_right x_or_minus_x n_minus_one in
let c = sub_mod xnx (uint_to_t 1) in
if a = b then
begin
logxor_self (v a);
lognot_lemma_1 #n;
logor_lemma_1 (v x);
assert (v x = 0 /\ v minus_x = 0 /\
v x_or_minus_x = 0 /\ v xnx = 0);
assert (v c = ones n)
end
else
begin
logxor_neq_nonzero (v a) (v b);
lemma_msb_pow2 #n (v (lognot x));
lemma_msb_pow2 #n (v minus_x);
lemma_minus_zero #n (v x);
assert (v c = FStar.UInt.zero n)
end;
c
private
val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
(** A constant-time way to compute the [>=] inequality of
two machine integers.
With inspiration from https://git.zx2c4.com/WireGuard/commit/src/crypto/curve25519-hacl64.h?id=0a483a9b431d87eca1b275463c632f8d5551978a
*) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "FStar.UInt8.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 80,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | Prims.Pure | [] | [] | [
"FStar.UInt8.t",
"Prims.unit",
"FStar.UInt.lemma_msb_gte",
"FStar.UInt8.n",
"FStar.UInt8.v",
"FStar.UInt8.lemma_sub_msbs",
"FStar.UInt8.sub_mod",
"FStar.UInt8.uint_to_t",
"FStar.UInt8.shift_right",
"FStar.UInt8.n_minus_one",
"FStar.UInt8.logxor",
"FStar.UInt8.logor",
"Prims.l_True",
"Prims.l_and",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.op_LessThan"
] | [] | false | false | false | false | false | let gte_mask (a b: t)
: Pure t
(requires True)
(ensures (fun c -> (v a >= v b ==> v c = pow2 n - 1) /\ (v a < v b ==> v c = 0))) =
| let x = a in
let y = b in
let x_xor_y = logxor x y in
let x_sub_y = sub_mod x y in
let x_sub_y_xor_y = logxor x_sub_y y in
let q = logor x_xor_y x_sub_y_xor_y in
let x_xor_q = logxor x q in
let x_xor_q_ = shift_right x_xor_q n_minus_one in
let c = sub_mod x_xor_q_ (uint_to_t 1) in
lemma_sub_msbs x y;
lemma_msb_gte (v x) (v y);
lemma_msb_gte (v y) (v x);
c | false |
EverCrypt.AEAD.fsti | EverCrypt.AEAD.invariant | val invariant : m: FStar.Monotonic.HyperStack.mem -> s: EverCrypt.AEAD.state a -> Prims.logical | let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0) | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 103,
"start_col": 0,
"start_line": 100
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0 | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: FStar.Monotonic.HyperStack.mem -> s: EverCrypt.AEAD.state a -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.alg",
"FStar.Monotonic.HyperStack.mem",
"EverCrypt.AEAD.state",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"EverCrypt.AEAD.state_s",
"LowStar.Buffer.trivial_preorder",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_addr_of_buffer",
"EverCrypt.AEAD.footprint_s",
"LowStar.Monotonic.Buffer.deref",
"EverCrypt.AEAD.invariant_s",
"LowStar.Monotonic.Buffer.get",
"Prims.logical"
] | [] | false | false | false | false | true | let invariant (#a: alg) (m: HS.mem) (s: state a) =
| B.live m s /\ B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0) | false |
|
SteelFramingTestSuite.fst | SteelFramingTestSuite.g | val g (p: prop) : Steel unit emp (fun _ -> emp) (requires fun _ -> True) (ensures fun _ _ _ -> p) | val g (p: prop) : Steel unit emp (fun _ -> emp) (requires fun _ -> True) (ensures fun _ _ _ -> p) | let g (p:prop)
: Steel unit emp (fun _ -> emp) (requires fun _ -> True) (ensures fun _ _ _ -> p) =
let f2 (p:prop)
: SteelT (u:unit{p}) emp (fun _ -> emp)
= f_ref p
in
let x = f2 p in x | {
"file_name": "share/steel/tests/SteelFramingTestSuite.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 19,
"end_line": 179,
"start_col": 0,
"start_line": 173
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module SteelFramingTestSuite
open Steel.Memory
open Steel.Effect
/// A collection of small unit tests for the framing tactic
assume val p : vprop
assume val f (x:int) : SteelT unit p (fun _ -> p)
let test () : SteelT unit (p `star` p `star` p) (fun _ -> p `star` p `star` p)
= f 0; ()
assume val ref : Type0
assume val ptr (_:ref) : vprop
assume val alloc (x:int) : SteelT ref emp (fun y -> ptr y)
assume val free (r:ref) : SteelT unit (ptr r) (fun _ -> emp)
assume val read (r:ref) : SteelT int (ptr r) (fun _ -> ptr r)
assume val write (r:ref) (v: int) : SteelT unit (ptr r) (fun _ -> ptr r)
let unused x = x // work around another gensym heisenbug
let test0 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b1 `star` ptr b2 `star` ptr b3)
=
let x = read b1 in
x
let test1 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b1 `star` ptr b2 `star` ptr b3)
=
let x = (let y = read b1 in y) in
x
let test2 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b3 `star` ptr b2 `star` ptr b1)
=
let x = read b1 in
x
let test3 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
=
let x = read b3 in
x
let test4 (b1 b2 b3: ref) : SteelT unit
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
=
let x = read b3 in
write b2 x
let test5 (b1 b2 b3: ref) : SteelT unit
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
=
let x = read b3 in
write b2 (x + 1)
let test6 (b1 b2 b3: ref) : SteelT unit
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
=
let x = read b3 in
let b4 = alloc x in
write b2 (x + 1);
free b4
// With the formalism relying on can_be_split_post, this example fails if we normalize return_pre eqs goals before unification
// When solving this equality, we have the goal
// (*?u19*) _ _ == return_pre ((fun x -> (fun x -> (*?u758*) _ x x) x) r)
// with x and r in the context of ?u19
// Not normalizing allows us to solve it as a function applied to x and r
// Normalizing would lead to solve it to an slprop with x and r in the context,
// but which would later fail when trying to prove the equivalence with (fun r -> ptr r)
// in the postcondition
let test7 (_:unit) : SteelT ref emp ptr
= let r = alloc 0 in
let x = read r in
write r 0;
r
let test8 (b1 b2 b3:ref) : SteelT unit
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
= write b2 0
open Steel.Effect.Atomic
let test_if1 (b:bool) : SteelT unit emp (fun _ -> emp)
= if b then noop () else noop ()
let test_if2 (b:bool) (r: ref) : SteelT unit (ptr r) (fun _ -> ptr r)
= if b then write r 0 else write r 1
let test_if3 (b:bool) (r:ref) : SteelT unit (ptr r) (fun _ -> ptr r)
= if b then noop () else noop ()
let test_if4 (b:bool) : SteelT unit emp (fun _ -> emp)
= if b then (let r = alloc 0 in free r) else (noop ())
let test_if5 (b:bool) : SteelT ref emp (fun r -> ptr r)
= if b then alloc 0 else alloc 1
let test_if6 (b:bool) : SteelT ref emp (fun r -> ptr r)
= let r = if b then alloc 0 else alloc 1 in
let x = read r in
write r 0;
r
(* First test with different (but equivalent) slprops in both branches *)
let test_if7 (b:bool) (r1 r2: ref) : SteelT unit
(ptr r1 `star` ptr r2)
(fun _ -> ptr r1 `star` ptr r2)
= if b then (write r1 0; write r2 0) else (write r2 0; write r1 0);
write r2 0
(* Test with different slprops in both branches. The second branch captures the outer frame in its context *)
let test_if8 (b:bool) (r1 r2: ref) : SteelT unit
(ptr r1 `star` ptr r2)
(fun _ -> ptr r1 `star` ptr r2)
= if b then (write r1 0; write r2 0) else (write r2 0);
write r2 0
let test_if9 (b:bool) (r1 r2: ref) : SteelT unit
(ptr r1 `star` ptr r2)
(fun _ -> ptr r1 `star` ptr r2)
= write r1 0;
if b then (write r1 0) else (write r2 0);
write r2 0;
if b then (write r1 0) else (write r2 0);
write r1 0
(* Leave out some extra slprop outside of if_then_else *)
let test_if10 (b:bool) (r1 r2 r3: ref) : SteelT unit
(ptr r1 `star` ptr r2 `star` ptr r3)
(fun _ -> ptr r1 `star` ptr r2 `star` ptr r3)
= if b then (write r1 0; write r2 0) else (write r2 0; write r1 0);
write r2 0
(* Tests if_then_else depending on previously created local var *)
let test_if11 () : SteelT ref emp ptr =
let r = alloc 0 in
if true then return r else return r
// Test for refinement types in return values. cf PR 2227
assume
val f_ref (p:prop) :
SteelT (u:unit{p}) emp (fun _ -> emp) | {
"checked_file": "/",
"dependencies": [
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "SteelFramingTestSuite.fst"
} | [
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Prims.prop -> Steel.Effect.Steel Prims.unit | Steel.Effect.Steel | [] | [] | [
"Prims.prop",
"Prims.unit",
"Steel.Effect.Common.emp",
"Steel.Effect.Common.vprop",
"SteelFramingTestSuite.f_ref",
"Steel.Effect.Common.rmem",
"Prims.l_True"
] | [] | false | true | false | false | false | let g (p: prop) : Steel unit emp (fun _ -> emp) (requires fun _ -> True) (ensures fun _ _ _ -> p) =
| let f2 (p: prop) : SteelT (u: unit{p}) emp (fun _ -> emp) = f_ref p in
let x = f2 p in
x | false |
EverCrypt.AEAD.fsti | EverCrypt.AEAD.loc_includes_union_l_footprint_s | val loc_includes_union_l_footprint_s (l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma (requires (B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))] | val loc_includes_union_l_footprint_s (l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma (requires (B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))] | let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s) | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 46,
"end_line": 82,
"start_col": 0,
"start_line": 74
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l1: LowStar.Monotonic.Buffer.loc -> l2: LowStar.Monotonic.Buffer.loc -> s: EverCrypt.AEAD.state_s a
-> FStar.Pervasives.Lemma
(requires
LowStar.Monotonic.Buffer.loc_includes l1 (EverCrypt.AEAD.footprint_s s) \/
LowStar.Monotonic.Buffer.loc_includes l2 (EverCrypt.AEAD.footprint_s s))
(ensures
LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_union l1 l2)
(EverCrypt.AEAD.footprint_s s))
[
SMTPat (LowStar.Monotonic.Buffer.loc_includes (LowStar.Monotonic.Buffer.loc_union l1 l2)
(EverCrypt.AEAD.footprint_s s))
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"LowStar.Monotonic.Buffer.loc",
"Spec.Agile.AEAD.alg",
"EverCrypt.AEAD.state_s",
"LowStar.Monotonic.Buffer.loc_includes_union_l",
"EverCrypt.AEAD.footprint_s",
"Prims.unit",
"Prims.l_or",
"LowStar.Monotonic.Buffer.loc_includes",
"Prims.squash",
"LowStar.Monotonic.Buffer.loc_union",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | true | false | true | false | false | let loc_includes_union_l_footprint_s (l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma (requires (B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))] =
| B.loc_includes_union_l l1 l2 (footprint_s s) | false |
EverCrypt.AEAD.fsti | EverCrypt.AEAD.create_in_st | val create_in_st : a: Spec.Agile.AEAD.alg -> Type0 | let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False) | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 19,
"end_line": 174,
"start_col": 0,
"start_line": 147
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.AEAD.alg -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.alg",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Buffer.pointer",
"LowStar.Buffer.pointer_or_null",
"EverCrypt.AEAD.state_s",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.Integers.op_Greater_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Agile.AEAD.key_length",
"EverCrypt.Error.error_code",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"FStar.HyperStack.ST.is_eternal_region",
"LowStar.Monotonic.Buffer.live",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_none",
"Spec.Agile.AEAD.is_supported_alg",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"EverCrypt.AEAD.invariant",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Monotonic.Buffer.fresh_loc",
"EverCrypt.AEAD.footprint",
"LowStar.Monotonic.Buffer.loc_includes",
"LowStar.Monotonic.Buffer.loc_region_only",
"EverCrypt.AEAD.freeable",
"Prims.eq2",
"FStar.Seq.Base.seq",
"EverCrypt.AEAD.as_kv",
"LowStar.Monotonic.Buffer.deref",
"LowStar.Monotonic.Buffer.as_seq",
"Prims.l_False"
] | [] | false | false | false | true | true | let create_in_st (a: alg) =
|
r: HS.rid ->
dst: B.pointer (B.pointer_or_null (state_s a)) ->
k: B.buffer uint8 {B.length k = key_length a}
-> ST error_code
(requires fun h0 -> ST.is_eternal_region r /\ B.live h0 k /\ B.live h0 dst)
(ensures
fun h0 e h1 ->
match e with
| UnsupportedAlgorithm -> let open B in modifies loc_none h0 h1
| Success ->
let s = B.deref h1 dst in
is_supported_alg a /\ not (B.g_is_null s) /\ invariant h1 s /\
B.(modifies (loc_buffer dst) h0 h1) /\ B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\ freeable h1 s /\
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False) | false |
|
EverCrypt.AEAD.fsti | EverCrypt.AEAD.encrypt_pre | val encrypt_pre : a: Spec.Agile.AEAD.supported_alg ->
s: LowStar.Buffer.pointer_or_null (EverCrypt.AEAD.state_s a) ->
iv: EverCrypt.AEAD.iv_p a ->
iv_len: FStar.UInt32.t ->
ad: EverCrypt.AEAD.ad_p a ->
ad_len: FStar.UInt32.t ->
plain: EverCrypt.AEAD.plain_p a ->
plain_len: FStar.UInt32.t ->
cipher: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
tag: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
h0: FStar.Monotonic.HyperStack.mem
-> Prims.logical | let encrypt_pre (a: supported_alg)
(s:B.pointer_or_null (state_s a))
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
not (B.g_is_null s) ==>
invariant h0 s /\
B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer plain)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len plain plain_len cipher tag h0) | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 82,
"end_line": 302,
"start_col": 0,
"start_line": 282
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a }
inline_for_extraction noextract
let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a }
// SNIPPET_START: encrypt_pre
inline_for_extraction noextract
let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
v iv_len = B.length iv /\ v iv_len > 0 /\
v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\
B.length cipher = B.length plain /\
B.length tag = tag_length a
inline_for_extraction noextract
let encrypt_live_disjoint_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
MB.(all_live h0 [ buf iv; buf ad; buf plain; buf cipher; buf tag ]) /\
(B.disjoint plain cipher \/ plain == cipher) /\
B.disjoint cipher tag /\
B.disjoint iv cipher /\ B.disjoint iv tag /\
B.disjoint plain tag /\
B.disjoint plain ad /\
B.disjoint ad cipher /\ B.disjoint ad tag | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Agile.AEAD.supported_alg ->
s: LowStar.Buffer.pointer_or_null (EverCrypt.AEAD.state_s a) ->
iv: EverCrypt.AEAD.iv_p a ->
iv_len: FStar.UInt32.t ->
ad: EverCrypt.AEAD.ad_p a ->
ad_len: FStar.UInt32.t ->
plain: EverCrypt.AEAD.plain_p a ->
plain_len: FStar.UInt32.t ->
cipher: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
tag: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
h0: FStar.Monotonic.HyperStack.mem
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.pointer_or_null",
"EverCrypt.AEAD.state_s",
"EverCrypt.AEAD.iv_p",
"FStar.UInt32.t",
"EverCrypt.AEAD.ad_p",
"EverCrypt.AEAD.plain_p",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"EverCrypt.AEAD.encrypt_gen_pre",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"LowStar.Buffer.trivial_preorder",
"EverCrypt.AEAD.invariant",
"LowStar.Monotonic.Buffer.loc_disjoint",
"EverCrypt.AEAD.footprint",
"LowStar.Monotonic.Buffer.loc_buffer",
"EverCrypt.AEAD.encrypt_live_disjoint_pre",
"Prims.logical"
] | [] | false | false | false | false | true | let encrypt_pre
(a: supported_alg)
(s: B.pointer_or_null (state_s a))
(iv: iv_p a)
(iv_len: UInt32.t)
(ad: ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher tag: B.buffer uint8)
(h0: HS.mem)
=
| encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\
(not (B.g_is_null s) ==>
invariant h0 s /\ B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer plain)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len plain plain_len cipher tag h0) | false |
|
Steel.ST.HigherArray.fst | Steel.ST.HigherArray.pts_to_not_null | val pts_to_not_null
(#opened: _)
(#elt: Type u#1)
(#p: P.perm)
(a: array elt)
(s: Seq.seq elt)
: STGhost unit opened
(pts_to a p s)
(fun _ -> pts_to a p s)
(True)
(fun _ -> a =!= null) | val pts_to_not_null
(#opened: _)
(#elt: Type u#1)
(#p: P.perm)
(a: array elt)
(s: Seq.seq elt)
: STGhost unit opened
(pts_to a p s)
(fun _ -> pts_to a p s)
(True)
(fun _ -> a =!= null) | let pts_to_not_null
a s
= elim_pts_to a _ s;
R.pts_to_not_null _ _;
intro_pts_to a _ s | {
"file_name": "lib/steel/Steel.ST.HigherArray.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 20,
"end_line": 190,
"start_col": 0,
"start_line": 186
} | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.ST.HigherArray
module P = Steel.PCMFrac
module R = Steel.ST.PCMReference
module M = FStar.Map
module PM = Steel.PCMMap
[@@noextract_to "krml"]
let index_t (len: Ghost.erased nat) : Tot Type0 =
(i: nat { i < len })
[@@noextract_to "krml"]
let carrier (elt: Type u#a) (len: Ghost.erased nat) : Tot Type =
PM.map (index_t len) (P.fractional elt)
[@@noextract_to "krml"]
let pcm (elt: Type u#a) (len: Ghost.erased nat) : Tot (P.pcm (carrier elt len)) =
PM.pointwise (index_t len) (P.pcm_frac #elt)
[@@noextract_to "krml"]
let one (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.one
let composable (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.composable
[@@noextract_to "krml"]
let compose (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.op
[@@noextract_to "krml"]
let mk_carrier
(#elt: Type)
(len: nat)
(offset: nat)
(s: Seq.seq elt)
(p: P.perm)
: Tot (carrier elt len)
= let f (i: nat) : Tot (P.fractional elt) =
if offset + Seq.length s > len || i < offset || i >= offset + Seq.length s
then None
else Some (Seq.index s (i - offset), p)
in
M.map_literal f
let mk_carrier_inj
(#elt: Type)
(len: nat)
(offset: nat)
(s1 s2: Seq.seq elt)
(p1 p2: P.perm)
: Lemma
(requires (
mk_carrier len offset s1 p1 == mk_carrier len offset s2 p2 /\
offset + Seq.length s1 <= len /\
offset + Seq.length s2 <= len
))
(ensures (
s1 `Seq.equal` s2 /\
(Seq.length s1 > 0 ==> p1 == p2)
))
= assert (forall (i: nat) . i < Seq.length s1 ==>
(M.sel (mk_carrier len offset s1 p1) (offset + i) == Some (Seq.index s1 i, p1)));
assert (forall (i: nat) . i < Seq.length s2 ==>
M.sel (mk_carrier len offset s2 p2) (offset + i) == Some (Seq.index s2 i, p2))
[@@erasable]
let base_t (elt: Type u#a) : Tot Type0 = Ghost.erased (base_len: US.t & ref _ (pcm elt (US.v base_len)))
let base_len (#elt: Type) (b: base_t elt) : GTot nat = US.v (dfst b)
[@@noextract_to "krml"]
noeq
type ptr (elt: Type u#a) : Type0 = {
base_len: Ghost.erased US.t;
// U32.t to prove that A.read, A.write offset computation does not overflow. TODO: replace U32.t with size_t
base: (r: ref _ (pcm elt (US.v base_len)) { core_ref_is_null r ==> US.v base_len == 0 });
offset: (offset: nat { offset <= US.v base_len });
}
let null_ptr a = { base_len = 0sz; base = null #_ #(pcm a 0) ; offset = 0 }
let is_null_ptr p = is_null p.base
let base (#elt: Type) (p: ptr elt) : Tot (base_t elt) = (| Ghost.reveal p.base_len, p.base |)
let offset (#elt: Type) (p: ptr elt) : Ghost nat (requires True) (ensures (fun offset -> offset <= base_len (base p))) = p.offset
let ptr_base_offset_inj (#elt: Type) (p1 p2: ptr elt) : Lemma
(requires (
base p1 == base p2 /\
offset p1 == offset p2
))
(ensures (
p1 == p2
))
= ()
let base_len_null_ptr _ = ()
let length_fits #elt a = ()
let valid_perm
(len: nat)
(offset: nat)
(slice_len: nat)
(p: P.perm) : Tot prop =
let open FStar.Real in
((offset + slice_len <= len /\ slice_len > 0) ==> (p.P.v <=. one))
[@__reduce__]
let pts_to0 (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : Tot vprop =
R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p) `star`
pure (
valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\
Seq.length s == length a
)
let pts_to (#elt: Type u#1) (a: array elt) ([@@@ smt_fallback ] p: P.perm) ([@@@ smt_fallback ] s: Seq.seq elt) : Tot vprop =
pts_to0 a p s
// this lemma is necessary because Steel.PCMReference is marked unfold
let change_r_pts_to
(#opened: _)
(#carrier: Type u#1)
(#pcm: P.pcm carrier)
(p: ref carrier pcm)
(v: carrier)
(#carrier': Type u#1)
(#pcm': P.pcm carrier')
(p': ref carrier' pcm')
(v': carrier')
: STGhost unit opened
(R.pts_to p v)
(fun _ -> R.pts_to p' v')
(// keep on distinct lines for error messages
carrier == carrier' /\
pcm == pcm' /\
p == p' /\
v == v')
(fun _ -> True)
= rewrite
(R.pts_to p v)
(R.pts_to p' v')
let intro_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (#v: _) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened
(R.pts_to (ptr_of a).base v)
(fun _ -> pts_to a p s)
(
v == mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p /\
valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\
Seq.length s == length a
)
(fun _ -> True)
= change_r_pts_to (ptr_of a).base v (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p);
intro_pure _;
rewrite
(pts_to0 a p s)
(pts_to a p s)
let elim_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened
(pts_to a p s)
(fun _ -> R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p))
(True)
(fun _ ->
valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\
Seq.length s == length a
)
= rewrite
(pts_to a p s)
(pts_to0 a p s);
elim_pure _
let pts_to_length
a s
=
elim_pts_to a _ s;
intro_pts_to a _ s | {
"checked_file": "/",
"dependencies": [
"Steel.ST.PCMReference.fsti.checked",
"Steel.ST.Loops.fsti.checked",
"Steel.PCMMap.fst.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.ST.HigherArray.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.PCMMap",
"short_module": "PM"
},
{
"abbrev": true,
"full_module": "FStar.Map",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Steel.ST.PCMReference",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "Steel.PCMFrac",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.PtrdiffT",
"short_module": "UP"
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Steel.ST.HigherArray.array elt -> s: FStar.Seq.Base.seq elt
-> Steel.ST.Effect.Ghost.STGhost Prims.unit | Steel.ST.Effect.Ghost.STGhost | [] | [] | [
"Steel.Memory.inames",
"Steel.FractionalPermission.perm",
"Steel.ST.HigherArray.array",
"FStar.Seq.Base.seq",
"Steel.ST.HigherArray.intro_pts_to",
"Steel.ST.HigherArray.mk_carrier",
"FStar.SizeT.v",
"FStar.Ghost.reveal",
"FStar.SizeT.t",
"Steel.ST.HigherArray.__proj__Mkptr__item__base_len",
"Steel.ST.HigherArray.ptr_of",
"Steel.ST.HigherArray.__proj__Mkptr__item__offset",
"Prims.unit",
"Steel.ST.PCMReference.pts_to_not_null",
"Steel.ST.HigherArray.carrier",
"FStar.Ghost.hide",
"Prims.nat",
"Steel.ST.HigherArray.pcm",
"Steel.ST.HigherArray.__proj__Mkptr__item__base",
"Steel.ST.HigherArray.elim_pts_to"
] | [] | false | true | false | false | false | let pts_to_not_null a s =
| elim_pts_to a _ s;
R.pts_to_not_null _ _;
intro_pts_to a _ s | false |
EverCrypt.AEAD.fsti | EverCrypt.AEAD.encrypt_expand_pre | val encrypt_expand_pre : a: Spec.Agile.AEAD.supported_alg ->
k:
LowStar.Buffer.buffer Spec.Agile.AEAD.uint8
{LowStar.Monotonic.Buffer.length k = Spec.Agile.AEAD.key_length a} ->
iv: EverCrypt.AEAD.iv_p a ->
iv_len: FStar.UInt32.t ->
ad: EverCrypt.AEAD.ad_p a ->
ad_len: FStar.UInt32.t ->
plain: EverCrypt.AEAD.plain_p a ->
plain_len: FStar.UInt32.t ->
cipher: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
tag: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
h0: FStar.Monotonic.HyperStack.mem
-> Prims.logical | let encrypt_expand_pre (a: supported_alg)
(k:B.buffer uint8 { B.length k = key_length a })
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
B.live h0 k /\ B.disjoint k cipher /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len
plain plain_len cipher tag h0) | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 58,
"end_line": 383,
"start_col": 0,
"start_line": 368
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a }
inline_for_extraction noextract
let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a }
// SNIPPET_START: encrypt_pre
inline_for_extraction noextract
let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
v iv_len = B.length iv /\ v iv_len > 0 /\
v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\
B.length cipher = B.length plain /\
B.length tag = tag_length a
inline_for_extraction noextract
let encrypt_live_disjoint_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
MB.(all_live h0 [ buf iv; buf ad; buf plain; buf cipher; buf tag ]) /\
(B.disjoint plain cipher \/ plain == cipher) /\
B.disjoint cipher tag /\
B.disjoint iv cipher /\ B.disjoint iv tag /\
B.disjoint plain tag /\
B.disjoint plain ad /\
B.disjoint ad cipher /\ B.disjoint ad tag
inline_for_extraction noextract
let encrypt_pre (a: supported_alg)
(s:B.pointer_or_null (state_s a))
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
not (B.g_is_null s) ==>
invariant h0 s /\
B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer plain)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len plain plain_len cipher tag h0)
// SNIPPET_END: encrypt_pre
inline_for_extraction noextract
let encrypt_st (a: supported_alg) =
s:B.pointer_or_null (state_s a) ->
iv:iv_p a ->
iv_len: UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
plain: plain_p a ->
plain_len: UInt32.t { v plain_len = B.length plain /\ v plain_len <= max_length a } ->
cipher: B.buffer uint8 { B.length cipher = B.length plain } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
Stack error_code
(requires encrypt_pre a s iv iv_len ad ad_len plain plain_len cipher tag)
(ensures fun h0 r h1 ->
match r with
| Success ->
not (B.g_is_null s) /\
B.(modifies (loc_union (footprint h1 s) (loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain))
| InvalidKey ->
B.g_is_null s /\
B.(modifies loc_none h0 h1)
| _ -> False)
/// This function takes a previously expanded key and performs encryption.
///
/// Possible return values are:
/// - ``Success``: encryption was successfully performed
/// - ``InvalidKey``: the function was passed a NULL expanded key (see above)
(** @type: true
*)
[@@ Comment "Encrypt and authenticate a message (`plain`) with associated data (`ad`).
@param s Pointer to the The AEAD state created by `EverCrypt_AEAD_create_in`. It already contains the encryption key.
@param iv Pointer to `iv_len` bytes of memory where the nonce is read from.
@param iv_len Length of the nonce. Note: ChaCha20Poly1305 requires a 12 byte nonce.
@param ad Pointer to `ad_len` bytes of memory where the associated data is read from.
@param ad_len Length of the associated data.
@param plain Pointer to `plain_len` bytes of memory where the to-be-encrypted plaintext is read from.
@param plain_len Length of the to-be-encrypted plaintext.
@param cipher Pointer to `plain_len` bytes of memory where the ciphertext is written to.
@param tag Pointer to `TAG_LEN` bytes of memory where the tag is written to.
The length of the `tag` must be of a suitable length for the chosen algorithm:
* `Spec_Agile_AEAD_AES128_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_AES256_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (TAG_LEN=16)
@return `EverCrypt_AEAD_encrypt` may return either `EverCrypt_Error_Success` or `EverCrypt_Error_InvalidKey` (`EverCrypt_error.h`). The latter is returned if and only if the `s` parameter is `NULL`."]
val encrypt: #a:G.erased (supported_alg) -> encrypt_st (G.reveal a)
/// Encryption (no pre-allocated state)
/// -----------------------------------
///
/// All-in-one API that does not require performing key expansion separately.
/// Use if you must be in the Stack effect, or if you know you do not intend to
/// reuse the key with a different nonce later. | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Agile.AEAD.supported_alg ->
k:
LowStar.Buffer.buffer Spec.Agile.AEAD.uint8
{LowStar.Monotonic.Buffer.length k = Spec.Agile.AEAD.key_length a} ->
iv: EverCrypt.AEAD.iv_p a ->
iv_len: FStar.UInt32.t ->
ad: EverCrypt.AEAD.ad_p a ->
ad_len: FStar.UInt32.t ->
plain: EverCrypt.AEAD.plain_p a ->
plain_len: FStar.UInt32.t ->
cipher: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
tag: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
h0: FStar.Monotonic.HyperStack.mem
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.Integers.op_Greater_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Agile.AEAD.key_length",
"EverCrypt.AEAD.iv_p",
"FStar.UInt32.t",
"EverCrypt.AEAD.ad_p",
"EverCrypt.AEAD.plain_p",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"EverCrypt.AEAD.encrypt_gen_pre",
"LowStar.Monotonic.Buffer.live",
"LowStar.Monotonic.Buffer.disjoint",
"EverCrypt.AEAD.encrypt_live_disjoint_pre",
"Prims.logical"
] | [] | false | false | false | false | true | let encrypt_expand_pre
(a: supported_alg)
(k: B.buffer uint8 {B.length k = key_length a})
(iv: iv_p a)
(iv_len: UInt32.t)
(ad: ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher tag: B.buffer uint8)
(h0: HS.mem)
=
| encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\
(B.live h0 k /\ B.disjoint k cipher /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len plain plain_len cipher tag h0) | false |
|
EverCrypt.AEAD.fsti | EverCrypt.AEAD.alloca_st | val alloca_st : a: Spec.Agile.AEAD.alg -> Type0 | let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k) | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 44,
"end_line": 197,
"start_col": 0,
"start_line": 181
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake). | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.AEAD.alg -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.alg",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.Integers.op_Greater_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Agile.AEAD.key_length",
"LowStar.Buffer.pointer",
"EverCrypt.AEAD.state_s",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"EverCrypt.AEAD.config_pre",
"Spec.Agile.AEAD.is_supported_alg",
"EverCrypt.AEAD.invariant",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_none",
"LowStar.Monotonic.Buffer.fresh_loc",
"EverCrypt.AEAD.footprint",
"LowStar.Monotonic.Buffer.loc_includes",
"LowStar.Monotonic.Buffer.loc_region_only",
"FStar.Monotonic.HyperStack.get_tip",
"Prims.eq2",
"FStar.Seq.Base.seq",
"EverCrypt.AEAD.as_kv",
"LowStar.Monotonic.Buffer.deref",
"LowStar.Monotonic.Buffer.as_seq"
] | [] | false | false | false | true | true | let alloca_st (a: alg) =
| k: B.buffer uint8 {B.length k = key_length a}
-> StackInline (B.pointer (state_s a))
(requires fun h0 -> B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures
fun h0 s h1 ->
invariant h1 s /\ B.(modifies loc_none h0 h1) /\ B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\ B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
as_kv (B.deref h1 s) == B.as_seq h0 k) | false |
|
EverCrypt.AEAD.fsti | EverCrypt.AEAD.encrypt_st | val encrypt_st : a: Spec.Agile.AEAD.supported_alg -> Type0 | let encrypt_st (a: supported_alg) =
s:B.pointer_or_null (state_s a) ->
iv:iv_p a ->
iv_len: UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
plain: plain_p a ->
plain_len: UInt32.t { v plain_len = B.length plain /\ v plain_len <= max_length a } ->
cipher: B.buffer uint8 { B.length cipher = B.length plain } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
Stack error_code
(requires encrypt_pre a s iv iv_len ad ad_len plain plain_len cipher tag)
(ensures fun h0 r h1 ->
match r with
| Success ->
not (B.g_is_null s) /\
B.(modifies (loc_union (footprint h1 s) (loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain))
| InvalidKey ->
B.g_is_null s /\
B.(modifies loc_none h0 h1)
| _ -> False) | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 19,
"end_line": 333,
"start_col": 0,
"start_line": 307
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a }
inline_for_extraction noextract
let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a }
// SNIPPET_START: encrypt_pre
inline_for_extraction noextract
let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
v iv_len = B.length iv /\ v iv_len > 0 /\
v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\
B.length cipher = B.length plain /\
B.length tag = tag_length a
inline_for_extraction noextract
let encrypt_live_disjoint_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
MB.(all_live h0 [ buf iv; buf ad; buf plain; buf cipher; buf tag ]) /\
(B.disjoint plain cipher \/ plain == cipher) /\
B.disjoint cipher tag /\
B.disjoint iv cipher /\ B.disjoint iv tag /\
B.disjoint plain tag /\
B.disjoint plain ad /\
B.disjoint ad cipher /\ B.disjoint ad tag
inline_for_extraction noextract
let encrypt_pre (a: supported_alg)
(s:B.pointer_or_null (state_s a))
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
not (B.g_is_null s) ==>
invariant h0 s /\
B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer plain)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len plain plain_len cipher tag h0)
// SNIPPET_END: encrypt_pre | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.AEAD.supported_alg -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.pointer_or_null",
"EverCrypt.AEAD.state_s",
"EverCrypt.AEAD.iv_p",
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.Integers.within_bounds",
"FStar.Integers.Unsigned",
"FStar.Integers.W32",
"FStar.Integers.v",
"LowStar.Monotonic.Buffer.length",
"Spec.Agile.AEAD.uint8",
"LowStar.Buffer.trivial_preorder",
"FStar.Integers.op_Greater",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"EverCrypt.AEAD.ad_p",
"FStar.Integers.op_Less_Equals",
"Prims.pow2",
"EverCrypt.AEAD.plain_p",
"Spec.Agile.AEAD.max_length",
"LowStar.Buffer.buffer",
"Prims.nat",
"Spec.Agile.AEAD.tag_length",
"EverCrypt.Error.error_code",
"EverCrypt.AEAD.encrypt_pre",
"FStar.Monotonic.HyperStack.mem",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_union",
"EverCrypt.AEAD.footprint",
"LowStar.Monotonic.Buffer.loc_buffer",
"EverCrypt.AEAD.invariant",
"Prims.eq2",
"LowStar.Monotonic.Buffer.loc",
"EverCrypt.AEAD.preserves_freeable",
"Spec.Agile.AEAD.kv",
"EverCrypt.AEAD.as_kv",
"LowStar.Monotonic.Buffer.deref",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.append",
"LowStar.Monotonic.Buffer.as_seq",
"Spec.Agile.AEAD.encrypt",
"LowStar.Monotonic.Buffer.loc_none",
"Prims.l_False"
] | [] | false | false | false | true | true | let encrypt_st (a: supported_alg) =
|
s: B.pointer_or_null (state_s a) ->
iv: iv_p a ->
iv_len: UInt32.t{v iv_len = B.length iv /\ v iv_len > 0} ->
ad: ad_p a ->
ad_len: UInt32.t{v ad_len = B.length ad /\ v ad_len <= pow2 31} ->
plain: plain_p a ->
plain_len: UInt32.t{v plain_len = B.length plain /\ v plain_len <= max_length a} ->
cipher: B.buffer uint8 {B.length cipher = B.length plain} ->
tag: B.buffer uint8 {B.length tag = tag_length a}
-> Stack error_code
(requires encrypt_pre a s iv iv_len ad ad_len plain plain_len cipher tag)
(ensures
fun h0 r h1 ->
match r with
| Success ->
not (B.g_is_null s) /\
B.(modifies (loc_union (footprint h1 s) (loc_union (loc_buffer cipher) (loc_buffer tag))
)
h0
h1) /\ invariant h1 s /\ footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\ as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a
(as_kv (B.deref h0 s))
(B.as_seq h0 iv)
(B.as_seq h0 ad)
(B.as_seq h0 plain))
| InvalidKey -> B.g_is_null s /\ B.(modifies loc_none h0 h1)
| _ -> False) | false |
|
EverCrypt.AEAD.fsti | EverCrypt.AEAD.encrypt_gen_pre | val encrypt_gen_pre : a: Spec.Agile.AEAD.supported_alg ->
iv: EverCrypt.AEAD.iv_p a ->
iv_len: FStar.UInt32.t ->
ad: EverCrypt.AEAD.ad_p a ->
ad_len: FStar.UInt32.t ->
plain: EverCrypt.AEAD.plain_p a ->
plain_len: FStar.UInt32.t ->
cipher: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
tag: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
h0: FStar.Monotonic.HyperStack.mem
-> Prims.logical | let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
v iv_len = B.length iv /\ v iv_len > 0 /\
v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\
B.length cipher = B.length plain /\
B.length tag = tag_length a | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 259,
"start_col": 0,
"start_line": 244
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a }
inline_for_extraction noextract
let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a }
// SNIPPET_START: encrypt_pre | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Agile.AEAD.supported_alg ->
iv: EverCrypt.AEAD.iv_p a ->
iv_len: FStar.UInt32.t ->
ad: EverCrypt.AEAD.ad_p a ->
ad_len: FStar.UInt32.t ->
plain: EverCrypt.AEAD.plain_p a ->
plain_len: FStar.UInt32.t ->
cipher: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
tag: LowStar.Buffer.buffer Spec.Agile.AEAD.uint8 ->
h0: FStar.Monotonic.HyperStack.mem
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.supported_alg",
"EverCrypt.AEAD.iv_p",
"FStar.UInt32.t",
"EverCrypt.AEAD.ad_p",
"EverCrypt.AEAD.plain_p",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.Integers.within_bounds",
"FStar.Integers.Unsigned",
"FStar.Integers.W32",
"FStar.Integers.v",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"FStar.Integers.op_Greater",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.Integers.op_Less_Equals",
"Prims.pow2",
"Spec.Agile.AEAD.max_length",
"Prims.nat",
"Spec.Agile.AEAD.tag_length",
"Prims.logical"
] | [] | false | false | false | false | true | let encrypt_gen_pre
(a: supported_alg)
(iv: iv_p a)
(iv_len: UInt32.t)
(ad: ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher tag: B.buffer uint8)
(h0: HS.mem)
=
| v iv_len = B.length iv /\ v iv_len > 0 /\ v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\ B.length cipher = B.length plain /\
B.length tag = tag_length a | false |
|
EverCrypt.AEAD.fsti | EverCrypt.AEAD.decrypt_st | val decrypt_st : a: Spec.Agile.AEAD.supported_alg -> Type0 | let decrypt_st (a: supported_alg) =
s:B.pointer_or_null (state_s a) ->
iv:iv_p a ->
iv_len:UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
cipher: cipher_p a ->
cipher_len: UInt32.t { v cipher_len = B.length cipher } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
dst: B.buffer uint8 { B.length dst = B.length cipher } ->
Stack error_code
(requires fun h0 ->
not (B.g_is_null s) ==>
invariant h0 s /\
B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer dst)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
MB.(all_live h0 [ buf iv; buf ad; buf cipher; buf tag; buf dst ]) /\
B.disjoint tag dst /\ B.disjoint tag cipher /\
B.disjoint tag ad /\
B.disjoint cipher ad /\ B.disjoint dst ad /\
(B.disjoint cipher dst \/ cipher == dst))
(ensures fun h0 err h1 ->
let cipher_tag = B.as_seq h0 cipher `S.append` B.as_seq h0 tag in
match err with
| InvalidKey ->
B.g_is_null s /\
B.(modifies loc_none h0 h1)
| Success ->
not (B.g_is_null s) /\ (
let plain = Spec.decrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) cipher_tag in
B.(modifies (loc_union (footprint h1 s) (loc_buffer dst)) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
Some? plain /\ S.equal (Some?.v plain) (B.as_seq h1 dst))
| AuthenticationFailure ->
not (B.g_is_null s) /\ (
let plain = decrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) cipher_tag in
B.(modifies (loc_union (footprint h1 s) (loc_buffer dst)) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
None? plain)
| _ ->
False) | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 16,
"end_line": 502,
"start_col": 0,
"start_line": 453
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a }
inline_for_extraction noextract
let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a }
// SNIPPET_START: encrypt_pre
inline_for_extraction noextract
let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
v iv_len = B.length iv /\ v iv_len > 0 /\
v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\
B.length cipher = B.length plain /\
B.length tag = tag_length a
inline_for_extraction noextract
let encrypt_live_disjoint_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
MB.(all_live h0 [ buf iv; buf ad; buf plain; buf cipher; buf tag ]) /\
(B.disjoint plain cipher \/ plain == cipher) /\
B.disjoint cipher tag /\
B.disjoint iv cipher /\ B.disjoint iv tag /\
B.disjoint plain tag /\
B.disjoint plain ad /\
B.disjoint ad cipher /\ B.disjoint ad tag
inline_for_extraction noextract
let encrypt_pre (a: supported_alg)
(s:B.pointer_or_null (state_s a))
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
not (B.g_is_null s) ==>
invariant h0 s /\
B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer plain)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len plain plain_len cipher tag h0)
// SNIPPET_END: encrypt_pre
inline_for_extraction noextract
let encrypt_st (a: supported_alg) =
s:B.pointer_or_null (state_s a) ->
iv:iv_p a ->
iv_len: UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
plain: plain_p a ->
plain_len: UInt32.t { v plain_len = B.length plain /\ v plain_len <= max_length a } ->
cipher: B.buffer uint8 { B.length cipher = B.length plain } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
Stack error_code
(requires encrypt_pre a s iv iv_len ad ad_len plain plain_len cipher tag)
(ensures fun h0 r h1 ->
match r with
| Success ->
not (B.g_is_null s) /\
B.(modifies (loc_union (footprint h1 s) (loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain))
| InvalidKey ->
B.g_is_null s /\
B.(modifies loc_none h0 h1)
| _ -> False)
/// This function takes a previously expanded key and performs encryption.
///
/// Possible return values are:
/// - ``Success``: encryption was successfully performed
/// - ``InvalidKey``: the function was passed a NULL expanded key (see above)
(** @type: true
*)
[@@ Comment "Encrypt and authenticate a message (`plain`) with associated data (`ad`).
@param s Pointer to the The AEAD state created by `EverCrypt_AEAD_create_in`. It already contains the encryption key.
@param iv Pointer to `iv_len` bytes of memory where the nonce is read from.
@param iv_len Length of the nonce. Note: ChaCha20Poly1305 requires a 12 byte nonce.
@param ad Pointer to `ad_len` bytes of memory where the associated data is read from.
@param ad_len Length of the associated data.
@param plain Pointer to `plain_len` bytes of memory where the to-be-encrypted plaintext is read from.
@param plain_len Length of the to-be-encrypted plaintext.
@param cipher Pointer to `plain_len` bytes of memory where the ciphertext is written to.
@param tag Pointer to `TAG_LEN` bytes of memory where the tag is written to.
The length of the `tag` must be of a suitable length for the chosen algorithm:
* `Spec_Agile_AEAD_AES128_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_AES256_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (TAG_LEN=16)
@return `EverCrypt_AEAD_encrypt` may return either `EverCrypt_Error_Success` or `EverCrypt_Error_InvalidKey` (`EverCrypt_error.h`). The latter is returned if and only if the `s` parameter is `NULL`."]
val encrypt: #a:G.erased (supported_alg) -> encrypt_st (G.reveal a)
/// Encryption (no pre-allocated state)
/// -----------------------------------
///
/// All-in-one API that does not require performing key expansion separately.
/// Use if you must be in the Stack effect, or if you know you do not intend to
/// reuse the key with a different nonce later.
inline_for_extraction noextract
let encrypt_expand_pre (a: supported_alg)
(k:B.buffer uint8 { B.length k = key_length a })
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
B.live h0 k /\ B.disjoint k cipher /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len
plain plain_len cipher tag h0)
inline_for_extraction noextract
let encrypt_expand_st (does_runtime_check: bool) (a: supported_alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
iv:iv_p a ->
iv_len: UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
plain: plain_p a ->
plain_len: UInt32.t { v plain_len = B.length plain /\ v plain_len <= max_length a } ->
cipher: B.buffer uint8 { B.length cipher = B.length plain } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
Stack error_code
(requires fun h0 ->
(if does_runtime_check then
True
else
config_pre a) /\
encrypt_expand_pre a k iv iv_len ad ad_len plain plain_len cipher tag h0)
(ensures fun h0 r h1 ->
match r with
| Success ->
B.(modifies ((loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (B.as_seq h0 k) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain))
| UnsupportedAlgorithm ->
if does_runtime_check then
B.(modifies loc_none h0 h1)
else
False
| _ ->
False)
/// It's a little difficult to deal with AES-GCM cleanly because we're missing a
/// fallback C implementation. The two functions below guard the reference to the
/// X64 AES-GCM code behind a test of `EverCrypt.TargetConfig.hacl_can_compile_vale`,
/// which gets extracted to a preprocessor test, so that we can always compile them.
/// In case the code is compiled on a system which doesn't support Vale, the functions
/// are compiled in such a way that they make the program exit cleanly.
[@@ Comment "WARNING: this function doesn't perform any dynamic
hardware check. You MUST make sure your hardware supports the
implementation of AESGCM. Besides, this function was not designed
for cross-compilation: if you compile it on a system which doesn't
support Vale, it will compile it to a function which makes the
program exit."]
val encrypt_expand_aes128_gcm_no_check: encrypt_expand_st false AES128_GCM
[@@ Comment "WARNING: this function doesn't perform any dynamic
hardware check. You MUST make sure your hardware supports the
implementation of AESGCM. Besides, this function was not designed
for cross-compilation: if you compile it on a system which doesn't
support Vale, it will compile it to a function which makes the
program exit."]
val encrypt_expand_aes256_gcm_no_check: encrypt_expand_st false AES256_GCM
/// Those functions take a key, expand it then perform encryption. They do not
/// require calling create_in before.
val encrypt_expand_aes128_gcm: encrypt_expand_st true AES128_GCM
val encrypt_expand_aes256_gcm: encrypt_expand_st true AES256_GCM
val encrypt_expand_chacha20_poly1305: encrypt_expand_st false CHACHA20_POLY1305
/// Run-time agility, run-time multiplexing, but not pre-expansion of the key.
val encrypt_expand: #a:supported_alg -> encrypt_expand_st true (G.reveal a)
/// Decryption (pre-allocated state)
/// -------------------------------- | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.AEAD.supported_alg -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.pointer_or_null",
"EverCrypt.AEAD.state_s",
"EverCrypt.AEAD.iv_p",
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.Integers.within_bounds",
"FStar.Integers.Unsigned",
"FStar.Integers.W32",
"FStar.Integers.v",
"LowStar.Monotonic.Buffer.length",
"Spec.Agile.AEAD.uint8",
"LowStar.Buffer.trivial_preorder",
"FStar.Integers.op_Greater",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"EverCrypt.AEAD.ad_p",
"FStar.Integers.op_Less_Equals",
"Prims.pow2",
"EverCrypt.AEAD.cipher_p",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.tag_length",
"Prims.nat",
"EverCrypt.Error.error_code",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_imp",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"EverCrypt.AEAD.invariant",
"LowStar.Monotonic.Buffer.loc_disjoint",
"EverCrypt.AEAD.footprint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Monotonic.Buffer.all_live",
"Prims.Cons",
"LowStar.Monotonic.Buffer.buf_t",
"LowStar.Monotonic.Buffer.buf",
"Prims.Nil",
"LowStar.Monotonic.Buffer.disjoint",
"Prims.eq2",
"FStar.Integers.op_Plus",
"Spec.Agile.AEAD.max_length",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_none",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc",
"EverCrypt.AEAD.preserves_freeable",
"Spec.Agile.AEAD.kv",
"EverCrypt.AEAD.as_kv",
"LowStar.Monotonic.Buffer.deref",
"FStar.Pervasives.Native.uu___is_Some",
"Spec.Agile.AEAD.decrypted",
"FStar.Seq.Base.equal",
"FStar.Pervasives.Native.__proj__Some__item__v",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.Pervasives.Native.option",
"Spec.Agile.AEAD.decrypt",
"FStar.Pervasives.Native.uu___is_None",
"Prims.l_False",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.append"
] | [] | false | false | false | true | true | let decrypt_st (a: supported_alg) =
|
s: B.pointer_or_null (state_s a) ->
iv: iv_p a ->
iv_len: UInt32.t{v iv_len = B.length iv /\ v iv_len > 0} ->
ad: ad_p a ->
ad_len: UInt32.t{v ad_len = B.length ad /\ v ad_len <= pow2 31} ->
cipher: cipher_p a ->
cipher_len: UInt32.t{v cipher_len = B.length cipher} ->
tag: B.buffer uint8 {B.length tag = tag_length a} ->
dst: B.buffer uint8 {B.length dst = B.length cipher}
-> Stack error_code
(requires
fun h0 ->
not (B.g_is_null s) ==>
invariant h0 s /\ B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer dst)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
MB.(all_live h0 [buf iv; buf ad; buf cipher; buf tag; buf dst]) /\ B.disjoint tag dst /\
B.disjoint tag cipher /\ B.disjoint tag ad /\ B.disjoint cipher ad /\ B.disjoint dst ad /\
(B.disjoint cipher dst \/ cipher == dst))
(ensures
fun h0 err h1 ->
let cipher_tag = (B.as_seq h0 cipher) `S.append` (B.as_seq h0 tag) in
match err with
| InvalidKey -> B.g_is_null s /\ B.(modifies loc_none h0 h1)
| Success ->
not (B.g_is_null s) /\
(let plain =
Spec.decrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) cipher_tag
in
B.(modifies (loc_union (footprint h1 s) (loc_buffer dst)) h0 h1) /\ invariant h1 s /\
footprint h0 s == footprint h1 s /\ preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\ Some? plain /\
S.equal (Some?.v plain) (B.as_seq h1 dst))
| AuthenticationFailure ->
not (B.g_is_null s) /\
(let plain =
decrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) cipher_tag
in
B.(modifies (loc_union (footprint h1 s) (loc_buffer dst)) h0 h1) /\ invariant h1 s /\
footprint h0 s == footprint h1 s /\ preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\ None? plain)
| _ -> False) | false |
|
EverCrypt.AEAD.fsti | EverCrypt.AEAD.encrypt_expand_st | val encrypt_expand_st : does_runtime_check: Prims.bool -> a: Spec.Agile.AEAD.supported_alg -> Type0 | let encrypt_expand_st (does_runtime_check: bool) (a: supported_alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
iv:iv_p a ->
iv_len: UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
plain: plain_p a ->
plain_len: UInt32.t { v plain_len = B.length plain /\ v plain_len <= max_length a } ->
cipher: B.buffer uint8 { B.length cipher = B.length plain } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
Stack error_code
(requires fun h0 ->
(if does_runtime_check then
True
else
config_pre a) /\
encrypt_expand_pre a k iv iv_len ad ad_len plain plain_len cipher tag h0)
(ensures fun h0 r h1 ->
match r with
| Success ->
B.(modifies ((loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (B.as_seq h0 k) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain))
| UnsupportedAlgorithm ->
if does_runtime_check then
B.(modifies loc_none h0 h1)
else
False
| _ ->
False) | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 16,
"end_line": 415,
"start_col": 0,
"start_line": 386
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a }
inline_for_extraction noextract
let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a }
// SNIPPET_START: encrypt_pre
inline_for_extraction noextract
let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
v iv_len = B.length iv /\ v iv_len > 0 /\
v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\
B.length cipher = B.length plain /\
B.length tag = tag_length a
inline_for_extraction noextract
let encrypt_live_disjoint_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
MB.(all_live h0 [ buf iv; buf ad; buf plain; buf cipher; buf tag ]) /\
(B.disjoint plain cipher \/ plain == cipher) /\
B.disjoint cipher tag /\
B.disjoint iv cipher /\ B.disjoint iv tag /\
B.disjoint plain tag /\
B.disjoint plain ad /\
B.disjoint ad cipher /\ B.disjoint ad tag
inline_for_extraction noextract
let encrypt_pre (a: supported_alg)
(s:B.pointer_or_null (state_s a))
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
not (B.g_is_null s) ==>
invariant h0 s /\
B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer plain)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len plain plain_len cipher tag h0)
// SNIPPET_END: encrypt_pre
inline_for_extraction noextract
let encrypt_st (a: supported_alg) =
s:B.pointer_or_null (state_s a) ->
iv:iv_p a ->
iv_len: UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
plain: plain_p a ->
plain_len: UInt32.t { v plain_len = B.length plain /\ v plain_len <= max_length a } ->
cipher: B.buffer uint8 { B.length cipher = B.length plain } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
Stack error_code
(requires encrypt_pre a s iv iv_len ad ad_len plain plain_len cipher tag)
(ensures fun h0 r h1 ->
match r with
| Success ->
not (B.g_is_null s) /\
B.(modifies (loc_union (footprint h1 s) (loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain))
| InvalidKey ->
B.g_is_null s /\
B.(modifies loc_none h0 h1)
| _ -> False)
/// This function takes a previously expanded key and performs encryption.
///
/// Possible return values are:
/// - ``Success``: encryption was successfully performed
/// - ``InvalidKey``: the function was passed a NULL expanded key (see above)
(** @type: true
*)
[@@ Comment "Encrypt and authenticate a message (`plain`) with associated data (`ad`).
@param s Pointer to the The AEAD state created by `EverCrypt_AEAD_create_in`. It already contains the encryption key.
@param iv Pointer to `iv_len` bytes of memory where the nonce is read from.
@param iv_len Length of the nonce. Note: ChaCha20Poly1305 requires a 12 byte nonce.
@param ad Pointer to `ad_len` bytes of memory where the associated data is read from.
@param ad_len Length of the associated data.
@param plain Pointer to `plain_len` bytes of memory where the to-be-encrypted plaintext is read from.
@param plain_len Length of the to-be-encrypted plaintext.
@param cipher Pointer to `plain_len` bytes of memory where the ciphertext is written to.
@param tag Pointer to `TAG_LEN` bytes of memory where the tag is written to.
The length of the `tag` must be of a suitable length for the chosen algorithm:
* `Spec_Agile_AEAD_AES128_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_AES256_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (TAG_LEN=16)
@return `EverCrypt_AEAD_encrypt` may return either `EverCrypt_Error_Success` or `EverCrypt_Error_InvalidKey` (`EverCrypt_error.h`). The latter is returned if and only if the `s` parameter is `NULL`."]
val encrypt: #a:G.erased (supported_alg) -> encrypt_st (G.reveal a)
/// Encryption (no pre-allocated state)
/// -----------------------------------
///
/// All-in-one API that does not require performing key expansion separately.
/// Use if you must be in the Stack effect, or if you know you do not intend to
/// reuse the key with a different nonce later.
inline_for_extraction noextract
let encrypt_expand_pre (a: supported_alg)
(k:B.buffer uint8 { B.length k = key_length a })
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
B.live h0 k /\ B.disjoint k cipher /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len
plain plain_len cipher tag h0) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | does_runtime_check: Prims.bool -> a: Spec.Agile.AEAD.supported_alg -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Prims.bool",
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.Integers.op_Greater_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Agile.AEAD.key_length",
"EverCrypt.AEAD.iv_p",
"FStar.UInt32.t",
"Prims.l_and",
"FStar.Integers.within_bounds",
"FStar.Integers.Unsigned",
"FStar.Integers.W32",
"FStar.Integers.v",
"FStar.Integers.op_Greater",
"EverCrypt.AEAD.ad_p",
"FStar.Integers.op_Less_Equals",
"Prims.pow2",
"EverCrypt.AEAD.plain_p",
"Spec.Agile.AEAD.max_length",
"Prims.nat",
"Spec.Agile.AEAD.tag_length",
"EverCrypt.Error.error_code",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_True",
"EverCrypt.AEAD.config_pre",
"Prims.logical",
"EverCrypt.AEAD.encrypt_expand_pre",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc_buffer",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.append",
"LowStar.Monotonic.Buffer.as_seq",
"Spec.Agile.AEAD.encrypt",
"LowStar.Monotonic.Buffer.loc_none",
"Prims.l_False"
] | [] | false | false | false | true | true | let encrypt_expand_st (does_runtime_check: bool) (a: supported_alg) =
|
k: B.buffer uint8 {B.length k = key_length a} ->
iv: iv_p a ->
iv_len: UInt32.t{v iv_len = B.length iv /\ v iv_len > 0} ->
ad: ad_p a ->
ad_len: UInt32.t{v ad_len = B.length ad /\ v ad_len <= pow2 31} ->
plain: plain_p a ->
plain_len: UInt32.t{v plain_len = B.length plain /\ v plain_len <= max_length a} ->
cipher: B.buffer uint8 {B.length cipher = B.length plain} ->
tag: B.buffer uint8 {B.length tag = tag_length a}
-> Stack error_code
(requires
fun h0 ->
(if does_runtime_check then True else config_pre a) /\
encrypt_expand_pre a k iv iv_len ad ad_len plain plain_len cipher tag h0)
(ensures
fun h0 r h1 ->
match r with
| Success ->
B.(modifies ((loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (B.as_seq h0 k) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain)
)
| UnsupportedAlgorithm ->
if does_runtime_check then let open B in modifies loc_none h0 h1 else False
| _ -> False) | false |
|
EverCrypt.AEAD.fsti | EverCrypt.AEAD.decrypt_expand_st | val decrypt_expand_st : does_runtime_check: Prims.bool -> a: Spec.Agile.AEAD.supported_alg -> Type0 | let decrypt_expand_st (does_runtime_check: bool) (a: supported_alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
iv:iv_p a ->
iv_len:UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
cipher: cipher_p a ->
cipher_len: UInt32.t { v cipher_len = B.length cipher } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
dst: B.buffer uint8 { B.length dst = B.length cipher } ->
Stack error_code
(requires fun h0 ->
(if does_runtime_check then
True
else
config_pre a) /\
MB.(all_live h0 [ buf k; buf iv; buf ad; buf cipher; buf tag; buf dst ]) /\
B.disjoint k dst /\
B.disjoint tag dst /\ B.disjoint tag cipher /\
B.disjoint tag ad /\
B.disjoint cipher ad /\ B.disjoint dst ad /\
(B.disjoint cipher dst \/ cipher == dst))
(ensures fun h0 err h1 ->
let cipher_tag = B.as_seq h0 cipher `S.append` B.as_seq h0 tag in
let plain = Spec.decrypt #a (B.as_seq h0 k) (B.as_seq h0 iv) (B.as_seq h0 ad) cipher_tag in
B.(modifies (loc_buffer dst) h0 h1) /\
begin
match err with
| Success ->
Some? plain /\ S.equal (Some?.v plain) (B.as_seq h1 dst)
| AuthenticationFailure ->
None? plain
| UnsupportedAlgorithm ->
if does_runtime_check then
B.(modifies loc_none h0 h1)
else
False
| _ -> False
end) | {
"file_name": "providers/evercrypt/EverCrypt.AEAD.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 586,
"start_col": 0,
"start_line": 548
} | module EverCrypt.AEAD
/// The new AEAD interface for EverCrypt, which supersedes the functions found
/// in EverCrypt.fst
///
/// The expected usage for this module is as follows:
/// - client expands key, obtaining an ``expanded_key a``
/// - client uses ``encrypt``/``decrypt`` with the same ``expanded_key a`` repeatedly.
///
/// This usage protocol is enforced for verified F* clients but, naturally,
/// isn't for C clients.
module S = FStar.Seq
module G = FStar.Ghost
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module MB = LowStar.Monotonic.Buffer
module B = LowStar.Buffer
open FStar.HyperStack.ST
open FStar.Integers
open Spec.Agile.AEAD
module Spec = Spec.Agile.AEAD
open EverCrypt.Error
/// Note: if the fst and the fsti are running on different fuel settings,
/// something that works in the interactive mode for the fsti, when
/// "re-interpreted" in the fst, might stop working!
#set-options "--max_fuel 0 --max_ifuel 0"
/// Abstract footprints, with the same machinery as EverCrypt.Hash
/// --------------------------------------------------------------
///
/// Differences from EverCrypt.Hash include: combined framing lemma, the
/// equivalent of the ``repr`` function does *not* require the memory, and order
/// of arguments to be in line with ``B.as_seq``, etc. which take the memory
/// first.
[@@ CAbstractStruct; Comment "Both encryption and decryption require a state that holds the key.
The state may be reused as many times as desired."]
val state_s: alg -> Type0
inline_for_extraction noextract
let state alg = B.pointer (state_s alg)
inline_for_extraction noextract
val freeable_s: #(a: alg) -> state_s a -> Type0
inline_for_extraction noextract
let freeable (#a: alg) (h: HS.mem) (p: state a) =
B.freeable p /\ freeable_s (B.deref h p)
inline_for_extraction noextract
let preserves_freeable #a (s: state a) (h0 h1: HS.mem): Type0 =
freeable h0 s ==> freeable h1 s
val footprint_s: #a:alg -> state_s a -> GTot B.loc
let footprint (#a:alg) (m: HS.mem) (s: state a) =
B.(loc_union (loc_addr_of_buffer s) (footprint_s (B.deref m s)))
// TR: the following pattern is necessary because, if we generically
// add such a pattern directly on `loc_includes_union_l`, then
// verification will blowup whenever both sides of `loc_includes` are
// `loc_union`s. We would like to break all unions on the
// right-hand-side of `loc_includes` first, using
// `loc_includes_union_r`. Here the pattern is on `footprint_s`,
// because we already expose the fact that `footprint` is a
// `loc_union`. (In other words, the pattern should be on every
// smallest location that is not exposed to be a `loc_union`.)
let loc_includes_union_l_footprint_s
(l1 l2: B.loc) (#a: alg) (s: state_s a)
: Lemma
(requires (
B.loc_includes l1 (footprint_s s) \/ B.loc_includes l2 (footprint_s s)
))
(ensures (B.loc_includes (B.loc_union l1 l2) (footprint_s s)))
[SMTPat (B.loc_includes (B.loc_union l1 l2) (footprint_s s))]
= B.loc_includes_union_l l1 l2 (footprint_s s)
/// The configuration preconditions
inline_for_extraction noextract
let config_pre a =
match a with
| AES128_GCM
| AES256_GCM ->
EverCrypt.TargetConfig.hacl_can_compile_vale /\
Vale.X64.CPU_Features_s.(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\
movbe_enabled /\ sse_enabled)
| CHACHA20_POLY1305 -> True
| _ -> True
inline_for_extraction noextract
val invariant_s: (#a:alg) -> HS.mem -> state_s a -> Type0
inline_for_extraction noextract
let invariant (#a:alg) (m: HS.mem) (s: state a) =
B.live m s /\
B.(loc_disjoint (loc_addr_of_buffer s) (footprint_s (B.deref m s))) /\
invariant_s m (B.get m s 0)
val invariant_loc_in_footprint
(#a: alg)
(s: state a)
(m: HS.mem)
: Lemma
(requires (invariant m s))
(ensures (B.loc_in (footprint m s) m))
[SMTPat (invariant m s)]
val frame_invariant: #a:alg -> l:B.loc -> s:state a -> h0:HS.mem -> h1:HS.mem -> Lemma
(requires (
invariant h0 s /\
B.loc_disjoint l (footprint h0 s) /\
B.modifies l h0 h1))
(ensures (
invariant h1 s /\
footprint h0 s == footprint h1 s))
[ SMTPat (invariant h1 s); SMTPat (B.modifies l h0 h1) ]
/// Actual stateful API
/// -------------------
noextract
let bytes = Seq.seq uint8
[@@ Comment "Return the algorithm used in the AEAD state.
@param s State of the AEAD algorithm.
@return Algorithm used in the AEAD state."]
val alg_of_state (a: G.erased alg) (s: state (G.reveal a)): Stack alg
(requires (fun h0 -> invariant #(G.reveal a) h0 s))
(ensures (fun h0 a' h1 ->
a' == G.reveal a /\
h0 == h1))
/// The API is constructed in a way that one can always get the original key
/// value behind a state, any any memory.
val as_kv: (#a: alg) -> state_s a -> GTot (kv a)
inline_for_extraction noextract
let create_in_st (a: alg) =
r:HS.rid ->
dst:B.pointer (B.pointer_or_null (state_s a)) ->
k:B.buffer uint8 { B.length k = key_length a } ->
ST error_code
(requires fun h0 ->
ST.is_eternal_region r /\
B.live h0 k /\ B.live h0 dst)
(ensures fun h0 e h1 ->
match e with
| UnsupportedAlgorithm ->
B.(modifies loc_none h0 h1)
| Success ->
let s = B.deref h1 dst in
// Sanity
is_supported_alg a /\
not (B.g_is_null s) /\
invariant h1 s /\
// Memory stuff
B.(modifies (loc_buffer dst) h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.(loc_includes (loc_region_only true r) (footprint h1 s)) /\
freeable h1 s /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k
| _ -> False)
/// Same function as above, but in the StackInline effect, so that it is possible
/// to use AES GCM while staying in the Stack effect. In this case, the state should
/// be allocated/deallocated just before/after any encryption or decryption (which
/// is not very problematic during, for example, a handshake).
inline_for_extraction noextract
let alloca_st (a: alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
StackInline (B.pointer (state_s a))
(requires fun h0 ->
B.live h0 k /\ config_pre a /\ is_supported_alg a)
(ensures fun h0 s h1 ->
// Sanity
invariant h1 s /\
// Memory stuff
B.(modifies loc_none h0 h1) /\
B.fresh_loc (footprint h1 s) h0 h1 /\
B.live h1 s /\
B.(loc_includes (loc_region_only true (HS.get_tip h1)) (footprint h1 s)) /\
// Useful stuff
as_kv (B.deref h1 s) == B.as_seq h0 k)
/// This function takes a pointer to a caller-allocated reference ``dst`` then,
/// if the algorithm is supported (on this platform), allocates a fresh state
/// and modifies ``dst`` to point to it. The key-value associated with this can
/// be obtained via ``kv (B.deref dst)``; as long as ``dst`` is not modified,
/// then the caller can derive that the ``kv`` remains the same, which will be
/// required for encrypt.
(** @type: true
*)
[@@ Comment "Create the required AEAD state for the algorithm.
Note: The caller must free the AEAD state by calling `EverCrypt_AEAD_free`.
@param a The argument `a` must be either of:
* `Spec_Agile_AEAD_AES128_GCM` (KEY_LEN=16),
* `Spec_Agile_AEAD_AES256_GCM` (KEY_LEN=32), or
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (KEY_LEN=32).
@param dst Pointer to a pointer where the address of the allocated AEAD state will be written to.
@param k Pointer to `KEY_LEN` bytes of memory where the key is read from. The size depends on the used algorithm, see above.
@return The function returns `EverCrypt_Error_Success` on success or
`EverCrypt_Error_UnsupportedAlgorithm` in case of a bad algorithm identifier.
(See `EverCrypt_Error.h`.)"]
val create_in: #a:alg -> create_in_st a
inline_for_extraction noextract
val alloca: #a:alg -> alloca_st a
/// Encryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let iv_p a = iv:B.buffer uint8 { iv_length a (B.length iv)}
inline_for_extraction noextract
let ad_p a = ad:B.buffer uint8 { B.length ad <= max_length a }
inline_for_extraction noextract
let plain_p a = p:B.buffer uint8 { B.length p <= max_length a }
inline_for_extraction noextract
let cipher_p a = p:B.buffer uint8 { B.length p + tag_length a <= max_length a }
// SNIPPET_START: encrypt_pre
inline_for_extraction noextract
let encrypt_gen_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
v iv_len = B.length iv /\ v iv_len > 0 /\
v ad_len = B.length ad /\ v ad_len <= pow2 31 /\
v plain_len = B.length plain /\ v plain_len <= max_length a /\
B.length cipher = B.length plain /\
B.length tag = tag_length a
inline_for_extraction noextract
let encrypt_live_disjoint_pre (a: supported_alg)
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
MB.(all_live h0 [ buf iv; buf ad; buf plain; buf cipher; buf tag ]) /\
(B.disjoint plain cipher \/ plain == cipher) /\
B.disjoint cipher tag /\
B.disjoint iv cipher /\ B.disjoint iv tag /\
B.disjoint plain tag /\
B.disjoint plain ad /\
B.disjoint ad cipher /\ B.disjoint ad tag
inline_for_extraction noextract
let encrypt_pre (a: supported_alg)
(s:B.pointer_or_null (state_s a))
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
not (B.g_is_null s) ==>
invariant h0 s /\
B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer plain)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len plain plain_len cipher tag h0)
// SNIPPET_END: encrypt_pre
inline_for_extraction noextract
let encrypt_st (a: supported_alg) =
s:B.pointer_or_null (state_s a) ->
iv:iv_p a ->
iv_len: UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
plain: plain_p a ->
plain_len: UInt32.t { v plain_len = B.length plain /\ v plain_len <= max_length a } ->
cipher: B.buffer uint8 { B.length cipher = B.length plain } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
Stack error_code
(requires encrypt_pre a s iv iv_len ad ad_len plain plain_len cipher tag)
(ensures fun h0 r h1 ->
match r with
| Success ->
not (B.g_is_null s) /\
B.(modifies (loc_union (footprint h1 s) (loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain))
| InvalidKey ->
B.g_is_null s /\
B.(modifies loc_none h0 h1)
| _ -> False)
/// This function takes a previously expanded key and performs encryption.
///
/// Possible return values are:
/// - ``Success``: encryption was successfully performed
/// - ``InvalidKey``: the function was passed a NULL expanded key (see above)
(** @type: true
*)
[@@ Comment "Encrypt and authenticate a message (`plain`) with associated data (`ad`).
@param s Pointer to the The AEAD state created by `EverCrypt_AEAD_create_in`. It already contains the encryption key.
@param iv Pointer to `iv_len` bytes of memory where the nonce is read from.
@param iv_len Length of the nonce. Note: ChaCha20Poly1305 requires a 12 byte nonce.
@param ad Pointer to `ad_len` bytes of memory where the associated data is read from.
@param ad_len Length of the associated data.
@param plain Pointer to `plain_len` bytes of memory where the to-be-encrypted plaintext is read from.
@param plain_len Length of the to-be-encrypted plaintext.
@param cipher Pointer to `plain_len` bytes of memory where the ciphertext is written to.
@param tag Pointer to `TAG_LEN` bytes of memory where the tag is written to.
The length of the `tag` must be of a suitable length for the chosen algorithm:
* `Spec_Agile_AEAD_AES128_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_AES256_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (TAG_LEN=16)
@return `EverCrypt_AEAD_encrypt` may return either `EverCrypt_Error_Success` or `EverCrypt_Error_InvalidKey` (`EverCrypt_error.h`). The latter is returned if and only if the `s` parameter is `NULL`."]
val encrypt: #a:G.erased (supported_alg) -> encrypt_st (G.reveal a)
/// Encryption (no pre-allocated state)
/// -----------------------------------
///
/// All-in-one API that does not require performing key expansion separately.
/// Use if you must be in the Stack effect, or if you know you do not intend to
/// reuse the key with a different nonce later.
inline_for_extraction noextract
let encrypt_expand_pre (a: supported_alg)
(k:B.buffer uint8 { B.length k = key_length a })
(iv:iv_p a)
(iv_len: UInt32.t)
(ad:ad_p a)
(ad_len: UInt32.t)
(plain: plain_p a)
(plain_len: UInt32.t)
(cipher: B.buffer uint8)
(tag: B.buffer uint8)
(h0: HS.mem)
=
encrypt_gen_pre a iv iv_len ad ad_len plain plain_len cipher tag h0 /\ (
B.live h0 k /\ B.disjoint k cipher /\
encrypt_live_disjoint_pre a iv iv_len ad ad_len
plain plain_len cipher tag h0)
inline_for_extraction noextract
let encrypt_expand_st (does_runtime_check: bool) (a: supported_alg) =
k:B.buffer uint8 { B.length k = key_length a } ->
iv:iv_p a ->
iv_len: UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
plain: plain_p a ->
plain_len: UInt32.t { v plain_len = B.length plain /\ v plain_len <= max_length a } ->
cipher: B.buffer uint8 { B.length cipher = B.length plain } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
Stack error_code
(requires fun h0 ->
(if does_runtime_check then
True
else
config_pre a) /\
encrypt_expand_pre a k iv iv_len ad ad_len plain plain_len cipher tag h0)
(ensures fun h0 r h1 ->
match r with
| Success ->
B.(modifies ((loc_union (loc_buffer cipher) (loc_buffer tag))) h0 h1) /\
S.equal (S.append (B.as_seq h1 cipher) (B.as_seq h1 tag))
(Spec.encrypt #a (B.as_seq h0 k) (B.as_seq h0 iv) (B.as_seq h0 ad) (B.as_seq h0 plain))
| UnsupportedAlgorithm ->
if does_runtime_check then
B.(modifies loc_none h0 h1)
else
False
| _ ->
False)
/// It's a little difficult to deal with AES-GCM cleanly because we're missing a
/// fallback C implementation. The two functions below guard the reference to the
/// X64 AES-GCM code behind a test of `EverCrypt.TargetConfig.hacl_can_compile_vale`,
/// which gets extracted to a preprocessor test, so that we can always compile them.
/// In case the code is compiled on a system which doesn't support Vale, the functions
/// are compiled in such a way that they make the program exit cleanly.
[@@ Comment "WARNING: this function doesn't perform any dynamic
hardware check. You MUST make sure your hardware supports the
implementation of AESGCM. Besides, this function was not designed
for cross-compilation: if you compile it on a system which doesn't
support Vale, it will compile it to a function which makes the
program exit."]
val encrypt_expand_aes128_gcm_no_check: encrypt_expand_st false AES128_GCM
[@@ Comment "WARNING: this function doesn't perform any dynamic
hardware check. You MUST make sure your hardware supports the
implementation of AESGCM. Besides, this function was not designed
for cross-compilation: if you compile it on a system which doesn't
support Vale, it will compile it to a function which makes the
program exit."]
val encrypt_expand_aes256_gcm_no_check: encrypt_expand_st false AES256_GCM
/// Those functions take a key, expand it then perform encryption. They do not
/// require calling create_in before.
val encrypt_expand_aes128_gcm: encrypt_expand_st true AES128_GCM
val encrypt_expand_aes256_gcm: encrypt_expand_st true AES256_GCM
val encrypt_expand_chacha20_poly1305: encrypt_expand_st false CHACHA20_POLY1305
/// Run-time agility, run-time multiplexing, but not pre-expansion of the key.
val encrypt_expand: #a:supported_alg -> encrypt_expand_st true (G.reveal a)
/// Decryption (pre-allocated state)
/// --------------------------------
inline_for_extraction noextract
let decrypt_st (a: supported_alg) =
s:B.pointer_or_null (state_s a) ->
iv:iv_p a ->
iv_len:UInt32.t { v iv_len = B.length iv /\ v iv_len > 0 } ->
ad:ad_p a ->
ad_len: UInt32.t { v ad_len = B.length ad /\ v ad_len <= pow2 31 } ->
cipher: cipher_p a ->
cipher_len: UInt32.t { v cipher_len = B.length cipher } ->
tag: B.buffer uint8 { B.length tag = tag_length a } ->
dst: B.buffer uint8 { B.length dst = B.length cipher } ->
Stack error_code
(requires fun h0 ->
not (B.g_is_null s) ==>
invariant h0 s /\
B.(loc_disjoint (footprint h0 s) (loc_buffer iv)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer ad)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer tag)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer dst)) /\
B.(loc_disjoint (footprint h0 s) (loc_buffer cipher)) /\
MB.(all_live h0 [ buf iv; buf ad; buf cipher; buf tag; buf dst ]) /\
B.disjoint tag dst /\ B.disjoint tag cipher /\
B.disjoint tag ad /\
B.disjoint cipher ad /\ B.disjoint dst ad /\
(B.disjoint cipher dst \/ cipher == dst))
(ensures fun h0 err h1 ->
let cipher_tag = B.as_seq h0 cipher `S.append` B.as_seq h0 tag in
match err with
| InvalidKey ->
B.g_is_null s /\
B.(modifies loc_none h0 h1)
| Success ->
not (B.g_is_null s) /\ (
let plain = Spec.decrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) cipher_tag in
B.(modifies (loc_union (footprint h1 s) (loc_buffer dst)) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
Some? plain /\ S.equal (Some?.v plain) (B.as_seq h1 dst))
| AuthenticationFailure ->
not (B.g_is_null s) /\ (
let plain = decrypt #a (as_kv (B.deref h0 s)) (B.as_seq h0 iv) (B.as_seq h0 ad) cipher_tag in
B.(modifies (loc_union (footprint h1 s) (loc_buffer dst)) h0 h1) /\
invariant h1 s /\
footprint h0 s == footprint h1 s /\
preserves_freeable s h0 h1 /\
as_kv (B.deref h1 s) == as_kv (B.deref h0 s) /\
None? plain)
| _ ->
False)
/// This function takes a previously expanded key and performs decryption.
///
/// Possible return values are:
/// - ``Success``: decryption was successfully performed
/// - ``InvalidKey``: the function was passed a NULL expanded key (see above)
/// - ``Failure``: cipher text could not be decrypted (e.g. tag mismatch)
(** @type: true
*)
[@@ Comment "Verify the authenticity of `ad` || `cipher` and decrypt `cipher` into `dst`.
@param s Pointer to the The AEAD state created by `EverCrypt_AEAD_create_in`. It already contains the encryption key.
@param iv Pointer to `iv_len` bytes of memory where the nonce is read from.
@param iv_len Length of the nonce. Note: ChaCha20Poly1305 requires a 12 byte nonce.
@param ad Pointer to `ad_len` bytes of memory where the associated data is read from.
@param ad_len Length of the associated data.
@param cipher Pointer to `cipher_len` bytes of memory where the ciphertext is read from.
@param cipher_len Length of the ciphertext.
@param tag Pointer to `TAG_LEN` bytes of memory where the tag is read from.
The length of the `tag` must be of a suitable length for the chosen algorithm:
* `Spec_Agile_AEAD_AES128_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_AES256_GCM` (TAG_LEN=16)
* `Spec_Agile_AEAD_CHACHA20_POLY1305` (TAG_LEN=16)
@param dst Pointer to `cipher_len` bytes of memory where the decrypted plaintext will be written to.
@return `EverCrypt_AEAD_decrypt` returns ...
* `EverCrypt_Error_Success`
... on success and either of ...
* `EverCrypt_Error_InvalidKey` (returned if and only if the `s` parameter is `NULL`),
* `EverCrypt_Error_InvalidIVLength` (see note about requirements on IV size above), or
* `EverCrypt_Error_AuthenticationFailure` (in case the ciphertext could not be authenticated, e.g., due to modifications)
... on failure (`EverCrypt_error.h`).
Upon success, the plaintext will be written into `dst`."]
val decrypt: #a:G.erased supported_alg -> decrypt_st (G.reveal a)
/// Decryption (no pre-allocated state)
/// ----------------------------------- | {
"checked_file": "/",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"Spec.Agile.AEAD.fsti.checked",
"prims.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverCrypt.TargetConfig.fsti.checked",
"EverCrypt.Error.fsti.checked"
],
"interface_file": false,
"source_file": "EverCrypt.AEAD.fsti"
} | [
{
"abbrev": false,
"full_module": "EverCrypt.Error",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Agile.AEAD",
"short_module": "Spec"
},
{
"abbrev": false,
"full_module": "Spec.Agile.AEAD",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "LowStar.Monotonic.Buffer",
"short_module": "MB"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverCrypt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | does_runtime_check: Prims.bool -> a: Spec.Agile.AEAD.supported_alg -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Prims.bool",
"Spec.Agile.AEAD.supported_alg",
"LowStar.Buffer.buffer",
"Spec.Agile.AEAD.uint8",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.Integers.op_Greater_Equals",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"LowStar.Monotonic.Buffer.length",
"LowStar.Buffer.trivial_preorder",
"Spec.Agile.AEAD.key_length",
"EverCrypt.AEAD.iv_p",
"FStar.UInt32.t",
"Prims.l_and",
"FStar.Integers.within_bounds",
"FStar.Integers.Unsigned",
"FStar.Integers.W32",
"FStar.Integers.v",
"FStar.Integers.op_Greater",
"EverCrypt.AEAD.ad_p",
"FStar.Integers.op_Less_Equals",
"Prims.pow2",
"EverCrypt.AEAD.cipher_p",
"Spec.Agile.AEAD.tag_length",
"Prims.nat",
"EverCrypt.Error.error_code",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_True",
"EverCrypt.AEAD.config_pre",
"Prims.logical",
"LowStar.Monotonic.Buffer.all_live",
"Prims.Cons",
"LowStar.Monotonic.Buffer.buf_t",
"LowStar.Monotonic.Buffer.buf",
"Prims.Nil",
"LowStar.Monotonic.Buffer.disjoint",
"Prims.eq2",
"FStar.Integers.op_Plus",
"Spec.Agile.AEAD.max_length",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"FStar.Pervasives.Native.uu___is_Some",
"Spec.Agile.AEAD.decrypted",
"FStar.Seq.Base.equal",
"FStar.Pervasives.Native.__proj__Some__item__v",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.Pervasives.Native.uu___is_None",
"LowStar.Monotonic.Buffer.loc_none",
"Prims.l_False",
"FStar.Pervasives.Native.option",
"Spec.Agile.AEAD.decrypt",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.append"
] | [] | false | false | false | true | true | let decrypt_expand_st (does_runtime_check: bool) (a: supported_alg) =
|
k: B.buffer uint8 {B.length k = key_length a} ->
iv: iv_p a ->
iv_len: UInt32.t{v iv_len = B.length iv /\ v iv_len > 0} ->
ad: ad_p a ->
ad_len: UInt32.t{v ad_len = B.length ad /\ v ad_len <= pow2 31} ->
cipher: cipher_p a ->
cipher_len: UInt32.t{v cipher_len = B.length cipher} ->
tag: B.buffer uint8 {B.length tag = tag_length a} ->
dst: B.buffer uint8 {B.length dst = B.length cipher}
-> Stack error_code
(requires
fun h0 ->
(if does_runtime_check then True else config_pre a) /\
MB.(all_live h0 [buf k; buf iv; buf ad; buf cipher; buf tag; buf dst]) /\ B.disjoint k dst /\
B.disjoint tag dst /\ B.disjoint tag cipher /\ B.disjoint tag ad /\ B.disjoint cipher ad /\
B.disjoint dst ad /\ (B.disjoint cipher dst \/ cipher == dst))
(ensures
fun h0 err h1 ->
let cipher_tag = (B.as_seq h0 cipher) `S.append` (B.as_seq h0 tag) in
let plain =
Spec.decrypt #a (B.as_seq h0 k) (B.as_seq h0 iv) (B.as_seq h0 ad) cipher_tag
in
B.(modifies (loc_buffer dst) h0 h1) /\
(match err with
| Success -> Some? plain /\ S.equal (Some?.v plain) (B.as_seq h1 dst)
| AuthenticationFailure -> None? plain
| UnsupportedAlgorithm ->
if does_runtime_check then let open B in modifies loc_none h0 h1 else False
| _ -> False)) | false |
|
SteelFramingTestSuite.fst | SteelFramingTestSuite.test1 | val test1 (b1 b2 b3: ref)
: SteelT int
(((ptr b1) `star` (ptr b2)) `star` (ptr b3))
(fun _ -> ((ptr b1) `star` (ptr b2)) `star` (ptr b3)) | val test1 (b1 b2 b3: ref)
: SteelT int
(((ptr b1) `star` (ptr b2)) `star` (ptr b3))
(fun _ -> ((ptr b1) `star` (ptr b2)) `star` (ptr b3)) | let test1 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b1 `star` ptr b2 `star` ptr b3)
=
let x = (let y = read b1 in y) in
x | {
"file_name": "share/steel/tests/SteelFramingTestSuite.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 3,
"end_line": 52,
"start_col": 0,
"start_line": 47
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module SteelFramingTestSuite
open Steel.Memory
open Steel.Effect
/// A collection of small unit tests for the framing tactic
assume val p : vprop
assume val f (x:int) : SteelT unit p (fun _ -> p)
let test () : SteelT unit (p `star` p `star` p) (fun _ -> p `star` p `star` p)
= f 0; ()
assume val ref : Type0
assume val ptr (_:ref) : vprop
assume val alloc (x:int) : SteelT ref emp (fun y -> ptr y)
assume val free (r:ref) : SteelT unit (ptr r) (fun _ -> emp)
assume val read (r:ref) : SteelT int (ptr r) (fun _ -> ptr r)
assume val write (r:ref) (v: int) : SteelT unit (ptr r) (fun _ -> ptr r)
let unused x = x // work around another gensym heisenbug
let test0 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b1 `star` ptr b2 `star` ptr b3)
=
let x = read b1 in
x | {
"checked_file": "/",
"dependencies": [
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "SteelFramingTestSuite.fst"
} | [
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b1: SteelFramingTestSuite.ref -> b2: SteelFramingTestSuite.ref -> b3: SteelFramingTestSuite.ref
-> Steel.Effect.SteelT Prims.int | Steel.Effect.SteelT | [] | [] | [
"SteelFramingTestSuite.ref",
"Prims.int",
"SteelFramingTestSuite.read",
"Steel.Effect.Common.star",
"SteelFramingTestSuite.ptr",
"Steel.Effect.Common.vprop"
] | [] | false | true | false | false | false | let test1 (b1 b2 b3: ref)
: SteelT int
(((ptr b1) `star` (ptr b2)) `star` (ptr b3))
(fun _ -> ((ptr b1) `star` (ptr b2)) `star` (ptr b3)) =
| let x =
(let y = read b1 in
y)
in
x | false |
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.parse32_vldata_payload | val parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz {f i == true})
: Tot (parser32 (parse_vldata_payload sz f p i)) | val parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz {f i == true})
: Tot (parser32 (parse_vldata_payload sz f p i)) | let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 62,
"end_line": 22,
"start_col": 0,
"start_line": 13
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
sz: LowParse.Spec.BoundedInt.integer_size ->
f: (_: LowParse.Spec.BoundedInt.bounded_integer sz -> Prims.GTot Prims.bool) ->
p32: LowParse.SLow.Base.parser32 p ->
i: LowParse.Spec.BoundedInt.bounded_integer sz {f i == true}
-> LowParse.SLow.Base.parser32 (LowParse.Spec.VLData.parse_vldata_payload sz f p i) | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.BoundedInt.integer_size",
"LowParse.Spec.BoundedInt.bounded_integer",
"Prims.bool",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.SLow.Base.parser32",
"Prims.eq2",
"LowParse.SLow.Base.bytes32",
"LowParse.SLow.FLData.parse32_fldata",
"FStar.UInt32.v",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"FStar.UInt32.t",
"LowParse.SLow.Base.parser32_correct",
"LowParse.Spec.VLData.parse_vldata_payload_kind",
"LowParse.Spec.VLData.parse_vldata_payload"
] | [] | false | false | false | false | false | let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz {f i == true})
: Tot (parser32 (parse_vldata_payload sz f p i)) =
| fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input | false |
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.parse32_vldata | val parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p)) | val parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p)) | let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32 | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 78,
"end_line": 50,
"start_col": 0,
"start_line": 43
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | sz: LowParse.Spec.BoundedInt.integer_size -> p32: LowParse.SLow.Base.parser32 p
-> LowParse.SLow.Base.parser32 (LowParse.Spec.VLData.parse_vldata sz p) | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.BoundedInt.integer_size",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.VLData.parse32_vldata_gen",
"LowParse.Spec.VLData.unconstrained_bounded_integer",
"LowParse.Spec.BoundedInt.bounded_integer",
"Prims.bool",
"Prims.eq2",
"LowParse.Spec.VLData.parse_vldata_gen_kind",
"LowParse.Spec.VLData.parse_vldata"
] | [] | false | false | false | false | false | let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p)) =
| parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32 | false |
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.parse32_vldata_gen | val parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f': (x: bounded_integer sz -> Tot (y: bool{y == f x})))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p)) | val parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f': (x: bounded_integer sz -> Tot (y: bool{y == f x})))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p)) | let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32) | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 37,
"end_line": 40,
"start_col": 0,
"start_line": 25
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
sz: LowParse.Spec.BoundedInt.integer_size ->
f: (_: LowParse.Spec.BoundedInt.bounded_integer sz -> Prims.GTot Prims.bool) ->
f': (x: LowParse.Spec.BoundedInt.bounded_integer sz -> y: Prims.bool{y == f x}) ->
p32: LowParse.SLow.Base.parser32 p
-> LowParse.SLow.Base.parser32 (LowParse.Spec.VLData.parse_vldata_gen sz f p) | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.BoundedInt.integer_size",
"LowParse.Spec.BoundedInt.bounded_integer",
"Prims.bool",
"Prims.eq2",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.Combinators.parse32_and_then",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.Combinators.parse_filter",
"LowParse.Spec.BoundedInt.parse_bounded_integer",
"LowParse.SLow.Combinators.parse32_filter",
"LowParse.SLow.BoundedInt.parse32_bounded_integer",
"LowParse.Spec.VLData.parse_vldata_payload_kind",
"LowParse.Spec.VLData.parse_vldata_payload",
"LowParse.SLow.VLData.parse32_vldata_payload",
"Prims.unit",
"LowParse.Spec.VLData.parse_vldata_gen_eq_def",
"LowParse.Spec.VLData.parse_vldata_gen_kind",
"LowParse.Spec.VLData.parse_vldata_gen"
] | [] | false | false | false | false | false | let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f': (x: bounded_integer sz -> Tot (y: bool{y == f x})))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p)) =
| [@@ inline_let ]let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then (parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32) | false |
CustomSyntax.fst | CustomSyntax.folded_pts_to | val folded_pts_to (r: ref U32.t) (n: erased U32.t) : vprop | val folded_pts_to (r: ref U32.t) (n: erased U32.t) : vprop | let folded_pts_to (r:ref U32.t) (n:erased U32.t) : vprop = pts_to r n | {
"file_name": "share/steel/examples/pulse/CustomSyntax.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 69,
"end_line": 26,
"start_col": 0,
"start_line": 26
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CustomSyntax
open Pulse.Lib.Pervasives
module U32 = FStar.UInt32
#push-options "--using_facts_from '* -FStar.Tactics -FStar.Reflection'"
#push-options "--ide_id_info_off"
assume val p : vprop
assume val g : unit -> stt unit emp (fun _ -> p) | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Pervasives.fst.checked",
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "CustomSyntax.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Pulse.Lib.Reference.ref FStar.UInt32.t -> n: FStar.Ghost.erased FStar.UInt32.t
-> Pulse.Lib.Core.vprop | Prims.Tot | [
"total"
] | [] | [
"Pulse.Lib.Reference.ref",
"FStar.UInt32.t",
"FStar.Ghost.erased",
"Pulse.Lib.Reference.pts_to",
"PulseCore.FractionalPermission.full_perm",
"FStar.Ghost.reveal",
"Pulse.Lib.Core.vprop"
] | [] | false | false | false | true | false | let folded_pts_to (r: ref U32.t) (n: erased U32.t) : vprop =
| pts_to r n | false |
Spec.Agile.DH.fst | Spec.Agile.DH.prime | val prime : a: Spec.Agile.DH.algorithm -> Prims.pos | let prime (a:algorithm) =
match a with
| DH_Curve25519 -> Spec.Curve25519.prime
| DH_P256 -> Spec.P256.prime | {
"file_name": "specs/Spec.Agile.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 30,
"end_line": 31,
"start_col": 0,
"start_line": 28
} | module Spec.Agile.DH
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants
type algorithm =
| DH_Curve25519
| DH_P256
inline_for_extraction
let size_key (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 32
inline_for_extraction
let size_public (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 64 | {
"checked_file": "/",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Agile.DH.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.DH.algorithm -> Prims.pos | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.DH.algorithm",
"Spec.Curve25519.prime",
"Spec.P256.PointOps.prime",
"Prims.pos"
] | [] | false | false | false | true | false | let prime (a: algorithm) =
| match a with
| DH_Curve25519 -> Spec.Curve25519.prime
| DH_P256 -> Spec.P256.prime | false |
|
Spec.Agile.DH.fst | Spec.Agile.DH.size_key | val size_key (a: algorithm) : Tot size_nat | val size_key (a: algorithm) : Tot size_nat | let size_key (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 32 | {
"file_name": "specs/Spec.Agile.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 19,
"start_col": 0,
"start_line": 16
} | module Spec.Agile.DH
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants
type algorithm =
| DH_Curve25519
| DH_P256 | {
"checked_file": "/",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Agile.DH.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.DH.algorithm -> Lib.IntTypes.size_nat | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.DH.algorithm",
"Lib.IntTypes.size_nat"
] | [] | false | false | false | true | false | let size_key (a: algorithm) : Tot size_nat =
| match a with
| DH_Curve25519 -> 32
| DH_P256 -> 32 | false |
Spec.Agile.DH.fst | Spec.Agile.DH.size_public | val size_public (a: algorithm) : Tot size_nat | val size_public (a: algorithm) : Tot size_nat | let size_public (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 64 | {
"file_name": "specs/Spec.Agile.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 25,
"start_col": 0,
"start_line": 22
} | module Spec.Agile.DH
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants
type algorithm =
| DH_Curve25519
| DH_P256
inline_for_extraction
let size_key (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 32 | {
"checked_file": "/",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Agile.DH.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.DH.algorithm -> Lib.IntTypes.size_nat | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.DH.algorithm",
"Lib.IntTypes.size_nat"
] | [] | false | false | false | true | false | let size_public (a: algorithm) : Tot size_nat =
| match a with
| DH_Curve25519 -> 32
| DH_P256 -> 64 | false |
Spec.Agile.DH.fst | Spec.Agile.DH.secret_to_public | val secret_to_public: a:algorithm -> scalar a -> Tot (option (serialized_point a)) | val secret_to_public: a:algorithm -> scalar a -> Tot (option (serialized_point a)) | let secret_to_public a kpriv =
match a with
| DH_Curve25519 -> Some (Spec.Curve25519.secret_to_public kpriv)
| DH_P256 -> Spec.P256.secret_to_public kpriv | {
"file_name": "specs/Spec.Agile.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 47,
"end_line": 62,
"start_col": 0,
"start_line": 59
} | module Spec.Agile.DH
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants
type algorithm =
| DH_Curve25519
| DH_P256
inline_for_extraction
let size_key (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 32
inline_for_extraction
let size_public (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 64
inline_for_extraction
let prime (a:algorithm) =
match a with
| DH_Curve25519 -> Spec.Curve25519.prime
| DH_P256 -> Spec.P256.prime
/// Types
type scalar (a:algorithm) = lbytes (size_key a)
type serialized_point (a:algorithm) = lbytes (size_public a)
/// Functions
val clamp: alg:algorithm{alg = DH_Curve25519} -> scalar alg -> Tot (scalar alg)
let clamp a k =
match a with
| DH.DH_Curve25519 -> Spec.Curve25519.decodeScalar k
#set-options "--z3rlimit 50"
val dh: a:algorithm -> s:scalar a -> p:serialized_point a -> Tot (option (serialized_point a))
let dh a s p =
match a with
| DH_Curve25519 ->
let output = Spec.Curve25519.scalarmult s p in
let is_valid = not (lbytes_eq (create (size_public a) (u8 0)) output) in
if is_valid then Some output else None
| DH_P256 ->
Spec.P256.ecdh p s | {
"checked_file": "/",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Agile.DH.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Agile.DH.algorithm -> kpriv: Spec.Agile.DH.scalar a
-> FStar.Pervasives.Native.option (Spec.Agile.DH.serialized_point a) | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.DH.algorithm",
"Spec.Agile.DH.scalar",
"FStar.Pervasives.Native.Some",
"Spec.Agile.DH.serialized_point",
"Spec.Curve25519.secret_to_public",
"Spec.P256.secret_to_public",
"FStar.Pervasives.Native.option"
] | [] | false | false | false | false | false | let secret_to_public a kpriv =
| match a with
| DH_Curve25519 -> Some (Spec.Curve25519.secret_to_public kpriv)
| DH_P256 -> Spec.P256.secret_to_public kpriv | false |
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.parse32_bounded_vldata' | val parse32_bounded_vldata'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p)) | val parse32_bounded_vldata'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p)) | let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input) | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 118,
"end_line": 70,
"start_col": 0,
"start_line": 55
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} ->
p32: LowParse.SLow.Base.parser32 p
-> LowParse.SLow.Base.parser32 (LowParse.Spec.VLData.parse_bounded_vldata' min max l p) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.Base.bytes32",
"LowParse.SLow.VLData.parse32_vldata_gen",
"LowParse.Spec.BoundedInt.in_bounds",
"LowParse.Spec.BoundedInt.bounded_integer",
"Prims.op_Negation",
"Prims.op_BarBar",
"FStar.UInt32.lt",
"Prims.bool",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.SLow.Base.parser32_correct",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata'",
"LowParse.Spec.BoundedInt.integer_size",
"Prims.unit",
"LowParse.Spec.VLData.parse_bounded_vldata_correct"
] | [] | false | false | false | false | false | let parse32_bounded_vldata'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p)) =
| [@@ inline_let ]let _ = parse_bounded_vldata_correct min max l p in
[@@ inline_let ]let sz:integer_size = l in
(fun input ->
parse32_vldata_gen sz
(in_bounds min max)
(fun i -> not (U32.lt i min32 || U32.lt max32 i))
p32
input) | false |
Spec.Agile.DH.fst | Spec.Agile.DH.clamp | val clamp: alg:algorithm{alg = DH_Curve25519} -> scalar alg -> Tot (scalar alg) | val clamp: alg:algorithm{alg = DH_Curve25519} -> scalar alg -> Tot (scalar alg) | let clamp a k =
match a with
| DH.DH_Curve25519 -> Spec.Curve25519.decodeScalar k | {
"file_name": "specs/Spec.Agile.DH.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 54,
"end_line": 44,
"start_col": 0,
"start_line": 42
} | module Spec.Agile.DH
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
/// Constants
type algorithm =
| DH_Curve25519
| DH_P256
inline_for_extraction
let size_key (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 32
inline_for_extraction
let size_public (a:algorithm) : Tot size_nat =
match a with
| DH_Curve25519 -> 32
| DH_P256 -> 64
inline_for_extraction
let prime (a:algorithm) =
match a with
| DH_Curve25519 -> Spec.Curve25519.prime
| DH_P256 -> Spec.P256.prime
/// Types
type scalar (a:algorithm) = lbytes (size_key a)
type serialized_point (a:algorithm) = lbytes (size_public a)
/// Functions | {
"checked_file": "/",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Agile.DH.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | alg: Spec.Agile.DH.algorithm{alg = Spec.Agile.DH.DH_Curve25519} -> k: Spec.Agile.DH.scalar alg
-> Spec.Agile.DH.scalar alg | Prims.Tot | [
"total"
] | [] | [
"Spec.Agile.DH.algorithm",
"Prims.b2t",
"Prims.op_Equality",
"Spec.Agile.DH.DH_Curve25519",
"Spec.Agile.DH.scalar",
"Spec.Curve25519.decodeScalar"
] | [] | false | false | false | false | false | let clamp a k =
| match a with | DH.DH_Curve25519 -> Spec.Curve25519.decodeScalar k | false |
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.parse32_bounded_vldata_strong_aux | val parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t)) | val parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t)) | let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 77,
"end_line": 113,
"start_col": 0,
"start_line": 86
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} ->
s: LowParse.Spec.Base.serializer p ->
p32: LowParse.SLow.Base.parser32 p ->
input: LowParse.SLow.Base.bytes32
-> FStar.Pervasives.Native.option (LowParse.Spec.VLData.parse_bounded_vldata_strong_t min max s *
FStar.UInt32.t) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.Base.bytes32",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_pred",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.option",
"LowParse.SLow.Base.parser32_correct",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.Combinators.parse_strengthen",
"LowParse.Spec.VLData.parse_bounded_vldata'",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_correct",
"LowParse.SLow.Combinators.parse32_strengthen",
"LowParse.SLow.VLData.parse32_bounded_vldata'"
] | [] | false | false | false | false | false | let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t)) =
| let res =
parse32_strengthen #(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1:t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) | false |
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.parse32_bounded_vldata | val parse32_bounded_vldata
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p)) | val parse32_bounded_vldata
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p)) | let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32 | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 63,
"end_line": 83,
"start_col": 0,
"start_line": 73
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} ->
p32: LowParse.SLow.Base.parser32 p
-> LowParse.SLow.Base.parser32 (LowParse.Spec.VLData.parse_bounded_vldata min max p) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.VLData.parse32_bounded_vldata'",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata"
] | [] | false | false | false | false | false | let parse32_bounded_vldata
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p)) =
| parse32_bounded_vldata' min min32 max max32 (log256' max) p32 | false |
CustomSyntax.fst | CustomSyntax.mpts_to | val mpts_to (r: ref U32.t) (n: erased U32.t) : vprop | val mpts_to (r: ref U32.t) (n: erased U32.t) : vprop | let mpts_to (r:ref U32.t) (n:erased U32.t) : vprop = pts_to r n | {
"file_name": "share/steel/examples/pulse/CustomSyntax.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 63,
"end_line": 240,
"start_col": 0,
"start_line": 240
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CustomSyntax
open Pulse.Lib.Pervasives
module U32 = FStar.UInt32
#push-options "--using_facts_from '* -FStar.Tactics -FStar.Reflection'"
#push-options "--ide_id_info_off"
assume val p : vprop
assume val g : unit -> stt unit emp (fun _ -> p)
let folded_pts_to (r:ref U32.t) (n:erased U32.t) : vprop = pts_to r n
```pulse
fn unfold_test (r:ref U32.t)
requires folded_pts_to r 'n
ensures folded_pts_to r 'n
{
unfold folded_pts_to;
fold folded_pts_to
}
```
```pulse
fn test_write_10 (x:ref U32.t)
requires pts_to x 'n
ensures pts_to x 0ul
{
x := 1ul;
x := 0ul;
}
```
```pulse
fn test_read (r:ref U32.t)
requires pts_to r #pm 'n
returns x : U32.t
ensures pts_to r #pm x
{
!r
}
```
```pulse
fn swap (r1 r2:ref U32.t)
requires
pts_to r1 'n1 **
pts_to r2 'n2
ensures
pts_to r1 'n2 **
pts_to r2 'n1
{
let x = !r1;
let y = !r2;
r1 := y;
r2 := x
}
```
```pulse
fn call_swap2 (r1 r2:ref U32.t)
requires
pts_to r1 'n1 **
pts_to r2 'n2
ensures
pts_to r1 'n1 **
pts_to r2 'n2
{
swap r1 r2;
swap r1 r2
}
```
```pulse
fn swap_with_elim_pure (#n1 #n2:erased U32.t)
(r1 r2:ref U32.t)
requires
pts_to r1 n1 **
pts_to r2 n2
ensures
pts_to r1 n2 **
pts_to r2 n1
{
let x = !r1;
let y = !r2;
r1 := y;
r2 := x
}
```
```pulse
fn intro_pure_example (r:ref U32.t)
requires
(pts_to r 'n1 **
pure (reveal 'n1 == reveal 'n2))
ensures
(pts_to r 'n2 **
pure (reveal 'n2 == reveal 'n1))
{
()
}
```
```pulse
fn if_example (r:ref U32.t)
(n:(n:erased U32.t{U32.v (reveal n) == 1}))
(b:bool)
requires
pts_to r n
ensures
pts_to r (U32.add (reveal n) 2ul)
{
let x = read_atomic r;
if b
{
r := U32.add x 2ul
}
else
{
write_atomic r 3ul
}
}
```
```pulse
ghost
fn elim_intro_exists2 (r:ref U32.t)
requires
exists* n. pts_to r n
ensures
exists* n. pts_to r n
{
introduce exists* n. pts_to r n with _
}
```
assume
val pred (b:bool) : vprop
assume
val read_pred () (#b:erased bool)
: stt bool (pred b) (fun r -> pred r)
```pulse
fn while_test_alt (r:ref U32.t)
requires
exists* b n.
(pts_to r n **
pred b)
ensures
exists* n. (pts_to r n **
pred false)
{
while (read_pred ())
invariant b . exists* n. (pts_to r n ** pred b)
{
()
}
}
```
```pulse
fn infer_read_ex (r:ref U32.t)
requires
exists* n. pts_to r n
ensures exists* n. pts_to r n
{
let x = !r;
()
}
```
```pulse
fn while_count2 (r:ref U32.t)
requires exists* (n:U32.t). (pts_to r n)
ensures (pts_to r 10ul)
{
open FStar.UInt32;
while (let x = !r; (x <> 10ul))
invariant b.
exists* n. (pts_to r n **
pure (b == (n <> 10ul)))
{
let x = !r;
if (x <^ 10ul)
{
r := x +^ 1ul
}
else
{
r := x -^ 1ul
}
}
}
```
```pulse
fn test_par (r1 r2:ref U32.t)
requires
pts_to r1 'n1 **
pts_to r2 'n2
ensures
pts_to r1 1ul **
pts_to r2 1ul
{
parallel
requires (pts_to r1 'n1)
and (pts_to r2 'n2)
ensures (pts_to r1 1ul)
and (pts_to r2 1ul)
{
r1 := 1ul
}
{
r2 := 1ul
};
()
}
``` | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Pervasives.fst.checked",
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "CustomSyntax.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Pulse.Lib.Reference.ref FStar.UInt32.t -> n: FStar.Ghost.erased FStar.UInt32.t
-> Pulse.Lib.Core.vprop | Prims.Tot | [
"total"
] | [] | [
"Pulse.Lib.Reference.ref",
"FStar.UInt32.t",
"FStar.Ghost.erased",
"Pulse.Lib.Reference.pts_to",
"PulseCore.FractionalPermission.full_perm",
"FStar.Ghost.reveal",
"Pulse.Lib.Core.vprop"
] | [] | false | false | false | true | false | let mpts_to (r: ref U32.t) (n: erased U32.t) : vprop =
| pts_to r n | false |
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.parse32_bounded_vldata_strong' | val parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot
(parser32 #_
#(parse_bounded_vldata_strong_t min max s)
(parse_bounded_vldata_strong' min max l s)) | val parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot
(parser32 #_
#(parse_bounded_vldata_strong_t min max s)
(parse_bounded_vldata_strong' min max l s)) | let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
) | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 5,
"end_line": 167,
"start_col": 0,
"start_line": 150
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} ->
s: LowParse.Spec.Base.serializer p ->
p32: LowParse.SLow.Base.parser32 p
-> LowParse.SLow.Base.parser32 (LowParse.Spec.VLData.parse_bounded_vldata_strong' min max l s) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.Base.make_parser32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.VLData.parse_bounded_vldata_strong'",
"LowParse.SLow.Base.bytes32",
"LowParse.SLow.VLData.parse32_bounded_vldata_strong_aux",
"Prims.unit",
"LowParse.SLow.VLData.parse32_bounded_vldata_strong_correct",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot
(parser32 #_
#(parse_bounded_vldata_strong_t min max s)
(parse_bounded_vldata_strong' min max l s)) =
| make_parser32 (parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input) | false |
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.size32_bounded_vldata_strong | val size32_bounded_vldata_strong
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t{U32.v sz32 == log256' max})
: Tot (size32 (serialize_bounded_vldata_strong min max s)) | val size32_bounded_vldata_strong
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t{U32.v sz32 == log256' max})
: Tot (size32 (serialize_bounded_vldata_strong min max s)) | let size32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4, otherwise add overflows
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t { U32.v sz32 == log256' max } )
: Tot (size32 (serialize_bounded_vldata_strong min max s))
= size32_bounded_vldata_strong' min max (log256' max) s32 sz32 | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 62,
"end_line": 354,
"start_col": 0,
"start_line": 344
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res)
let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s) input (serialize32_bounded_vldata_strong_aux min max l s32 input))
= let sz : integer_size = l in
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s))
= fun (input: parse_bounded_vldata_strong_t min max s) ->
serialize32_bounded_vldata_strong_correct min max l s32 input;
(serialize32_bounded_vldata_strong_aux min max l s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res } ))
inline_for_extraction
let serialize32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s))
= serialize32_bounded_vldata_strong' min max (log256' max) s32
inline_for_extraction
let serialize32_bounded_vldata
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { serialize_bounded_vldata_precond min max k } )
: Tot (serializer32 (serialize_bounded_vldata min max s))
= fun (input: t) ->
[@inline_let]
let _ : unit =
let Some (_, consumed) = parse p (serialize s input) in
()
in
serialize32_bounded_vldata_strong_correct min max (log256' max) s32 input;
(serialize32_bounded_vldata_strong_aux min max (log256' max) s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata min max s) input res } ))
#reset-options "--z3rlimit 32 --z3cliopt smt.arith.nl=false"
inline_for_extraction
let check_vldata_payload_size32
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967295 } ) // necessary to exclude the overflow case; enough to be compatible with serialize32
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(input: t)
: Tot (y: bool { y == true <==> parse_bounded_vldata_strong_pred min max s input } )
= let sz : U32.t = s32 input in
[@inline_let]
let y : bool =
not (sz = u32_max || U32.lt sz min32 || U32.lt max32 sz)
in
[@inline_let]
let _ : squash (y == true <==> parse_bounded_vldata_strong_pred min max s input) =
if sz = u32_max
then
if Seq.length (serialize s input) > U32.v u32_max
then ()
else begin
assert (U32.v u32_max == Seq.length (serialize s input));
assert_norm (U32.v u32_max == 4294967295);
assert (Seq.length (serialize s input) > max);
assert (~ (parse_bounded_vldata_strong_pred min max s input))
end
else
if Seq.length (serialize s input) > U32.v u32_max
then ()
else ()
in
y
inline_for_extraction
let size32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4, otherwise add overflows
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t { U32.v sz32 == l } )
: Tot (size32 (serialize_bounded_vldata_strong' min max l s))
= (fun (input: parse_bounded_vldata_strong_t min max s) ->
let len = s32 input in
[@inline_let]
let _ = assert_norm (U32.v u32_max == 4294967295) in
[@inline_let]
let _ = assert (min <= U32.v len /\ U32.v len <= max) in
[@inline_let]
let res : U32.t = U32.add sz32 len in
(res <: (res: U32.t { size32_postcond (serialize_bounded_vldata_strong' min max l s) input res } ))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
s32: LowParse.SLow.Base.size32 s ->
sz32: FStar.UInt32.t{FStar.UInt32.v sz32 == LowParse.Spec.BoundedInt.log256' max}
-> LowParse.SLow.Base.size32 (LowParse.Spec.VLData.serialize_bounded_vldata_strong min max s) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.size32",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.SLow.VLData.size32_bounded_vldata_strong'",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.VLData.parse_bounded_vldata_strong",
"LowParse.Spec.VLData.serialize_bounded_vldata_strong"
] | [] | false | false | false | false | false | let size32_bounded_vldata_strong
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t{U32.v sz32 == log256' max})
: Tot (size32 (serialize_bounded_vldata_strong min max s)) =
| size32_bounded_vldata_strong' min max (log256' max) s32 sz32 | false |
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.parse32_bounded_vldata_strong | val parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot
(parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s)) | val parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot
(parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s)) | let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32 | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 72,
"end_line": 181,
"start_col": 0,
"start_line": 170
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} ->
s: LowParse.Spec.Base.serializer p ->
p32: LowParse.SLow.Base.parser32 p
-> LowParse.SLow.Base.parser32 (LowParse.Spec.VLData.parse_bounded_vldata_strong min max s) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.VLData.parse32_bounded_vldata_strong'",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.VLData.parse_bounded_vldata_strong"
] | [] | false | false | false | false | false | let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot
(parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s)) =
| parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32 | false |
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.parse32_bounded_vldata_strong_correct | val parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
(let res:option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res) | val parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
(let res:option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res) | let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res) | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 82,
"end_line": 147,
"start_col": 0,
"start_line": 115
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} ->
s: LowParse.Spec.Base.serializer p ->
p32: LowParse.SLow.Base.parser32 p ->
input: LowParse.SLow.Base.bytes32
-> FStar.Pervasives.Lemma
(ensures
(let res =
LowParse.SLow.VLData.parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
LowParse.SLow.Base.parser32_correct (LowParse.Spec.VLData.parse_bounded_vldata_strong' min
max
l
s)
input
res)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.Base.bytes32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_pred",
"Prims._assert",
"LowParse.SLow.Base.parser32_correct",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.VLData.parse_bounded_vldata_strong'",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"Prims.unit",
"LowParse.Spec.Combinators.parse_strengthen",
"LowParse.Spec.VLData.parse_bounded_vldata'",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_correct",
"LowParse.SLow.Combinators.parse32_strengthen",
"LowParse.SLow.VLData.parse32_bounded_vldata'",
"Prims.l_True",
"Prims.squash",
"LowParse.SLow.VLData.parse32_bounded_vldata_strong_aux",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
(let res:option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res) =
| let res =
parse32_strengthen #(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1:t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res) | false |
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.serialize32_bounded_vldata_strong | val serialize32_bounded_vldata_strong
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s)) | val serialize32_bounded_vldata_strong
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s)) | let serialize32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s))
= serialize32_bounded_vldata_strong' min max (log256' max) s32 | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 62,
"end_line": 261,
"start_col": 0,
"start_line": 252
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res)
let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s) input (serialize32_bounded_vldata_strong_aux min max l s32 input))
= let sz : integer_size = l in
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s))
= fun (input: parse_bounded_vldata_strong_t min max s) ->
serialize32_bounded_vldata_strong_correct min max l s32 input;
(serialize32_bounded_vldata_strong_aux min max l s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res } )) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
s32: LowParse.SLow.Base.partial_serializer32 s
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.VLData.serialize_bounded_vldata_strong min max s
) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.partial_serializer32",
"LowParse.SLow.VLData.serialize32_bounded_vldata_strong'",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.SLow.Base.serializer32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.VLData.parse_bounded_vldata_strong",
"LowParse.Spec.VLData.serialize_bounded_vldata_strong"
] | [] | false | false | false | false | false | let serialize32_bounded_vldata_strong
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s)) =
| serialize32_bounded_vldata_strong' min max (log256' max) s32 | false |
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.serialize32_bounded_vldata_strong' | val serialize32_bounded_vldata_strong'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s)) | val serialize32_bounded_vldata_strong'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s)) | let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s))
= fun (input: parse_bounded_vldata_strong_t min max s) ->
serialize32_bounded_vldata_strong_correct min max l s32 input;
(serialize32_bounded_vldata_strong_aux min max l s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res } )) | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 162,
"end_line": 249,
"start_col": 0,
"start_line": 237
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res)
let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s) input (serialize32_bounded_vldata_strong_aux min max l s32 input))
= let sz : integer_size = l in
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} ->
s32: LowParse.SLow.Base.partial_serializer32 s
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.VLData.serialize_bounded_vldata_strong' min
max
l
s) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"Prims.op_GreaterThanOrEqual",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.partial_serializer32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.SLow.VLData.serialize32_bounded_vldata_strong_aux",
"LowParse.SLow.Base.bytes32",
"LowParse.SLow.Base.serializer32_correct",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong'",
"LowParse.Spec.VLData.serialize_bounded_vldata_strong'",
"Prims.unit",
"LowParse.SLow.VLData.serialize32_bounded_vldata_strong_correct",
"LowParse.SLow.Base.serializer32"
] | [] | false | false | false | false | false | let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s)) =
| fun (input: parse_bounded_vldata_strong_t min max s) ->
serialize32_bounded_vldata_strong_correct min max l s32 input;
(serialize32_bounded_vldata_strong_aux min max l s32 input
<:
(res: bytes32{serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res})) | false |
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.serialize32_bounded_vldata | val serialize32_bounded_vldata
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s {serialize_bounded_vldata_precond min max k})
: Tot (serializer32 (serialize_bounded_vldata min max s)) | val serialize32_bounded_vldata
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s {serialize_bounded_vldata_precond min max k})
: Tot (serializer32 (serialize_bounded_vldata min max s)) | let serialize32_bounded_vldata
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { serialize_bounded_vldata_precond min max k } )
: Tot (serializer32 (serialize_bounded_vldata min max s))
= fun (input: t) ->
[@inline_let]
let _ : unit =
let Some (_, consumed) = parse p (serialize s input) in
()
in
serialize32_bounded_vldata_strong_correct min max (log256' max) s32 input;
(serialize32_bounded_vldata_strong_aux min max (log256' max) s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata min max s) input res } )) | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 164,
"end_line": 280,
"start_col": 0,
"start_line": 264
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res)
let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s) input (serialize32_bounded_vldata_strong_aux min max l s32 input))
= let sz : integer_size = l in
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s))
= fun (input: parse_bounded_vldata_strong_t min max s) ->
serialize32_bounded_vldata_strong_correct min max l s32 input;
(serialize32_bounded_vldata_strong_aux min max l s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res } ))
inline_for_extraction
let serialize32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s))
= serialize32_bounded_vldata_strong' min max (log256' max) s32 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
s32:
LowParse.SLow.Base.partial_serializer32 s
{LowParse.Spec.VLData.serialize_bounded_vldata_precond min max k}
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.VLData.serialize_bounded_vldata min max s) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.partial_serializer32",
"LowParse.Spec.VLData.serialize_bounded_vldata_precond",
"LowParse.SLow.VLData.serialize32_bounded_vldata_strong_aux",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.SLow.Base.bytes32",
"LowParse.SLow.Base.serializer32_correct",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata",
"LowParse.Spec.VLData.serialize_bounded_vldata",
"Prims.unit",
"LowParse.SLow.VLData.serialize32_bounded_vldata_strong_correct",
"LowParse.Spec.Base.consumed_length",
"LowParse.Spec.Base.serialize",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Base.parse",
"LowParse.SLow.Base.serializer32"
] | [] | false | false | false | false | false | let serialize32_bounded_vldata
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s {serialize_bounded_vldata_precond min max k})
: Tot (serializer32 (serialize_bounded_vldata min max s)) =
| fun (input: t) ->
[@@ inline_let ]let _:unit =
let Some (_, consumed) = parse p (serialize s input) in
()
in
serialize32_bounded_vldata_strong_correct min max (log256' max) s32 input;
(serialize32_bounded_vldata_strong_aux min max (log256' max) s32 input
<:
(res: bytes32{serializer32_correct (serialize_bounded_vldata min max s) input res})) | false |
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.serialize32_bounded_vldata_strong_correct | val serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s)
input
(serialize32_bounded_vldata_strong_aux min max l s32 input)) | val serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s)
input
(serialize32_bounded_vldata_strong_aux min max l s32 input)) | let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s) input (serialize32_bounded_vldata_strong_aux min max l s32 input))
= let sz : integer_size = l in
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res) | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 88,
"end_line": 234,
"start_col": 0,
"start_line": 208
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} ->
s32: LowParse.SLow.Base.partial_serializer32 s ->
input: LowParse.Spec.VLData.parse_bounded_vldata_strong_t min max s
-> FStar.Pervasives.Lemma
(ensures
LowParse.SLow.Base.serializer32_correct (LowParse.Spec.VLData.serialize_bounded_vldata_strong'
min
max
l
s)
input
(LowParse.SLow.VLData.serialize32_bounded_vldata_strong_aux min max l s32 input)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"Prims.op_GreaterThanOrEqual",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.partial_serializer32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"Prims._assert",
"LowParse.SLow.Base.serializer32_correct",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong'",
"LowParse.Spec.VLData.serialize_bounded_vldata_strong'",
"Prims.unit",
"Prims.eq2",
"FStar.Seq.Base.seq",
"LowParse.Bytes.byte",
"FStar.Bytes.reveal",
"LowParse.Spec.VLData.serialize_bounded_vldata_strong_aux",
"FStar.Bytes.byte",
"FStar.Seq.Base.append",
"LowParse.SLow.Base.bytes32",
"LowParse.Bytes32.b32append",
"LowParse.Spec.Combinators.seq_slice_append_r",
"LowParse.Spec.Combinators.seq_slice_append_l",
"LowParse.Spec.Base.serialize",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Spec.BoundedInt.parse_bounded_integer",
"LowParse.Spec.BoundedInt.serialize_bounded_integer",
"FStar.UInt.uint_t",
"FStar.UInt32.v",
"FStar.UInt32.t",
"FStar.Bytes.len",
"LowParse.SLow.Base.serializer32",
"LowParse.SLow.BoundedInt.serialize32_bounded_integer",
"LowParse.Spec.BoundedInt.integer_size",
"Prims.l_True",
"Prims.squash",
"LowParse.SLow.VLData.serialize32_bounded_vldata_strong_aux",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s)
input
(serialize32_bounded_vldata_strong_aux min max l s32 input)) =
| let sz:integer_size = l in
let ser:serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res:bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res) | false |
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.serialize32_bounded_vldata_strong_aux | val serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32) | val serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32) | let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res) | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 8,
"end_line": 206,
"start_col": 0,
"start_line": 184
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} ->
s32: LowParse.SLow.Base.partial_serializer32 s ->
_: LowParse.Spec.VLData.parse_bounded_vldata_strong_t min max s
-> LowParse.SLow.Base.bytes32 | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"Prims.op_GreaterThanOrEqual",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.partial_serializer32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.SLow.Base.bytes32",
"LowParse.Bytes32.b32append",
"Prims.unit",
"LowParse.Spec.Combinators.seq_slice_append_r",
"FStar.Bytes.byte",
"FStar.Bytes.reveal",
"LowParse.Spec.Combinators.seq_slice_append_l",
"LowParse.SLow.Base.serializer32_correct",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Spec.BoundedInt.parse_bounded_integer",
"LowParse.Spec.BoundedInt.serialize_bounded_integer",
"Prims._assert",
"FStar.UInt32.v",
"FStar.UInt32.t",
"FStar.Bytes.len",
"LowParse.SLow.Base.serializer32",
"LowParse.SLow.BoundedInt.serialize32_bounded_integer",
"LowParse.Spec.BoundedInt.integer_size"
] | [] | false | false | false | false | false | let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32) =
| [@@ inline_let ]let sz:integer_size = l in
[@@ inline_let ]let ser:serializer32 (serialize_bounded_integer sz) =
serialize32_bounded_integer sz
in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res:bytes32 = B32.b32append slen pl in
res) | false |
CustomSyntax.fst | CustomSyntax.zero | val zero:nat | val zero:nat | let zero : nat = 0 | {
"file_name": "share/steel/examples/pulse/CustomSyntax.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 18,
"end_line": 292,
"start_col": 0,
"start_line": 292
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module CustomSyntax
open Pulse.Lib.Pervasives
module U32 = FStar.UInt32
#push-options "--using_facts_from '* -FStar.Tactics -FStar.Reflection'"
#push-options "--ide_id_info_off"
assume val p : vprop
assume val g : unit -> stt unit emp (fun _ -> p)
let folded_pts_to (r:ref U32.t) (n:erased U32.t) : vprop = pts_to r n
```pulse
fn unfold_test (r:ref U32.t)
requires folded_pts_to r 'n
ensures folded_pts_to r 'n
{
unfold folded_pts_to;
fold folded_pts_to
}
```
```pulse
fn test_write_10 (x:ref U32.t)
requires pts_to x 'n
ensures pts_to x 0ul
{
x := 1ul;
x := 0ul;
}
```
```pulse
fn test_read (r:ref U32.t)
requires pts_to r #pm 'n
returns x : U32.t
ensures pts_to r #pm x
{
!r
}
```
```pulse
fn swap (r1 r2:ref U32.t)
requires
pts_to r1 'n1 **
pts_to r2 'n2
ensures
pts_to r1 'n2 **
pts_to r2 'n1
{
let x = !r1;
let y = !r2;
r1 := y;
r2 := x
}
```
```pulse
fn call_swap2 (r1 r2:ref U32.t)
requires
pts_to r1 'n1 **
pts_to r2 'n2
ensures
pts_to r1 'n1 **
pts_to r2 'n2
{
swap r1 r2;
swap r1 r2
}
```
```pulse
fn swap_with_elim_pure (#n1 #n2:erased U32.t)
(r1 r2:ref U32.t)
requires
pts_to r1 n1 **
pts_to r2 n2
ensures
pts_to r1 n2 **
pts_to r2 n1
{
let x = !r1;
let y = !r2;
r1 := y;
r2 := x
}
```
```pulse
fn intro_pure_example (r:ref U32.t)
requires
(pts_to r 'n1 **
pure (reveal 'n1 == reveal 'n2))
ensures
(pts_to r 'n2 **
pure (reveal 'n2 == reveal 'n1))
{
()
}
```
```pulse
fn if_example (r:ref U32.t)
(n:(n:erased U32.t{U32.v (reveal n) == 1}))
(b:bool)
requires
pts_to r n
ensures
pts_to r (U32.add (reveal n) 2ul)
{
let x = read_atomic r;
if b
{
r := U32.add x 2ul
}
else
{
write_atomic r 3ul
}
}
```
```pulse
ghost
fn elim_intro_exists2 (r:ref U32.t)
requires
exists* n. pts_to r n
ensures
exists* n. pts_to r n
{
introduce exists* n. pts_to r n with _
}
```
assume
val pred (b:bool) : vprop
assume
val read_pred () (#b:erased bool)
: stt bool (pred b) (fun r -> pred r)
```pulse
fn while_test_alt (r:ref U32.t)
requires
exists* b n.
(pts_to r n **
pred b)
ensures
exists* n. (pts_to r n **
pred false)
{
while (read_pred ())
invariant b . exists* n. (pts_to r n ** pred b)
{
()
}
}
```
```pulse
fn infer_read_ex (r:ref U32.t)
requires
exists* n. pts_to r n
ensures exists* n. pts_to r n
{
let x = !r;
()
}
```
```pulse
fn while_count2 (r:ref U32.t)
requires exists* (n:U32.t). (pts_to r n)
ensures (pts_to r 10ul)
{
open FStar.UInt32;
while (let x = !r; (x <> 10ul))
invariant b.
exists* n. (pts_to r n **
pure (b == (n <> 10ul)))
{
let x = !r;
if (x <^ 10ul)
{
r := x +^ 1ul
}
else
{
r := x -^ 1ul
}
}
}
```
```pulse
fn test_par (r1 r2:ref U32.t)
requires
pts_to r1 'n1 **
pts_to r2 'n2
ensures
pts_to r1 1ul **
pts_to r2 1ul
{
parallel
requires (pts_to r1 'n1)
and (pts_to r2 'n2)
ensures (pts_to r1 1ul)
and (pts_to r2 1ul)
{
r1 := 1ul
}
{
r2 := 1ul
};
()
}
```
// A test for rewrite
let mpts_to (r:ref U32.t) (n:erased U32.t) : vprop = pts_to r n
```pulse
fn rewrite_test (r:ref U32.t)
requires (mpts_to r 'n)
ensures (mpts_to r 1ul)
{
rewrite (mpts_to r 'n)
as (pts_to r 'n);
r := 1ul;
rewrite (pts_to r 1ul)
as (mpts_to r 1ul)
}
```
```pulse
fn test_local (r:ref U32.t)
requires (pts_to r 'n)
ensures (pts_to r 0ul)
{
let mut x = 0ul;
let y = Pulse.Lib.Reference.op_Bang x;
r := y
}
```
```pulse
fn count_local (r:ref int) (n:int)
requires (pts_to r (hide 0))
ensures (pts_to r n)
{
let mut i = 0;
while
(let m = !i; (m <> n))
invariant b. exists* m.
(pts_to i m **
pure (b == (m <> n)))
{
let m = !i;
i := m + 1
};
let x = !i;
r := x
}
```
let rec sum_spec (n:nat) : GTot nat =
if n = 0 then 0 else n + sum_spec (n - 1)
noextract | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Pervasives.fst.checked",
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "CustomSyntax.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.nat | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let zero:nat =
| 0 | false |
Hacl.Streaming.Poly1305_32.fsti | Hacl.Streaming.Poly1305_32.malloc | val malloc : Hacl.Streaming.Functor.malloc_st (Hacl.Streaming.Poly1305.poly1305 Hacl.Impl.Poly1305.Fields.M32)
()
(Hacl.Streaming.Poly1305.t Hacl.Impl.Poly1305.Fields.M32)
(Stateful?.s Hacl.Streaming.Poly1305.poly1305_key ()) | let malloc = F.malloc (poly1305 M32) () (t M32) (poly1305_key.I.s ()) | {
"file_name": "code/streaming/Hacl.Streaming.Poly1305_32.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 69,
"end_line": 17,
"start_col": 0,
"start_line": 17
} | module Hacl.Streaming.Poly1305_32
module G = FStar.Ghost
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
open Hacl.Impl.Poly1305.Fields
open Hacl.Streaming.Poly1305
#set-options "--fuel 0 --ifuel 0 --z3rlimit 100"
/// Type abbreviation - makes KaRaMeL use pretty names in the generated code
let state_t = F.state_s (poly1305 M32) () (t M32) (poly1305_key.I.s ())
noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Hacl.Streaming.Poly1305.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Poly1305.Fields.fst.checked",
"Hacl.Impl.Poly1305.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Poly1305_32.fsti"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305.Fields",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Streaming.Functor.malloc_st (Hacl.Streaming.Poly1305.poly1305 Hacl.Impl.Poly1305.Fields.M32)
()
(Hacl.Streaming.Poly1305.t Hacl.Impl.Poly1305.Fields.M32)
(Stateful?.s Hacl.Streaming.Poly1305.poly1305_key ()) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Functor.malloc",
"Prims.unit",
"Hacl.Streaming.Poly1305.poly1305",
"Hacl.Impl.Poly1305.Fields.M32",
"Hacl.Streaming.Poly1305.t",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Poly1305.poly1305_key"
] | [] | false | false | false | false | false | let malloc =
| F.malloc (poly1305 M32) () (t M32) (poly1305_key.I.s ()) | false |
|
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.check_vldata_payload_size32 | val check_vldata_payload_size32
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967295})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(input: t)
: Tot (y: bool{y == true <==> parse_bounded_vldata_strong_pred min max s input}) | val check_vldata_payload_size32
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967295})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(input: t)
: Tot (y: bool{y == true <==> parse_bounded_vldata_strong_pred min max s input}) | let check_vldata_payload_size32
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967295 } ) // necessary to exclude the overflow case; enough to be compatible with serialize32
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(input: t)
: Tot (y: bool { y == true <==> parse_bounded_vldata_strong_pred min max s input } )
= let sz : U32.t = s32 input in
[@inline_let]
let y : bool =
not (sz = u32_max || U32.lt sz min32 || U32.lt max32 sz)
in
[@inline_let]
let _ : squash (y == true <==> parse_bounded_vldata_strong_pred min max s input) =
if sz = u32_max
then
if Seq.length (serialize s input) > U32.v u32_max
then ()
else begin
assert (U32.v u32_max == Seq.length (serialize s input));
assert_norm (U32.v u32_max == 4294967295);
assert (Seq.length (serialize s input) > max);
assert (~ (parse_bounded_vldata_strong_pred min max s input))
end
else
if Seq.length (serialize s input) > U32.v u32_max
then ()
else ()
in
y | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 3,
"end_line": 319,
"start_col": 0,
"start_line": 285
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res)
let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s) input (serialize32_bounded_vldata_strong_aux min max l s32 input))
= let sz : integer_size = l in
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s))
= fun (input: parse_bounded_vldata_strong_t min max s) ->
serialize32_bounded_vldata_strong_correct min max l s32 input;
(serialize32_bounded_vldata_strong_aux min max l s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res } ))
inline_for_extraction
let serialize32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s))
= serialize32_bounded_vldata_strong' min max (log256' max) s32
inline_for_extraction
let serialize32_bounded_vldata
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { serialize_bounded_vldata_precond min max k } )
: Tot (serializer32 (serialize_bounded_vldata min max s))
= fun (input: t) ->
[@inline_let]
let _ : unit =
let Some (_, consumed) = parse p (serialize s input) in
()
in
serialize32_bounded_vldata_strong_correct min max (log256' max) s32 input;
(serialize32_bounded_vldata_strong_aux min max (log256' max) s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata min max s) input res } ))
#reset-options "--z3rlimit 32 --z3cliopt smt.arith.nl=false" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967295} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} ->
s32: LowParse.SLow.Base.size32 s ->
input: t
-> y:
Prims.bool{y == true <==> LowParse.Spec.VLData.parse_bounded_vldata_strong_pred min max s input} | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.size32",
"Prims.squash",
"Prims.l_iff",
"Prims.bool",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_pred",
"Prims.op_Equality",
"LowParse.SLow.Base.u32_max",
"FStar.Seq.Base.length",
"LowParse.Bytes.byte",
"LowParse.Spec.Base.serialize",
"Prims._assert",
"Prims.l_not",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.op_Negation",
"Prims.op_BarBar",
"FStar.UInt32.lt"
] | [] | false | false | false | false | false | let check_vldata_payload_size32
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967295})
(max32: U32.t{U32.v max32 == max})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(input: t)
: Tot (y: bool{y == true <==> parse_bounded_vldata_strong_pred min max s input}) =
| let sz:U32.t = s32 input in
[@@ inline_let ]let y:bool = not (sz = u32_max || U32.lt sz min32 || U32.lt max32 sz) in
[@@ inline_let ]let _:squash (y == true <==> parse_bounded_vldata_strong_pred min max s input) =
if sz = u32_max
then
if Seq.length (serialize s input) > U32.v u32_max
then ()
else
(assert (U32.v u32_max == Seq.length (serialize s input));
assert_norm (U32.v u32_max == 4294967295);
assert (Seq.length (serialize s input) > max);
assert (~(parse_bounded_vldata_strong_pred min max s input)))
else if Seq.length (serialize s input) > U32.v u32_max then ()
in
y | false |
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.size32_bounded_vldata | val size32_bounded_vldata
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s {serialize_bounded_vldata_precond min max k})
(sz32: U32.t{U32.v sz32 == log256' max})
: Tot (size32 (serialize_bounded_vldata min max s)) | val size32_bounded_vldata
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s {serialize_bounded_vldata_precond min max k})
(sz32: U32.t{U32.v sz32 == log256' max})
: Tot (size32 (serialize_bounded_vldata min max s)) | let size32_bounded_vldata
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s { serialize_bounded_vldata_precond min max k } )
(sz32: U32.t { U32.v sz32 == log256' max } )
: Tot (size32 (serialize_bounded_vldata min max s))
= fun (input: t) ->
[@inline_let]
let _ : unit =
let Some (_, consumed) = parse p (serialize s input) in
()
in
(size32_bounded_vldata_strong min max s32 sz32 input <: (res: U32.t { size32_postcond (serialize_bounded_vldata min max s) input res } )) | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 139,
"end_line": 373,
"start_col": 0,
"start_line": 357
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res)
let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s) input (serialize32_bounded_vldata_strong_aux min max l s32 input))
= let sz : integer_size = l in
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s))
= fun (input: parse_bounded_vldata_strong_t min max s) ->
serialize32_bounded_vldata_strong_correct min max l s32 input;
(serialize32_bounded_vldata_strong_aux min max l s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res } ))
inline_for_extraction
let serialize32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s))
= serialize32_bounded_vldata_strong' min max (log256' max) s32
inline_for_extraction
let serialize32_bounded_vldata
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { serialize_bounded_vldata_precond min max k } )
: Tot (serializer32 (serialize_bounded_vldata min max s))
= fun (input: t) ->
[@inline_let]
let _ : unit =
let Some (_, consumed) = parse p (serialize s input) in
()
in
serialize32_bounded_vldata_strong_correct min max (log256' max) s32 input;
(serialize32_bounded_vldata_strong_aux min max (log256' max) s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata min max s) input res } ))
#reset-options "--z3rlimit 32 --z3cliopt smt.arith.nl=false"
inline_for_extraction
let check_vldata_payload_size32
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967295 } ) // necessary to exclude the overflow case; enough to be compatible with serialize32
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(input: t)
: Tot (y: bool { y == true <==> parse_bounded_vldata_strong_pred min max s input } )
= let sz : U32.t = s32 input in
[@inline_let]
let y : bool =
not (sz = u32_max || U32.lt sz min32 || U32.lt max32 sz)
in
[@inline_let]
let _ : squash (y == true <==> parse_bounded_vldata_strong_pred min max s input) =
if sz = u32_max
then
if Seq.length (serialize s input) > U32.v u32_max
then ()
else begin
assert (U32.v u32_max == Seq.length (serialize s input));
assert_norm (U32.v u32_max == 4294967295);
assert (Seq.length (serialize s input) > max);
assert (~ (parse_bounded_vldata_strong_pred min max s input))
end
else
if Seq.length (serialize s input) > U32.v u32_max
then ()
else ()
in
y
inline_for_extraction
let size32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4, otherwise add overflows
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t { U32.v sz32 == l } )
: Tot (size32 (serialize_bounded_vldata_strong' min max l s))
= (fun (input: parse_bounded_vldata_strong_t min max s) ->
let len = s32 input in
[@inline_let]
let _ = assert_norm (U32.v u32_max == 4294967295) in
[@inline_let]
let _ = assert (min <= U32.v len /\ U32.v len <= max) in
[@inline_let]
let res : U32.t = U32.add sz32 len in
(res <: (res: U32.t { size32_postcond (serialize_bounded_vldata_strong' min max l s) input res } )))
inline_for_extraction
let size32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4, otherwise add overflows
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t { U32.v sz32 == log256' max } )
: Tot (size32 (serialize_bounded_vldata_strong min max s))
= size32_bounded_vldata_strong' min max (log256' max) s32 sz32 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
s32:
LowParse.SLow.Base.size32 s {LowParse.Spec.VLData.serialize_bounded_vldata_precond min max k} ->
sz32: FStar.UInt32.t{FStar.UInt32.v sz32 == LowParse.Spec.BoundedInt.log256' max}
-> LowParse.SLow.Base.size32 (LowParse.Spec.VLData.serialize_bounded_vldata min max s) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.size32",
"LowParse.Spec.VLData.serialize_bounded_vldata_precond",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.SLow.VLData.size32_bounded_vldata_strong",
"LowParse.SLow.Base.size32_postcond",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata",
"LowParse.Spec.VLData.serialize_bounded_vldata",
"Prims.unit",
"LowParse.Spec.Base.consumed_length",
"LowParse.Spec.Base.serialize",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Base.parse"
] | [] | false | false | false | false | false | let size32_bounded_vldata
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s {serialize_bounded_vldata_precond min max k})
(sz32: U32.t{U32.v sz32 == log256' max})
: Tot (size32 (serialize_bounded_vldata min max s)) =
| fun (input: t) ->
[@@ inline_let ]let _:unit =
let Some (_, consumed) = parse p (serialize s input) in
()
in
(size32_bounded_vldata_strong min max s32 sz32 input
<:
(res: U32.t{size32_postcond (serialize_bounded_vldata min max s) input res})) | false |
Hacl.Streaming.Poly1305_32.fsti | Hacl.Streaming.Poly1305_32.state_t | val state_t : Type0 | let state_t = F.state_s (poly1305 M32) () (t M32) (poly1305_key.I.s ()) | {
"file_name": "code/streaming/Hacl.Streaming.Poly1305_32.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 71,
"end_line": 13,
"start_col": 0,
"start_line": 13
} | module Hacl.Streaming.Poly1305_32
module G = FStar.Ghost
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
open Hacl.Impl.Poly1305.Fields
open Hacl.Streaming.Poly1305
#set-options "--fuel 0 --ifuel 0 --z3rlimit 100" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Hacl.Streaming.Poly1305.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Poly1305.Fields.fst.checked",
"Hacl.Impl.Poly1305.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Poly1305_32.fsti"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305.Fields",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Functor.state_s",
"Prims.unit",
"Hacl.Streaming.Poly1305.poly1305",
"Hacl.Impl.Poly1305.Fields.M32",
"Hacl.Streaming.Poly1305.t",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Poly1305.poly1305_key"
] | [] | false | false | false | true | true | let state_t =
| F.state_s (poly1305 M32) () (t M32) (poly1305_key.I.s ()) | false |
|
Vale.Arch.Types.fst | Vale.Arch.Types.lemma_BitwiseXorCommutative | val lemma_BitwiseXorCommutative (x y:nat32) : Lemma (x *^ y == y *^ x) | val lemma_BitwiseXorCommutative (x y:nat32) : Lemma (x *^ y == y *^ x) | let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x) | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 38,
"end_line": 18,
"start_col": 0,
"start_line": 16
} | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Vale.Def.Words_s.nat32 -> y: Vale.Def.Words_s.nat32
-> FStar.Pervasives.Lemma (ensures x *^ y == y *^ x) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Words_s.nat32",
"Vale.Arch.TypesNative.lemma_equal_nth",
"Vale.Arch.Types.op_Star_Hat",
"Prims.unit",
"Vale.Arch.TypesNative.lemma_ixor_nth_all"
] | [] | true | false | true | false | false | let lemma_BitwiseXorCommutative x y =
| lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x) | false |
Vale.Arch.Types.fst | Vale.Arch.Types.lemma_nat_to_two32 | val lemma_nat_to_two32 (_:unit) : Lemma
(forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) | val lemma_nat_to_two32 (_:unit) : Lemma
(forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) | let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 65,
"end_line": 14,
"start_col": 0,
"start_line": 12
} | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
forall (x: Vale.Def.Words_s.nat64). {:pattern Vale.Def.Words.Two_s.nat_to_two 32 x}
Vale.Def.Words.Two_s.nat_to_two 32 x ==
Vale.Def.Words_s.Mktwo (x % 0x100000000) (x / 0x100000000)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.l_Forall",
"Vale.Def.Words_s.nat64",
"Prims.eq2",
"Vale.Def.Words_s.two",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"Vale.Def.Words.Two_s.nat_to_two",
"Vale.Def.Words_s.Mktwo",
"Prims.op_Modulus",
"Prims.op_Division"
] | [] | false | false | true | false | false | let lemma_nat_to_two32 () =
| assert_norm (forall (x: nat64). {:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) | false |
Vale.Arch.Types.fst | Vale.Arch.Types.lemma_BitwiseXorWithZero | val lemma_BitwiseXorWithZero (n:nat32) : Lemma (n *^ 0 == n) | val lemma_BitwiseXorWithZero (n:nat32) : Lemma (n *^ 0 == n) | let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 23,
"start_col": 0,
"start_line": 20
} | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x) | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Vale.Def.Words_s.nat32 -> FStar.Pervasives.Lemma (ensures n *^ 0 == n) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Words_s.nat32",
"Vale.Arch.TypesNative.lemma_equal_nth",
"Vale.Arch.Types.op_Star_Hat",
"Prims.unit",
"Vale.Arch.TypesNative.lemma_zero_nth",
"Vale.Arch.TypesNative.lemma_ixor_nth_all"
] | [] | true | false | true | false | false | let lemma_BitwiseXorWithZero n =
| lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n | false |
Vale.Arch.Types.fst | Vale.Arch.Types.lemma_BitwiseXorAssociative | val lemma_BitwiseXorAssociative (x y z:nat32) : Lemma (x *^ (y *^ z) == (x *^ y) *^ z) | val lemma_BitwiseXorAssociative (x y z:nat32) : Lemma (x *^ (y *^ z) == (x *^ y) *^ z) | let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 52,
"end_line": 37,
"start_col": 0,
"start_line": 35
} | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0 | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Vale.Def.Words_s.nat32 -> y: Vale.Def.Words_s.nat32 -> z: Vale.Def.Words_s.nat32
-> FStar.Pervasives.Lemma (ensures x *^ (y *^ z) == x *^ y *^ z) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Words_s.nat32",
"Vale.Arch.TypesNative.lemma_equal_nth",
"Vale.Arch.Types.op_Star_Hat",
"Prims.unit",
"Vale.Arch.TypesNative.lemma_ixor_nth_all"
] | [] | true | false | true | false | false | let lemma_BitwiseXorAssociative x y z =
| lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) | false |
SteelFramingTestSuite.fst | SteelFramingTestSuite.test_if4 | val test_if4 (b: bool) : SteelT unit emp (fun _ -> emp) | val test_if4 (b: bool) : SteelT unit emp (fun _ -> emp) | let test_if4 (b:bool) : SteelT unit emp (fun _ -> emp)
= if b then (let r = alloc 0 in free r) else (noop ()) | {
"file_name": "share/steel/tests/SteelFramingTestSuite.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 56,
"end_line": 122,
"start_col": 0,
"start_line": 121
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module SteelFramingTestSuite
open Steel.Memory
open Steel.Effect
/// A collection of small unit tests for the framing tactic
assume val p : vprop
assume val f (x:int) : SteelT unit p (fun _ -> p)
let test () : SteelT unit (p `star` p `star` p) (fun _ -> p `star` p `star` p)
= f 0; ()
assume val ref : Type0
assume val ptr (_:ref) : vprop
assume val alloc (x:int) : SteelT ref emp (fun y -> ptr y)
assume val free (r:ref) : SteelT unit (ptr r) (fun _ -> emp)
assume val read (r:ref) : SteelT int (ptr r) (fun _ -> ptr r)
assume val write (r:ref) (v: int) : SteelT unit (ptr r) (fun _ -> ptr r)
let unused x = x // work around another gensym heisenbug
let test0 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b1 `star` ptr b2 `star` ptr b3)
=
let x = read b1 in
x
let test1 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b1 `star` ptr b2 `star` ptr b3)
=
let x = (let y = read b1 in y) in
x
let test2 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b3 `star` ptr b2 `star` ptr b1)
=
let x = read b1 in
x
let test3 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
=
let x = read b3 in
x
let test4 (b1 b2 b3: ref) : SteelT unit
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
=
let x = read b3 in
write b2 x
let test5 (b1 b2 b3: ref) : SteelT unit
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
=
let x = read b3 in
write b2 (x + 1)
let test6 (b1 b2 b3: ref) : SteelT unit
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
=
let x = read b3 in
let b4 = alloc x in
write b2 (x + 1);
free b4
// With the formalism relying on can_be_split_post, this example fails if we normalize return_pre eqs goals before unification
// When solving this equality, we have the goal
// (*?u19*) _ _ == return_pre ((fun x -> (fun x -> (*?u758*) _ x x) x) r)
// with x and r in the context of ?u19
// Not normalizing allows us to solve it as a function applied to x and r
// Normalizing would lead to solve it to an slprop with x and r in the context,
// but which would later fail when trying to prove the equivalence with (fun r -> ptr r)
// in the postcondition
let test7 (_:unit) : SteelT ref emp ptr
= let r = alloc 0 in
let x = read r in
write r 0;
r
let test8 (b1 b2 b3:ref) : SteelT unit
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
= write b2 0
open Steel.Effect.Atomic
let test_if1 (b:bool) : SteelT unit emp (fun _ -> emp)
= if b then noop () else noop ()
let test_if2 (b:bool) (r: ref) : SteelT unit (ptr r) (fun _ -> ptr r)
= if b then write r 0 else write r 1
let test_if3 (b:bool) (r:ref) : SteelT unit (ptr r) (fun _ -> ptr r)
= if b then noop () else noop () | {
"checked_file": "/",
"dependencies": [
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "SteelFramingTestSuite.fst"
} | [
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Prims.bool -> Steel.Effect.SteelT Prims.unit | Steel.Effect.SteelT | [] | [] | [
"Prims.bool",
"SteelFramingTestSuite.free",
"Prims.unit",
"SteelFramingTestSuite.ref",
"SteelFramingTestSuite.alloc",
"Steel.Effect.Atomic.noop",
"FStar.Ghost.hide",
"FStar.Set.set",
"Steel.Memory.iname",
"FStar.Set.empty",
"Steel.Effect.Common.emp",
"Steel.Effect.Common.vprop"
] | [] | false | true | false | false | false | let test_if4 (b: bool) : SteelT unit emp (fun _ -> emp) =
| if b
then
(let r = alloc 0 in
free r)
else (noop ()) | false |
Vale.Arch.Types.fst | Vale.Arch.Types.lemma_quad32_xor | val lemma_quad32_xor (_:unit) : Lemma (forall q . {:pattern quad32_xor q q} quad32_xor q q == Mkfour 0 0 0 0) | val lemma_quad32_xor (_:unit) : Lemma (forall q . {:pattern quad32_xor q q} quad32_xor q q == Mkfour 0 0 0 0) | let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas() | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 14,
"end_line": 51,
"start_col": 0,
"start_line": 48
} | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 3,
"initial_ifuel": 3,
"max_fuel": 3,
"max_ifuel": 3,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
forall (q: Vale.Def.Types_s.quad32). {:pattern Vale.Def.Types_s.quad32_xor q q}
Vale.Def.Types_s.quad32_xor q q == Vale.Def.Words_s.Mkfour 0 0 0 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Vale.Arch.Types.xor_lemmas",
"Vale.Def.Types_s.reverse_bytes_nat32_reveal",
"Vale.Def.Types_s.quad32_xor_reveal"
] | [] | true | false | true | false | false | let lemma_quad32_xor () =
| quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas () | false |
Vale.Arch.Types.fst | Vale.Arch.Types.lemma_BitwiseXorCancel64 | val lemma_BitwiseXorCancel64 (n:nat64) : Lemma (ixor n n == 0) | val lemma_BitwiseXorCancel64 (n:nat64) : Lemma (ixor n n == 0) | let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0 | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 33,
"end_line": 33,
"start_col": 0,
"start_line": 30
} | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0 | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Vale.Def.Words_s.nat64 -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.ixor n n == 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Words_s.nat64",
"Vale.Arch.TypesNative.lemma_equal_nth",
"Vale.Def.Types_s.ixor",
"Vale.Def.Words_s.pow2_64",
"Prims.unit",
"Vale.Arch.TypesNative.lemma_zero_nth",
"Vale.Arch.TypesNative.lemma_ixor_nth_all"
] | [] | true | false | true | false | false | let lemma_BitwiseXorCancel64 (n: nat64) =
| lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0 | false |
Vale.Arch.Types.fst | Vale.Arch.Types.lemma_BitwiseXorCancel | val lemma_BitwiseXorCancel (n:nat32) : Lemma (n *^ n == 0) | val lemma_BitwiseXorCancel (n:nat32) : Lemma (n *^ n == 0) | let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0 | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 28,
"start_col": 0,
"start_line": 25
} | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Vale.Def.Words_s.nat32 -> FStar.Pervasives.Lemma (ensures n *^ n == 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Words_s.nat32",
"Vale.Arch.TypesNative.lemma_equal_nth",
"Vale.Arch.Types.op_Star_Hat",
"Prims.unit",
"Vale.Arch.TypesNative.lemma_zero_nth",
"Vale.Arch.TypesNative.lemma_ixor_nth_all"
] | [] | true | false | true | false | false | let lemma_BitwiseXorCancel n =
| lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0 | false |
Hacl.Streaming.Poly1305_32.fsti | Hacl.Streaming.Poly1305_32.alloca | val alloca : Hacl.Streaming.Functor.alloca_st (Hacl.Streaming.Poly1305.poly1305 Hacl.Impl.Poly1305.Fields.M32)
()
(Hacl.Streaming.Poly1305.t Hacl.Impl.Poly1305.Fields.M32)
(Stateful?.s Hacl.Streaming.Poly1305.poly1305_key ()) | let alloca = F.alloca (poly1305 M32) () (t M32) (poly1305_key.I.s ()) | {
"file_name": "code/streaming/Hacl.Streaming.Poly1305_32.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 69,
"end_line": 16,
"start_col": 0,
"start_line": 16
} | module Hacl.Streaming.Poly1305_32
module G = FStar.Ghost
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
open Hacl.Impl.Poly1305.Fields
open Hacl.Streaming.Poly1305
#set-options "--fuel 0 --ifuel 0 --z3rlimit 100"
/// Type abbreviation - makes KaRaMeL use pretty names in the generated code
let state_t = F.state_s (poly1305 M32) () (t M32) (poly1305_key.I.s ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Hacl.Streaming.Poly1305.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Poly1305.Fields.fst.checked",
"Hacl.Impl.Poly1305.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Poly1305_32.fsti"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305.Fields",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Streaming.Functor.alloca_st (Hacl.Streaming.Poly1305.poly1305 Hacl.Impl.Poly1305.Fields.M32)
()
(Hacl.Streaming.Poly1305.t Hacl.Impl.Poly1305.Fields.M32)
(Stateful?.s Hacl.Streaming.Poly1305.poly1305_key ()) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Functor.alloca",
"Prims.unit",
"Hacl.Streaming.Poly1305.poly1305",
"Hacl.Impl.Poly1305.Fields.M32",
"Hacl.Streaming.Poly1305.t",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Poly1305.poly1305_key"
] | [] | false | false | false | false | false | let alloca =
| F.alloca (poly1305 M32) () (t M32) (poly1305_key.I.s ()) | false |
|
Vale.Arch.Types.fst | Vale.Arch.Types.xor_lemmas | val xor_lemmas (_:unit) : Lemma
(ensures
(forall (x y:nat32).{:pattern (x *^ y)} x *^ y == y *^ x) /\
(forall (n:nat32).{:pattern (n *^ 0)} n *^ 0 == n) /\
(forall (n:nat32).{:pattern (n *^ n)} n *^ n == 0) /\
(forall (n:nat64).{:pattern (ixor n n)} ixor n n == 0) /\
(forall (x y z:nat32).{:pattern (x *^ (y *^ z))} x *^ (y *^ z) == (x *^ y) *^ z)
) | val xor_lemmas (_:unit) : Lemma
(ensures
(forall (x y:nat32).{:pattern (x *^ y)} x *^ y == y *^ x) /\
(forall (n:nat32).{:pattern (n *^ 0)} n *^ 0 == n) /\
(forall (n:nat32).{:pattern (n *^ n)} n *^ n == 0) /\
(forall (n:nat64).{:pattern (ixor n n)} ixor n n == 0) /\
(forall (x y z:nat32).{:pattern (x *^ (y *^ z))} x *^ (y *^ z) == (x *^ y) *^ z)
) | let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
() | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 45,
"start_col": 0,
"start_line": 39
} | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
(forall (x: Vale.Def.Words_s.nat32) (y: Vale.Def.Words_s.nat32). {:pattern (x *^ y)}
x *^ y == y *^ x) /\ (forall (n: Vale.Def.Words_s.nat32). {:pattern (n *^ 0)} n *^ 0 == n) /\
(forall (n: Vale.Def.Words_s.nat32). {:pattern (n *^ n)} n *^ n == 0) /\
(forall (n: Vale.Def.Words_s.nat64). {:pattern Vale.Def.Types_s.ixor n n}
Vale.Def.Types_s.ixor n n == 0) /\
(forall (x: Vale.Def.Words_s.nat32) (y: Vale.Def.Words_s.nat32) (z: Vale.Def.Words_s.nat32).
{:pattern (x *^ (y *^ z))}
x *^ (y *^ z) == x *^ y *^ z)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"FStar.Classical.forall_intro_3",
"Vale.Def.Words_s.nat32",
"Prims.eq2",
"Vale.Def.Types_s.nat32",
"Vale.Arch.Types.op_Star_Hat",
"Vale.Arch.Types.lemma_BitwiseXorAssociative",
"FStar.Classical.forall_intro",
"Vale.Def.Words_s.nat64",
"Prims.int",
"Vale.Def.Types_s.ixor",
"Vale.Def.Words_s.pow2_64",
"Vale.Arch.Types.lemma_BitwiseXorCancel64",
"Vale.Arch.Types.lemma_BitwiseXorCancel",
"Vale.Arch.Types.lemma_BitwiseXorWithZero",
"FStar.Classical.forall_intro_2",
"Vale.Arch.Types.lemma_BitwiseXorCommutative"
] | [] | false | false | true | false | false | let xor_lemmas () =
| FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
() | false |
Vale.Arch.Types.fst | Vale.Arch.Types.lemma_reverse_bytes_quad32 | val lemma_reverse_bytes_quad32 (q:quad32) :
Lemma (reverse_bytes_quad32 (reverse_bytes_quad32 q) == q)
[SMTPat (reverse_bytes_quad32 (reverse_bytes_quad32 q))] | val lemma_reverse_bytes_quad32 (q:quad32) :
Lemma (reverse_bytes_quad32 (reverse_bytes_quad32 q) == q)
[SMTPat (reverse_bytes_quad32 (reverse_bytes_quad32 q))] | let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
() | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 82,
"start_col": 0,
"start_line": 77
} | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 3,
"initial_ifuel": 3,
"max_fuel": 3,
"max_ifuel": 3,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | q: Vale.Def.Types_s.quad32
-> FStar.Pervasives.Lemma
(ensures Vale.Def.Types_s.reverse_bytes_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 q) == q)
[SMTPat (Vale.Def.Types_s.reverse_bytes_quad32 (Vale.Def.Types_s.reverse_bytes_quad32 q))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.quad32",
"Prims.unit",
"Vale.Def.Types_s.reveal_reverse_bytes_quad32",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.Def.Types_s.reverse_bytes_nat32_reveal",
"Vale.Def.Types_s.quad32_xor_reveal"
] | [] | true | false | true | false | false | let lemma_reverse_bytes_quad32 (q: quad32) =
| quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
() | false |
Vale.Arch.Types.fst | Vale.Arch.Types.lemma_reverse_bytes_quad32_zero | val lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z) | val lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z) | let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
() | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 104,
"start_col": 0,
"start_line": 92
} | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
(let z = Vale.Def.Words_s.Mkfour 0 0 0 0 in
Vale.Def.Types_s.reverse_bytes_quad32 z == z)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"FStar.Calc.calc_finish",
"Vale.Def.Types_s.quad32",
"Prims.eq2",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Vale.Def.Words.Four_s.four_reverse",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words.Four_s.four_map",
"Vale.Def.Types_s.reverse_bytes_nat32",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Vale.Def.Types_s.reveal_reverse_bytes_quad32",
"Prims.squash",
"Vale.Arch.Types.lemma_reverse_bytes_nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.nat32",
"Vale.Def.Words_s.Mkfour",
"Prims.l_True",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let lemma_reverse_bytes_quad32_zero (_: unit)
: Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z) =
| let z = Mkfour 0 0 0 0 in
calc ( == ) {
reverse_bytes_quad32 z;
( == ) { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
( == ) { lemma_reverse_bytes_nat32 () }
z;
};
() | false |
Hacl.Streaming.Poly1305_32.fsti | Hacl.Streaming.Poly1305_32.reset | val reset : Hacl.Streaming.Functor.reset_st (Hacl.Streaming.Poly1305.poly1305 Hacl.Impl.Poly1305.Fields.M32)
(FStar.Ghost.hide (FStar.Ghost.reveal (FStar.Ghost.hide ())))
(Hacl.Streaming.Poly1305.t Hacl.Impl.Poly1305.Fields.M32)
(Stateful?.s Hacl.Streaming.Poly1305.poly1305_key ()) | let reset = F.reset (poly1305 M32) (G.hide ()) (t M32) (poly1305_key.I.s ()) | {
"file_name": "code/streaming/Hacl.Streaming.Poly1305_32.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 76,
"end_line": 18,
"start_col": 0,
"start_line": 18
} | module Hacl.Streaming.Poly1305_32
module G = FStar.Ghost
module F = Hacl.Streaming.Functor
module I = Hacl.Streaming.Interface
open Hacl.Impl.Poly1305.Fields
open Hacl.Streaming.Poly1305
#set-options "--fuel 0 --ifuel 0 --z3rlimit 100"
/// Type abbreviation - makes KaRaMeL use pretty names in the generated code
let state_t = F.state_s (poly1305 M32) () (t M32) (poly1305_key.I.s ())
noextract
let alloca = F.alloca (poly1305 M32) () (t M32) (poly1305_key.I.s ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Hacl.Streaming.Poly1305.fst.checked",
"Hacl.Streaming.Interface.fsti.checked",
"Hacl.Streaming.Functor.fsti.checked",
"Hacl.Impl.Poly1305.Fields.fst.checked",
"Hacl.Impl.Poly1305.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Streaming.Poly1305_32.fsti"
} | [
{
"abbrev": false,
"full_module": "Hacl.Streaming.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305.Fields",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Interface",
"short_module": "I"
},
{
"abbrev": true,
"full_module": "Hacl.Streaming.Functor",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Streaming",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Streaming.Functor.reset_st (Hacl.Streaming.Poly1305.poly1305 Hacl.Impl.Poly1305.Fields.M32)
(FStar.Ghost.hide (FStar.Ghost.reveal (FStar.Ghost.hide ())))
(Hacl.Streaming.Poly1305.t Hacl.Impl.Poly1305.Fields.M32)
(Stateful?.s Hacl.Streaming.Poly1305.poly1305_key ()) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Streaming.Functor.reset",
"Prims.unit",
"Hacl.Streaming.Poly1305.poly1305",
"Hacl.Impl.Poly1305.Fields.M32",
"FStar.Ghost.hide",
"Hacl.Streaming.Poly1305.t",
"Hacl.Streaming.Interface.__proj__Stateful__item__s",
"Hacl.Streaming.Poly1305.poly1305_key"
] | [] | false | false | false | false | false | let reset =
| F.reset (poly1305 M32) (G.hide ()) (t M32) (poly1305_key.I.s ()) | false |
|
LowParse.SLow.VLData.fst | LowParse.SLow.VLData.size32_bounded_vldata_strong' | val size32_bounded_vldata_strong'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t{U32.v sz32 == l})
: Tot (size32 (serialize_bounded_vldata_strong' min max l s)) | val size32_bounded_vldata_strong'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t{U32.v sz32 == l})
: Tot (size32 (serialize_bounded_vldata_strong' min max l s)) | let size32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4, otherwise add overflows
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t { U32.v sz32 == l } )
: Tot (size32 (serialize_bounded_vldata_strong' min max l s))
= (fun (input: parse_bounded_vldata_strong_t min max s) ->
let len = s32 input in
[@inline_let]
let _ = assert_norm (U32.v u32_max == 4294967295) in
[@inline_let]
let _ = assert (min <= U32.v len /\ U32.v len <= max) in
[@inline_let]
let res : U32.t = U32.add sz32 len in
(res <: (res: U32.t { size32_postcond (serialize_bounded_vldata_strong' min max l s) input res } ))) | {
"file_name": "src/lowparse/LowParse.SLow.VLData.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 105,
"end_line": 341,
"start_col": 0,
"start_line": 322
} | module LowParse.SLow.VLData
include LowParse.Spec.VLData
include LowParse.SLow.FLData
include LowParse.SLow.BoundedInt // for bounded_integer
module Seq = FStar.Seq
module U32 = FStar.UInt32
module B32 = LowParse.Bytes32
(* Parsers and serializers for the payload *)
inline_for_extraction
let parse32_vldata_payload
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
(i: bounded_integer sz { f i == true } )
: Tot (parser32 (parse_vldata_payload sz f p i))
= fun (input: bytes32) -> parse32_fldata p32 (U32.v i) i input
inline_for_extraction
let parse32_vldata_gen
(sz: integer_size)
(f: (bounded_integer sz -> GTot bool))
(f' : (x: bounded_integer sz) -> Tot (y: bool {y == f x}))
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata_gen sz f p))
= [@inline_let]
let _ = parse_vldata_gen_eq_def sz f p in
parse32_and_then
(parse32_filter (parse32_bounded_integer sz) f f')
(parse_vldata_payload sz f p)
()
(parse32_vldata_payload sz f p32)
inline_for_extraction
let parse32_vldata
(sz: integer_size)
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_vldata sz p))
= parse32_vldata_gen sz (unconstrained_bounded_integer sz) (fun _ -> true) p32
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_bounded_vldata'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata' min max l p))
= [@inline_let]
let _ = parse_bounded_vldata_correct min max l p in
[@inline_let]
let sz : integer_size = l in
(fun input -> parse32_vldata_gen sz (in_bounds min max) (fun i -> not (U32.lt i min32 || U32.lt max32 i)) p32 input)
inline_for_extraction
let parse32_bounded_vldata
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(p32: parser32 p)
: Tot (parser32 (parse_bounded_vldata min max p))
= parse32_bounded_vldata' min min32 max max32 (log256' max) p32
inline_for_extraction
let parse32_bounded_vldata_strong_aux
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Tot (option (parse_bounded_vldata_strong_t min max #k #t #p s * U32.t))
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> None
| Some (x, consumed) ->
let x1 : t = x in
Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed)
let parse32_bounded_vldata_strong_correct
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
(input: bytes32)
: Lemma
( let res : option (parse_bounded_vldata_strong_t min max s * U32.t) =
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
in
parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
= let res =
parse32_strengthen
#(parse_bounded_vldata_strong_kind min max l k)
#t
#(parse_bounded_vldata' min max l #k #t p)
(parse32_bounded_vldata' min min32 max max32 l #k #t #p p32)
(parse_bounded_vldata_strong_pred min max #k #t #p s)
(parse_bounded_vldata_strong_correct min max l #k #t #p s)
input
in
match res with
| None -> ()
| Some (x, consumed) ->
let x1 : t = x in
let res = Some ((x1 <: parse_bounded_vldata_strong_t min max #k #t #p s), consumed) in
assert (parser32_correct (parse_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let parse32_bounded_vldata_strong'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong' min max l s))
= make_parser32
(parse_bounded_vldata_strong' min max l s)
(fun input ->
parse32_bounded_vldata_strong_correct min min32 max max32 l s p32 input;
parse32_bounded_vldata_strong_aux min min32 max max32 l s p32 input
)
inline_for_extraction
let parse32_bounded_vldata_strong
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 } )
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(s: serializer p)
(p32: parser32 p)
: Tot (parser32 #_ #(parse_bounded_vldata_strong_t min max s) (parse_bounded_vldata_strong min max s))
= parse32_bounded_vldata_strong' min min32 max max32 (log256' max) s p32
inline_for_extraction
let serialize32_bounded_vldata_strong_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (parse_bounded_vldata_strong_t min max s -> Tot bytes32)
= [@inline_let]
let sz : integer_size = l in
[@inline_let]
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
(fun (input: parse_bounded_vldata_strong_t min max s) ->
let pl = s32 input in
let len = B32.len pl in
assert (min <= U32.v len /\ U32.v len <= max);
let slen = ser (len <: bounded_integer sz) in
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
res)
let serialize32_bounded_vldata_strong_correct
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
(input: parse_bounded_vldata_strong_t min max s)
: Lemma
(serializer32_correct (serialize_bounded_vldata_strong' min max l s) input (serialize32_bounded_vldata_strong_aux min max l s32 input))
= let sz : integer_size = l in
let ser : serializer32 (serialize_bounded_integer sz) = serialize32_bounded_integer sz in
let pl = s32 input in
assert (B32.reveal pl == s input);
let len = B32.len pl in
let nlen = U32.v len in
assert (min <= nlen /\ nlen <= max);
let slen = ser (len <: bounded_integer sz) in
assert (B32.reveal slen == serialize (serialize_bounded_integer sz) len);
seq_slice_append_l (B32.reveal slen) (B32.reveal pl);
seq_slice_append_r (B32.reveal slen) (B32.reveal pl);
let res : bytes32 = B32.b32append slen pl in
assert (B32.reveal res == Seq.append (B32.reveal slen) (B32.reveal pl));
assert (B32.reveal res == serialize_bounded_vldata_strong_aux min max l s input);
assert (serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res)
inline_for_extraction
let serialize32_bounded_vldata_strong'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong' min max l s))
= fun (input: parse_bounded_vldata_strong_t min max s) ->
serialize32_bounded_vldata_strong_correct min max l s32 input;
(serialize32_bounded_vldata_strong_aux min max l s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata_strong' min max l s) input res } ))
inline_for_extraction
let serialize32_bounded_vldata_strong
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s)
: Tot (serializer32 (serialize_bounded_vldata_strong min max s))
= serialize32_bounded_vldata_strong' min max (log256' max) s32
inline_for_extraction
let serialize32_bounded_vldata
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // NOTE here: max must be less than 2^32 - 4
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: partial_serializer32 s { serialize_bounded_vldata_precond min max k } )
: Tot (serializer32 (serialize_bounded_vldata min max s))
= fun (input: t) ->
[@inline_let]
let _ : unit =
let Some (_, consumed) = parse p (serialize s input) in
()
in
serialize32_bounded_vldata_strong_correct min max (log256' max) s32 input;
(serialize32_bounded_vldata_strong_aux min max (log256' max) s32 input <: (res: bytes32 { serializer32_correct (serialize_bounded_vldata min max s) input res } ))
#reset-options "--z3rlimit 32 --z3cliopt smt.arith.nl=false"
inline_for_extraction
let check_vldata_payload_size32
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967295 } ) // necessary to exclude the overflow case; enough to be compatible with serialize32
(max32: U32.t { U32.v max32 == max } )
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(input: t)
: Tot (y: bool { y == true <==> parse_bounded_vldata_strong_pred min max s input } )
= let sz : U32.t = s32 input in
[@inline_let]
let y : bool =
not (sz = u32_max || U32.lt sz min32 || U32.lt max32 sz)
in
[@inline_let]
let _ : squash (y == true <==> parse_bounded_vldata_strong_pred min max s input) =
if sz = u32_max
then
if Seq.length (serialize s input) > U32.v u32_max
then ()
else begin
assert (U32.v u32_max == Seq.length (serialize s input));
assert_norm (U32.v u32_max == 4294967295);
assert (Seq.length (serialize s input) > max);
assert (~ (parse_bounded_vldata_strong_pred min max s input))
end
else
if Seq.length (serialize s input) > U32.v u32_max
then ()
else ()
in
y | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.VLData.fsti.checked",
"LowParse.SLow.FLData.fst.checked",
"LowParse.SLow.BoundedInt.fsti.checked",
"LowParse.Bytes32.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.VLData.fst"
} | [
{
"abbrev": true,
"full_module": "LowParse.Bytes32",
"short_module": "B32"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.FLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4} ->
s32: LowParse.SLow.Base.size32 s ->
sz32: FStar.UInt32.t{FStar.UInt32.v sz32 == l}
-> LowParse.SLow.Base.size32 (LowParse.Spec.VLData.serialize_bounded_vldata_strong' min max l s) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"Prims.op_GreaterThanOrEqual",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.size32",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"FStar.UInt32.v",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.SLow.Base.size32_postcond",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong'",
"LowParse.Spec.VLData.serialize_bounded_vldata_strong'",
"FStar.UInt32.add",
"Prims.unit",
"Prims._assert",
"FStar.Pervasives.assert_norm",
"LowParse.SLow.Base.u32_max"
] | [] | false | false | false | false | false | let size32_bounded_vldata_strong'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
(#k: parser_kind)
(#t: Type)
(#p: parser k t)
(#s: serializer p)
(s32: size32 s)
(sz32: U32.t{U32.v sz32 == l})
: Tot (size32 (serialize_bounded_vldata_strong' min max l s)) =
| (fun (input: parse_bounded_vldata_strong_t min max s) ->
let len = s32 input in
[@@ inline_let ]let _ = assert_norm (U32.v u32_max == 4294967295) in
[@@ inline_let ]let _ = assert (min <= U32.v len /\ U32.v len <= max) in
[@@ inline_let ]let res:U32.t = U32.add sz32 len in
(res <: (res: U32.t{size32_postcond (serialize_bounded_vldata_strong' min max l s) input res}))) | false |
Vale.Arch.Types.fst | Vale.Arch.Types.lemma_reverse_reverse_bytes_nat32_seq | val lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
[SMTPat (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s))] | val lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
[SMTPat (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s))] | let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 72,
"end_line": 111,
"start_col": 0,
"start_line": 106
} | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: FStar.Seq.Base.seq Vale.Def.Words_s.nat32
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Types_s.reverse_bytes_nat32_seq (Vale.Def.Types_s.reverse_bytes_nat32_seq s) == s)
[
SMTPat (Vale.Def.Types_s.reverse_bytes_nat32_seq (Vale.Def.Types_s.reverse_bytes_nat32_seq s
))
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat32",
"Prims._assert",
"FStar.Seq.Base.equal",
"Vale.Def.Types_s.nat32",
"Vale.Def.Types_s.reverse_bytes_nat32_seq",
"Prims.unit",
"Vale.Def.Types_s.reveal_reverse_bytes_nat32_seq",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_reverse_reverse_bytes_nat32_seq (s: seq nat32)
: Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) =
| reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) | false |
Vale.Arch.Types.fst | Vale.Arch.Types.lemma_lo64_properties | val lemma_lo64_properties (_:unit) : Lemma
(forall (q0 q1:quad32).{:pattern lo64 q0; lo64 q1}
(q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) | val lemma_lo64_properties (_:unit) : Lemma
(forall (q0 q1:quad32).{:pattern lo64 q0; lo64 q1}
(q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) | let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
() | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 179,
"start_col": 0,
"start_line": 167
} | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
forall (q0: Vale.Def.Types_s.quad32) (q1: Vale.Def.Types_s.quad32).
{:pattern Vale.Arch.Types.lo64 q0; Vale.Arch.Types.lo64 q1}
Mkfour?.lo0 q0 == Mkfour?.lo0 q1 /\ Mkfour?.lo1 q0 == Mkfour?.lo1 q1 <==>
Vale.Arch.Types.lo64 q0 == Vale.Arch.Types.lo64 q1) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"FStar.Classical.forall_intro_2",
"Vale.Def.Types_s.quad32",
"Prims.l_iff",
"Prims.l_and",
"Prims.eq2",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.__proj__Mkfour__item__lo0",
"Vale.Def.Words_s.__proj__Mkfour__item__lo1",
"Vale.Def.Words_s.nat64",
"Vale.Arch.Types.lo64",
"Prims.l_True",
"Prims.squash",
"Vale.Def.Words_s.nat32",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Vale.Def.Words.Two.nat_to_two_to_nat",
"Vale.Def.Words_s.two",
"Vale.Def.Words.Two_s.two_select",
"Vale.Def.Words.Four_s.four_to_two_two",
"Vale.Arch.Types.lo64_reveal",
"Prims.l_Forall"
] | [] | false | false | true | false | false | let lemma_lo64_properties (_: unit)
: Lemma
(forall (q0: quad32) (q1: quad32).
(q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
| lo64_reveal ();
let helper (q0 q1: quad32)
: Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
() | false |
Vale.Arch.Types.fst | Vale.Arch.Types.lemma_reverse_bytes_nat32 | val lemma_reverse_bytes_nat32: unit -> Lemma (reverse_bytes_nat32 0 == 0) | val lemma_reverse_bytes_nat32: unit -> Lemma (reverse_bytes_nat32 0 == 0) | let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
() | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 90,
"start_col": 0,
"start_line": 85
} | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.reverse_bytes_nat32 0 == 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Vale.Def.Words_s.four",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"Vale.Def.Words.Four_s.nat_to_four",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.reverse_bytes_nat32_reveal",
"Prims.l_True",
"Prims.squash",
"Prims.int",
"Vale.Def.Types_s.reverse_bytes_nat32",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_reverse_bytes_nat32 (_: unit) : Lemma (reverse_bytes_nat32 0 == 0) =
| reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
() | false |
Vale.Arch.Types.fst | Vale.Arch.Types.lemma_reverse_reverse_bytes_nat32 | val lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
[SMTPat (reverse_bytes_nat32 (reverse_bytes_nat32 n))] | val lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
[SMTPat (reverse_bytes_nat32 (reverse_bytes_nat32 n))] | let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
() | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 74,
"start_col": 0,
"start_line": 68
} | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Vale.Def.Words_s.nat32
-> FStar.Pervasives.Lemma
(ensures Vale.Def.Types_s.reverse_bytes_nat32 (Vale.Def.Types_s.reverse_bytes_nat32 n) == n)
[SMTPat (Vale.Def.Types_s.reverse_bytes_nat32 (Vale.Def.Types_s.reverse_bytes_nat32 n))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Words_s.nat32",
"Prims.unit",
"Vale.Def.Types_s.be_bytes_to_nat32_to_be_bytes",
"FStar.Seq.Base.seq",
"Vale.Def.Words_s.nat8",
"Vale.Lib.Seqs_s.reverse_seq",
"Vale.Def.Types_s.nat8",
"Vale.Def.Types_s.nat32_to_be_bytes",
"Vale.Def.Types_s.reverse_bytes_nat32_reveal",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Vale.Def.Types_s.reverse_bytes_nat32",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_reverse_reverse_bytes_nat32 (n: nat32)
: Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) =
| reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
() | false |
Vale.Arch.Types.fst | Vale.Arch.Types.lemma_reverse_bytes_nat64_32 | val lemma_reverse_bytes_nat64_32 (n0 n1: nat32)
: Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) ==
two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) | val lemma_reverse_bytes_nat64_32 (n0 n1: nat32)
: Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) ==
two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) | let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0)))
=
reverse_bytes_nat64_reveal () | {
"file_name": "vale/code/arch/Vale.Arch.Types.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 198,
"start_col": 0,
"start_line": 195
} | module Vale.Arch.Types
open FStar.Mul
open Vale.Def.Opaque_s
open Vale.Def.Types_s
open Vale.Arch.TypesNative
open Vale.Lib.Seqs
open Vale.Def.Words_s
open Vale.Def.Words.Two
open FStar.Calc
let lemma_nat_to_two32 () =
assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)}
nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000))
let lemma_BitwiseXorCommutative x y =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ y) (y *^ x)
let lemma_BitwiseXorWithZero n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ 0) n
let lemma_BitwiseXorCancel n =
lemma_ixor_nth_all 32;
lemma_zero_nth 32;
lemma_equal_nth 32 (n *^ n) 0
let lemma_BitwiseXorCancel64 (n:nat64) =
lemma_ixor_nth_all 64;
lemma_zero_nth 64;
lemma_equal_nth 64 (ixor n n) 0
let lemma_BitwiseXorAssociative x y z =
lemma_ixor_nth_all 32;
lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z)
let xor_lemmas () =
FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative;
FStar.Classical.forall_intro lemma_BitwiseXorWithZero;
FStar.Classical.forall_intro lemma_BitwiseXorCancel;
FStar.Classical.forall_intro lemma_BitwiseXorCancel64;
FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_quad32_xor () =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
xor_lemmas()
(*
let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) =
let q' = quad32_xor q q in
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
// REVIEW: Why are these necessary?
assert (q'.lo0 == nat32_xor q.lo0 q.lo0);
assert (q'.lo1 == nat32_xor q.lo1 q.lo1);
assert (q'.hi2 == nat32_xor q.hi2 q.hi2);
assert (q'.hi3 == nat32_xor q.hi3 q.hi3);
xor_lemmas()
in
FStar.Classical.forall_intro helper
*)
#pop-options
let lemma_reverse_reverse_bytes_nat32 (n:nat32) :
Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n)
=
reverse_bytes_nat32_reveal ();
let r = reverse_seq (nat32_to_be_bytes n) in
be_bytes_to_nat32_to_be_bytes r;
()
#push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this?
let lemma_reverse_bytes_quad32 (q:quad32) =
quad32_xor_reveal ();
reverse_bytes_nat32_reveal ();
reveal_reverse_bytes_quad32 q;
reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q);
()
#pop-options
let lemma_reverse_bytes_nat32 (_:unit) : Lemma
(reverse_bytes_nat32 0 == 0)
=
reverse_bytes_nat32_reveal ();
assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0);
()
let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma
(let z = Mkfour 0 0 0 0 in
reverse_bytes_quad32 z == z)
=
let z = Mkfour 0 0 0 0 in
calc (==) {
reverse_bytes_quad32 z;
== { reveal_reverse_bytes_quad32 z }
four_reverse (four_map reverse_bytes_nat32 z);
== { lemma_reverse_bytes_nat32() }
z;
};
()
let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) :
Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s)
=
reveal_reverse_bytes_nat32_seq s;
reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s);
assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s)
(*
let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) :
Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\
( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\
((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF))
=
if n.lo == 0 /\ n.hi == 0 then (
assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0);
()
) else (
()
);
()
let lemma_equality_check_helper_lo (q:quad32) :
Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\
((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\
(q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1);
()
let lemma_equality_check_helper_hi (q:quad32) :
Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\
((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\
(q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF))
=
assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3));
lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3);
()
*)
let lemma_insert_nat64_properties (q:quad32) (n:nat64) :
Lemma ( (let q' = insert_nat64 q n 0 in
q'.hi2 == q.hi2 /\
q'.hi3 == q.hi3) /\
(let q' = insert_nat64 q n 1 in
q'.lo0 == q.lo0 /\
q'.lo1 == q.lo1))
=
insert_nat64_reveal ();
()
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) :
Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 ==
Mkfour n0 n1 q.hi2 q.hi3 /\
insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 ==
Mkfour q.lo0 q.lo1 n0 n1 )
=
let open Vale.Def.Words.Two in
insert_nat64_reveal ();
()
let lemma_lo64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1))
=
lo64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
()
let lemma_hi64_properties (_:unit) :
Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
=
hi64_reveal ();
let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in
nat_to_two_to_nat n1 n2;
let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in
nat_to_two_to_nat n1 n2;
()
in
FStar.Classical.forall_intro_2 helper;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Seqs.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Two.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Def.Opaque_s.fsti.checked",
"Vale.Arch.TypesNative.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Arch.Types.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Calc",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Two_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Seq_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Lib.Seqs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Opaque_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n0: Vale.Def.Words_s.nat32 -> n1: Vale.Def.Words_s.nat32
-> FStar.Pervasives.Lemma
(ensures
Vale.Def.Types_s.reverse_bytes_nat64 (Vale.Arch.Types.two_to_nat32 (Vale.Def.Words_s.Mktwo n0
n1)) ==
Vale.Arch.Types.two_to_nat32 (Vale.Def.Words_s.Mktwo (Vale.Def.Types_s.reverse_bytes_nat32 n1)
(Vale.Def.Types_s.reverse_bytes_nat32 n0))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Words_s.nat32",
"Vale.Def.Types_s.reverse_bytes_nat64_reveal",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Vale.Def.Words_s.nat64",
"Vale.Def.Types_s.reverse_bytes_nat64",
"Vale.Arch.Types.two_to_nat32",
"Vale.Def.Words_s.Mktwo",
"Vale.Def.Types_s.reverse_bytes_nat32",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_reverse_bytes_nat64_32 (n0 n1: nat32)
: Lemma
(reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) ==
two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) =
| reverse_bytes_nat64_reveal () | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.