file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
listlengths
0
2
mutual_with
listlengths
0
11
ideal_premises
listlengths
0
236
proof_features
listlengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
Vale.Arch.Types.fst
Vale.Arch.Types.lemma_hi64_properties
val lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32).{:pattern hi64 q0; hi64 q1} (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
val lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32).{:pattern hi64 q0; hi64 q1} (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1))
let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 193, "start_col": 0, "start_line": 181 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures forall (q0: Vale.Def.Types_s.quad32) (q1: Vale.Def.Types_s.quad32). {:pattern Vale.Arch.Types.hi64 q0; Vale.Arch.Types.hi64 q1} Mkfour?.hi2 q0 == Mkfour?.hi2 q1 /\ Mkfour?.hi3 q0 == Mkfour?.hi3 q1 <==> Vale.Arch.Types.hi64 q0 == Vale.Arch.Types.hi64 q1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.forall_intro_2", "Vale.Def.Types_s.quad32", "Prims.l_iff", "Prims.l_and", "Prims.eq2", "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Vale.Def.Words_s.__proj__Mkfour__item__hi3", "Vale.Def.Words_s.nat64", "Vale.Arch.Types.hi64", "Prims.l_True", "Prims.squash", "Vale.Def.Words_s.nat32", "Prims.Nil", "FStar.Pervasives.pattern", "Vale.Def.Words.Two.nat_to_two_to_nat", "Vale.Def.Words_s.two", "Vale.Def.Words.Two_s.two_select", "Vale.Def.Words.Four_s.four_to_two_two", "Vale.Arch.Types.hi64_reveal", "Prims.l_Forall" ]
[]
false
false
true
false
false
let lemma_hi64_properties (_: unit) : Lemma (forall (q0: quad32) (q1: quad32). (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) =
hi64_reveal (); let helper (q0 q1: quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; ()
false
Spec.Agile.DH.fst
Spec.Agile.DH.dh
val dh: a:algorithm -> s:scalar a -> p:serialized_point a -> Tot (option (serialized_point a))
val dh: a:algorithm -> s:scalar a -> p:serialized_point a -> Tot (option (serialized_point a))
let dh a s p = match a with | DH_Curve25519 -> let output = Spec.Curve25519.scalarmult s p in let is_valid = not (lbytes_eq (create (size_public a) (u8 0)) output) in if is_valid then Some output else None | DH_P256 -> Spec.P256.ecdh p s
{ "file_name": "specs/Spec.Agile.DH.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 22, "end_line": 56, "start_col": 0, "start_line": 49 }
module Spec.Agile.DH open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence /// Constants type algorithm = | DH_Curve25519 | DH_P256 inline_for_extraction let size_key (a:algorithm) : Tot size_nat = match a with | DH_Curve25519 -> 32 | DH_P256 -> 32 inline_for_extraction let size_public (a:algorithm) : Tot size_nat = match a with | DH_Curve25519 -> 32 | DH_P256 -> 64 inline_for_extraction let prime (a:algorithm) = match a with | DH_Curve25519 -> Spec.Curve25519.prime | DH_P256 -> Spec.P256.prime /// Types type scalar (a:algorithm) = lbytes (size_key a) type serialized_point (a:algorithm) = lbytes (size_public a) /// Functions val clamp: alg:algorithm{alg = DH_Curve25519} -> scalar alg -> Tot (scalar alg) let clamp a k = match a with | DH.DH_Curve25519 -> Spec.Curve25519.decodeScalar k #set-options "--z3rlimit 50"
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Agile.DH.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Agile.DH.algorithm -> s: Spec.Agile.DH.scalar a -> p: Spec.Agile.DH.serialized_point a -> FStar.Pervasives.Native.option (Spec.Agile.DH.serialized_point a)
Prims.Tot
[ "total" ]
[]
[ "Spec.Agile.DH.algorithm", "Spec.Agile.DH.scalar", "Spec.Agile.DH.serialized_point", "FStar.Pervasives.Native.Some", "Prims.bool", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option", "Prims.op_Negation", "Lib.ByteSequence.lbytes_eq", "Spec.Agile.DH.size_public", "Lib.Sequence.create", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.u8", "Spec.Curve25519.serialized_point", "Spec.Curve25519.scalarmult", "Spec.P256.ecdh" ]
[]
false
false
false
false
false
let dh a s p =
match a with | DH_Curve25519 -> let output = Spec.Curve25519.scalarmult s p in let is_valid = not (lbytes_eq (create (size_public a) (u8 0)) output) in if is_valid then Some output else None | DH_P256 -> Spec.P256.ecdh p s
false
Hacl.Streaming.Poly1305_32.fsti
Hacl.Streaming.Poly1305_32.free
val free : Hacl.Streaming.Functor.free_st (Hacl.Streaming.Poly1305.poly1305 Hacl.Impl.Poly1305.Fields.M32) (FStar.Ghost.reveal (FStar.Ghost.hide ())) (Hacl.Streaming.Poly1305.t Hacl.Impl.Poly1305.Fields.M32) (Stateful?.s Hacl.Streaming.Poly1305.poly1305_key ())
let free = F.free (poly1305 M32) (G.hide ()) (t M32) (poly1305_key.I.s ())
{ "file_name": "code/streaming/Hacl.Streaming.Poly1305_32.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 74, "end_line": 22, "start_col": 0, "start_line": 22 }
module Hacl.Streaming.Poly1305_32 module G = FStar.Ghost module F = Hacl.Streaming.Functor module I = Hacl.Streaming.Interface open Hacl.Impl.Poly1305.Fields open Hacl.Streaming.Poly1305 #set-options "--fuel 0 --ifuel 0 --z3rlimit 100" /// Type abbreviation - makes KaRaMeL use pretty names in the generated code let state_t = F.state_s (poly1305 M32) () (t M32) (poly1305_key.I.s ()) noextract let alloca = F.alloca (poly1305 M32) () (t M32) (poly1305_key.I.s ()) let malloc = F.malloc (poly1305 M32) () (t M32) (poly1305_key.I.s ()) let reset = F.reset (poly1305 M32) (G.hide ()) (t M32) (poly1305_key.I.s ()) [@@ Comment "0 = success, 1 = max length exceeded" ] let update = F.update (poly1305 M32) (G.hide ()) (t M32) (poly1305_key.I.s ())
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Hacl.Streaming.Poly1305.fst.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Streaming.Functor.fsti.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Poly1305_32.fsti" }
[ { "abbrev": false, "full_module": "Hacl.Streaming.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "Hacl.Streaming.Functor", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": false, "full_module": "Hacl.Streaming", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Streaming.Functor.free_st (Hacl.Streaming.Poly1305.poly1305 Hacl.Impl.Poly1305.Fields.M32) (FStar.Ghost.reveal (FStar.Ghost.hide ())) (Hacl.Streaming.Poly1305.t Hacl.Impl.Poly1305.Fields.M32) (Stateful?.s Hacl.Streaming.Poly1305.poly1305_key ())
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Functor.free", "Prims.unit", "Hacl.Streaming.Poly1305.poly1305", "Hacl.Impl.Poly1305.Fields.M32", "FStar.Ghost.hide", "Hacl.Streaming.Poly1305.t", "Hacl.Streaming.Interface.__proj__Stateful__item__s", "Hacl.Streaming.Poly1305.poly1305_key" ]
[]
false
false
false
false
false
let free =
F.free (poly1305 M32) (G.hide ()) (t M32) (poly1305_key.I.s ())
false
Hacl.Streaming.Poly1305_32.fsti
Hacl.Streaming.Poly1305_32.update
val update : Hacl.Streaming.Functor.update_st (Hacl.Streaming.Poly1305.poly1305 Hacl.Impl.Poly1305.Fields.M32) (FStar.Ghost.reveal (FStar.Ghost.hide ())) (Hacl.Streaming.Poly1305.t Hacl.Impl.Poly1305.Fields.M32) (Stateful?.s Hacl.Streaming.Poly1305.poly1305_key ())
let update = F.update (poly1305 M32) (G.hide ()) (t M32) (poly1305_key.I.s ())
{ "file_name": "code/streaming/Hacl.Streaming.Poly1305_32.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 78, "end_line": 20, "start_col": 0, "start_line": 20 }
module Hacl.Streaming.Poly1305_32 module G = FStar.Ghost module F = Hacl.Streaming.Functor module I = Hacl.Streaming.Interface open Hacl.Impl.Poly1305.Fields open Hacl.Streaming.Poly1305 #set-options "--fuel 0 --ifuel 0 --z3rlimit 100" /// Type abbreviation - makes KaRaMeL use pretty names in the generated code let state_t = F.state_s (poly1305 M32) () (t M32) (poly1305_key.I.s ()) noextract let alloca = F.alloca (poly1305 M32) () (t M32) (poly1305_key.I.s ()) let malloc = F.malloc (poly1305 M32) () (t M32) (poly1305_key.I.s ()) let reset = F.reset (poly1305 M32) (G.hide ()) (t M32) (poly1305_key.I.s ())
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Hacl.Streaming.Poly1305.fst.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Streaming.Functor.fsti.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Poly1305_32.fsti" }
[ { "abbrev": false, "full_module": "Hacl.Streaming.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "Hacl.Streaming.Functor", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": false, "full_module": "Hacl.Streaming", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Streaming.Functor.update_st (Hacl.Streaming.Poly1305.poly1305 Hacl.Impl.Poly1305.Fields.M32) (FStar.Ghost.reveal (FStar.Ghost.hide ())) (Hacl.Streaming.Poly1305.t Hacl.Impl.Poly1305.Fields.M32) (Stateful?.s Hacl.Streaming.Poly1305.poly1305_key ())
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Functor.update", "Prims.unit", "Hacl.Streaming.Poly1305.poly1305", "Hacl.Impl.Poly1305.Fields.M32", "FStar.Ghost.hide", "Hacl.Streaming.Poly1305.t", "Hacl.Streaming.Interface.__proj__Stateful__item__s", "Hacl.Streaming.Poly1305.poly1305_key" ]
[]
false
false
false
false
false
let update =
F.update (poly1305 M32) (G.hide ()) (t M32) (poly1305_key.I.s ())
false
Hacl.Streaming.Poly1305_32.fsti
Hacl.Streaming.Poly1305_32.digest
val digest : Hacl.Streaming.Functor.digest_st (Hacl.Streaming.Poly1305.poly1305 Hacl.Impl.Poly1305.Fields.M32) () (Hacl.Streaming.Poly1305.t Hacl.Impl.Poly1305.Fields.M32) (Stateful?.s Hacl.Streaming.Poly1305.poly1305_key ())
let digest = F.digest (poly1305 M32) () (t M32) (poly1305_key.I.s ())
{ "file_name": "code/streaming/Hacl.Streaming.Poly1305_32.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 69, "end_line": 21, "start_col": 0, "start_line": 21 }
module Hacl.Streaming.Poly1305_32 module G = FStar.Ghost module F = Hacl.Streaming.Functor module I = Hacl.Streaming.Interface open Hacl.Impl.Poly1305.Fields open Hacl.Streaming.Poly1305 #set-options "--fuel 0 --ifuel 0 --z3rlimit 100" /// Type abbreviation - makes KaRaMeL use pretty names in the generated code let state_t = F.state_s (poly1305 M32) () (t M32) (poly1305_key.I.s ()) noextract let alloca = F.alloca (poly1305 M32) () (t M32) (poly1305_key.I.s ()) let malloc = F.malloc (poly1305 M32) () (t M32) (poly1305_key.I.s ()) let reset = F.reset (poly1305 M32) (G.hide ()) (t M32) (poly1305_key.I.s ()) [@@ Comment "0 = success, 1 = max length exceeded" ]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Hacl.Streaming.Poly1305.fst.checked", "Hacl.Streaming.Interface.fsti.checked", "Hacl.Streaming.Functor.fsti.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Streaming.Poly1305_32.fsti" }
[ { "abbrev": false, "full_module": "Hacl.Streaming.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Streaming.Interface", "short_module": "I" }, { "abbrev": true, "full_module": "Hacl.Streaming.Functor", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": false, "full_module": "Hacl.Streaming", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Streaming", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Streaming.Functor.digest_st (Hacl.Streaming.Poly1305.poly1305 Hacl.Impl.Poly1305.Fields.M32) () (Hacl.Streaming.Poly1305.t Hacl.Impl.Poly1305.Fields.M32) (Stateful?.s Hacl.Streaming.Poly1305.poly1305_key ())
Prims.Tot
[ "total" ]
[]
[ "Hacl.Streaming.Functor.digest", "Prims.unit", "Hacl.Streaming.Poly1305.poly1305", "Hacl.Impl.Poly1305.Fields.M32", "Hacl.Streaming.Poly1305.t", "Hacl.Streaming.Interface.__proj__Stateful__item__s", "Hacl.Streaming.Poly1305.poly1305_key" ]
[]
false
false
false
false
false
let digest =
F.digest (poly1305 M32) () (t M32) (poly1305_key.I.s ())
false
Steel.ST.HigherArray.fst
Steel.ST.HigherArray.malloc_ptr
val malloc_ptr (#elt: Type) (x: elt) (n: US.t) : STT(a: ptr elt { base_len (base a) == US.v n /\ offset a == 0 }) emp (fun a -> pts_to (| a, Ghost.hide (US.v n) |) P.full_perm (Seq.create (US.v n) x))
val malloc_ptr (#elt: Type) (x: elt) (n: US.t) : STT(a: ptr elt { base_len (base a) == US.v n /\ offset a == 0 }) emp (fun a -> pts_to (| a, Ghost.hide (US.v n) |) P.full_perm (Seq.create (US.v n) x))
let malloc_ptr x n = let a = malloc0 x n in let (| p, _ |) = a in rewrite (pts_to _ _ _) (pts_to (| p, Ghost.hide (US.v n) |) _ _); return p
{ "file_name": "lib/steel/Steel.ST.HigherArray.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 10, "end_line": 297, "start_col": 0, "start_line": 289 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.HigherArray module P = Steel.PCMFrac module R = Steel.ST.PCMReference module M = FStar.Map module PM = Steel.PCMMap [@@noextract_to "krml"] let index_t (len: Ghost.erased nat) : Tot Type0 = (i: nat { i < len }) [@@noextract_to "krml"] let carrier (elt: Type u#a) (len: Ghost.erased nat) : Tot Type = PM.map (index_t len) (P.fractional elt) [@@noextract_to "krml"] let pcm (elt: Type u#a) (len: Ghost.erased nat) : Tot (P.pcm (carrier elt len)) = PM.pointwise (index_t len) (P.pcm_frac #elt) [@@noextract_to "krml"] let one (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.one let composable (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.composable [@@noextract_to "krml"] let compose (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.op [@@noextract_to "krml"] let mk_carrier (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p: P.perm) : Tot (carrier elt len) = let f (i: nat) : Tot (P.fractional elt) = if offset + Seq.length s > len || i < offset || i >= offset + Seq.length s then None else Some (Seq.index s (i - offset), p) in M.map_literal f let mk_carrier_inj (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires ( mk_carrier len offset s1 p1 == mk_carrier len offset s2 p2 /\ offset + Seq.length s1 <= len /\ offset + Seq.length s2 <= len )) (ensures ( s1 `Seq.equal` s2 /\ (Seq.length s1 > 0 ==> p1 == p2) )) = assert (forall (i: nat) . i < Seq.length s1 ==> (M.sel (mk_carrier len offset s1 p1) (offset + i) == Some (Seq.index s1 i, p1))); assert (forall (i: nat) . i < Seq.length s2 ==> M.sel (mk_carrier len offset s2 p2) (offset + i) == Some (Seq.index s2 i, p2)) [@@erasable] let base_t (elt: Type u#a) : Tot Type0 = Ghost.erased (base_len: US.t & ref _ (pcm elt (US.v base_len))) let base_len (#elt: Type) (b: base_t elt) : GTot nat = US.v (dfst b) [@@noextract_to "krml"] noeq type ptr (elt: Type u#a) : Type0 = { base_len: Ghost.erased US.t; // U32.t to prove that A.read, A.write offset computation does not overflow. TODO: replace U32.t with size_t base: (r: ref _ (pcm elt (US.v base_len)) { core_ref_is_null r ==> US.v base_len == 0 }); offset: (offset: nat { offset <= US.v base_len }); } let null_ptr a = { base_len = 0sz; base = null #_ #(pcm a 0) ; offset = 0 } let is_null_ptr p = is_null p.base let base (#elt: Type) (p: ptr elt) : Tot (base_t elt) = (| Ghost.reveal p.base_len, p.base |) let offset (#elt: Type) (p: ptr elt) : Ghost nat (requires True) (ensures (fun offset -> offset <= base_len (base p))) = p.offset let ptr_base_offset_inj (#elt: Type) (p1 p2: ptr elt) : Lemma (requires ( base p1 == base p2 /\ offset p1 == offset p2 )) (ensures ( p1 == p2 )) = () let base_len_null_ptr _ = () let length_fits #elt a = () let valid_perm (len: nat) (offset: nat) (slice_len: nat) (p: P.perm) : Tot prop = let open FStar.Real in ((offset + slice_len <= len /\ slice_len > 0) ==> (p.P.v <=. one)) [@__reduce__] let pts_to0 (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : Tot vprop = R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p) `star` pure ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) let pts_to (#elt: Type u#1) (a: array elt) ([@@@ smt_fallback ] p: P.perm) ([@@@ smt_fallback ] s: Seq.seq elt) : Tot vprop = pts_to0 a p s // this lemma is necessary because Steel.PCMReference is marked unfold let change_r_pts_to (#opened: _) (#carrier: Type u#1) (#pcm: P.pcm carrier) (p: ref carrier pcm) (v: carrier) (#carrier': Type u#1) (#pcm': P.pcm carrier') (p': ref carrier' pcm') (v': carrier') : STGhost unit opened (R.pts_to p v) (fun _ -> R.pts_to p' v') (// keep on distinct lines for error messages carrier == carrier' /\ pcm == pcm' /\ p == p' /\ v == v') (fun _ -> True) = rewrite (R.pts_to p v) (R.pts_to p' v') let intro_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (#v: _) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (R.pts_to (ptr_of a).base v) (fun _ -> pts_to a p s) ( v == mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p /\ valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) (fun _ -> True) = change_r_pts_to (ptr_of a).base v (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p); intro_pure _; rewrite (pts_to0 a p s) (pts_to a p s) let elim_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (pts_to a p s) (fun _ -> R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p)) (True) (fun _ -> valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) = rewrite (pts_to a p s) (pts_to0 a p s); elim_pure _ let pts_to_length a s = elim_pts_to a _ s; intro_pts_to a _ s let pts_to_not_null a s = elim_pts_to a _ s; R.pts_to_not_null _ _; intro_pts_to a _ s let mk_carrier_joinable (#elt: Type) (len: nat) (offset: nat) (s1: Seq.seq elt) (p1: P.perm) (s2: Seq.seq elt) (p2: P.perm) : Lemma (requires ( offset + Seq.length s1 <= len /\ Seq.length s1 == Seq.length s2 /\ P.joinable (pcm elt len) (mk_carrier len offset s1 p1) (mk_carrier len offset s2 p2) )) (ensures ( s1 `Seq.equal` s2 )) = let lem (i: nat { 0 <= i /\ i < Seq.length s1 }) : Lemma (Seq.index s1 i == Seq.index s2 i) [SMTPat (Seq.index s1 i); SMTPat (Seq.index s2 i)] = assert ( forall z . ( P.compatible (pcm elt len) (mk_carrier len offset s1 p1) z /\ P.compatible (pcm elt len) (mk_carrier len offset s2 p2) z ) ==> begin match M.sel z (offset + i) with | None -> False | Some (v, _) -> v == Seq.index s1 i /\ v == Seq.index s2 i end ) in () let pure_star_interp' (p:slprop u#a) (q:prop) (m:mem) : Lemma (interp (p `Steel.Memory.star` Steel.Memory.pure q) m <==> interp p m /\ q) = pure_star_interp p q m; emp_unit p let pts_to_inj a p1 s1 p2 s2 m = Classical.forall_intro reveal_pure; pure_star_interp' (hp_of (R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1))) ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s1) p1 /\ Seq.length s1 == length a ) m; pure_star_interp' (hp_of (R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s2 p2))) ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s2) p2 /\ Seq.length s2 == length a ) m; pts_to_join (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1) (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s2 p2) m; mk_carrier_joinable (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1 s2 p2 [@@noextract_to "krml"] let malloc0 (#elt: Type) (x: elt) (n: US.t) : ST (array elt) emp (fun a -> pts_to a P.full_perm (Seq.create (US.v n) x)) (True) (fun a -> length a == US.v n /\ base_len (base (ptr_of a)) == US.v n ) = let c : carrier elt (US.v n) = mk_carrier (US.v n) 0 (Seq.create (US.v n) x) P.full_perm in let base : ref (carrier elt (US.v n)) (pcm elt (US.v n)) = R.alloc c in R.pts_to_not_null base _; let p = { base_len = n; base = base; offset = 0; } in let a = (| p, Ghost.hide (US.v n) |) in change_r_pts_to base c (ptr_of a).base c; intro_pts_to a P.full_perm (Seq.create (US.v n) x); return a
{ "checked_file": "/", "dependencies": [ "Steel.ST.PCMReference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.PCMMap.fst.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.HigherArray.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMMap", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Steel.ST.PCMReference", "short_module": "R" }, { "abbrev": true, "full_module": "Steel.PCMFrac", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: elt -> n: FStar.SizeT.t -> Steel.ST.Effect.STT (a: Steel.ST.HigherArray.ptr elt { Steel.ST.HigherArray.base_len (Steel.ST.HigherArray.base a) == FStar.SizeT.v n /\ Steel.ST.HigherArray.offset a == 0 })
Steel.ST.Effect.STT
[]
[]
[ "FStar.SizeT.t", "Steel.ST.HigherArray.ptr", "FStar.Ghost.erased", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Steel.ST.HigherArray.offset", "FStar.Ghost.reveal", "Steel.ST.HigherArray.base_len", "Steel.ST.HigherArray.base", "Steel.ST.Util.return", "Prims.l_and", "Prims.eq2", "FStar.SizeT.v", "Prims.int", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.ST.HigherArray.pts_to", "Prims.Mkdtuple2", "Steel.FractionalPermission.full_perm", "FStar.Seq.Base.create", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.ST.Util.rewrite", "Steel.ST.HigherArray.array", "Steel.ST.HigherArray.malloc0" ]
[]
false
true
false
false
false
let malloc_ptr x n =
let a = malloc0 x n in let (| p , _ |) = a in rewrite (pts_to _ _ _) (pts_to (| p, Ghost.hide (US.v n) |) _ _); return p
false
Vale.Arch.Types.fst
Vale.Arch.Types.lemma_insert_nat64_nat32s
val lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 )
val lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 )
let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 165, "start_col": 0, "start_line": 157 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
q: Vale.Def.Types_s.quad32 -> n0: Vale.Def.Words_s.nat32 -> n1: Vale.Def.Words_s.nat32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.insert_nat64 q (Vale.Arch.Types.two_to_nat32 (Vale.Def.Words_s.Mktwo n0 n1)) 0 == Vale.Def.Words_s.Mkfour n0 n1 (Mkfour?.hi2 q) (Mkfour?.hi3 q) /\ Vale.Def.Types_s.insert_nat64 q (Vale.Arch.Types.two_to_nat32 (Vale.Def.Words_s.Mktwo n0 n1)) 1 == Vale.Def.Words_s.Mkfour (Mkfour?.lo0 q) (Mkfour?.lo1 q) n0 n1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "Vale.Def.Words_s.nat32", "Prims.unit", "Vale.Def.Types_s.insert_nat64_reveal", "Prims.l_True", "Prims.squash", "Prims.l_and", "Prims.eq2", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat32", "Vale.Def.Types_s.insert_nat64", "Vale.Arch.Types.two_to_nat32", "Vale.Def.Words_s.Mktwo", "Vale.Def.Words_s.Mkfour", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Vale.Def.Words_s.__proj__Mkfour__item__hi3", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let lemma_insert_nat64_nat32s (q: quad32) (n0 n1: nat32) : Lemma (insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1) =
let open Vale.Def.Words.Two in insert_nat64_reveal (); ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.lemma_insert_nat64_properties
val lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) [SMTPat (insert_nat64 q n)]
val lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) [SMTPat (insert_nat64 q n)]
let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 155, "start_col": 0, "start_line": 146 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *)
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
q: Vale.Def.Types_s.quad32 -> n: Vale.Def.Words_s.nat64 -> FStar.Pervasives.Lemma (ensures (let q' = Vale.Def.Types_s.insert_nat64 q n 0 in Mkfour?.hi2 q' == Mkfour?.hi2 q /\ Mkfour?.hi3 q' == Mkfour?.hi3 q) /\ (let q' = Vale.Def.Types_s.insert_nat64 q n 1 in Mkfour?.lo0 q' == Mkfour?.lo0 q /\ Mkfour?.lo1 q' == Mkfour?.lo1 q)) [SMTPat (Vale.Def.Types_s.insert_nat64 q n)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "Vale.Def.Words_s.nat64", "Prims.unit", "Vale.Def.Types_s.insert_nat64_reveal", "Prims.l_True", "Prims.squash", "Prims.l_and", "Prims.eq2", "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Vale.Def.Words_s.__proj__Mkfour__item__hi3", "Vale.Def.Types_s.insert_nat64", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let lemma_insert_nat64_properties (q: quad32) (n: nat64) : Lemma ((let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) =
insert_nat64_reveal (); ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.lemma_insrq_extrq_relations
val lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
val lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3))
let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 297, "start_col": 0, "start_line": 274 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 3, "initial_ifuel": 3, "max_fuel": 3, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.Def.Types_s.quad32 -> y: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures (let z = Vale.Def.Types_s.insert_nat64 x (Vale.Arch.Types.lo64 y) 0 in z == Vale.Def.Words_s.Mkfour (Mkfour?.lo0 y) (Mkfour?.lo1 y) (Mkfour?.hi2 x) (Mkfour?.hi3 x) /\ (let z = Vale.Def.Types_s.insert_nat64 x (Vale.Arch.Types.hi64 y) 1 in z == Vale.Def.Words_s.Mkfour (Mkfour?.lo0 x) (Mkfour?.lo1 x) (Mkfour?.hi2 y) (Mkfour?.hi3 y))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "Vale.Def.Types_s.nat32", "Prims.unit", "Vale.Def.Words.Two.nat_to_two_to_nat", "Vale.Def.Words_s.two", "Vale.Def.Words_s.nat32", "Vale.Def.Words.Two_s.two_select", "Vale.Def.Words.Four_s.four_to_two_two", "Prims._assert", "Prims.eq2", "Vale.Def.Types_s.insert_nat64_def", "Vale.Arch.Types.lo64_def", "Vale.Arch.Types.hi64_reveal", "Vale.Arch.Types.lo64_reveal", "Vale.Def.Types_s.insert_nat64_reveal", "Vale.Def.Types_s.insert_nat64", "Vale.Arch.Types.lo64", "Prims.l_True", "Prims.squash", "Prims.l_and", "Vale.Def.Words_s.four", "Vale.Def.Words_s.Mkfour", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Vale.Def.Words_s.__proj__Mkfour__item__hi3", "Vale.Arch.Types.hi64", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_insrq_extrq_relations (x y: quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) =
let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.le_bytes_to_seq_quad32_empty
val le_bytes_to_seq_quad32_empty: unit -> Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
val le_bytes_to_seq_quad32_empty: unit -> Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0)
let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 314, "start_col": 0, "start_line": 310 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 3, "initial_ifuel": 3, "max_fuel": 3, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures forall (s: FStar.Seq.Base.seq Vale.Def.Types_s.nat8). {:pattern FStar.Seq.Base.length (Vale.Def.Types_s.le_bytes_to_seq_quad32 s)} FStar.Seq.Base.length s == 0 ==> FStar.Seq.Base.length (Vale.Def.Types_s.le_bytes_to_seq_quad32 s) == 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Pervasives.reveal_opaque", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.quad32", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.l_True", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "Prims.squash", "Prims.l_Forall", "Prims.l_imp", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let le_bytes_to_seq_quad32_empty () : Lemma (forall s. {:pattern (length (le_bytes_to_seq_quad32 s))} length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.push_pop_xmm
val push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x')
val push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x')
let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 271, "start_col": 0, "start_line": 263 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.Def.Types_s.quad32 -> y: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures (let x' = Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 y (Vale.Arch.Types.hi64 x) 1) (Vale.Arch.Types.lo64 x) 0 in x == x'))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "Prims.unit", "Vale.Arch.Types.hi64_reveal", "Vale.Arch.Types.lo64_reveal", "Vale.Def.Types_s.insert_nat64_reveal", "Prims.l_True", "Prims.squash", "Prims.eq2", "Vale.Def.Types_s.insert_nat64", "Vale.Arch.Types.hi64", "Vale.Arch.Types.lo64", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let push_pop_xmm (x y: quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') =
insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.lemma_equality_check_helper
val lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) )
val lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) )
let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 260, "start_col": 0, "start_line": 246 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
q: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures (Mkfour?.lo0 q == 0 /\ Mkfour?.lo1 q == 0 ==> Vale.Arch.Types.lo64 q == 0) /\ (Prims.op_Negation (Mkfour?.lo0 q = 0) \/ Prims.op_Negation (Mkfour?.lo1 q = 0) ==> Prims.op_Negation (Vale.Arch.Types.lo64 q = 0)) /\ (Mkfour?.hi2 q == 0 /\ Mkfour?.hi3 q == 0 ==> Vale.Arch.Types.hi64 q == 0) /\ (~(Mkfour?.hi2 q = 0) \/ ~(Mkfour?.hi3 q = 0) ==> ~(Vale.Arch.Types.hi64 q = 0)) /\ (Mkfour?.lo0 q == 0xFFFFFFFF /\ Mkfour?.lo1 q == 0xFFFFFFFF <==> Vale.Arch.Types.lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (Mkfour?.hi2 q == 0xFFFFFFFF /\ Mkfour?.hi3 q == 0xFFFFFFFF <==> Vale.Arch.Types.hi64 q == 0xFFFFFFFFFFFFFFFF))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "Prims.unit", "Prims._assert", "Prims.l_Forall", "Vale.Def.Words_s.two", "Vale.Def.Words_s.nat32", "Prims.eq2", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Def.Words.Two_s.two_to_nat", "Vale.Def.Words.Two_s.two_to_nat_unfold", "Vale.Arch.Types.hi64_reveal", "Vale.Arch.Types.lo64_reveal", "Prims.l_True", "Prims.squash", "Prims.l_and", "Prims.l_imp", "Prims.int", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Vale.Arch.Types.lo64", "Prims.l_or", "Prims.b2t", "Prims.op_Negation", "Prims.op_Equality", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Vale.Def.Words_s.__proj__Mkfour__item__hi3", "Vale.Arch.Types.hi64", "Prims.l_not", "Prims.l_iff", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_equality_check_helper (q: quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) =
lo64_reveal (); hi64_reveal (); assert (forall (x: two nat32). {:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.le_bytes_to_seq_quad32_to_bytes
val le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
val le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s)
let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 380, "start_col": 0, "start_line": 361 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; }
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.le_bytes_to_seq_quad32 (Vale.Def.Types_s.le_seq_quad32_to_bytes s) == s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Prims.unit", "Vale.Def.Words.Seq.seq_to_seq_four_to_seq_LE", "Vale.Def.Types_s.nat32", "Vale.Lib.Seqs.seq_map_inverses", "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Vale.Lib.Seqs_s.seq_map", "Vale.Def.Types_s.le_seq_quad32_to_bytes_reveal", "FStar.Pervasives.reveal_opaque", "Vale.Def.Types_s.nat8", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.l_True", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "Prims.squash", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let le_bytes_to_seq_quad32_to_bytes (s: seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s); ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.le_seq_quad32_to_bytes_to_seq_quad32
val le_seq_quad32_to_bytes_to_seq_quad32 (s:seq nat8{length s % 16 = 0}) : Lemma (le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s) == s)
val le_seq_quad32_to_bytes_to_seq_quad32 (s:seq nat8{length s % 16 = 0}) : Lemma (le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s) == s)
let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; }
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 400, "start_col": 0, "start_line": 391 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length s % 16 = 0} -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.le_seq_quad32_to_bytes (Vale.Def.Types_s.le_bytes_to_seq_quad32 s) == s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "FStar.Calc.calc_finish", "Vale.Def.Types_s.nat8", "Prims.eq2", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Vale.Def.Words_s.nat32", "Vale.Def.Words.Seq_s.seq_to_seq_four_LE", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Vale.Def.Types_s.le_seq_quad32_to_bytes_reveal", "FStar.Pervasives.reveal_opaque", "Vale.Def.Types_s.quad32", "Prims.l_True" ]
[]
false
false
true
false
false
let le_seq_quad32_to_bytes_to_seq_quad32 s =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc ( == ) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); ( == ) { () } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); ( == ) { () } s; }
false
CustomSyntax.fst
CustomSyntax.sum_spec
val sum_spec (n: nat) : GTot nat
val sum_spec (n: nat) : GTot nat
let rec sum_spec (n:nat) : GTot nat = if n = 0 then 0 else n + sum_spec (n - 1)
{ "file_name": "share/steel/examples/pulse/CustomSyntax.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 43, "end_line": 288, "start_col": 0, "start_line": 287 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module CustomSyntax open Pulse.Lib.Pervasives module U32 = FStar.UInt32 #push-options "--using_facts_from '* -FStar.Tactics -FStar.Reflection'" #push-options "--ide_id_info_off" assume val p : vprop assume val g : unit -> stt unit emp (fun _ -> p) let folded_pts_to (r:ref U32.t) (n:erased U32.t) : vprop = pts_to r n ```pulse fn unfold_test (r:ref U32.t) requires folded_pts_to r 'n ensures folded_pts_to r 'n { unfold folded_pts_to; fold folded_pts_to } ``` ```pulse fn test_write_10 (x:ref U32.t) requires pts_to x 'n ensures pts_to x 0ul { x := 1ul; x := 0ul; } ``` ```pulse fn test_read (r:ref U32.t) requires pts_to r #pm 'n returns x : U32.t ensures pts_to r #pm x { !r } ``` ```pulse fn swap (r1 r2:ref U32.t) requires pts_to r1 'n1 ** pts_to r2 'n2 ensures pts_to r1 'n2 ** pts_to r2 'n1 { let x = !r1; let y = !r2; r1 := y; r2 := x } ``` ```pulse fn call_swap2 (r1 r2:ref U32.t) requires pts_to r1 'n1 ** pts_to r2 'n2 ensures pts_to r1 'n1 ** pts_to r2 'n2 { swap r1 r2; swap r1 r2 } ``` ```pulse fn swap_with_elim_pure (#n1 #n2:erased U32.t) (r1 r2:ref U32.t) requires pts_to r1 n1 ** pts_to r2 n2 ensures pts_to r1 n2 ** pts_to r2 n1 { let x = !r1; let y = !r2; r1 := y; r2 := x } ``` ```pulse fn intro_pure_example (r:ref U32.t) requires (pts_to r 'n1 ** pure (reveal 'n1 == reveal 'n2)) ensures (pts_to r 'n2 ** pure (reveal 'n2 == reveal 'n1)) { () } ``` ```pulse fn if_example (r:ref U32.t) (n:(n:erased U32.t{U32.v (reveal n) == 1})) (b:bool) requires pts_to r n ensures pts_to r (U32.add (reveal n) 2ul) { let x = read_atomic r; if b { r := U32.add x 2ul } else { write_atomic r 3ul } } ``` ```pulse ghost fn elim_intro_exists2 (r:ref U32.t) requires exists* n. pts_to r n ensures exists* n. pts_to r n { introduce exists* n. pts_to r n with _ } ``` assume val pred (b:bool) : vprop assume val read_pred () (#b:erased bool) : stt bool (pred b) (fun r -> pred r) ```pulse fn while_test_alt (r:ref U32.t) requires exists* b n. (pts_to r n ** pred b) ensures exists* n. (pts_to r n ** pred false) { while (read_pred ()) invariant b . exists* n. (pts_to r n ** pred b) { () } } ``` ```pulse fn infer_read_ex (r:ref U32.t) requires exists* n. pts_to r n ensures exists* n. pts_to r n { let x = !r; () } ``` ```pulse fn while_count2 (r:ref U32.t) requires exists* (n:U32.t). (pts_to r n) ensures (pts_to r 10ul) { open FStar.UInt32; while (let x = !r; (x <> 10ul)) invariant b. exists* n. (pts_to r n ** pure (b == (n <> 10ul))) { let x = !r; if (x <^ 10ul) { r := x +^ 1ul } else { r := x -^ 1ul } } } ``` ```pulse fn test_par (r1 r2:ref U32.t) requires pts_to r1 'n1 ** pts_to r2 'n2 ensures pts_to r1 1ul ** pts_to r2 1ul { parallel requires (pts_to r1 'n1) and (pts_to r2 'n2) ensures (pts_to r1 1ul) and (pts_to r2 1ul) { r1 := 1ul } { r2 := 1ul }; () } ``` // A test for rewrite let mpts_to (r:ref U32.t) (n:erased U32.t) : vprop = pts_to r n ```pulse fn rewrite_test (r:ref U32.t) requires (mpts_to r 'n) ensures (mpts_to r 1ul) { rewrite (mpts_to r 'n) as (pts_to r 'n); r := 1ul; rewrite (pts_to r 1ul) as (mpts_to r 1ul) } ``` ```pulse fn test_local (r:ref U32.t) requires (pts_to r 'n) ensures (pts_to r 0ul) { let mut x = 0ul; let y = Pulse.Lib.Reference.op_Bang x; r := y } ``` ```pulse fn count_local (r:ref int) (n:int) requires (pts_to r (hide 0)) ensures (pts_to r n) { let mut i = 0; while (let m = !i; (m <> n)) invariant b. exists* m. (pts_to i m ** pure (b == (m <> n))) { let m = !i; i := m + 1 }; let x = !i; r := x } ```
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "CustomSyntax.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> Prims.GTot Prims.nat
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.bool", "Prims.op_Addition", "CustomSyntax.sum_spec", "Prims.op_Subtraction" ]
[ "recursion" ]
false
false
false
false
false
let rec sum_spec (n: nat) : GTot nat =
if n = 0 then 0 else n + sum_spec (n - 1)
false
Vale.Arch.Types.fst
Vale.Arch.Types.be_seq_quad32_to_bytes_of_singleton
val be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
val be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q)))
let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 453, "start_col": 0, "start_line": 448 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
q: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Arch.Types.be_quad32_to_bytes q == Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE (FStar.Seq.Base.create 1 q)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "Prims.unit", "Vale.Def.Words.Seq.four_to_seq_BE_is_seq_four_to_seq_BE", "FStar.Pervasives.reveal_opaque", "Vale.Def.Words.Seq_s.seq16", "Vale.Def.Words_s.nat8", "Vale.Arch.Types.be_quad32_to_bytes", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.seq", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Words_s.nat32", "FStar.Seq.Base.create", "Vale.Def.Words_s.four", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let be_seq_quad32_to_bytes_of_singleton (q: quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) =
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.be_bytes_to_seq_quad32_empty
val be_bytes_to_seq_quad32_empty: unit -> Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
val be_bytes_to_seq_quad32_empty: unit -> Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0)
let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 320, "start_col": 0, "start_line": 316 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 3, "initial_ifuel": 3, "max_fuel": 3, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures forall (s: FStar.Seq.Base.seq Vale.Def.Types_s.nat8). {:pattern FStar.Seq.Base.length (Vale.Def.Types_s.be_bytes_to_seq_quad32 s)} FStar.Seq.Base.length s == 0 ==> FStar.Seq.Base.length (Vale.Def.Types_s.be_bytes_to_seq_quad32 s) == 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Pervasives.reveal_opaque", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.quad32", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.l_True", "Vale.Def.Types_s.be_bytes_to_seq_quad32", "Prims.squash", "Prims.l_Forall", "Prims.l_imp", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let be_bytes_to_seq_quad32_empty () : Lemma (forall s. {:pattern (length (be_bytes_to_seq_quad32 s))} length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) =
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.le_seq_quad32_to_bytes_injective
val le_seq_quad32_to_bytes_injective (b b':Seq.seq quad32) : Lemma (requires Seq.equal (le_seq_quad32_to_bytes b) (le_seq_quad32_to_bytes b')) (ensures b == b')
val le_seq_quad32_to_bytes_injective (b b':Seq.seq quad32) : Lemma (requires Seq.equal (le_seq_quad32_to_bytes b) (le_seq_quad32_to_bytes b')) (ensures b == b')
let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b')
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 21, "end_line": 515, "start_col": 0, "start_line": 509 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> b': FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.equal (Vale.Def.Types_s.le_seq_quad32_to_bytes b) (Vale.Def.Types_s.le_seq_quad32_to_bytes b')) (ensures b == b')
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Prims._assert", "FStar.Seq.Base.equal", "Prims.unit", "Vale.Def.Words.Seq.seq_four_to_seq_LE_injective_specific", "Vale.Def.Types_s.nat32", "Vale.Lib.Seqs.seq_map_injective", "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Vale.Def.Words.Seq.nat_to_four_8_injective", "Vale.Def.Words.Seq.seq_four_to_seq_LE_injective", "Vale.Def.Words_s.nat8", "Vale.Def.Types_s.le_seq_quad32_to_bytes_reveal" ]
[]
true
false
true
false
false
let le_seq_quad32_to_bytes_injective (b b': seq quad32) =
le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective (); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b')
false
Vale.Arch.Types.fst
Vale.Arch.Types.le_seq_quad32_to_bytes_of_singleton
val le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
val le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q))
let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 446, "start_col": 0, "start_line": 440 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; }
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
q: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.le_quad32_to_bytes q == Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create 1 q))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "Prims.unit", "Vale.Def.Words.Seq.four_to_seq_LE_is_seq_four_to_seq_LE", "Vale.Def.Types_s.nat32", "FStar.Pervasives.reveal_opaque", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat8", "Prims.l_True", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Vale.Def.Types_s.le_quad32_to_bytes", "Vale.Def.Types_s.le_seq_quad32_to_bytes_reveal", "Prims.squash", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "FStar.Seq.Base.create", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let le_seq_quad32_to_bytes_of_singleton (q: quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) =
le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.be_quad32_to_bytes_injective_specific
val be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
val be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 507, "start_col": 0, "start_line": 504 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.Def.Types_s.quad32 -> b': Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Arch.Types.be_quad32_to_bytes b == Vale.Arch.Types.be_quad32_to_bytes b' ==> b == b')
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "Vale.Arch.Types.be_quad32_to_bytes_injective", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.eq2", "Vale.Def.Words.Seq_s.seq16", "Vale.Def.Words_s.nat8", "Vale.Arch.Types.be_quad32_to_bytes", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let be_quad32_to_bytes_injective_specific (b b': quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
be_quad32_to_bytes_injective ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.le_quad32_to_bytes_injective_specific
val le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
val le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 502, "start_col": 0, "start_line": 499 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.Def.Types_s.quad32 -> b': Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.le_quad32_to_bytes b == Vale.Def.Types_s.le_quad32_to_bytes b' ==> b == b')
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "Vale.Arch.Types.le_quad32_to_bytes_injective", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.eq2", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.le_quad32_to_bytes", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let le_quad32_to_bytes_injective_specific (b b': quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
le_quad32_to_bytes_injective ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.be_bytes_to_seq_quad32_to_bytes
val be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
val be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s)
let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 389, "start_col": 0, "start_line": 382 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.be_bytes_to_seq_quad32 (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE s)) == s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Prims.unit", "Vale.Def.Words.Seq.seq_to_seq_four_to_seq_BE", "Vale.Def.Types_s.nat32", "Vale.Lib.Seqs.seq_map_inverses", "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Lib.Seqs_s.seq_map", "FStar.Pervasives.reveal_opaque", "Vale.Def.Types_s.nat8", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.l_True", "Vale.Def.Types_s.be_bytes_to_seq_quad32", "Prims.squash", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let be_bytes_to_seq_quad32_to_bytes (s: seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) =
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s); ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.le_bytes_to_nat64_to_bytes
val le_bytes_to_nat64_to_bytes (s:nat64) : Lemma (le_bytes_to_nat64 (le_nat64_to_bytes s) == s)
val le_bytes_to_nat64_to_bytes (s:nat64) : Lemma (le_bytes_to_nat64 (le_nat64_to_bytes s) == s)
let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 303, "start_col": 0, "start_line": 301 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 3, "initial_ifuel": 3, "max_fuel": 3, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.Def.Words_s.nat64 -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.le_bytes_to_nat64 (Vale.Def.Types_s.le_nat64_to_bytes s) == s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Words_s.nat64", "Vale.Def.Types_s.le_bytes_to_nat64_reveal", "Prims.unit", "Vale.Def.Types_s.le_nat64_to_bytes_reveal" ]
[]
true
false
true
false
false
let le_bytes_to_nat64_to_bytes s =
le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.le_quad32_to_bytes_injective
val le_quad32_to_bytes_injective: unit -> Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
val le_quad32_to_bytes_injective: unit -> Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b')
let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 475, "start_col": 0, "start_line": 455 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures forall (b: Vale.Def.Types_s.quad32) (b': Vale.Def.Types_s.quad32). Vale.Def.Types_s.le_quad32_to_bytes b == Vale.Def.Types_s.le_quad32_to_bytes b' ==> b == b')
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.forall_intro_2", "Vale.Def.Types_s.quad32", "Prims.l_imp", "Prims.eq2", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.le_quad32_to_bytes", "Prims.l_True", "Prims.squash", "Vale.Def.Words_s.nat8", "Prims.Nil", "FStar.Pervasives.pattern", "Prims.op_Equality", "Vale.Def.Words.Seq.four_to_seq_LE_injective", "Vale.Def.Words_s.nat32", "Prims._assert", "Vale.Def.Words.Seq_s.seq4", "Vale.Def.Types_s.nat32", "Vale.Def.Words.Seq_s.four_to_seq_LE", "Vale.Lib.Seqs.seq_map_injective", "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words.Seq.nat_to_four_8_injective", "Vale.Def.Words.Seq.seq_four_to_seq_LE_injective_specific", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Vale.Lib.Seqs_s.seq_map", "Prims.bool", "FStar.Pervasives.reveal_opaque", "Prims.int", "FStar.Seq.Base.length", "Prims.l_Forall" ]
[]
false
false
true
false
false
let le_quad32_to_bytes_injective () : Lemma (forall b b'. le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') =
reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b': quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then (let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective (); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; ()) in FStar.Classical.forall_intro_2 helper
false
Vale.Arch.Types.fst
Vale.Arch.Types.le_nat64_to_bytes_to_nat64
val le_nat64_to_bytes_to_nat64 (s:seq nat8 { length s == 8 }) : Lemma (le_nat64_to_bytes (le_bytes_to_nat64 s) == s)
val le_nat64_to_bytes_to_nat64 (s:seq nat8 { length s == 8 }) : Lemma (le_nat64_to_bytes (le_bytes_to_nat64 s) == s)
let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 307, "start_col": 0, "start_line": 305 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 3, "initial_ifuel": 3, "max_fuel": 3, "max_ifuel": 3, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length s == 8} -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.le_nat64_to_bytes (Vale.Def.Types_s.le_bytes_to_nat64 s) == s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Vale.Def.Types_s.le_bytes_to_nat64_reveal", "Prims.unit", "Vale.Def.Types_s.le_nat64_to_bytes_reveal" ]
[]
true
false
true
false
false
let le_nat64_to_bytes_to_nat64 n =
le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.be_quad32_to_bytes_injective
val be_quad32_to_bytes_injective: unit -> Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
val be_quad32_to_bytes_injective: unit -> Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b')
let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 497, "start_col": 0, "start_line": 477 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures forall (b: Vale.Def.Types_s.quad32) (b': Vale.Def.Types_s.quad32). Vale.Arch.Types.be_quad32_to_bytes b == Vale.Arch.Types.be_quad32_to_bytes b' ==> b == b')
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.forall_intro_2", "Vale.Def.Types_s.quad32", "Prims.l_imp", "Prims.eq2", "Vale.Def.Words.Seq_s.seq16", "Vale.Def.Words_s.nat8", "Vale.Arch.Types.be_quad32_to_bytes", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Prims.op_Equality", "Vale.Def.Words.Seq.four_to_seq_BE_injective", "Vale.Def.Words_s.nat32", "Prims._assert", "Vale.Def.Words.Seq_s.seq4", "Vale.Def.Types_s.nat32", "Vale.Def.Words.Seq_s.four_to_seq_BE", "Vale.Lib.Seqs.seq_map_injective", "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words.Seq.nat_to_four_8_injective", "FStar.Seq.Base.seq", "Vale.Def.Words.Seq.seq_four_to_seq_BE_injective_specific", "Prims.l_or", "Prims.int", "FStar.Seq.Base.length", "FStar.Mul.op_Star", "Prims.nat", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Lib.Seqs_s.seq_map", "Prims.bool", "FStar.Pervasives.reveal_opaque", "Prims.l_Forall" ]
[]
false
false
true
false
false
let be_quad32_to_bytes_injective () : Lemma (forall b b'. be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') =
reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b': quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then (let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective (); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; ()) in FStar.Classical.forall_intro_2 helper
false
Vale.Arch.Types.fst
Vale.Arch.Types.seq_to_four_LE_is_seq_to_seq_four_LE
val seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
val seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s)
let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 522, "start_col": 0, "start_line": 517 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b')
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.Def.Words.Seq_s.seq4 a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.create 1 (Vale.Def.Words.Seq_s.seq_to_four_LE s) == Vale.Def.Words.Seq_s.seq_to_seq_four_LE s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Words.Seq_s.seq4", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words_s.four", "FStar.Seq.Base.create", "Vale.Def.Words.Seq_s.seq_to_four_LE", "Vale.Def.Words.Seq_s.seq_to_seq_four_LE", "FStar.Pervasives.reveal_opaque", "FStar.Seq.Base.seq", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.op_Division", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let seq_to_four_LE_is_seq_to_seq_four_LE (#a: Type) (s: seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) =
reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.lemma_reverse_reverse_bytes_nat32_quad32
val lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) : Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) [SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))]
val lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) : Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) [SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))]
let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) : Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) [SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] = let s' = reverse_bytes_nat32_quad32 s in let s''= reverse_bytes_nat32_quad32 s' in assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 590, "start_col": 0, "start_line": 580 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); () let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) () let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); () let le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) = le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q) let b = le_quad32_to_bytes q in let q' = le_bytes_to_quad32 b in le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b // == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q)) le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q //assert (create 1 q == create 1 q'); //assert (equal (create 1 q) (create 1 q')); assert (q == index (create 1 q) 0); // OBSERVE assert (q == q'); () let be_bytes_to_quad32_to_bytes (q:quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) = be_bytes_to_quad32_reveal (); let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q); seq_to_four_to_seq_BE q; ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Arch.Types.reverse_bytes_nat32_quad32 (Vale.Arch.Types.reverse_bytes_nat32_quad32 s) == s) [ SMTPat (Vale.Arch.Types.reverse_bytes_nat32_quad32 (Vale.Arch.Types.reverse_bytes_nat32_quad32 s)) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "Prims.unit", "Prims._assert", "Prims.eq2", "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.__proj__Mkfour__item__hi3", "Vale.Def.Types_s.reverse_bytes_nat32", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Vale.Arch.Types.reverse_bytes_nat32_quad32", "Prims.l_True", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
true
false
true
false
false
let lemma_reverse_reverse_bytes_nat32_quad32 (s: quad32) : Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) [SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] =
let s' = reverse_bytes_nat32_quad32 s in let s'' = reverse_bytes_nat32_quad32 s' in assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.le_bytes_to_quad32_to_bytes
val le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q)
val le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q)
let le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) = le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q) let b = le_quad32_to_bytes q in let q' = le_bytes_to_quad32 b in le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b // == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q)) le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q //assert (create 1 q == create 1 q'); //assert (equal (create 1 q) (create 1 q')); assert (q == index (create 1 q) 0); // OBSERVE assert (q == q'); ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 568, "start_col": 0, "start_line": 555 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); () let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) () let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
q: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.le_bytes_to_quad32 (Vale.Def.Types_s.le_quad32_to_bytes q) == q)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Seq.Base.create", "Vale.Arch.Types.le_bytes_to_seq_quad32_to_bytes", "Vale.Arch.Types.le_bytes_to_seq_quad_of_singleton", "Vale.Def.Types_s.le_bytes_to_quad32", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Vale.Def.Types_s.le_quad32_to_bytes", "Vale.Arch.Types.le_seq_quad32_to_bytes_of_singleton", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let le_bytes_to_quad32_to_bytes (q: quad32) : Lemma (le_bytes_to_quad32 (le_quad32_to_bytes q) == q) =
le_seq_quad32_to_bytes_of_singleton q; let b = le_quad32_to_bytes q in let q' = le_bytes_to_quad32 b in le_bytes_to_seq_quad_of_singleton q' b; le_bytes_to_seq_quad32_to_bytes (create 1 q); assert (q == index (create 1 q) 0); assert (q == q'); ()
false
SteelFramingTestSuite.fst
SteelFramingTestSuite.test7
val test7: unit -> SteelT ref emp ptr
val test7: unit -> SteelT ref emp ptr
let test7 (_:unit) : SteelT ref emp ptr = let r = alloc 0 in let x = read r in write r 0; r
{ "file_name": "share/steel/tests/SteelFramingTestSuite.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 5, "end_line": 103, "start_col": 0, "start_line": 99 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module SteelFramingTestSuite open Steel.Memory open Steel.Effect /// A collection of small unit tests for the framing tactic assume val p : vprop assume val f (x:int) : SteelT unit p (fun _ -> p) let test () : SteelT unit (p `star` p `star` p) (fun _ -> p `star` p `star` p) = f 0; () assume val ref : Type0 assume val ptr (_:ref) : vprop assume val alloc (x:int) : SteelT ref emp (fun y -> ptr y) assume val free (r:ref) : SteelT unit (ptr r) (fun _ -> emp) assume val read (r:ref) : SteelT int (ptr r) (fun _ -> ptr r) assume val write (r:ref) (v: int) : SteelT unit (ptr r) (fun _ -> ptr r) let unused x = x // work around another gensym heisenbug let test0 (b1 b2 b3: ref) : SteelT int (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b1 `star` ptr b2 `star` ptr b3) = let x = read b1 in x let test1 (b1 b2 b3: ref) : SteelT int (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b1 `star` ptr b2 `star` ptr b3) = let x = (let y = read b1 in y) in x let test2 (b1 b2 b3: ref) : SteelT int (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b3 `star` ptr b2 `star` ptr b1) = let x = read b1 in x let test3 (b1 b2 b3: ref) : SteelT int (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b2 `star` ptr b1 `star` ptr b3) = let x = read b3 in x let test4 (b1 b2 b3: ref) : SteelT unit (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b2 `star` ptr b1 `star` ptr b3) = let x = read b3 in write b2 x let test5 (b1 b2 b3: ref) : SteelT unit (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b2 `star` ptr b1 `star` ptr b3) = let x = read b3 in write b2 (x + 1) let test6 (b1 b2 b3: ref) : SteelT unit (ptr b1 `star` ptr b2 `star` ptr b3) (fun _ -> ptr b2 `star` ptr b1 `star` ptr b3) = let x = read b3 in let b4 = alloc x in write b2 (x + 1); free b4 // With the formalism relying on can_be_split_post, this example fails if we normalize return_pre eqs goals before unification // When solving this equality, we have the goal // (*?u19*) _ _ == return_pre ((fun x -> (fun x -> (*?u758*) _ x x) x) r) // with x and r in the context of ?u19 // Not normalizing allows us to solve it as a function applied to x and r // Normalizing would lead to solve it to an slprop with x and r in the context, // but which would later fail when trying to prove the equivalence with (fun r -> ptr r)
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "SteelFramingTestSuite.fst" }
[ { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Steel.Effect.SteelT SteelFramingTestSuite.ref
Steel.Effect.SteelT
[]
[]
[ "Prims.unit", "SteelFramingTestSuite.ref", "SteelFramingTestSuite.write", "Prims.int", "SteelFramingTestSuite.read", "SteelFramingTestSuite.alloc", "Steel.Effect.Common.emp", "SteelFramingTestSuite.ptr" ]
[]
false
true
false
false
false
let test7 (_: unit) : SteelT ref emp ptr =
let r = alloc 0 in let x = read r in write r 0; r
false
Vale.Arch.Types.fst
Vale.Arch.Types.le_bytes_to_seq_quad_of_singleton
val le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b)
val le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b)
let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 544, "start_col": 0, "start_line": 531 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
q: Vale.Def.Types_s.quad32 -> b: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length b == 16} -> FStar.Pervasives.Lemma (requires q == Vale.Def.Types_s.le_bytes_to_quad32 b) (ensures FStar.Seq.Base.create 1 q == Vale.Def.Types_s.le_bytes_to_seq_quad32 b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Prims.unit", "Vale.Arch.Types.seq_to_four_LE_is_seq_to_seq_four_LE", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Lib.Seqs_s.seq_map", "Vale.Def.Words_s.four", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Seq_s.seq_to_seq_four_LE", "Vale.Def.Types_s.le_bytes_to_quad32_reveal", "FStar.Pervasives.reveal_opaque", "Vale.Def.Types_s.nat8", "Prims.op_Modulus", "Prims.l_True", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "Vale.Def.Types_s.le_bytes_to_quad32", "Prims.squash", "FStar.Seq.Base.create", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let le_bytes_to_seq_quad_of_singleton (q: quad32) (b: seq nat8 {length b == 16}) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.be_bytes_to_quad32_to_bytes
val be_bytes_to_quad32_to_bytes (q:quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) [SMTPat (be_bytes_to_quad32 (be_quad32_to_bytes q))]
val be_bytes_to_quad32_to_bytes (q:quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) [SMTPat (be_bytes_to_quad32 (be_quad32_to_bytes q))]
let be_bytes_to_quad32_to_bytes (q:quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) = be_bytes_to_quad32_reveal (); let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q); seq_to_four_to_seq_BE q; ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 578, "start_col": 0, "start_line": 570 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); () let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) () let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); () let le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) = le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q) let b = le_quad32_to_bytes q in let q' = le_bytes_to_quad32 b in le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b // == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q)) le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q //assert (create 1 q == create 1 q'); //assert (equal (create 1 q) (create 1 q')); assert (q == index (create 1 q) 0); // OBSERVE assert (q == q'); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
q: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.be_bytes_to_quad32 (Vale.Arch.Types.be_quad32_to_bytes q) == q) [SMTPat (Vale.Def.Types_s.be_bytes_to_quad32 (Vale.Arch.Types.be_quad32_to_bytes q))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "Prims.unit", "Vale.Def.Words.Seq.seq_to_four_to_seq_BE", "Vale.Def.Types_s.nat32", "Vale.Lib.Seqs.seq_map_inverses", "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Seq_s.four_to_seq_BE", "Vale.Def.Words.Seq.seq_to_seq_four_to_seq_BE", "Vale.Lib.Seqs_s.seq_map", "Vale.Def.Types_s.be_bytes_to_quad32", "Vale.Arch.Types.be_quad32_to_bytes", "Vale.Def.Types_s.be_bytes_to_quad32_reveal", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let be_bytes_to_quad32_to_bytes (q: quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) =
be_bytes_to_quad32_reveal (); let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q); seq_to_four_to_seq_BE q; ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.lemma_reverse_reverse_bytes_quad32_seq
val lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s) [SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))]
val lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s) [SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))]
let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s) [SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))] = seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 602, "start_col": 0, "start_line": 598 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); () let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) () let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); () let le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) = le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q) let b = le_quad32_to_bytes q in let q' = le_bytes_to_quad32 b in le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b // == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q)) le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q //assert (create 1 q == create 1 q'); //assert (equal (create 1 q) (create 1 q')); assert (q == index (create 1 q) 0); // OBSERVE assert (q == q'); () let be_bytes_to_quad32_to_bytes (q:quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) = be_bytes_to_quad32_reveal (); let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q); seq_to_four_to_seq_BE q; () let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) : Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) [SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] = let s' = reverse_bytes_nat32_quad32 s in let s''= reverse_bytes_nat32_quad32 s' in assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE () let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s) [SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] = seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.Arch.Types.reverse_bytes_quad32_seq s) == s) [ SMTPat (Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.Arch.Types.reverse_bytes_quad32_seq s )) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Vale.Lib.Seqs.seq_map_inverses", "Vale.Def.Types_s.reverse_bytes_quad32", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Vale.Arch.Types.reverse_bytes_quad32_seq", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
true
false
true
false
false
let lemma_reverse_reverse_bytes_quad32_seq (s: seq quad32) : Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s) [SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))] =
seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s
false
Vale.Arch.Types.fst
Vale.Arch.Types.be_bytes_to_seq_quad_of_singleton
val be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b)
val be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b)
let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 553, "start_col": 0, "start_line": 546 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); () let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
q: Vale.Def.Types_s.quad32 -> b: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length b == 16} -> FStar.Pervasives.Lemma (requires q == Vale.Def.Types_s.be_bytes_to_quad32 b) (ensures FStar.Seq.Base.create 1 q == Vale.Def.Types_s.be_bytes_to_seq_quad32 b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Prims.unit", "Vale.Arch.Types.seq_to_four_BE_is_seq_to_seq_four_BE", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Lib.Seqs_s.seq_map", "Vale.Def.Words_s.four", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Seq_s.seq_to_seq_four_BE", "Vale.Def.Types_s.be_bytes_to_quad32_reveal", "FStar.Pervasives.reveal_opaque", "Vale.Def.Types_s.nat8", "Prims.op_Modulus", "Prims.l_True", "Vale.Def.Types_s.be_bytes_to_seq_quad32", "Vale.Def.Types_s.be_bytes_to_quad32", "Prims.squash", "FStar.Seq.Base.create", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let be_bytes_to_seq_quad_of_singleton (q: quad32) (b: seq nat8 {length b == 16}) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) =
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.lemma_reverse_reverse_bytes_nat32_quad32_seq
val lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s) [SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))]
val lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s) [SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))]
let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s) [SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] = seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 74, "end_line": 596, "start_col": 0, "start_line": 592 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); () let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) () let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); () let le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) = le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q) let b = le_quad32_to_bytes q in let q' = le_bytes_to_quad32 b in le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b // == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q)) le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q //assert (create 1 q == create 1 q'); //assert (equal (create 1 q) (create 1 q')); assert (q == index (create 1 q) 0); // OBSERVE assert (q == q'); () let be_bytes_to_quad32_to_bytes (q:quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) = be_bytes_to_quad32_reveal (); let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q); seq_to_four_to_seq_BE q; () let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) : Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) [SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] = let s' = reverse_bytes_nat32_quad32 s in let s''= reverse_bytes_nat32_quad32 s' in assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Arch.Types.reverse_bytes_nat32_quad32_seq (Vale.Arch.Types.reverse_bytes_nat32_quad32_seq s) == s) [ SMTPat (Vale.Arch.Types.reverse_bytes_nat32_quad32_seq (Vale.Arch.Types.reverse_bytes_nat32_quad32_seq s)) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Vale.Lib.Seqs.seq_map_inverses", "Vale.Arch.Types.reverse_bytes_nat32_quad32", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Vale.Arch.Types.reverse_bytes_nat32_quad32_seq", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
true
false
true
false
false
let lemma_reverse_reverse_bytes_nat32_quad32_seq (s: seq quad32) : Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s) [SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] =
seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s
false
Vale.Arch.Types.fst
Vale.Arch.Types.slice_commutes_seq_four_to_seq_BE
val slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n'))
val slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n'))
let slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4)) (seq_four_to_seq_BE (slice s n n'))); ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 630, "start_col": 0, "start_line": 623 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); () let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) () let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); () let le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) = le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q) let b = le_quad32_to_bytes q in let q' = le_bytes_to_quad32 b in le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b // == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q)) le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q //assert (create 1 q == create 1 q'); //assert (equal (create 1 q) (create 1 q')); assert (q == index (create 1 q) 0); // OBSERVE assert (q == q'); () let be_bytes_to_quad32_to_bytes (q:quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) = be_bytes_to_quad32_reveal (); let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q); seq_to_four_to_seq_BE q; () let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) : Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) [SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] = let s' = reverse_bytes_nat32_quad32 s in let s''= reverse_bytes_nat32_quad32 s' in assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE () let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s) [SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] = seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s) [SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))] = seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16) = () let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16) = () let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) (seq_four_to_seq_LE (slice s n n'))); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> n: Prims.nat{n <= FStar.Seq.Base.length s} -> n': Prims.nat{n <= n' /\ n' <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_four_to_seq_BE s) (n * 4) (n' * 4) == Vale.Def.Words.Seq_s.seq_four_to_seq_BE (FStar.Seq.Base.slice s n n'))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.four", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Prims.l_and", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "FStar.Mul.op_Star", "FStar.Pervasives.reveal_opaque", "Prims.eq2", "Prims.int", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let slice_commutes_seq_four_to_seq_BE (#a: Type) (s: seq (four a)) (n: nat{n <= length s}) (n': nat{n <= n' /\ n' <= length s}) : Lemma (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')) =
reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4)) (seq_four_to_seq_BE (slice s n n'))); ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.seq_to_four_BE_is_seq_to_seq_four_BE
val seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
val seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s)
let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 529, "start_col": 0, "start_line": 524 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.Def.Words.Seq_s.seq4 a -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.create 1 (Vale.Def.Words.Seq_s.seq_to_four_BE s) == Vale.Def.Words.Seq_s.seq_to_seq_four_BE s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Words.Seq_s.seq4", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Words_s.four", "FStar.Seq.Base.create", "Vale.Def.Words.Seq_s.seq_to_four_BE", "Vale.Def.Words.Seq_s.seq_to_seq_four_BE", "FStar.Pervasives.reveal_opaque", "FStar.Seq.Base.seq", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.op_Division", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let seq_to_four_BE_is_seq_to_seq_four_BE (#a: Type) (s: seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) =
reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.slice_commutes_le_seq_quad32_to_bytes0
val slice_commutes_le_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) 0 (n * 16) == le_seq_quad32_to_bytes (slice s 0 n))
val slice_commutes_le_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) 0 (n * 16) == le_seq_quad32_to_bytes (slice s 0 n))
let slice_commutes_le_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) 0 (n * 16) == le_seq_quad32_to_bytes (slice s 0 n)) = slice_commutes_le_seq_quad32_to_bytes s 0 n
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 668, "start_col": 0, "start_line": 664 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); () let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) () let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); () let le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) = le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q) let b = le_quad32_to_bytes q in let q' = le_bytes_to_quad32 b in le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b // == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q)) le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q //assert (create 1 q == create 1 q'); //assert (equal (create 1 q) (create 1 q')); assert (q == index (create 1 q) 0); // OBSERVE assert (q == q'); () let be_bytes_to_quad32_to_bytes (q:quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) = be_bytes_to_quad32_reveal (); let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q); seq_to_four_to_seq_BE q; () let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) : Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) [SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] = let s' = reverse_bytes_nat32_quad32 s in let s''= reverse_bytes_nat32_quad32 s' in assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE () let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s) [SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] = seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s) [SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))] = seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16) = () let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16) = () let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) (seq_four_to_seq_LE (slice s n n'))); () let slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4)) (seq_four_to_seq_BE (slice s n n'))); () let slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == le_seq_quad32_to_bytes (slice s n n')) = le_seq_quad32_to_bytes_reveal (); slice_commutes_seq_four_to_seq_LE s n n'; assert (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')); (* le_seq_quad32_to_bytes (slice s n n') == seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE (slice s n n'))); == seq_four_to_seq_LE (seq_map (nat_to_four 8) (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == slice (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))) (n * 16) (n' * 16) == seq_four_to_seq_LE (slice (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) (n * 4) (n' * 4)) *) slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_LE s) (n*4) (n'*4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) in slice_commutes_seq_four_to_seq_LE s_inner (n * 4) (n' * 4); () let slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n'))) = slice_commutes_seq_four_to_seq_BE s n n'; assert (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')); slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_BE s) (n*4) (n'*4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)) in slice_commutes_seq_four_to_seq_BE s_inner (n * 4) (n' * 4); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> n: Prims.nat{n <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes s) 0 (n * 16) == Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.slice s 0 n))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Vale.Arch.Types.slice_commutes_le_seq_quad32_to_bytes", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Vale.Def.Types_s.nat8", "FStar.Seq.Base.slice", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "FStar.Mul.op_Star", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let slice_commutes_le_seq_quad32_to_bytes0 (s: seq quad32) (n: nat{n <= length s}) : Lemma (slice (le_seq_quad32_to_bytes s) 0 (n * 16) == le_seq_quad32_to_bytes (slice s 0 n)) =
slice_commutes_le_seq_quad32_to_bytes s 0 n
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_uint8_hex_pad
val print_uint8_hex_pad: uint8 -> FStar.All.ML unit
val print_uint8_hex_pad: uint8 -> FStar.All.ML unit
let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 55, "start_col": 0, "start_line": 54 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.uint8 -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Lib.IntTypes.uint8", "FStar.IO.print_uint8_hex_pad", "Lib.RawIntTypes.u8_to_UInt8", "Prims.unit" ]
[]
false
true
false
false
false
let print_uint8_hex_pad x =
IO.print_uint8_hex_pad (u8_to_UInt8 x)
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_uint8_hex
val print_uint8_hex: uint8 -> FStar.All.ML unit
val print_uint8_hex: uint8 -> FStar.All.ML unit
let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 52, "start_col": 0, "start_line": 51 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.uint8 -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Lib.IntTypes.uint8", "FStar.IO.print_uint8", "Lib.RawIntTypes.u8_to_UInt8", "Prims.unit" ]
[]
false
true
false
false
false
let print_uint8_hex x =
IO.print_uint8 (u8_to_UInt8 x)
false
Vale.Arch.Types.fst
Vale.Arch.Types.be_bytes_to_seq_quad32_to_bytes_one_quad
val be_bytes_to_seq_quad32_to_bytes_one_quad (b:quad32) : Lemma (be_bytes_to_seq_quad32 (be_quad32_to_bytes b) == create 1 b)
val be_bytes_to_seq_quad32_to_bytes_one_quad (b:quad32) : Lemma (be_bytes_to_seq_quad32 (be_quad32_to_bytes b) == create 1 b)
let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; }
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 359, "start_col": 0, "start_line": 342 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; }
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.be_bytes_to_seq_quad32 (Vale.Arch.Types.be_quad32_to_bytes b) == FStar.Seq.Base.create 1 b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "FStar.Calc.calc_finish", "FStar.Seq.Base.seq", "Prims.eq2", "Vale.Def.Types_s.be_bytes_to_seq_quad32", "Vale.Arch.Types.be_quad32_to_bytes", "FStar.Seq.Base.create", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Vale.Def.Words.Seq_s.seq_to_seq_four_BE", "Vale.Def.Types_s.nat32", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Words_s.four", "Vale.Def.Words.Seq_s.four_to_seq_BE", "Vale.Lib.Seqs_s.seq_map", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words_s.nat32", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_BE", "Vale.Def.Words_s.nat8", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Pervasives.reveal_opaque", "Vale.Def.Types_s.nat8", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.l_True", "Prims.squash", "Vale.Def.Words.Seq_s.seq16", "Vale.Def.Words.Seq.seq_to_seq_four_to_seq_BE", "Vale.Lib.Seqs.seq_map_inverses", "Vale.Def.Words.Seq.four_to_seq_BE_is_seq_four_to_seq_BE" ]
[]
false
false
true
false
false
let be_bytes_to_seq_quad32_to_bytes_one_quad b =
calc ( == ) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); ( == ) { reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32 } seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); ( == ) { reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes } seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); ( == ) { () } seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); ( == ) { seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)) } seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); ( == ) { seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b) } seq_to_seq_four_BE (four_to_seq_BE b); ( == ) { four_to_seq_BE_is_seq_four_to_seq_BE b } seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); ( == ) { () } create 1 b; }
false
Vale.Arch.Types.fst
Vale.Arch.Types.slice_commutes_be_seq_quad32_to_bytes
val slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n')))
val slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n')))
let slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n'))) = slice_commutes_seq_four_to_seq_BE s n n'; assert (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')); slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_BE s) (n*4) (n'*4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)) in slice_commutes_seq_four_to_seq_BE s_inner (n * 4) (n' * 4); ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 662, "start_col": 0, "start_line": 652 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); () let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) () let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); () let le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) = le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q) let b = le_quad32_to_bytes q in let q' = le_bytes_to_quad32 b in le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b // == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q)) le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q //assert (create 1 q == create 1 q'); //assert (equal (create 1 q) (create 1 q')); assert (q == index (create 1 q) 0); // OBSERVE assert (q == q'); () let be_bytes_to_quad32_to_bytes (q:quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) = be_bytes_to_quad32_reveal (); let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q); seq_to_four_to_seq_BE q; () let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) : Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) [SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] = let s' = reverse_bytes_nat32_quad32 s in let s''= reverse_bytes_nat32_quad32 s' in assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE () let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s) [SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] = seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s) [SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))] = seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16) = () let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16) = () let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) (seq_four_to_seq_LE (slice s n n'))); () let slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4)) (seq_four_to_seq_BE (slice s n n'))); () let slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == le_seq_quad32_to_bytes (slice s n n')) = le_seq_quad32_to_bytes_reveal (); slice_commutes_seq_four_to_seq_LE s n n'; assert (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')); (* le_seq_quad32_to_bytes (slice s n n') == seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE (slice s n n'))); == seq_four_to_seq_LE (seq_map (nat_to_four 8) (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == slice (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))) (n * 16) (n' * 16) == seq_four_to_seq_LE (slice (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) (n * 4) (n' * 4)) *) slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_LE s) (n*4) (n'*4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) in slice_commutes_seq_four_to_seq_LE s_inner (n * 4) (n' * 4); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> n: Prims.nat{n <= FStar.Seq.Base.length s} -> n': Prims.nat{n <= n' /\ n' <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE s)) (n * 16) (n' * 16) == Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE (FStar.Seq.Base.slice s n n')))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Prims.l_and", "Prims.unit", "Vale.Arch.Types.slice_commutes_seq_four_to_seq_BE", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Def.Words_s.four", "Vale.Lib.Seqs_s.seq_map", "Vale.Def.Types_s.nat32", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Lib.Seqs.slice_seq_map_commute", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.slice", "Prims.l_True", "Prims.squash", "Vale.Def.Words_s.nat8", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let slice_commutes_be_seq_quad32_to_bytes (s: seq quad32) (n: nat{n <= length s}) (n': nat{n <= n' /\ n' <= length s}) : Lemma (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n'))) =
slice_commutes_seq_four_to_seq_BE s n n'; assert (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')); slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_BE s) (n * 4) (n' * 4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)) in slice_commutes_seq_four_to_seq_BE s_inner (n * 4) (n' * 4); ()
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_uint32_hex
val print_uint32_hex: uint32 -> FStar.All.ML unit
val print_uint32_hex: uint32 -> FStar.All.ML unit
let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 65, "start_col": 0, "start_line": 64 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.uint32 -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Lib.IntTypes.uint32", "FStar.IO.print_uint32", "Lib.RawIntTypes.u32_to_UInt32", "Prims.unit" ]
[]
false
true
false
false
false
let print_uint32_hex x =
IO.print_uint32 (u32_to_UInt32 x)
false
Vale.Arch.Types.fst
Vale.Arch.Types.slice_commutes_be_seq_quad32_to_bytes0
val slice_commutes_be_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) : Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 (n * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s 0 n)))
val slice_commutes_be_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) : Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 (n * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s 0 n)))
let slice_commutes_be_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) : Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 (n * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s 0 n))) = slice_commutes_be_seq_quad32_to_bytes s 0 n
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 674, "start_col": 0, "start_line": 670 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); () let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) () let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); () let le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) = le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q) let b = le_quad32_to_bytes q in let q' = le_bytes_to_quad32 b in le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b // == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q)) le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q //assert (create 1 q == create 1 q'); //assert (equal (create 1 q) (create 1 q')); assert (q == index (create 1 q) 0); // OBSERVE assert (q == q'); () let be_bytes_to_quad32_to_bytes (q:quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) = be_bytes_to_quad32_reveal (); let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q); seq_to_four_to_seq_BE q; () let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) : Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) [SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] = let s' = reverse_bytes_nat32_quad32 s in let s''= reverse_bytes_nat32_quad32 s' in assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE () let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s) [SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] = seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s) [SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))] = seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16) = () let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16) = () let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) (seq_four_to_seq_LE (slice s n n'))); () let slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4)) (seq_four_to_seq_BE (slice s n n'))); () let slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == le_seq_quad32_to_bytes (slice s n n')) = le_seq_quad32_to_bytes_reveal (); slice_commutes_seq_four_to_seq_LE s n n'; assert (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')); (* le_seq_quad32_to_bytes (slice s n n') == seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE (slice s n n'))); == seq_four_to_seq_LE (seq_map (nat_to_four 8) (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == slice (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))) (n * 16) (n' * 16) == seq_four_to_seq_LE (slice (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) (n * 4) (n' * 4)) *) slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_LE s) (n*4) (n'*4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) in slice_commutes_seq_four_to_seq_LE s_inner (n * 4) (n' * 4); () let slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n'))) = slice_commutes_seq_four_to_seq_BE s n n'; assert (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')); slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_BE s) (n*4) (n'*4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)) in slice_commutes_seq_four_to_seq_BE s_inner (n * 4) (n' * 4); () let slice_commutes_le_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) 0 (n * 16) == le_seq_quad32_to_bytes (slice s 0 n)) = slice_commutes_le_seq_quad32_to_bytes s 0 n
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> n: Prims.nat{n <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE s)) 0 (n * 16) == Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE (FStar.Seq.Base.slice s 0 n)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Vale.Arch.Types.slice_commutes_be_seq_quad32_to_bytes", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Vale.Def.Words_s.nat8", "FStar.Seq.Base.slice", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Types_s.nat32", "FStar.Mul.op_Star", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let slice_commutes_be_seq_quad32_to_bytes0 (s: seq quad32) (n: nat{n <= length s}) : Lemma (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 (n * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s 0 n))) =
slice_commutes_be_seq_quad32_to_bytes s 0 n
false
Vale.Arch.Types.fst
Vale.Arch.Types.slice_commutes_le_seq_quad32_to_bytes
val slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == le_seq_quad32_to_bytes (slice s n n'))
val slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == le_seq_quad32_to_bytes (slice s n n'))
let slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == le_seq_quad32_to_bytes (slice s n n')) = le_seq_quad32_to_bytes_reveal (); slice_commutes_seq_four_to_seq_LE s n n'; assert (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')); (* le_seq_quad32_to_bytes (slice s n n') == seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE (slice s n n'))); == seq_four_to_seq_LE (seq_map (nat_to_four 8) (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == slice (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))) (n * 16) (n' * 16) == seq_four_to_seq_LE (slice (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) (n * 4) (n' * 4)) *) slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_LE s) (n*4) (n'*4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) in slice_commutes_seq_four_to_seq_LE s_inner (n * 4) (n' * 4); ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 650, "start_col": 0, "start_line": 632 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); () let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) () let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); () let le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) = le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q) let b = le_quad32_to_bytes q in let q' = le_bytes_to_quad32 b in le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b // == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q)) le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q //assert (create 1 q == create 1 q'); //assert (equal (create 1 q) (create 1 q')); assert (q == index (create 1 q) 0); // OBSERVE assert (q == q'); () let be_bytes_to_quad32_to_bytes (q:quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) = be_bytes_to_quad32_reveal (); let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q); seq_to_four_to_seq_BE q; () let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) : Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) [SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] = let s' = reverse_bytes_nat32_quad32 s in let s''= reverse_bytes_nat32_quad32 s' in assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE () let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s) [SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] = seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s) [SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))] = seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16) = () let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16) = () let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) (seq_four_to_seq_LE (slice s n n'))); () let slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4)) (seq_four_to_seq_BE (slice s n n'))); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> n: Prims.nat{n <= FStar.Seq.Base.length s} -> n': Prims.nat{n <= n' /\ n' <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.slice (Vale.Def.Types_s.le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.slice s n n'))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Prims.l_and", "Prims.unit", "Vale.Arch.Types.slice_commutes_seq_four_to_seq_LE", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Def.Words_s.four", "Vale.Lib.Seqs_s.seq_map", "Vale.Def.Types_s.nat32", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Vale.Lib.Seqs.slice_seq_map_commute", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.slice", "Vale.Def.Types_s.le_seq_quad32_to_bytes_reveal", "Prims.l_True", "Prims.squash", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let slice_commutes_le_seq_quad32_to_bytes (s: seq quad32) (n: nat{n <= length s}) (n': nat{n <= n' /\ n' <= length s}) : Lemma (slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == le_seq_quad32_to_bytes (slice s n n')) =
le_seq_quad32_to_bytes_reveal (); slice_commutes_seq_four_to_seq_LE s n n'; assert (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')); slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_LE s) (n * 4) (n' * 4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) in slice_commutes_seq_four_to_seq_LE s_inner (n * 4) (n' * 4); ()
false
Vale.Arch.Types.fst
Vale.Arch.Types.slice_commutes_seq_four_to_seq_LE
val slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n'))
val slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n'))
let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) (seq_four_to_seq_LE (slice s n n'))); ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 621, "start_col": 0, "start_line": 614 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); () let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) () let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); () let le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) = le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q) let b = le_quad32_to_bytes q in let q' = le_bytes_to_quad32 b in le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b // == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q)) le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q //assert (create 1 q == create 1 q'); //assert (equal (create 1 q) (create 1 q')); assert (q == index (create 1 q) 0); // OBSERVE assert (q == q'); () let be_bytes_to_quad32_to_bytes (q:quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) = be_bytes_to_quad32_reveal (); let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q); seq_to_four_to_seq_BE q; () let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) : Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) [SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] = let s' = reverse_bytes_nat32_quad32 s in let s''= reverse_bytes_nat32_quad32 s' in assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE () let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s) [SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] = seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s) [SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))] = seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16) = () let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16) = ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq (Vale.Def.Words_s.four a) -> n: Prims.nat{n <= FStar.Seq.Base.length s} -> n': Prims.nat{n <= n' /\ n' <= FStar.Seq.Base.length s} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_four_to_seq_LE s) (n * 4) (n' * 4) == Vale.Def.Words.Seq_s.seq_four_to_seq_LE (FStar.Seq.Base.slice s n n'))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.four", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Prims.l_and", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "FStar.Mul.op_Star", "FStar.Pervasives.reveal_opaque", "Prims.eq2", "Prims.int", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let slice_commutes_seq_four_to_seq_LE (#a: Type) (s: seq (four a)) (n: nat{n <= length s}) (n': nat{n <= n' /\ n' <= length s}) : Lemma (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')) =
reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) (seq_four_to_seq_LE (slice s n n'))); ()
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_uint8_dec
val print_uint8_dec: uint8 -> FStar.All.ML unit
val print_uint8_dec: uint8 -> FStar.All.ML unit
let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 36, "end_line": 58, "start_col": 0, "start_line": 57 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.uint8 -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Lib.IntTypes.uint8", "FStar.IO.print_uint8_dec", "Lib.RawIntTypes.u8_to_UInt8", "Prims.unit" ]
[]
false
true
false
false
false
let print_uint8_dec x =
IO.print_uint8_dec (u8_to_UInt8 x)
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_uint32_hex_pad
val print_uint32_hex_pad: uint32 -> FStar.All.ML unit
val print_uint32_hex_pad: uint32 -> FStar.All.ML unit
let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 43, "end_line": 68, "start_col": 0, "start_line": 67 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.uint32 -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Lib.IntTypes.uint32", "FStar.IO.print_uint32_hex_pad", "Lib.RawIntTypes.u32_to_UInt32", "Prims.unit" ]
[]
false
true
false
false
false
let print_uint32_hex_pad x =
IO.print_uint32_hex_pad (u32_to_UInt32 x)
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_uint64_hex
val print_uint64_hex: uint64 -> FStar.All.ML unit
val print_uint64_hex: uint64 -> FStar.All.ML unit
let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 78, "start_col": 0, "start_line": 77 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.uint64 -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Lib.IntTypes.uint64", "FStar.IO.print_uint64", "Lib.RawIntTypes.u64_to_UInt64", "Prims.unit" ]
[]
false
true
false
false
false
let print_uint64_hex x =
IO.print_uint64 (u64_to_UInt64 x)
false
Vale.Arch.Types.fst
Vale.Arch.Types.append_distributes_be_bytes_to_seq_quad32
val append_distributes_be_bytes_to_seq_quad32 (s1:seq nat8 { length s1 % 16 == 0 }) (s2:seq nat8 { length s2 % 16 == 0 }) : Lemma(be_bytes_to_seq_quad32 (s1 @| s2) == (be_bytes_to_seq_quad32 s1) @| (be_bytes_to_seq_quad32 s2))
val append_distributes_be_bytes_to_seq_quad32 (s1:seq nat8 { length s1 % 16 == 0 }) (s2:seq nat8 { length s2 % 16 == 0 }) : Lemma(be_bytes_to_seq_quad32 (s1 @| s2) == (be_bytes_to_seq_quad32 s1) @| (be_bytes_to_seq_quad32 s2))
let append_distributes_be_bytes_to_seq_quad32 (s1:seq nat8 { length s1 % 16 == 0 }) (s2:seq nat8 { length s2 % 16 == 0 }) : Lemma(be_bytes_to_seq_quad32 (s1 @| s2) == (be_bytes_to_seq_quad32 s1) @| (be_bytes_to_seq_quad32 s2)) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; let s1' = seq_nat8_to_seq_nat32_BE s1 in let s2' = seq_nat8_to_seq_nat32_BE s2 in append_distributes_seq_to_seq_four_BE s1' s2'; append_distributes_seq_map (four_to_nat 8) (seq_to_seq_four_BE s1) (seq_to_seq_four_BE s2); append_distributes_seq_to_seq_four_BE s1 s2; ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 705, "start_col": 0, "start_line": 696 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); () let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) () let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); () let le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) = le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q) let b = le_quad32_to_bytes q in let q' = le_bytes_to_quad32 b in le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b // == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q)) le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q //assert (create 1 q == create 1 q'); //assert (equal (create 1 q) (create 1 q')); assert (q == index (create 1 q) 0); // OBSERVE assert (q == q'); () let be_bytes_to_quad32_to_bytes (q:quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) = be_bytes_to_quad32_reveal (); let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q); seq_to_four_to_seq_BE q; () let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) : Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) [SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] = let s' = reverse_bytes_nat32_quad32 s in let s''= reverse_bytes_nat32_quad32 s' in assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE () let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s) [SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] = seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s) [SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))] = seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16) = () let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16) = () let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) (seq_four_to_seq_LE (slice s n n'))); () let slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4)) (seq_four_to_seq_BE (slice s n n'))); () let slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == le_seq_quad32_to_bytes (slice s n n')) = le_seq_quad32_to_bytes_reveal (); slice_commutes_seq_four_to_seq_LE s n n'; assert (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')); (* le_seq_quad32_to_bytes (slice s n n') == seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE (slice s n n'))); == seq_four_to_seq_LE (seq_map (nat_to_four 8) (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == slice (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))) (n * 16) (n' * 16) == seq_four_to_seq_LE (slice (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) (n * 4) (n' * 4)) *) slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_LE s) (n*4) (n'*4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) in slice_commutes_seq_four_to_seq_LE s_inner (n * 4) (n' * 4); () let slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n'))) = slice_commutes_seq_four_to_seq_BE s n n'; assert (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')); slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_BE s) (n*4) (n'*4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)) in slice_commutes_seq_four_to_seq_BE s_inner (n * 4) (n' * 4); () let slice_commutes_le_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) 0 (n * 16) == le_seq_quad32_to_bytes (slice s 0 n)) = slice_commutes_le_seq_quad32_to_bytes s 0 n let slice_commutes_be_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) : Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 (n * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s 0 n))) = slice_commutes_be_seq_quad32_to_bytes s 0 n #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let append_distributes_le_bytes_to_seq_quad32 (s1:seq nat8 { length s1 % 16 == 0 }) (s2:seq nat8 { length s2 % 16 == 0 }) : Lemma(le_bytes_to_seq_quad32 (s1 @| s2) == (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2)) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; let s1' = seq_nat8_to_seq_nat32_LE s1 in let s2' = seq_nat8_to_seq_nat32_LE s2 in // (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2)) // = { Definition of le_bytes_to_seq_quad32 } // seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s1) @| seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s2) append_distributes_seq_to_seq_four_LE s1' s2'; // = // seq_to_seq_four_LE ((seq_nat8_to_seq_nat32_LE s1) @| (seq_nat8_to_seq_nat32_LE s2)) append_distributes_seq_map (four_to_nat 8) (seq_to_seq_four_LE s1) (seq_to_seq_four_LE s2); // seq_to_seq_four_LE (seq_map (four_to_nat 8) ((seq_to_seq_four_LE s1) @| (seq_to_seq_four_LE s2))) append_distributes_seq_to_seq_four_LE s1 s2; // seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (s1 @| s2))) // le_bytes_to_seq_quad32 (s1 @| s2) ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length s1 % 16 == 0} -> s2: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length s2 % 16 == 0} -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.be_bytes_to_seq_quad32 (s1 @| s2) == Vale.Def.Types_s.be_bytes_to_seq_quad32 s1 @| Vale.Def.Types_s.be_bytes_to_seq_quad32 s2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.unit", "Vale.Def.Words.Seq.append_distributes_seq_to_seq_four_BE", "Vale.Lib.Seqs.append_distributes_seq_map", "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Seq_s.seq_to_seq_four_BE", "Vale.Def.Words_s.nat32", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_BE", "FStar.Pervasives.reveal_opaque", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.quad32", "Prims.l_True", "Vale.Def.Types_s.be_bytes_to_seq_quad32", "Prims.squash", "FStar.Seq.Base.op_At_Bar", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let append_distributes_be_bytes_to_seq_quad32 (s1: seq nat8 {length s1 % 16 == 0}) (s2: seq nat8 {length s2 % 16 == 0}) : Lemma (be_bytes_to_seq_quad32 (s1 @| s2) == (be_bytes_to_seq_quad32 s1) @| (be_bytes_to_seq_quad32 s2) ) =
reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; let s1' = seq_nat8_to_seq_nat32_BE s1 in let s2' = seq_nat8_to_seq_nat32_BE s2 in append_distributes_seq_to_seq_four_BE s1' s2'; append_distributes_seq_map (four_to_nat 8) (seq_to_seq_four_BE s1) (seq_to_seq_four_BE s2); append_distributes_seq_to_seq_four_BE s1 s2; ()
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_uint8_dec_pad
val print_uint8_dec_pad: uint8 -> FStar.All.ML unit
val print_uint8_dec_pad: uint8 -> FStar.All.ML unit
let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 61, "start_col": 0, "start_line": 60 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.uint8 -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Lib.IntTypes.uint8", "FStar.IO.print_uint8_dec_pad", "Lib.RawIntTypes.u8_to_UInt8", "Prims.unit" ]
[]
false
true
false
false
false
let print_uint8_dec_pad x =
IO.print_uint8_dec_pad (u8_to_UInt8 x)
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_nat8_hex_pad
val print_nat8_hex_pad: x:nat{x <= maxint U8} -> FStar.All.ML unit
val print_nat8_hex_pad: x:nat{x <= maxint U8} -> FStar.All.ML unit
let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x))
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 16, "start_col": 0, "start_line": 15 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat{x <= Lib.IntTypes.maxint Lib.IntTypes.U8} -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint", "Lib.IntTypes.U8", "FStar.IO.print_uint8_hex_pad", "Lib.RawIntTypes.u8_to_UInt8", "Lib.IntTypes.u8", "Prims.unit" ]
[]
false
true
false
false
false
let print_nat8_hex_pad x =
IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x))
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_uint32_dec
val print_uint32_dec: uint32 -> FStar.All.ML unit
val print_uint32_dec: uint32 -> FStar.All.ML unit
let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 71, "start_col": 0, "start_line": 70 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.uint32 -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Lib.IntTypes.uint32", "FStar.IO.print_uint32_dec", "Lib.RawIntTypes.u32_to_UInt32", "Prims.unit" ]
[]
false
true
false
false
false
let print_uint32_dec x =
IO.print_uint32_dec (u32_to_UInt32 x)
false
Vale.Arch.Types.fst
Vale.Arch.Types.le_quad32_to_bytes_to_quad32
val le_quad32_to_bytes_to_quad32 (s:seq nat8 { length s == 16 }) : Lemma(le_quad32_to_bytes (le_bytes_to_quad32 s) == s)
val le_quad32_to_bytes_to_quad32 (s:seq nat8 { length s == 16 }) : Lemma(le_quad32_to_bytes (le_bytes_to_quad32 s) == s)
let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; }
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 423, "start_col": 0, "start_line": 410 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *)
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length s == 16} -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.le_bytes_to_quad32 s) == s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "FStar.Calc.calc_finish", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.le_quad32_to_bytes", "Vale.Def.Types_s.le_bytes_to_quad32", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Vale.Def.Words.Seq_s.seq_to_seq_four_LE", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Lib.Seqs_s.seq_map", "FStar.Mul.op_Star", "Vale.Def.Words_s.four", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Seq_s.four_to_seq_LE", "Vale.Def.Words.Seq_s.seq_to_four_LE", "Vale.Def.Types_s.nat32", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.Def.Types_s.le_bytes_to_quad32_reveal", "Prims.squash", "FStar.Pervasives.reveal_opaque", "Vale.Def.Types_s.quad32", "Prims.l_True", "Vale.Def.Words.Seq.four_to_seq_to_four_LE", "Vale.Lib.Seqs.seq_map_inverses" ]
[]
false
false
true
false
false
let le_quad32_to_bytes_to_quad32 s =
calc ( == ) { le_quad32_to_bytes (le_bytes_to_quad32 s); ( == ) { le_bytes_to_quad32_reveal () } le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); ( == ) { reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); ( == ) { four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s)) } seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); ( == ) { seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s) } seq_four_to_seq_LE (seq_to_seq_four_LE s); ( == ) { () } s; }
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_uint32_dec_pad
val print_uint32_dec_pad: uint32 -> FStar.All.ML unit
val print_uint32_dec_pad: uint32 -> FStar.All.ML unit
let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 43, "end_line": 74, "start_col": 0, "start_line": 73 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.uint32 -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Lib.IntTypes.uint32", "FStar.IO.print_uint32_dec_pad", "Lib.RawIntTypes.u32_to_UInt32", "Prims.unit" ]
[]
false
true
false
false
false
let print_uint32_dec_pad x =
IO.print_uint32_dec_pad (u32_to_UInt32 x)
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_uint64_dec_pad
val print_uint64_dec_pad: uint64 -> FStar.All.ML unit
val print_uint64_dec_pad: uint64 -> FStar.All.ML unit
let print_uint64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 x)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 43, "end_line": 87, "start_col": 0, "start_line": 86 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x) let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x) let print_uint64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 x) let print_uint64_dec x = IO.print_uint64_dec (u64_to_UInt64 x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.uint64 -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Lib.IntTypes.uint64", "FStar.IO.print_uint64_dec_pad", "Lib.RawIntTypes.u64_to_UInt64", "Prims.unit" ]
[]
false
true
false
false
false
let print_uint64_dec_pad x =
IO.print_uint64_dec_pad (u64_to_UInt64 x)
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_uint64_hex_pad
val print_uint64_hex_pad: uint64 -> FStar.All.ML unit
val print_uint64_hex_pad: uint64 -> FStar.All.ML unit
let print_uint64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 x)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 43, "end_line": 81, "start_col": 0, "start_line": 80 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x) let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.uint64 -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Lib.IntTypes.uint64", "FStar.IO.print_uint64_hex_pad", "Lib.RawIntTypes.u64_to_UInt64", "Prims.unit" ]
[]
false
true
false
false
false
let print_uint64_hex_pad x =
IO.print_uint64_hex_pad (u64_to_UInt64 x)
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_label_nat64
val print_label_nat64: display:bool -> string -> x:nat{x <= maxint U64} -> FStar.All.ML unit
val print_label_nat64: display:bool -> string -> x:nat{x <= maxint U64} -> FStar.All.ML unit
let print_label_nat64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_nat64_dec x; IO.print_string "\n")
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 23, "end_line": 95, "start_col": 0, "start_line": 90 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x) let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x) let print_uint64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 x) let print_uint64_dec x = IO.print_uint64_dec (u64_to_UInt64 x) let print_uint64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
display: Prims.bool -> s: Prims.string -> x: Prims.nat{x <= Lib.IntTypes.maxint Lib.IntTypes.U64} -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.bool", "Prims.string", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint", "Lib.IntTypes.U64", "Prims.op_Negation", "Prims.unit", "FStar.IO.print_string", "Lib.PrintSequence.print_nat64_dec" ]
[]
false
true
false
false
false
let print_label_nat64 flag s x =
if not flag then () else (IO.print_string s; IO.print_string ": "; print_nat64_dec x; IO.print_string "\n")
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_nat8_hex
val print_nat8_hex: x:nat{x <= maxint U8} -> FStar.All.ML unit
val print_nat8_hex: x:nat{x <= maxint U8} -> FStar.All.ML unit
let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x))
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 37, "end_line": 13, "start_col": 0, "start_line": 12 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat{x <= Lib.IntTypes.maxint Lib.IntTypes.U8} -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint", "Lib.IntTypes.U8", "FStar.IO.print_uint8", "Lib.RawIntTypes.u8_to_UInt8", "Lib.IntTypes.u8", "Prims.unit" ]
[]
false
true
false
false
false
let print_nat8_hex x =
IO.print_uint8 (u8_to_UInt8 (u8 x))
false
Vale.Arch.Types.fst
Vale.Arch.Types.le_bytes_to_seq_quad32_to_bytes_one_quad
val le_bytes_to_seq_quad32_to_bytes_one_quad (b:quad32) : Lemma (le_bytes_to_seq_quad32 (le_quad32_to_bytes b) == create 1 b)
val le_bytes_to_seq_quad32_to_bytes_one_quad (b:quad32) : Lemma (le_bytes_to_seq_quad32 (le_quad32_to_bytes b) == create 1 b)
let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; }
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 340, "start_col": 0, "start_line": 323 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.le_bytes_to_seq_quad32 (Vale.Def.Types_s.le_quad32_to_bytes b) == FStar.Seq.Base.create 1 b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "FStar.Calc.calc_finish", "FStar.Seq.Base.seq", "Prims.eq2", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "Vale.Def.Types_s.le_quad32_to_bytes", "FStar.Seq.Base.create", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Vale.Def.Words.Seq_s.seq_to_seq_four_LE", "Vale.Def.Types_s.nat32", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Vale.Def.Words_s.four", "Vale.Def.Words.Seq_s.four_to_seq_LE", "Vale.Lib.Seqs_s.seq_map", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words_s.nat32", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE", "Vale.Def.Words_s.nat8", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Pervasives.reveal_opaque", "Vale.Def.Types_s.nat8", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.l_True", "Prims.squash", "Vale.Def.Words.Seq.seq_to_seq_four_to_seq_LE", "Vale.Lib.Seqs.seq_map_inverses", "Vale.Def.Words.Seq.four_to_seq_LE_is_seq_four_to_seq_LE" ]
[]
false
false
true
false
false
let le_bytes_to_seq_quad32_to_bytes_one_quad b =
calc ( == ) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); ( == ) { reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); ( == ) { reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); ( == ) { () } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); ( == ) { seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)) } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); ( == ) { seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b) } seq_to_seq_four_LE (four_to_seq_LE b); ( == ) { four_to_seq_LE_is_seq_four_to_seq_LE b } seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); ( == ) { () } create 1 b; }
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_string
val print_string: display:bool -> string -> FStar.All.ML unit
val print_string: display:bool -> string -> FStar.All.ML unit
let print_string flag s = if flag then IO.print_string s else ()
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 64, "end_line": 128, "start_col": 0, "start_line": 128 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x) let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x) let print_uint64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 x) let print_uint64_dec x = IO.print_uint64_dec (u64_to_UInt64 x) let print_uint64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 x) let print_label_nat64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_nat64_dec x; IO.print_string "\n") let print_label_uint8 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint8_hex_pad x; IO.print_string "\n") let print_label_uint32 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint32_hex_pad x; IO.print_string "\n") let print_label_uint64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint64_hex_pad x; IO.print_string "\n") let print_list_nat64 flag l = if not flag then () else ( repeat_range_all_ml 0 (List.Tot.length l) (fun i _ -> print_nat64_dec (List.Tot.index l i); IO.print_string " " ) ())
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
display: Prims.bool -> s: Prims.string -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.bool", "Prims.string", "FStar.IO.print_string", "Prims.unit" ]
[]
false
true
false
false
false
let print_string flag s =
if flag then IO.print_string s
false
Vale.Arch.Types.fst
Vale.Arch.Types.append_distributes_be_seq_quad32_to_bytes
val append_distributes_be_seq_quad32_to_bytes (s1:seq quad32) (s2:seq quad32) : Lemma(seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (s1 @| s2)) == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s1)) @| (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s2)))
val append_distributes_be_seq_quad32_to_bytes (s1:seq quad32) (s2:seq quad32) : Lemma(seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (s1 @| s2)) == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s1)) @| (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s2)))
let append_distributes_be_seq_quad32_to_bytes s1 s2 = calc (==) { seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (s1 @| s2)); (==) { } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (s1 @| s2)); (==) { append_distributes_seq_four_to_seq_BE s1 s2 } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s1 @| seq_four_to_seq_BE s2); (==) { append_distributes_seq_map (nat_to_four 8) (seq_four_to_seq_BE s1) (seq_four_to_seq_BE s2) } seq_four_to_seq_BE ( seq_map (nat_to_four 8) (seq_four_to_seq_BE s1) @| seq_map (nat_to_four 8) (seq_four_to_seq_BE s2)); (==) { append_distributes_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s1)) (seq_map (nat_to_four 8) (seq_four_to_seq_BE s2)) } seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s1)) @| seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s2)); (==) { } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s1) @| seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s2); }
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 746, "start_col": 0, "start_line": 728 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); () let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) () let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); () let le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) = le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q) let b = le_quad32_to_bytes q in let q' = le_bytes_to_quad32 b in le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b // == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q)) le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q //assert (create 1 q == create 1 q'); //assert (equal (create 1 q) (create 1 q')); assert (q == index (create 1 q) 0); // OBSERVE assert (q == q'); () let be_bytes_to_quad32_to_bytes (q:quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) = be_bytes_to_quad32_reveal (); let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q); seq_to_four_to_seq_BE q; () let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) : Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) [SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] = let s' = reverse_bytes_nat32_quad32 s in let s''= reverse_bytes_nat32_quad32 s' in assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE () let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s) [SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] = seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s) [SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))] = seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16) = () let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16) = () let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) (seq_four_to_seq_LE (slice s n n'))); () let slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4)) (seq_four_to_seq_BE (slice s n n'))); () let slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == le_seq_quad32_to_bytes (slice s n n')) = le_seq_quad32_to_bytes_reveal (); slice_commutes_seq_four_to_seq_LE s n n'; assert (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')); (* le_seq_quad32_to_bytes (slice s n n') == seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE (slice s n n'))); == seq_four_to_seq_LE (seq_map (nat_to_four 8) (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == slice (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))) (n * 16) (n' * 16) == seq_four_to_seq_LE (slice (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) (n * 4) (n' * 4)) *) slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_LE s) (n*4) (n'*4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) in slice_commutes_seq_four_to_seq_LE s_inner (n * 4) (n' * 4); () let slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n'))) = slice_commutes_seq_four_to_seq_BE s n n'; assert (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')); slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_BE s) (n*4) (n'*4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)) in slice_commutes_seq_four_to_seq_BE s_inner (n * 4) (n' * 4); () let slice_commutes_le_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) 0 (n * 16) == le_seq_quad32_to_bytes (slice s 0 n)) = slice_commutes_le_seq_quad32_to_bytes s 0 n let slice_commutes_be_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) : Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 (n * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s 0 n))) = slice_commutes_be_seq_quad32_to_bytes s 0 n #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let append_distributes_le_bytes_to_seq_quad32 (s1:seq nat8 { length s1 % 16 == 0 }) (s2:seq nat8 { length s2 % 16 == 0 }) : Lemma(le_bytes_to_seq_quad32 (s1 @| s2) == (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2)) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; let s1' = seq_nat8_to_seq_nat32_LE s1 in let s2' = seq_nat8_to_seq_nat32_LE s2 in // (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2)) // = { Definition of le_bytes_to_seq_quad32 } // seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s1) @| seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s2) append_distributes_seq_to_seq_four_LE s1' s2'; // = // seq_to_seq_four_LE ((seq_nat8_to_seq_nat32_LE s1) @| (seq_nat8_to_seq_nat32_LE s2)) append_distributes_seq_map (four_to_nat 8) (seq_to_seq_four_LE s1) (seq_to_seq_four_LE s2); // seq_to_seq_four_LE (seq_map (four_to_nat 8) ((seq_to_seq_four_LE s1) @| (seq_to_seq_four_LE s2))) append_distributes_seq_to_seq_four_LE s1 s2; // seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (s1 @| s2))) // le_bytes_to_seq_quad32 (s1 @| s2) () let append_distributes_be_bytes_to_seq_quad32 (s1:seq nat8 { length s1 % 16 == 0 }) (s2:seq nat8 { length s2 % 16 == 0 }) : Lemma(be_bytes_to_seq_quad32 (s1 @| s2) == (be_bytes_to_seq_quad32 s1) @| (be_bytes_to_seq_quad32 s2)) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; let s1' = seq_nat8_to_seq_nat32_BE s1 in let s2' = seq_nat8_to_seq_nat32_BE s2 in append_distributes_seq_to_seq_four_BE s1' s2'; append_distributes_seq_map (four_to_nat 8) (seq_to_seq_four_BE s1) (seq_to_seq_four_BE s2); append_distributes_seq_to_seq_four_BE s1 s2; () let append_distributes_le_seq_quad32_to_bytes s1 s2 = le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (s1 @| s2); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (s1 @| s2)); (==) { append_distributes_seq_four_to_seq_LE s1 s2 } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s1 @| seq_four_to_seq_LE s2); (==) { append_distributes_seq_map (nat_to_four 8) (seq_four_to_seq_LE s1) (seq_four_to_seq_LE s2) } seq_four_to_seq_LE ( seq_map (nat_to_four 8) (seq_four_to_seq_LE s1) @| seq_map (nat_to_four 8) (seq_four_to_seq_LE s2)); (==) { append_distributes_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s1)) (seq_map (nat_to_four 8) (seq_four_to_seq_LE s2)) } seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s1)) @| seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s2)); (==) { } le_seq_quad32_to_bytes s1 @| le_seq_quad32_to_bytes s2; }
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> s2: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE (s1 @| s2)) == Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE s1) @| Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE s2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "FStar.Calc.calc_finish", "Vale.Def.Words_s.nat8", "Prims.eq2", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Types_s.nat32", "FStar.Seq.Base.op_At_Bar", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Lib.Seqs_s.seq_map", "Vale.Def.Words_s.four", "Vale.Def.Words.Four_s.nat_to_four", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Vale.Def.Words.Seq.append_distributes_seq_four_to_seq_BE", "Vale.Lib.Seqs.append_distributes_seq_map" ]
[]
false
false
true
false
false
let append_distributes_be_seq_quad32_to_bytes s1 s2 =
calc ( == ) { seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (s1 @| s2)); ( == ) { () } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (s1 @| s2)); ( == ) { append_distributes_seq_four_to_seq_BE s1 s2 } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s1 @| seq_four_to_seq_BE s2); ( == ) { append_distributes_seq_map (nat_to_four 8) (seq_four_to_seq_BE s1) (seq_four_to_seq_BE s2) } seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s1) @| seq_map (nat_to_four 8) (seq_four_to_seq_BE s2)); ( == ) { append_distributes_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s1)) (seq_map (nat_to_four 8) (seq_four_to_seq_BE s2)) } seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s1)) @| seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s2)); ( == ) { () } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s1) @| seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s2); }
false
Vale.Arch.Types.fst
Vale.Arch.Types.be_quad32_to_bytes_to_quad32
val be_quad32_to_bytes_to_quad32 (s:seq nat8 { length s == 16 }) : Lemma(be_quad32_to_bytes (be_bytes_to_quad32 s) == s)
val be_quad32_to_bytes_to_quad32 (s:seq nat8 { length s == 16 }) : Lemma(be_quad32_to_bytes (be_bytes_to_quad32 s) == s)
let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; }
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 438, "start_col": 0, "start_line": 425 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; }
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length s == 16} -> FStar.Pervasives.Lemma (ensures Vale.Arch.Types.be_quad32_to_bytes (Vale.Def.Types_s.be_bytes_to_quad32 s) == s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "FStar.Calc.calc_finish", "Vale.Def.Words.Seq_s.seq16", "Vale.Arch.Types.be_quad32_to_bytes", "Vale.Def.Types_s.be_bytes_to_quad32", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Words.Seq_s.seq_to_seq_four_BE", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Lib.Seqs_s.seq_map", "FStar.Mul.op_Star", "Vale.Def.Words_s.four", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Seq_s.four_to_seq_BE", "Vale.Def.Words.Seq_s.seq_to_four_BE", "Vale.Def.Types_s.nat32", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.Def.Types_s.be_bytes_to_quad32_reveal", "Prims.squash", "FStar.Pervasives.reveal_opaque", "Vale.Def.Types_s.quad32", "Vale.Def.Words.Seq.four_to_seq_to_four_BE", "Vale.Lib.Seqs.seq_map_inverses" ]
[]
false
false
true
false
false
let be_quad32_to_bytes_to_quad32 s =
calc ( == ) { be_quad32_to_bytes (be_bytes_to_quad32 s); ( == ) { be_bytes_to_quad32_reveal () } be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); ( == ) { reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes } seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); ( == ) { four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s)) } seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); ( == ) { seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s) } seq_four_to_seq_BE (seq_to_seq_four_BE s); ( == ) { () } s; }
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_label_uint8
val print_label_uint8: display:bool -> string -> uint8 -> FStar.All.ML unit
val print_label_uint8: display:bool -> string -> uint8 -> FStar.All.ML unit
let print_label_uint8 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint8_hex_pad x; IO.print_string "\n")
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 23, "end_line": 102, "start_col": 0, "start_line": 97 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x) let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x) let print_uint64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 x) let print_uint64_dec x = IO.print_uint64_dec (u64_to_UInt64 x) let print_uint64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 x) let print_label_nat64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_nat64_dec x; IO.print_string "\n")
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
display: Prims.bool -> s: Prims.string -> x: Lib.IntTypes.uint8 -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.bool", "Prims.string", "Lib.IntTypes.uint8", "Prims.op_Negation", "Prims.unit", "FStar.IO.print_string", "Lib.PrintSequence.print_uint8_hex_pad" ]
[]
false
true
false
false
false
let print_label_uint8 flag s x =
if not flag then () else (IO.print_string s; IO.print_string ": "; print_uint8_hex_pad x; IO.print_string "\n")
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_label_uint32
val print_label_uint32: display:bool -> string -> uint32 -> FStar.All.ML unit
val print_label_uint32: display:bool -> string -> uint32 -> FStar.All.ML unit
let print_label_uint32 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint32_hex_pad x; IO.print_string "\n")
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 23, "end_line": 109, "start_col": 0, "start_line": 104 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x) let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x) let print_uint64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 x) let print_uint64_dec x = IO.print_uint64_dec (u64_to_UInt64 x) let print_uint64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 x) let print_label_nat64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_nat64_dec x; IO.print_string "\n") let print_label_uint8 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint8_hex_pad x; IO.print_string "\n")
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
display: Prims.bool -> s: Prims.string -> x: Lib.IntTypes.uint32 -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.bool", "Prims.string", "Lib.IntTypes.uint32", "Prims.op_Negation", "Prims.unit", "FStar.IO.print_string", "Lib.PrintSequence.print_uint32_hex_pad" ]
[]
false
true
false
false
false
let print_label_uint32 flag s x =
if not flag then () else (IO.print_string s; IO.print_string ": "; print_uint32_hex_pad x; IO.print_string "\n")
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_label_uint64
val print_label_uint64: display:bool -> string -> uint64 -> FStar.All.ML unit
val print_label_uint64: display:bool -> string -> uint64 -> FStar.All.ML unit
let print_label_uint64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint64_hex_pad x; IO.print_string "\n")
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 23, "end_line": 116, "start_col": 0, "start_line": 111 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x) let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x) let print_uint64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 x) let print_uint64_dec x = IO.print_uint64_dec (u64_to_UInt64 x) let print_uint64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 x) let print_label_nat64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_nat64_dec x; IO.print_string "\n") let print_label_uint8 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint8_hex_pad x; IO.print_string "\n") let print_label_uint32 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint32_hex_pad x; IO.print_string "\n")
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
display: Prims.bool -> s: Prims.string -> x: Lib.IntTypes.uint64 -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.bool", "Prims.string", "Lib.IntTypes.uint64", "Prims.op_Negation", "Prims.unit", "FStar.IO.print_string", "Lib.PrintSequence.print_uint64_hex_pad" ]
[]
false
true
false
false
false
let print_label_uint64 flag s x =
if not flag then () else (IO.print_string s; IO.print_string ": "; print_uint64_hex_pad x; IO.print_string "\n")
false
Vale.Arch.Types.fst
Vale.Arch.Types.append_distributes_le_seq_quad32_to_bytes
val append_distributes_le_seq_quad32_to_bytes (s1:seq quad32) (s2:seq quad32) : Lemma(le_seq_quad32_to_bytes (s1 @| s2) == (le_seq_quad32_to_bytes s1) @| (le_seq_quad32_to_bytes s2))
val append_distributes_le_seq_quad32_to_bytes (s1:seq quad32) (s2:seq quad32) : Lemma(le_seq_quad32_to_bytes (s1 @| s2) == (le_seq_quad32_to_bytes s1) @| (le_seq_quad32_to_bytes s2))
let append_distributes_le_seq_quad32_to_bytes s1 s2 = le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (s1 @| s2); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (s1 @| s2)); (==) { append_distributes_seq_four_to_seq_LE s1 s2 } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s1 @| seq_four_to_seq_LE s2); (==) { append_distributes_seq_map (nat_to_four 8) (seq_four_to_seq_LE s1) (seq_four_to_seq_LE s2) } seq_four_to_seq_LE ( seq_map (nat_to_four 8) (seq_four_to_seq_LE s1) @| seq_map (nat_to_four 8) (seq_four_to_seq_LE s2)); (==) { append_distributes_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s1)) (seq_map (nat_to_four 8) (seq_four_to_seq_LE s2)) } seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s1)) @| seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s2)); (==) { } le_seq_quad32_to_bytes s1 @| le_seq_quad32_to_bytes s2; }
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 726, "start_col": 0, "start_line": 707 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); () let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) () let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); () let le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) = le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q) let b = le_quad32_to_bytes q in let q' = le_bytes_to_quad32 b in le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b // == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q)) le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q //assert (create 1 q == create 1 q'); //assert (equal (create 1 q) (create 1 q')); assert (q == index (create 1 q) 0); // OBSERVE assert (q == q'); () let be_bytes_to_quad32_to_bytes (q:quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) = be_bytes_to_quad32_reveal (); let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q); seq_to_four_to_seq_BE q; () let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) : Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) [SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] = let s' = reverse_bytes_nat32_quad32 s in let s''= reverse_bytes_nat32_quad32 s' in assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE () let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s) [SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] = seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s) [SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))] = seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16) = () let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16) = () let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) (seq_four_to_seq_LE (slice s n n'))); () let slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4)) (seq_four_to_seq_BE (slice s n n'))); () let slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == le_seq_quad32_to_bytes (slice s n n')) = le_seq_quad32_to_bytes_reveal (); slice_commutes_seq_four_to_seq_LE s n n'; assert (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')); (* le_seq_quad32_to_bytes (slice s n n') == seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE (slice s n n'))); == seq_four_to_seq_LE (seq_map (nat_to_four 8) (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == slice (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))) (n * 16) (n' * 16) == seq_four_to_seq_LE (slice (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) (n * 4) (n' * 4)) *) slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_LE s) (n*4) (n'*4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) in slice_commutes_seq_four_to_seq_LE s_inner (n * 4) (n' * 4); () let slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n'))) = slice_commutes_seq_four_to_seq_BE s n n'; assert (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')); slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_BE s) (n*4) (n'*4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)) in slice_commutes_seq_four_to_seq_BE s_inner (n * 4) (n' * 4); () let slice_commutes_le_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) 0 (n * 16) == le_seq_quad32_to_bytes (slice s 0 n)) = slice_commutes_le_seq_quad32_to_bytes s 0 n let slice_commutes_be_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) : Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 (n * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s 0 n))) = slice_commutes_be_seq_quad32_to_bytes s 0 n #reset-options "--z3rlimit 20 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let append_distributes_le_bytes_to_seq_quad32 (s1:seq nat8 { length s1 % 16 == 0 }) (s2:seq nat8 { length s2 % 16 == 0 }) : Lemma(le_bytes_to_seq_quad32 (s1 @| s2) == (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2)) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; let s1' = seq_nat8_to_seq_nat32_LE s1 in let s2' = seq_nat8_to_seq_nat32_LE s2 in // (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2)) // = { Definition of le_bytes_to_seq_quad32 } // seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s1) @| seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s2) append_distributes_seq_to_seq_four_LE s1' s2'; // = // seq_to_seq_four_LE ((seq_nat8_to_seq_nat32_LE s1) @| (seq_nat8_to_seq_nat32_LE s2)) append_distributes_seq_map (four_to_nat 8) (seq_to_seq_four_LE s1) (seq_to_seq_four_LE s2); // seq_to_seq_four_LE (seq_map (four_to_nat 8) ((seq_to_seq_four_LE s1) @| (seq_to_seq_four_LE s2))) append_distributes_seq_to_seq_four_LE s1 s2; // seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (s1 @| s2))) // le_bytes_to_seq_quad32 (s1 @| s2) () let append_distributes_be_bytes_to_seq_quad32 (s1:seq nat8 { length s1 % 16 == 0 }) (s2:seq nat8 { length s2 % 16 == 0 }) : Lemma(be_bytes_to_seq_quad32 (s1 @| s2) == (be_bytes_to_seq_quad32 s1) @| (be_bytes_to_seq_quad32 s2)) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; let s1' = seq_nat8_to_seq_nat32_BE s1 in let s2' = seq_nat8_to_seq_nat32_BE s2 in append_distributes_seq_to_seq_four_BE s1' s2'; append_distributes_seq_map (four_to_nat 8) (seq_to_seq_four_BE s1) (seq_to_seq_four_BE s2); append_distributes_seq_to_seq_four_BE s1 s2; ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> s2: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.le_seq_quad32_to_bytes (s1 @| s2) == Vale.Def.Types_s.le_seq_quad32_to_bytes s1 @| Vale.Def.Types_s.le_seq_quad32_to_bytes s2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "FStar.Calc.calc_finish", "Vale.Def.Types_s.nat8", "Prims.eq2", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "FStar.Seq.Base.op_At_Bar", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Seq_s.seq_four_to_seq_LE", "Vale.Lib.Seqs_s.seq_map", "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.four", "Vale.Def.Words.Four_s.nat_to_four", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_LE", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Vale.Def.Words.Seq.append_distributes_seq_four_to_seq_LE", "Vale.Lib.Seqs.append_distributes_seq_map", "Vale.Def.Types_s.le_seq_quad32_to_bytes_reveal" ]
[]
false
false
true
false
false
let append_distributes_le_seq_quad32_to_bytes s1 s2 =
le_seq_quad32_to_bytes_reveal (); calc ( == ) { le_seq_quad32_to_bytes (s1 @| s2); ( == ) { () } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (s1 @| s2)); ( == ) { append_distributes_seq_four_to_seq_LE s1 s2 } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s1 @| seq_four_to_seq_LE s2); ( == ) { append_distributes_seq_map (nat_to_four 8) (seq_four_to_seq_LE s1) (seq_four_to_seq_LE s2) } seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s1) @| seq_map (nat_to_four 8) (seq_four_to_seq_LE s2)); ( == ) { append_distributes_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s1)) (seq_map (nat_to_four 8) (seq_four_to_seq_LE s2)) } seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s1)) @| seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s2)); ( == ) { () } le_seq_quad32_to_bytes s1 @| le_seq_quad32_to_bytes s2; }
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_nat8_dec_pad
val print_nat8_dec_pad: x:nat{x <= maxint U8} -> FStar.All.ML unit
val print_nat8_dec_pad: x:nat{x <= maxint U8} -> FStar.All.ML unit
let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x))
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 22, "start_col": 0, "start_line": 21 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat{x <= Lib.IntTypes.maxint Lib.IntTypes.U8} -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint", "Lib.IntTypes.U8", "FStar.IO.print_uint8_dec_pad", "Lib.RawIntTypes.u8_to_UInt8", "Lib.IntTypes.u8", "Prims.unit" ]
[]
false
true
false
false
false
let print_nat8_dec_pad x =
IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x))
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_nat8_dec
val print_nat8_dec: x:nat{x <= maxint U8} -> FStar.All.ML unit
val print_nat8_dec: x:nat{x <= maxint U8} -> FStar.All.ML unit
let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x))
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 41, "end_line": 19, "start_col": 0, "start_line": 18 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat{x <= Lib.IntTypes.maxint Lib.IntTypes.U8} -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint", "Lib.IntTypes.U8", "FStar.IO.print_uint8_dec", "Lib.RawIntTypes.u8_to_UInt8", "Lib.IntTypes.u8", "Prims.unit" ]
[]
false
true
false
false
false
let print_nat8_dec x =
IO.print_uint8_dec (u8_to_UInt8 (u8 x))
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_uint64_dec
val print_uint64_dec: uint64 -> FStar.All.ML unit
val print_uint64_dec: uint64 -> FStar.All.ML unit
let print_uint64_dec x = IO.print_uint64_dec (u64_to_UInt64 x)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 84, "start_col": 0, "start_line": 83 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x) let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x) let print_uint64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Lib.IntTypes.uint64 -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Lib.IntTypes.uint64", "FStar.IO.print_uint64_dec", "Lib.RawIntTypes.u64_to_UInt64", "Prims.unit" ]
[]
false
true
false
false
false
let print_uint64_dec x =
IO.print_uint64_dec (u64_to_UInt64 x)
false
Vale.Arch.Types.fst
Vale.Arch.Types.append_distributes_le_bytes_to_seq_quad32
val append_distributes_le_bytes_to_seq_quad32 (s1:seq nat8 { length s1 % 16 == 0 }) (s2:seq nat8 { length s2 % 16 == 0 }) : Lemma(le_bytes_to_seq_quad32 (s1 @| s2) == (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2))
val append_distributes_le_bytes_to_seq_quad32 (s1:seq nat8 { length s1 % 16 == 0 }) (s2:seq nat8 { length s2 % 16 == 0 }) : Lemma(le_bytes_to_seq_quad32 (s1 @| s2) == (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2))
let append_distributes_le_bytes_to_seq_quad32 (s1:seq nat8 { length s1 % 16 == 0 }) (s2:seq nat8 { length s2 % 16 == 0 }) : Lemma(le_bytes_to_seq_quad32 (s1 @| s2) == (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2)) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; let s1' = seq_nat8_to_seq_nat32_LE s1 in let s2' = seq_nat8_to_seq_nat32_LE s2 in // (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2)) // = { Definition of le_bytes_to_seq_quad32 } // seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s1) @| seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s2) append_distributes_seq_to_seq_four_LE s1' s2'; // = // seq_to_seq_four_LE ((seq_nat8_to_seq_nat32_LE s1) @| (seq_nat8_to_seq_nat32_LE s2)) append_distributes_seq_map (four_to_nat 8) (seq_to_seq_four_LE s1) (seq_to_seq_four_LE s2); // seq_to_seq_four_LE (seq_map (four_to_nat 8) ((seq_to_seq_four_LE s1) @| (seq_to_seq_four_LE s2))) append_distributes_seq_to_seq_four_LE s1 s2; // seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (s1 @| s2))) // le_bytes_to_seq_quad32 (s1 @| s2) ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 694, "start_col": 0, "start_line": 677 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal () let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; () let lemma_equality_check_helper (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF) ) = // lemma_equality_check_helper_lo q; // lemma_equality_check_helper_hi q; lo64_reveal (); hi64_reveal (); assert (forall (x:two nat32).{:pattern (two_to_nat 32 x)} two_to_nat 32 x == two_to_nat_unfold 32 x); () let push_pop_xmm (x y:quad32) : Lemma (let x' = insert_nat64 (insert_nat64 y (hi64 x) 1) (lo64 x) 0 in x == x') = // assert (nat_to_two 32 (hi64 x) == two_select (four_to_two_two x) 1); insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_insrq_extrq_relations (x y:quad32) : Lemma (let z = insert_nat64 x (lo64 y) 0 in z == Mkfour y.lo0 y.lo1 x.hi2 x.hi3 /\ (let z = insert_nat64 x (hi64 y) 1 in z == Mkfour x.lo0 x.lo1 y.hi2 y.hi3)) = let open Vale.Def.Words.Two in let z = insert_nat64 x (lo64 y) 0 in insert_nat64_reveal (); lo64_reveal (); hi64_reveal (); assert (z == insert_nat64_def x (lo64_def y) 0); //assert (q'.hi2 == q.hi2); //assert (q'.hi3 == q.hi3); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (lo64 q)) 0)); //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (nat_to_two 32 (two_to_nat 32 (two_select (four_to_two_two q) 0))) 0)); let Mktwo n1 n2 = two_select (four_to_two_two y) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two y) 1 in nat_to_two_to_nat n1 n2; //assert (q' == two_two_to_four (two_insert (four_to_two_two q) (two_select (four_to_two_two q) 0) 0)); //assert (q'.lo1 == q.lo1); //assert (q == q'); () open Vale.Def.Words.Two let le_bytes_to_nat64_to_bytes s = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_nat64_to_bytes_to_nat64 n = le_nat64_to_bytes_reveal (); le_bytes_to_nat64_reveal () let le_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (le_bytes_to_seq_quad32 s)) } length s == 0 ==> length (le_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; () let be_bytes_to_seq_quad32_empty () : Lemma (forall s . {:pattern (length (be_bytes_to_seq_quad32 s)) } length s == 0 ==> length (be_bytes_to_seq_quad32 s) == 0) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; () #reset-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar.Seq.Properties'" let le_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { le_bytes_to_seq_quad32 (le_quad32_to_bytes b); == {reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_quad32_to_bytes b)); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b)))); == {} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))))); == {seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE b))} seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_LE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_LE b)} seq_to_seq_four_LE (four_to_seq_LE b); == {four_to_seq_LE_is_seq_four_to_seq_LE b} seq_to_seq_four_LE (seq_four_to_seq_LE (create 1 b)); == {} create 1 b; } let be_bytes_to_seq_quad32_to_bytes_one_quad b = calc (==) { be_bytes_to_seq_quad32 (be_quad32_to_bytes b); == {reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (be_quad32_to_bytes b)); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_to_seq_four_BE (seq_nat8_to_seq_nat32_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b)))); == {} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE (seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))))); == {seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE b))} seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_map (nat_to_four 8) (four_to_seq_BE b))); == {seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE b)} seq_to_seq_four_BE (four_to_seq_BE b); == {four_to_seq_BE_is_seq_four_to_seq_BE b} seq_to_seq_four_BE (seq_four_to_seq_BE (create 1 b)); == {} create 1 b; } let le_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes s) == s) (* This expands into showing: le_bytes_to_seq_quad32 (le_quad32_to_bytes s) == { definition of le_bytes_to_seq_quad32 } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (le_seq_quad32_to_bytes s)) == { definition of le_seq_quad32_to_bytes } seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s))) == { definition of seq_nat8_to_seq_nat32_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE s)))) == { definition of seq_nat32_to_seq_nat8_LE } seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))))) *) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); seq_to_seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_LE s); seq_to_seq_four_to_seq_LE (s) ; () let be_bytes_to_seq_quad32_to_bytes (s:seq quad32) : Lemma (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == s) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (seq_four_to_seq_BE s); seq_to_seq_four_to_seq_BE (s) ; () let le_seq_quad32_to_bytes_to_seq_quad32 s = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_seq_quad32_to_bytes_reveal (); calc (==) { le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 s); (==) { } seq_nat32_to_seq_nat8_LE (seq_four_to_seq_LE (seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE s))); (==) { } s; } (* le_quad32_to_bytes (le_bytes_to_quad32 s) == { definition of le_quad32_to_bytes } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (le_bytes_to_quad32 s))) == { definition of le_bytes_to_quad32 } seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))) *) let le_quad32_to_bytes_to_quad32 s = calc (==) { le_quad32_to_bytes (le_bytes_to_quad32 s); == {le_bytes_to_quad32_reveal ()} le_quad32_to_bytes (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes} seq_four_to_seq_LE (seq_map (nat_to_four 8) (four_to_seq_LE (seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))))); == {four_to_seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))} seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_LE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_LE s)} seq_four_to_seq_LE (seq_to_seq_four_LE s); == {} s; } let be_quad32_to_bytes_to_quad32 s = calc (==) { be_quad32_to_bytes (be_bytes_to_quad32 s); == {be_bytes_to_quad32_reveal ()} be_quad32_to_bytes (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes} seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE (seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))))); == {four_to_seq_to_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))} seq_four_to_seq_BE (seq_map (nat_to_four 8) (seq_map (four_to_nat 8) (seq_to_seq_four_BE s))); == {seq_map_inverses (four_to_nat 8) (nat_to_four 8) (seq_to_seq_four_BE s)} seq_four_to_seq_BE (seq_to_seq_four_BE s); == {} s; } let le_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q)) = le_seq_quad32_to_bytes_reveal (); reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; four_to_seq_LE_is_seq_four_to_seq_LE q; () let be_seq_quad32_to_bytes_of_singleton (q:quad32) : Lemma (be_quad32_to_bytes q == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 q))) = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; four_to_seq_BE_is_seq_four_to_seq_BE q; () let le_quad32_to_bytes_injective (): Lemma (forall b b' . le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%le_quad32_to_bytes) le_quad32_to_bytes; let helper (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = if le_quad32_to_bytes b = le_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_LE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_LE b') in assert (le_quad32_to_bytes b == seq_four_to_seq_LE b1); assert (le_quad32_to_bytes b' == seq_four_to_seq_LE b1'); seq_four_to_seq_LE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_LE b) (four_to_seq_LE b'); assert ((four_to_seq_LE b) == (four_to_seq_LE b')); four_to_seq_LE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let be_quad32_to_bytes_injective (): Lemma (forall b b' . be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = reveal_opaque (`%be_quad32_to_bytes) be_quad32_to_bytes; let helper (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = if be_quad32_to_bytes b = be_quad32_to_bytes b' then ( let b1 = seq_map (nat_to_four 8) (four_to_seq_BE b) in let b1' = seq_map (nat_to_four 8) (four_to_seq_BE b') in assert (be_quad32_to_bytes b == seq_four_to_seq_BE b1); assert (be_quad32_to_bytes b' == seq_four_to_seq_BE b1'); seq_four_to_seq_BE_injective_specific b1 b1'; assert (b1 == b1'); nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (four_to_seq_BE b) (four_to_seq_BE b'); assert ((four_to_seq_BE b) == (four_to_seq_BE b')); four_to_seq_BE_injective nat32; () ) else () in FStar.Classical.forall_intro_2 helper let le_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (le_quad32_to_bytes b == le_quad32_to_bytes b' ==> b == b') = le_quad32_to_bytes_injective() let be_quad32_to_bytes_injective_specific (b b':quad32) : Lemma (be_quad32_to_bytes b == be_quad32_to_bytes b' ==> b == b') = be_quad32_to_bytes_injective() let le_seq_quad32_to_bytes_injective (b b':seq quad32) = le_seq_quad32_to_bytes_reveal (); seq_four_to_seq_LE_injective nat8; nat_to_four_8_injective(); seq_map_injective (nat_to_four 8) (seq_four_to_seq_LE b) (seq_four_to_seq_LE b'); seq_four_to_seq_LE_injective_specific b b'; assert (equal b b') let seq_to_four_LE_is_seq_to_seq_four_LE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_LE s) == seq_to_seq_four_LE s) = reveal_opaque (`%seq_to_seq_four_LE) (seq_to_seq_four_LE #a); assert (equal (create 1 (seq_to_four_LE s)) (seq_to_seq_four_LE s)); () let seq_to_four_BE_is_seq_to_seq_four_BE (#a:Type) (s:seq4 a) : Lemma (create 1 (seq_to_four_BE s) == seq_to_seq_four_BE s) = reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #a); assert (equal (create 1 (seq_to_four_BE s)) (seq_to_seq_four_BE s)); () let le_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == le_bytes_to_quad32 b) (ensures create 1 q == le_bytes_to_seq_quad32 b) = reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; le_bytes_to_quad32_reveal (); seq_to_four_LE_is_seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)); // q == le_bytes_to_quad32 b // == seq_to_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // // == seq_to_seq_four_LE (seq_map (four_to_nat 8) (seq_to_seq_four_LE b)) // le_bytes_to_seq_quad32 b == seq_to_seq_four_LE (seq_nat8_to_seq_nat32_LE b) () let be_bytes_to_seq_quad_of_singleton (q:quad32) (b:seq nat8 { length b == 16 }) : Lemma (requires q == be_bytes_to_quad32 b) (ensures create 1 q == be_bytes_to_seq_quad32 b) = reveal_opaque (`%be_bytes_to_seq_quad32) be_bytes_to_seq_quad32; be_bytes_to_quad32_reveal (); seq_to_four_BE_is_seq_to_seq_four_BE (seq_map (four_to_nat 8) (seq_to_seq_four_BE b)); () let le_bytes_to_quad32_to_bytes (q:quad32) : Lemma(le_bytes_to_quad32 (le_quad32_to_bytes q) == q) = le_seq_quad32_to_bytes_of_singleton q; // ==> le_quad32_to_bytes q == le_seq_quad32_to_bytes (create 1 q) let b = le_quad32_to_bytes q in let q' = le_bytes_to_quad32 b in le_bytes_to_seq_quad_of_singleton q' b; // ==> create 1 q' == le_bytes_to_seq_quad32 b // == le_bytes_to_seq_quad32 (le_seq_quad32_to_bytes (create 1 q)) le_bytes_to_seq_quad32_to_bytes (create 1 q); // == create 1 q //assert (create 1 q == create 1 q'); //assert (equal (create 1 q) (create 1 q')); assert (q == index (create 1 q) 0); // OBSERVE assert (q == q'); () let be_bytes_to_quad32_to_bytes (q:quad32) : Lemma (be_bytes_to_quad32 (be_quad32_to_bytes q) == q) = be_bytes_to_quad32_reveal (); let q':quad32 = be_bytes_to_quad32 (be_quad32_to_bytes q) in seq_to_seq_four_to_seq_BE (seq_map (nat_to_four 8) (four_to_seq_BE q)); seq_map_inverses (nat_to_four 8) (four_to_nat 8) (four_to_seq_BE q); seq_to_four_to_seq_BE q; () let lemma_reverse_reverse_bytes_nat32_quad32 (s:quad32) : Lemma (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s) == s) [SMTPat (reverse_bytes_nat32_quad32 (reverse_bytes_nat32_quad32 s))] = let s' = reverse_bytes_nat32_quad32 s in let s''= reverse_bytes_nat32_quad32 s' in assert (s''.lo0 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo0)); // OBSERVE assert (s''.lo1 == reverse_bytes_nat32 (reverse_bytes_nat32 s.lo1)); // OBSERVE assert (s''.hi2 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi2)); // OBSERVE assert (s''.hi3 == reverse_bytes_nat32 (reverse_bytes_nat32 s.hi3)); // OBSERVE () let lemma_reverse_reverse_bytes_nat32_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s) == s) [SMTPat (reverse_bytes_nat32_quad32_seq (reverse_bytes_nat32_quad32_seq s))] = seq_map_inverses reverse_bytes_nat32_quad32 reverse_bytes_nat32_quad32 s let lemma_reverse_reverse_bytes_quad32_seq (s:seq quad32) : Lemma (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s) == s) [SMTPat (reverse_bytes_quad32_seq (reverse_bytes_quad32_seq s))] = seq_map_inverses reverse_bytes_quad32 reverse_bytes_quad32 s let lemma_le_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (le_seq_quad32_to_bytes s) == (length s) * 16) = () let lemma_be_seq_quad32_to_bytes_length (s:seq quad32) : Lemma(length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == (length s) * 16) = () let slice_commutes_seq_four_to_seq_LE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_LE) (seq_four_to_seq_LE #a); assert (equal (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) (seq_four_to_seq_LE (slice s n n'))); () let slice_commutes_seq_four_to_seq_BE (#a:Type) (s:seq (four a)) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')) = reveal_opaque (`%seq_four_to_seq_BE) (seq_four_to_seq_BE #a); assert (equal (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4)) (seq_four_to_seq_BE (slice s n n'))); () let slice_commutes_le_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == le_seq_quad32_to_bytes (slice s n n')) = le_seq_quad32_to_bytes_reveal (); slice_commutes_seq_four_to_seq_LE s n n'; assert (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4) == seq_four_to_seq_LE (slice s n n')); (* le_seq_quad32_to_bytes (slice s n n') == seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE (slice s n n'))); == seq_four_to_seq_LE (seq_map (nat_to_four 8) (slice (seq_four_to_seq_LE s) (n * 4) (n' * 4)) slice (le_seq_quad32_to_bytes s) (n * 16) (n' * 16) == slice (seq_four_to_seq_LE (seq_map (nat_to_four 8) (seq_four_to_seq_LE s))) (n * 16) (n' * 16) == seq_four_to_seq_LE (slice (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) (n * 4) (n' * 4)) *) slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_LE s) (n*4) (n'*4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_LE s)) in slice_commutes_seq_four_to_seq_LE s_inner (n * 4) (n' * 4); () let slice_commutes_be_seq_quad32_to_bytes (s:seq quad32) (n:nat{n <= length s}) (n':nat{ n <= n' /\ n' <= length s}) : Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (n * 16) (n' * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s n n'))) = slice_commutes_seq_four_to_seq_BE s n n'; assert (slice (seq_four_to_seq_BE s) (n * 4) (n' * 4) == seq_four_to_seq_BE (slice s n n')); slice_seq_map_commute (nat_to_four 8) (seq_four_to_seq_BE s) (n*4) (n'*4); let s_inner = (seq_map (nat_to_four 8) (seq_four_to_seq_BE s)) in slice_commutes_seq_four_to_seq_BE s_inner (n * 4) (n' * 4); () let slice_commutes_le_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) : Lemma(slice (le_seq_quad32_to_bytes s) 0 (n * 16) == le_seq_quad32_to_bytes (slice s 0 n)) = slice_commutes_le_seq_quad32_to_bytes s 0 n let slice_commutes_be_seq_quad32_to_bytes0 (s:seq quad32) (n:nat{n <= length s}) : Lemma(slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 (n * 16) == seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (slice s 0 n))) = slice_commutes_be_seq_quad32_to_bytes s 0 n
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length s1 % 16 == 0} -> s2: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length s2 % 16 == 0} -> FStar.Pervasives.Lemma (ensures Vale.Def.Types_s.le_bytes_to_seq_quad32 (s1 @| s2) == Vale.Def.Types_s.le_bytes_to_seq_quad32 s1 @| Vale.Def.Types_s.le_bytes_to_seq_quad32 s2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.unit", "Vale.Def.Words.Seq.append_distributes_seq_to_seq_four_LE", "Vale.Lib.Seqs.append_distributes_seq_map", "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Def.Words.Four_s.four_to_nat", "Vale.Def.Words.Seq_s.seq_to_seq_four_LE", "Vale.Def.Words_s.nat32", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_LE", "FStar.Pervasives.reveal_opaque", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.quad32", "Prims.l_True", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "Prims.squash", "FStar.Seq.Base.op_At_Bar", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let append_distributes_le_bytes_to_seq_quad32 (s1: seq nat8 {length s1 % 16 == 0}) (s2: seq nat8 {length s2 % 16 == 0}) : Lemma (le_bytes_to_seq_quad32 (s1 @| s2) == (le_bytes_to_seq_quad32 s1) @| (le_bytes_to_seq_quad32 s2) ) =
reveal_opaque (`%le_bytes_to_seq_quad32) le_bytes_to_seq_quad32; let s1' = seq_nat8_to_seq_nat32_LE s1 in let s2' = seq_nat8_to_seq_nat32_LE s2 in append_distributes_seq_to_seq_four_LE s1' s2'; append_distributes_seq_map (four_to_nat 8) (seq_to_seq_four_LE s1) (seq_to_seq_four_LE s2); append_distributes_seq_to_seq_four_LE s1 s2; ()
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_nat32_hex_pad
val print_nat32_hex_pad: x:nat{x <= maxint U32} -> FStar.All.ML unit
val print_nat32_hex_pad: x:nat{x <= maxint U32} -> FStar.All.ML unit
let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x))
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 29, "start_col": 0, "start_line": 28 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat{x <= Lib.IntTypes.maxint Lib.IntTypes.U32} -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint", "Lib.IntTypes.U32", "FStar.IO.print_uint32_hex_pad", "Lib.RawIntTypes.u32_to_UInt32", "Lib.IntTypes.u32", "Prims.unit" ]
[]
false
true
false
false
false
let print_nat32_hex_pad x =
IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x))
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_label_lbytes
val print_label_lbytes: display:bool -> string -> len:size_nat -> lbytes len -> FStar.All.ML unit
val print_label_lbytes: display:bool -> string -> len:size_nat -> lbytes len -> FStar.All.ML unit
let print_label_lbytes flag label len b = if not flag then () else ( IO.print_string label; IO.print_string ": \n"; print_lbytes flag len b; IO.print_newline ())
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 22, "end_line": 151, "start_col": 0, "start_line": 146 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x) let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x) let print_uint64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 x) let print_uint64_dec x = IO.print_uint64_dec (u64_to_UInt64 x) let print_uint64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 x) let print_label_nat64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_nat64_dec x; IO.print_string "\n") let print_label_uint8 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint8_hex_pad x; IO.print_string "\n") let print_label_uint32 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint32_hex_pad x; IO.print_string "\n") let print_label_uint64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint64_hex_pad x; IO.print_string "\n") let print_list_nat64 flag l = if not flag then () else ( repeat_range_all_ml 0 (List.Tot.length l) (fun i _ -> print_nat64_dec (List.Tot.index l i); IO.print_string " " ) ()) let print_string flag s = if flag then IO.print_string s else () let print_lbytes flag len b = if not flag then () else ( let q = 32 in let n = len / q in let r = len % q in if n = 0 then ( List.iter (fun a -> print_uint8_hex_pad a) (to_list b)) else ( repeat_range_all_ml 0 n (fun i _ -> let sb = sub #uint8 #len b (i * q) q in List.iter (fun a -> print_uint8_hex_pad a) (to_list sb); (if i < n - 1 then IO.print_string "\n" else ())) (); (if r <> 0 then IO.print_newline ()); let sb = sub #uint8 #len b (n * q) r in List.iter (fun a -> print_uint8_hex_pad a) (to_list sb)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
display: Prims.bool -> label: Prims.string -> len: Lib.IntTypes.size_nat -> b: Lib.ByteSequence.lbytes len -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.bool", "Prims.string", "Lib.IntTypes.size_nat", "Lib.ByteSequence.lbytes", "Prims.op_Negation", "Prims.unit", "FStar.IO.print_newline", "Lib.PrintSequence.print_lbytes", "FStar.IO.print_string" ]
[]
false
true
false
false
false
let print_label_lbytes flag label len b =
if not flag then () else (IO.print_string label; IO.print_string ": \n"; print_lbytes flag len b; IO.print_newline ())
false
Vale.X64.CPU_Features_s.fst
Vale.X64.CPU_Features_s.avx512_xcr0
val avx512_xcr0:bool
val avx512_xcr0:bool
let avx512_xcr0 : bool = avx_xcr0_enabled && opmask_xcr0_enabled && zmm_hi256_xcr0_enabled && hi16_zmm_xcr0_enabled
{ "file_name": "vale/specs/hardware/Vale.X64.CPU_Features_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 92, "end_line": 76, "start_col": 0, "start_line": 75 }
module Vale.X64.CPU_Features_s open FStar.Mul open Vale.X64.Machine_s open Vale.Def.Words_s (* CPUID *) assume val aesni_enabled : bool // CPUID.01H:ECX.AESNI[bit 25] assume val avx_cpuid_enabled : bool // CPUID.01H:ECX.AVX[bit 28] assume val pclmulqdq_enabled : bool // CPUID.01H:ECX.PCLMULQDQ[bit 1] assume val avx2_cpuid_enabled : bool // CPUID.7.0.EBX[5] assume val bmi2_enabled : bool // CPUID.7.0.EBX[8] assume val avx512f_enabled : bool // CPUID.7.0.EBX[16] assume val avx512dq_enabled : bool // CPUID.7.0.EBX[17] assume val adx_enabled : bool // CPUID.7.0.EBX[19] assume val sha_enabled : bool // CPUID.7.0.EBX[29] assume val avx512bw_enabled : bool // CPUID.7.0.EBX[30] assume val avx512vl_enabled : bool // CPUID.7.0.EBX[31] assume val sse2_enabled : bool // CPUID.01H:EDX.SSE2[bit 26] assume val ssse3_enabled : bool // CPUID.01H:ECX.SSSE3[bit 9] assume val sse4_1_enabled : bool // CPUID.01H:ECX.SSE4.1[bit 19] assume val movbe_enabled : bool // CPUID.01H.ECX.MOVBE[bit 22] assume val osxsave_enabled : bool // CPUID.01H.ECX.OSXSAVE[bit 27] assume val rdrand_enabled : bool // CPUID.01H.ECX.RDRAND[bit 30] = 0 let sse_enabled : bool = sse2_enabled && ssse3_enabled && sse4_1_enabled let avx512_cpuid_enabled : bool = avx512f_enabled && avx512dq_enabled && avx512bw_enabled && avx512vl_enabled assume val cpuid (r:reg_64) (rax:nat64) (rcx:nat64) : nat64 assume val cpuid_features (u:unit) : Lemma ((forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 25) > 0) = aesni_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 28) > 0) = avx_cpuid_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 1) > 0) = pclmulqdq_enabled) /\ (forall rcx . {:pattern (cpuid rRdx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRdx 1 rcx) (pow2_norm 26) > 0) = sse2_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 9) > 0) = ssse3_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 19) > 0) = sse4_1_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 22) > 0) = movbe_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 27) > 0) = osxsave_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 30) > 0) = rdrand_enabled) /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 5) > 0) = avx2_cpuid_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 8) > 0) = bmi2_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 16) > 0) = avx512f_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 17) > 0) = avx512dq_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 19) > 0) = adx_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 29) > 0) = sha_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 30) > 0) = avx512bw_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 31) > 0) = avx512vl_enabled ) (* Extended Control Registers *) assume val sse_xcr0_enabled : bool // Bit 1 assume val avx_xcr0_enabled : bool // Bit 2 assume val opmask_xcr0_enabled : bool // Bit 5 assume val zmm_hi256_xcr0_enabled : bool // Bit 6 assume val hi16_zmm_xcr0_enabled : bool // Bit 7 assume val xgetbv (r:reg_64) (rcx:nat64) : nat64 assume val xgetbv_features (u:unit) : Lemma ((Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 1) > 0) = sse_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 2) > 0) = avx_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 5) > 0) = opmask_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 6) > 0) = zmm_hi256_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 7) > 0) = hi16_zmm_xcr0_enabled ) let avx_xcr0 : bool = sse_xcr0_enabled && avx_xcr0_enabled
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.CPU_Features_s.fst" }
[ { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.op_AmpAmp", "Vale.X64.CPU_Features_s.avx_xcr0_enabled", "Vale.X64.CPU_Features_s.opmask_xcr0_enabled", "Vale.X64.CPU_Features_s.zmm_hi256_xcr0_enabled", "Vale.X64.CPU_Features_s.hi16_zmm_xcr0_enabled" ]
[]
false
false
false
true
false
let avx512_xcr0:bool =
avx_xcr0_enabled && opmask_xcr0_enabled && zmm_hi256_xcr0_enabled && hi16_zmm_xcr0_enabled
false
Vale.X64.CPU_Features_s.fst
Vale.X64.CPU_Features_s.sse_enabled
val sse_enabled:bool
val sse_enabled:bool
let sse_enabled : bool = sse2_enabled && ssse3_enabled && sse4_1_enabled
{ "file_name": "vale/specs/hardware/Vale.X64.CPU_Features_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 72, "end_line": 28, "start_col": 0, "start_line": 28 }
module Vale.X64.CPU_Features_s open FStar.Mul open Vale.X64.Machine_s open Vale.Def.Words_s (* CPUID *) assume val aesni_enabled : bool // CPUID.01H:ECX.AESNI[bit 25] assume val avx_cpuid_enabled : bool // CPUID.01H:ECX.AVX[bit 28] assume val pclmulqdq_enabled : bool // CPUID.01H:ECX.PCLMULQDQ[bit 1] assume val avx2_cpuid_enabled : bool // CPUID.7.0.EBX[5] assume val bmi2_enabled : bool // CPUID.7.0.EBX[8] assume val avx512f_enabled : bool // CPUID.7.0.EBX[16] assume val avx512dq_enabled : bool // CPUID.7.0.EBX[17] assume val adx_enabled : bool // CPUID.7.0.EBX[19] assume val sha_enabled : bool // CPUID.7.0.EBX[29] assume val avx512bw_enabled : bool // CPUID.7.0.EBX[30] assume val avx512vl_enabled : bool // CPUID.7.0.EBX[31] assume val sse2_enabled : bool // CPUID.01H:EDX.SSE2[bit 26] assume val ssse3_enabled : bool // CPUID.01H:ECX.SSSE3[bit 9] assume val sse4_1_enabled : bool // CPUID.01H:ECX.SSE4.1[bit 19] assume val movbe_enabled : bool // CPUID.01H.ECX.MOVBE[bit 22] assume val osxsave_enabled : bool // CPUID.01H.ECX.OSXSAVE[bit 27] assume val rdrand_enabled : bool // CPUID.01H.ECX.RDRAND[bit 30] = 0
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.CPU_Features_s.fst" }
[ { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.op_AmpAmp", "Vale.X64.CPU_Features_s.sse2_enabled", "Vale.X64.CPU_Features_s.ssse3_enabled", "Vale.X64.CPU_Features_s.sse4_1_enabled" ]
[]
false
false
false
true
false
let sse_enabled:bool =
sse2_enabled && ssse3_enabled && sse4_1_enabled
false
Vale.X64.CPU_Features_s.fst
Vale.X64.CPU_Features_s.avx512_cpuid_enabled
val avx512_cpuid_enabled:bool
val avx512_cpuid_enabled:bool
let avx512_cpuid_enabled : bool = avx512f_enabled && avx512dq_enabled && avx512bw_enabled && avx512vl_enabled
{ "file_name": "vale/specs/hardware/Vale.X64.CPU_Features_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 77, "end_line": 31, "start_col": 0, "start_line": 30 }
module Vale.X64.CPU_Features_s open FStar.Mul open Vale.X64.Machine_s open Vale.Def.Words_s (* CPUID *) assume val aesni_enabled : bool // CPUID.01H:ECX.AESNI[bit 25] assume val avx_cpuid_enabled : bool // CPUID.01H:ECX.AVX[bit 28] assume val pclmulqdq_enabled : bool // CPUID.01H:ECX.PCLMULQDQ[bit 1] assume val avx2_cpuid_enabled : bool // CPUID.7.0.EBX[5] assume val bmi2_enabled : bool // CPUID.7.0.EBX[8] assume val avx512f_enabled : bool // CPUID.7.0.EBX[16] assume val avx512dq_enabled : bool // CPUID.7.0.EBX[17] assume val adx_enabled : bool // CPUID.7.0.EBX[19] assume val sha_enabled : bool // CPUID.7.0.EBX[29] assume val avx512bw_enabled : bool // CPUID.7.0.EBX[30] assume val avx512vl_enabled : bool // CPUID.7.0.EBX[31] assume val sse2_enabled : bool // CPUID.01H:EDX.SSE2[bit 26] assume val ssse3_enabled : bool // CPUID.01H:ECX.SSSE3[bit 9] assume val sse4_1_enabled : bool // CPUID.01H:ECX.SSE4.1[bit 19] assume val movbe_enabled : bool // CPUID.01H.ECX.MOVBE[bit 22] assume val osxsave_enabled : bool // CPUID.01H.ECX.OSXSAVE[bit 27] assume val rdrand_enabled : bool // CPUID.01H.ECX.RDRAND[bit 30] = 0 let sse_enabled : bool = sse2_enabled && ssse3_enabled && sse4_1_enabled
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.CPU_Features_s.fst" }
[ { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.op_AmpAmp", "Vale.X64.CPU_Features_s.avx512f_enabled", "Vale.X64.CPU_Features_s.avx512dq_enabled", "Vale.X64.CPU_Features_s.avx512bw_enabled", "Vale.X64.CPU_Features_s.avx512vl_enabled" ]
[]
false
false
false
true
false
let avx512_cpuid_enabled:bool =
avx512f_enabled && avx512dq_enabled && avx512bw_enabled && avx512vl_enabled
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_nat32_dec
val print_nat32_dec: x:nat{x <= maxint U32} -> FStar.All.ML unit
val print_nat32_dec: x:nat{x <= maxint U32} -> FStar.All.ML unit
let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x))
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 32, "start_col": 0, "start_line": 31 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat{x <= Lib.IntTypes.maxint Lib.IntTypes.U32} -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint", "Lib.IntTypes.U32", "FStar.IO.print_uint32_dec", "Lib.RawIntTypes.u32_to_UInt32", "Lib.IntTypes.u32", "Prims.unit" ]
[]
false
true
false
false
false
let print_nat32_dec x =
IO.print_uint32_dec (u32_to_UInt32 (u32 x))
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_nat64_dec
val print_nat64_dec: x:nat{x <= maxint U64} -> FStar.All.ML unit
val print_nat64_dec: x:nat{x <= maxint U64} -> FStar.All.ML unit
let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x))
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 45, "start_col": 0, "start_line": 44 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat{x <= Lib.IntTypes.maxint Lib.IntTypes.U64} -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint", "Lib.IntTypes.U64", "FStar.IO.print_uint64_dec", "Lib.RawIntTypes.u64_to_UInt64", "Lib.IntTypes.u64", "Prims.unit" ]
[]
false
true
false
false
false
let print_nat64_dec x =
IO.print_uint64_dec (u64_to_UInt64 (u64 x))
false
Vale.X64.CPU_Features_s.fst
Vale.X64.CPU_Features_s.avx512_enabled
val avx512_enabled:bool
val avx512_enabled:bool
let avx512_enabled : bool = avx512_cpuid_enabled && avx512_xcr0
{ "file_name": "vale/specs/hardware/Vale.X64.CPU_Features_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 63, "end_line": 83, "start_col": 0, "start_line": 83 }
module Vale.X64.CPU_Features_s open FStar.Mul open Vale.X64.Machine_s open Vale.Def.Words_s (* CPUID *) assume val aesni_enabled : bool // CPUID.01H:ECX.AESNI[bit 25] assume val avx_cpuid_enabled : bool // CPUID.01H:ECX.AVX[bit 28] assume val pclmulqdq_enabled : bool // CPUID.01H:ECX.PCLMULQDQ[bit 1] assume val avx2_cpuid_enabled : bool // CPUID.7.0.EBX[5] assume val bmi2_enabled : bool // CPUID.7.0.EBX[8] assume val avx512f_enabled : bool // CPUID.7.0.EBX[16] assume val avx512dq_enabled : bool // CPUID.7.0.EBX[17] assume val adx_enabled : bool // CPUID.7.0.EBX[19] assume val sha_enabled : bool // CPUID.7.0.EBX[29] assume val avx512bw_enabled : bool // CPUID.7.0.EBX[30] assume val avx512vl_enabled : bool // CPUID.7.0.EBX[31] assume val sse2_enabled : bool // CPUID.01H:EDX.SSE2[bit 26] assume val ssse3_enabled : bool // CPUID.01H:ECX.SSSE3[bit 9] assume val sse4_1_enabled : bool // CPUID.01H:ECX.SSE4.1[bit 19] assume val movbe_enabled : bool // CPUID.01H.ECX.MOVBE[bit 22] assume val osxsave_enabled : bool // CPUID.01H.ECX.OSXSAVE[bit 27] assume val rdrand_enabled : bool // CPUID.01H.ECX.RDRAND[bit 30] = 0 let sse_enabled : bool = sse2_enabled && ssse3_enabled && sse4_1_enabled let avx512_cpuid_enabled : bool = avx512f_enabled && avx512dq_enabled && avx512bw_enabled && avx512vl_enabled assume val cpuid (r:reg_64) (rax:nat64) (rcx:nat64) : nat64 assume val cpuid_features (u:unit) : Lemma ((forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 25) > 0) = aesni_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 28) > 0) = avx_cpuid_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 1) > 0) = pclmulqdq_enabled) /\ (forall rcx . {:pattern (cpuid rRdx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRdx 1 rcx) (pow2_norm 26) > 0) = sse2_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 9) > 0) = ssse3_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 19) > 0) = sse4_1_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 22) > 0) = movbe_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 27) > 0) = osxsave_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 30) > 0) = rdrand_enabled) /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 5) > 0) = avx2_cpuid_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 8) > 0) = bmi2_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 16) > 0) = avx512f_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 17) > 0) = avx512dq_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 19) > 0) = adx_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 29) > 0) = sha_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 30) > 0) = avx512bw_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 31) > 0) = avx512vl_enabled ) (* Extended Control Registers *) assume val sse_xcr0_enabled : bool // Bit 1 assume val avx_xcr0_enabled : bool // Bit 2 assume val opmask_xcr0_enabled : bool // Bit 5 assume val zmm_hi256_xcr0_enabled : bool // Bit 6 assume val hi16_zmm_xcr0_enabled : bool // Bit 7 assume val xgetbv (r:reg_64) (rcx:nat64) : nat64 assume val xgetbv_features (u:unit) : Lemma ((Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 1) > 0) = sse_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 2) > 0) = avx_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 5) > 0) = opmask_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 6) > 0) = zmm_hi256_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 7) > 0) = hi16_zmm_xcr0_enabled ) let avx_xcr0 : bool = sse_xcr0_enabled && avx_xcr0_enabled let avx512_xcr0 : bool = avx_xcr0_enabled && opmask_xcr0_enabled && zmm_hi256_xcr0_enabled && hi16_zmm_xcr0_enabled (* Full AVX detection *) let avx_enabled : bool = avx_cpuid_enabled && avx_xcr0
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.CPU_Features_s.fst" }
[ { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.op_AmpAmp", "Vale.X64.CPU_Features_s.avx512_cpuid_enabled", "Vale.X64.CPU_Features_s.avx512_xcr0" ]
[]
false
false
false
true
false
let avx512_enabled:bool =
avx512_cpuid_enabled && avx512_xcr0
false
Vale.X64.CPU_Features_s.fst
Vale.X64.CPU_Features_s.avx2_enabled
val avx2_enabled:bool
val avx2_enabled:bool
let avx2_enabled : bool = avx2_cpuid_enabled && avx_xcr0
{ "file_name": "vale/specs/hardware/Vale.X64.CPU_Features_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 56, "end_line": 82, "start_col": 0, "start_line": 82 }
module Vale.X64.CPU_Features_s open FStar.Mul open Vale.X64.Machine_s open Vale.Def.Words_s (* CPUID *) assume val aesni_enabled : bool // CPUID.01H:ECX.AESNI[bit 25] assume val avx_cpuid_enabled : bool // CPUID.01H:ECX.AVX[bit 28] assume val pclmulqdq_enabled : bool // CPUID.01H:ECX.PCLMULQDQ[bit 1] assume val avx2_cpuid_enabled : bool // CPUID.7.0.EBX[5] assume val bmi2_enabled : bool // CPUID.7.0.EBX[8] assume val avx512f_enabled : bool // CPUID.7.0.EBX[16] assume val avx512dq_enabled : bool // CPUID.7.0.EBX[17] assume val adx_enabled : bool // CPUID.7.0.EBX[19] assume val sha_enabled : bool // CPUID.7.0.EBX[29] assume val avx512bw_enabled : bool // CPUID.7.0.EBX[30] assume val avx512vl_enabled : bool // CPUID.7.0.EBX[31] assume val sse2_enabled : bool // CPUID.01H:EDX.SSE2[bit 26] assume val ssse3_enabled : bool // CPUID.01H:ECX.SSSE3[bit 9] assume val sse4_1_enabled : bool // CPUID.01H:ECX.SSE4.1[bit 19] assume val movbe_enabled : bool // CPUID.01H.ECX.MOVBE[bit 22] assume val osxsave_enabled : bool // CPUID.01H.ECX.OSXSAVE[bit 27] assume val rdrand_enabled : bool // CPUID.01H.ECX.RDRAND[bit 30] = 0 let sse_enabled : bool = sse2_enabled && ssse3_enabled && sse4_1_enabled let avx512_cpuid_enabled : bool = avx512f_enabled && avx512dq_enabled && avx512bw_enabled && avx512vl_enabled assume val cpuid (r:reg_64) (rax:nat64) (rcx:nat64) : nat64 assume val cpuid_features (u:unit) : Lemma ((forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 25) > 0) = aesni_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 28) > 0) = avx_cpuid_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 1) > 0) = pclmulqdq_enabled) /\ (forall rcx . {:pattern (cpuid rRdx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRdx 1 rcx) (pow2_norm 26) > 0) = sse2_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 9) > 0) = ssse3_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 19) > 0) = sse4_1_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 22) > 0) = movbe_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 27) > 0) = osxsave_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 30) > 0) = rdrand_enabled) /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 5) > 0) = avx2_cpuid_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 8) > 0) = bmi2_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 16) > 0) = avx512f_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 17) > 0) = avx512dq_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 19) > 0) = adx_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 29) > 0) = sha_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 30) > 0) = avx512bw_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 31) > 0) = avx512vl_enabled ) (* Extended Control Registers *) assume val sse_xcr0_enabled : bool // Bit 1 assume val avx_xcr0_enabled : bool // Bit 2 assume val opmask_xcr0_enabled : bool // Bit 5 assume val zmm_hi256_xcr0_enabled : bool // Bit 6 assume val hi16_zmm_xcr0_enabled : bool // Bit 7 assume val xgetbv (r:reg_64) (rcx:nat64) : nat64 assume val xgetbv_features (u:unit) : Lemma ((Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 1) > 0) = sse_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 2) > 0) = avx_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 5) > 0) = opmask_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 6) > 0) = zmm_hi256_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 7) > 0) = hi16_zmm_xcr0_enabled ) let avx_xcr0 : bool = sse_xcr0_enabled && avx_xcr0_enabled let avx512_xcr0 : bool = avx_xcr0_enabled && opmask_xcr0_enabled && zmm_hi256_xcr0_enabled && hi16_zmm_xcr0_enabled (* Full AVX detection *)
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.CPU_Features_s.fst" }
[ { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.op_AmpAmp", "Vale.X64.CPU_Features_s.avx2_cpuid_enabled", "Vale.X64.CPU_Features_s.avx_xcr0" ]
[]
false
false
false
true
false
let avx2_enabled:bool =
avx2_cpuid_enabled && avx_xcr0
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_nat32_hex
val print_nat32_hex: x:nat{x <= maxint U32} -> FStar.All.ML unit
val print_nat32_hex: x:nat{x <= maxint U32} -> FStar.All.ML unit
let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x))
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 41, "end_line": 26, "start_col": 0, "start_line": 25 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat{x <= Lib.IntTypes.maxint Lib.IntTypes.U32} -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint", "Lib.IntTypes.U32", "FStar.IO.print_uint32", "Lib.RawIntTypes.u32_to_UInt32", "Lib.IntTypes.u32", "Prims.unit" ]
[]
false
true
false
false
false
let print_nat32_hex x =
IO.print_uint32 (u32_to_UInt32 (u32 x))
false
Vale.X64.CPU_Features_s.fst
Vale.X64.CPU_Features_s.avx_xcr0
val avx_xcr0:bool
val avx_xcr0:bool
let avx_xcr0 : bool = sse_xcr0_enabled && avx_xcr0_enabled
{ "file_name": "vale/specs/hardware/Vale.X64.CPU_Features_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 58, "end_line": 73, "start_col": 0, "start_line": 73 }
module Vale.X64.CPU_Features_s open FStar.Mul open Vale.X64.Machine_s open Vale.Def.Words_s (* CPUID *) assume val aesni_enabled : bool // CPUID.01H:ECX.AESNI[bit 25] assume val avx_cpuid_enabled : bool // CPUID.01H:ECX.AVX[bit 28] assume val pclmulqdq_enabled : bool // CPUID.01H:ECX.PCLMULQDQ[bit 1] assume val avx2_cpuid_enabled : bool // CPUID.7.0.EBX[5] assume val bmi2_enabled : bool // CPUID.7.0.EBX[8] assume val avx512f_enabled : bool // CPUID.7.0.EBX[16] assume val avx512dq_enabled : bool // CPUID.7.0.EBX[17] assume val adx_enabled : bool // CPUID.7.0.EBX[19] assume val sha_enabled : bool // CPUID.7.0.EBX[29] assume val avx512bw_enabled : bool // CPUID.7.0.EBX[30] assume val avx512vl_enabled : bool // CPUID.7.0.EBX[31] assume val sse2_enabled : bool // CPUID.01H:EDX.SSE2[bit 26] assume val ssse3_enabled : bool // CPUID.01H:ECX.SSSE3[bit 9] assume val sse4_1_enabled : bool // CPUID.01H:ECX.SSE4.1[bit 19] assume val movbe_enabled : bool // CPUID.01H.ECX.MOVBE[bit 22] assume val osxsave_enabled : bool // CPUID.01H.ECX.OSXSAVE[bit 27] assume val rdrand_enabled : bool // CPUID.01H.ECX.RDRAND[bit 30] = 0 let sse_enabled : bool = sse2_enabled && ssse3_enabled && sse4_1_enabled let avx512_cpuid_enabled : bool = avx512f_enabled && avx512dq_enabled && avx512bw_enabled && avx512vl_enabled assume val cpuid (r:reg_64) (rax:nat64) (rcx:nat64) : nat64 assume val cpuid_features (u:unit) : Lemma ((forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 25) > 0) = aesni_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 28) > 0) = avx_cpuid_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 1) > 0) = pclmulqdq_enabled) /\ (forall rcx . {:pattern (cpuid rRdx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRdx 1 rcx) (pow2_norm 26) > 0) = sse2_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 9) > 0) = ssse3_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 19) > 0) = sse4_1_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 22) > 0) = movbe_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 27) > 0) = osxsave_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 30) > 0) = rdrand_enabled) /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 5) > 0) = avx2_cpuid_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 8) > 0) = bmi2_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 16) > 0) = avx512f_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 17) > 0) = avx512dq_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 19) > 0) = adx_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 29) > 0) = sha_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 30) > 0) = avx512bw_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 31) > 0) = avx512vl_enabled ) (* Extended Control Registers *) assume val sse_xcr0_enabled : bool // Bit 1 assume val avx_xcr0_enabled : bool // Bit 2 assume val opmask_xcr0_enabled : bool // Bit 5 assume val zmm_hi256_xcr0_enabled : bool // Bit 6 assume val hi16_zmm_xcr0_enabled : bool // Bit 7 assume val xgetbv (r:reg_64) (rcx:nat64) : nat64 assume val xgetbv_features (u:unit) : Lemma ((Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 1) > 0) = sse_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 2) > 0) = avx_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 5) > 0) = opmask_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 6) > 0) = zmm_hi256_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 7) > 0) = hi16_zmm_xcr0_enabled )
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.CPU_Features_s.fst" }
[ { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.op_AmpAmp", "Vale.X64.CPU_Features_s.sse_xcr0_enabled", "Vale.X64.CPU_Features_s.avx_xcr0_enabled" ]
[]
false
false
false
true
false
let avx_xcr0:bool =
sse_xcr0_enabled && avx_xcr0_enabled
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_nat32_dec_pad
val print_nat32_dec_pad: x:nat{x <= maxint U32} -> FStar.All.ML unit
val print_nat32_dec_pad: x:nat{x <= maxint U32} -> FStar.All.ML unit
let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x))
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 35, "start_col": 0, "start_line": 34 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat{x <= Lib.IntTypes.maxint Lib.IntTypes.U32} -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint", "Lib.IntTypes.U32", "FStar.IO.print_uint32_dec_pad", "Lib.RawIntTypes.u32_to_UInt32", "Lib.IntTypes.u32", "Prims.unit" ]
[]
false
true
false
false
false
let print_nat32_dec_pad x =
IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x))
false
Vale.X64.CPU_Features_s.fst
Vale.X64.CPU_Features_s.avx_enabled
val avx_enabled:bool
val avx_enabled:bool
let avx_enabled : bool = avx_cpuid_enabled && avx_xcr0
{ "file_name": "vale/specs/hardware/Vale.X64.CPU_Features_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 54, "end_line": 81, "start_col": 0, "start_line": 81 }
module Vale.X64.CPU_Features_s open FStar.Mul open Vale.X64.Machine_s open Vale.Def.Words_s (* CPUID *) assume val aesni_enabled : bool // CPUID.01H:ECX.AESNI[bit 25] assume val avx_cpuid_enabled : bool // CPUID.01H:ECX.AVX[bit 28] assume val pclmulqdq_enabled : bool // CPUID.01H:ECX.PCLMULQDQ[bit 1] assume val avx2_cpuid_enabled : bool // CPUID.7.0.EBX[5] assume val bmi2_enabled : bool // CPUID.7.0.EBX[8] assume val avx512f_enabled : bool // CPUID.7.0.EBX[16] assume val avx512dq_enabled : bool // CPUID.7.0.EBX[17] assume val adx_enabled : bool // CPUID.7.0.EBX[19] assume val sha_enabled : bool // CPUID.7.0.EBX[29] assume val avx512bw_enabled : bool // CPUID.7.0.EBX[30] assume val avx512vl_enabled : bool // CPUID.7.0.EBX[31] assume val sse2_enabled : bool // CPUID.01H:EDX.SSE2[bit 26] assume val ssse3_enabled : bool // CPUID.01H:ECX.SSSE3[bit 9] assume val sse4_1_enabled : bool // CPUID.01H:ECX.SSE4.1[bit 19] assume val movbe_enabled : bool // CPUID.01H.ECX.MOVBE[bit 22] assume val osxsave_enabled : bool // CPUID.01H.ECX.OSXSAVE[bit 27] assume val rdrand_enabled : bool // CPUID.01H.ECX.RDRAND[bit 30] = 0 let sse_enabled : bool = sse2_enabled && ssse3_enabled && sse4_1_enabled let avx512_cpuid_enabled : bool = avx512f_enabled && avx512dq_enabled && avx512bw_enabled && avx512vl_enabled assume val cpuid (r:reg_64) (rax:nat64) (rcx:nat64) : nat64 assume val cpuid_features (u:unit) : Lemma ((forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 25) > 0) = aesni_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 28) > 0) = avx_cpuid_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 1) > 0) = pclmulqdq_enabled) /\ (forall rcx . {:pattern (cpuid rRdx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRdx 1 rcx) (pow2_norm 26) > 0) = sse2_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 9) > 0) = ssse3_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 19) > 0) = sse4_1_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 22) > 0) = movbe_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 27) > 0) = osxsave_enabled) /\ (forall rcx . {:pattern (cpuid rRcx 1 rcx)} (Vale.Def.Types_s.iand (cpuid rRcx 1 rcx) (pow2_norm 30) > 0) = rdrand_enabled) /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 5) > 0) = avx2_cpuid_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 8) > 0) = bmi2_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 16) > 0) = avx512f_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 17) > 0) = avx512dq_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 19) > 0) = adx_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 29) > 0) = sha_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 30) > 0) = avx512bw_enabled /\ (Vale.Def.Types_s.iand (cpuid rRbx 7 0) (pow2_norm 31) > 0) = avx512vl_enabled ) (* Extended Control Registers *) assume val sse_xcr0_enabled : bool // Bit 1 assume val avx_xcr0_enabled : bool // Bit 2 assume val opmask_xcr0_enabled : bool // Bit 5 assume val zmm_hi256_xcr0_enabled : bool // Bit 6 assume val hi16_zmm_xcr0_enabled : bool // Bit 7 assume val xgetbv (r:reg_64) (rcx:nat64) : nat64 assume val xgetbv_features (u:unit) : Lemma ((Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 1) > 0) = sse_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 2) > 0) = avx_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 5) > 0) = opmask_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 6) > 0) = zmm_hi256_xcr0_enabled /\ (Vale.Def.Types_s.iand (xgetbv rRax 0) (pow2_norm 7) > 0) = hi16_zmm_xcr0_enabled ) let avx_xcr0 : bool = sse_xcr0_enabled && avx_xcr0_enabled let avx512_xcr0 : bool = avx_xcr0_enabled && opmask_xcr0_enabled && zmm_hi256_xcr0_enabled && hi16_zmm_xcr0_enabled (* Full AVX detection *)
{ "checked_file": "/", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.CPU_Features_s.fst" }
[ { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.op_AmpAmp", "Vale.X64.CPU_Features_s.avx_cpuid_enabled", "Vale.X64.CPU_Features_s.avx_xcr0" ]
[]
false
false
false
true
false
let avx_enabled:bool =
avx_cpuid_enabled && avx_xcr0
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_nat64_hex
val print_nat64_hex: x:nat{x <= maxint U64} -> FStar.All.ML unit
val print_nat64_hex: x:nat{x <= maxint U64} -> FStar.All.ML unit
let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x))
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 41, "end_line": 39, "start_col": 0, "start_line": 38 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat{x <= Lib.IntTypes.maxint Lib.IntTypes.U64} -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint", "Lib.IntTypes.U64", "FStar.IO.print_uint64", "Lib.RawIntTypes.u64_to_UInt64", "Lib.IntTypes.u64", "Prims.unit" ]
[]
false
true
false
false
false
let print_nat64_hex x =
IO.print_uint64 (u64_to_UInt64 (u64 x))
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_nat64_hex_pad
val print_nat64_hex_pad: x:nat{x <= maxint U64} -> FStar.All.ML unit
val print_nat64_hex_pad: x:nat{x <= maxint U64} -> FStar.All.ML unit
let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x))
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 42, "start_col": 0, "start_line": 41 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat{x <= Lib.IntTypes.maxint Lib.IntTypes.U64} -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint", "Lib.IntTypes.U64", "FStar.IO.print_uint64_hex_pad", "Lib.RawIntTypes.u64_to_UInt64", "Lib.IntTypes.u64", "Prims.unit" ]
[]
false
true
false
false
false
let print_nat64_hex_pad x =
IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x))
false
Vale.Arch.Types.fst
Vale.Arch.Types.lemma_reverse_bytes_quad32_64
val lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src)
val lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src)
let lemma_reverse_bytes_quad32_64 (src orig final:quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) = reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc (==) { reverse_bytes_quad32 src; == { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); == {} four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); == {} Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); == { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; == { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc (==) { reverse_bytes_nat64 (hi64 src); == { hi64_reveal ()} reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); == { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc (==) { reverse_bytes_nat64 (lo64 src); == { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); == {} reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); == { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; ()
{ "file_name": "vale/code/arch/Vale.Arch.Types.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 244, "start_col": 0, "start_line": 200 }
module Vale.Arch.Types open FStar.Mul open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.TypesNative open Vale.Lib.Seqs open Vale.Def.Words_s open Vale.Def.Words.Two open FStar.Calc let lemma_nat_to_two32 () = assert_norm (forall (x:nat64).{:pattern (nat_to_two 32 x)} nat_to_two 32 x == Mktwo (x % 0x100000000) (x / 0x100000000)) let lemma_BitwiseXorCommutative x y = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ y) (y *^ x) let lemma_BitwiseXorWithZero n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ 0) n let lemma_BitwiseXorCancel n = lemma_ixor_nth_all 32; lemma_zero_nth 32; lemma_equal_nth 32 (n *^ n) 0 let lemma_BitwiseXorCancel64 (n:nat64) = lemma_ixor_nth_all 64; lemma_zero_nth 64; lemma_equal_nth 64 (ixor n n) 0 let lemma_BitwiseXorAssociative x y z = lemma_ixor_nth_all 32; lemma_equal_nth 32 (x *^ (y *^ z)) ((x *^ y) *^ z) let xor_lemmas () = FStar.Classical.forall_intro_2 lemma_BitwiseXorCommutative; FStar.Classical.forall_intro lemma_BitwiseXorWithZero; FStar.Classical.forall_intro lemma_BitwiseXorCancel; FStar.Classical.forall_intro lemma_BitwiseXorCancel64; FStar.Classical.forall_intro_3 lemma_BitwiseXorAssociative; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_quad32_xor () = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); xor_lemmas() (* let helper (q:quad32) : Lemma (quad32_xor q q == Mkfour 0 0 0 0) = let q' = quad32_xor q q in quad32_xor_reveal (); reverse_bytes_nat32_reveal (); // REVIEW: Why are these necessary? assert (q'.lo0 == nat32_xor q.lo0 q.lo0); assert (q'.lo1 == nat32_xor q.lo1 q.lo1); assert (q'.hi2 == nat32_xor q.hi2 q.hi2); assert (q'.hi3 == nat32_xor q.hi3 q.hi3); xor_lemmas() in FStar.Classical.forall_intro helper *) #pop-options let lemma_reverse_reverse_bytes_nat32 (n:nat32) : Lemma (reverse_bytes_nat32 (reverse_bytes_nat32 n) == n) = reverse_bytes_nat32_reveal (); let r = reverse_seq (nat32_to_be_bytes n) in be_bytes_to_nat32_to_be_bytes r; () #push-options "--max_fuel 3 --initial_fuel 3 --max_ifuel 3 --initial_ifuel 3" // REVIEW: Why do we need this? let lemma_reverse_bytes_quad32 (q:quad32) = quad32_xor_reveal (); reverse_bytes_nat32_reveal (); reveal_reverse_bytes_quad32 q; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 q); () #pop-options let lemma_reverse_bytes_nat32 (_:unit) : Lemma (reverse_bytes_nat32 0 == 0) = reverse_bytes_nat32_reveal (); assert_norm (nat_to_four 8 0 == Mkfour 0 0 0 0); () let lemma_reverse_bytes_quad32_zero (_:unit) : Lemma (let z = Mkfour 0 0 0 0 in reverse_bytes_quad32 z == z) = let z = Mkfour 0 0 0 0 in calc (==) { reverse_bytes_quad32 z; == { reveal_reverse_bytes_quad32 z } four_reverse (four_map reverse_bytes_nat32 z); == { lemma_reverse_bytes_nat32() } z; }; () let lemma_reverse_reverse_bytes_nat32_seq (s:seq nat32) : Lemma (ensures reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s) == s) = reveal_reverse_bytes_nat32_seq s; reveal_reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s); assert (equal (reverse_bytes_nat32_seq (reverse_bytes_nat32_seq s)) s) (* let lemma_equality_check_helper_two_to_nat_32 (n:two nat32) : Lemma ( ((n.lo == 0 /\ n.hi == 0) ==> two_to_nat 32 n == 0) /\ ( ~(n.lo == 0) \/ (~(n.hi == 0))) ==> ~(two_to_nat 32 n == 0) /\ ((n.lo == 0xFFFFFFFF /\ n.hi == 0xFFFFFFFF) <==> two_to_nat 32 n == 0xFFFFFFFFFFFFFFFF)) = if n.lo == 0 /\ n.hi == 0 then ( assert (int_to_natN pow2_64 (n.lo + pow2_32 * n.hi) == 0); () ) else ( () ); () let lemma_equality_check_helper_lo (q:quad32) : Lemma ((q.lo0 == 0 /\ q.lo1 == 0 ==> lo64 q == 0) /\ ((not (q.lo0 = 0) \/ not (q.lo1 = 0)) ==> not (lo64 q = 0)) /\ (q.lo0 == 0xFFFFFFFF /\ q.lo1 == 0xFFFFFFFF <==> lo64 q == 0xFFFFFFFFFFFFFFFF)) = assert (lo64 q == two_to_nat 32 (Mktwo q.lo0 q.lo1)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.lo0 q.lo1); () let lemma_equality_check_helper_hi (q:quad32) : Lemma ((q.hi2 == 0 /\ q.hi3 == 0 ==> hi64 q == 0) /\ ((~(q.hi2 = 0) \/ ~(q.hi3 = 0)) ==> ~(hi64 q = 0)) /\ (q.hi2 == 0xFFFFFFFF /\ q.hi3 == 0xFFFFFFFF <==> hi64 q == 0xFFFFFFFFFFFFFFFF)) = assert (hi64 q == two_to_nat 32 (Mktwo q.hi2 q.hi3)); lemma_equality_check_helper_two_to_nat_32 (Mktwo q.hi2 q.hi3); () *) let lemma_insert_nat64_properties (q:quad32) (n:nat64) : Lemma ( (let q' = insert_nat64 q n 0 in q'.hi2 == q.hi2 /\ q'.hi3 == q.hi3) /\ (let q' = insert_nat64 q n 1 in q'.lo0 == q.lo0 /\ q'.lo1 == q.lo1)) = insert_nat64_reveal (); () let lemma_insert_nat64_nat32s (q:quad32) (n0 n1:nat32) : Lemma ( insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 0 == Mkfour n0 n1 q.hi2 q.hi3 /\ insert_nat64 q (two_to_nat32 (Mktwo n0 n1)) 1 == Mkfour q.lo0 q.lo1 n0 n1 ) = let open Vale.Def.Words.Two in insert_nat64_reveal (); () let lemma_lo64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = lo64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.lo0 == q1.lo0 /\ q0.lo1 == q1.lo1) <==> (lo64 q0 == lo64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 0 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 0 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_hi64_properties (_:unit) : Lemma (forall (q0 q1:quad32) . (q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = hi64_reveal (); let helper (q0 q1:quad32) : Lemma ((q0.hi2 == q1.hi2 /\ q0.hi3 == q1.hi3) <==> (hi64 q0 == hi64 q1)) = let Mktwo n1 n2 = two_select (four_to_two_two q0) 1 in nat_to_two_to_nat n1 n2; let Mktwo n1 n2 = two_select (four_to_two_two q1) 1 in nat_to_two_to_nat n1 n2; () in FStar.Classical.forall_intro_2 helper; () let lemma_reverse_bytes_nat64_32 (n0 n1:nat32) : Lemma (reverse_bytes_nat64 (two_to_nat32 (Mktwo n0 n1)) == two_to_nat32 (Mktwo (reverse_bytes_nat32 n1) (reverse_bytes_nat32 n0))) = reverse_bytes_nat64_reveal ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Two.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.TypesNative.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Arch.Types.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.TypesNative", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Seqs_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
src: Vale.Def.Types_s.quad32 -> orig: Vale.Def.Types_s.quad32 -> final: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires final == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 orig (Vale.Def.Types_s.reverse_bytes_nat64 (Vale.Arch.Types.hi64 src)) 0) (Vale.Def.Types_s.reverse_bytes_nat64 (Vale.Arch.Types.lo64 src)) 1) (ensures final == Vale.Def.Types_s.reverse_bytes_quad32 src)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "Vale.Def.Types_s.nat32", "Prims.unit", "FStar.Calc.calc_finish", "Vale.Def.Types_s.nat64", "Prims.eq2", "Vale.Def.Types_s.reverse_bytes_nat64", "Vale.Arch.Types.lo64", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Vale.Def.Words.Two_s.two_to_nat", "Vale.Def.Words_s.Mktwo", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Two_s.two_select", "Vale.Def.Words_s.two", "Vale.Def.Words.Four_s.four_to_two_two", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.Arch.Types.lo64_reveal", "Prims.squash", "Vale.Arch.Types.lemma_reverse_bytes_nat64_32", "Vale.Arch.Types.hi64", "Vale.Arch.Types.hi64_reveal", "Vale.Def.Types_s.reverse_bytes_quad32", "Vale.Def.Types_s.insert_nat64", "Vale.Def.Words_s.Mkfour", "Vale.Def.Types_s.reverse_bytes_nat32", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Vale.Def.Words_s.__proj__Mkfour__item__hi3", "Vale.Def.Words.Four_s.four_reverse", "Vale.Def.Words.Four_s.four_map", "Vale.Def.Types_s.reveal_reverse_bytes_quad32", "Vale.Arch.Types.lemma_insert_nat64_nat32s", "Vale.Def.Words_s.nat64", "Vale.Arch.Types.two_to_nat32", "Vale.Def.Words_s.nat32", "Vale.Def.Types_s.reverse_bytes_nat64_reveal", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_reverse_bytes_quad32_64 (src orig final: quad32) : Lemma (requires final == insert_nat64 (insert_nat64 orig (reverse_bytes_nat64 (hi64 src)) 0) (reverse_bytes_nat64 (lo64 src)) 1) (ensures final == reverse_bytes_quad32 src) =
reverse_bytes_nat64_reveal (); let Mkfour x0 x1 x2 x3 = src in let two32 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2))) in let two10 = (two_to_nat32 (Mktwo (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0))) in calc ( == ) { reverse_bytes_quad32 src; ( == ) { reveal_reverse_bytes_quad32 src } four_reverse (four_map reverse_bytes_nat32 src); ( == ) { () } four_reverse (Mkfour (reverse_bytes_nat32 x0) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x3)); ( == ) { () } Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0); ( == ) { lemma_insert_nat64_nat32s (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) (reverse_bytes_nat32 x1) (reverse_bytes_nat32 x0) } insert_nat64 (Mkfour (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) orig.hi2 orig.hi3) two10 1; ( == ) { lemma_insert_nat64_nat32s orig (reverse_bytes_nat32 x3) (reverse_bytes_nat32 x2) } insert_nat64 (insert_nat64 orig two32 0) two10 1; }; calc ( == ) { reverse_bytes_nat64 (hi64 src); ( == ) { hi64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 1)); ( == ) { () } reverse_bytes_nat64 (two_to_nat 32 (Mktwo x2 x3)); ( == ) { lemma_reverse_bytes_nat64_32 x2 x3 } two32; }; calc ( == ) { reverse_bytes_nat64 (lo64 src); ( == ) { lo64_reveal () } reverse_bytes_nat64 (two_to_nat 32 (two_select (four_to_two_two src) 0)); ( == ) { () } reverse_bytes_nat64 (two_to_nat 32 (Mktwo x0 x1)); ( == ) { lemma_reverse_bytes_nat64_32 x0 x1 } two10; }; ()
false
Benton2004.RHL.Derived.fst
Benton2004.RHL.Derived.related
val related : c: Benton2004.computation -> c': Benton2004.computation -> phi: Benton2004.RHL.gexp Prims.bool -> phi': Benton2004.RHL.gexp Prims.bool -> Type0
let related c c' phi phi' = exec_equiv phi phi' c c'
{ "file_name": "examples/rel/Benton2004.RHL.Derived.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 52, "end_line": 88, "start_col": 0, "start_line": 88 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Benton2004.RHL.Derived include Benton2004.RHL (* Derived rules and patterns *) let r_ass_derived (x y: var) (e e' : exp int) (p p': gexp bool) : Lemma (requires ( included p (gsubst (gsubst p' x Left (exp_to_gexp e Left)) y Right (exp_to_gexp e' Right)) )) (ensures (exec_equiv p p' (assign x e) (assign y e') )) [SMTPat (exec_equiv p p' (assign x e) (assign y e'))] = Benton2004.RHL.r_ass x y e e' p' let r_dassl_derived (x: var) (e: exp int) (phi phi': gexp bool) : Lemma (requires ( included phi (gsubst phi' x Left (exp_to_gexp e Left)) )) (ensures (exec_equiv phi phi' (assign x e) skip)) [SMTPat (exec_equiv phi phi' (assign x e) skip)] = Benton2004.RHL.r_dassl x e phi' let flip_flip (phi: gexp bool) : Lemma (forall h1 h2. (flip (flip phi)) h1 h2 == phi h1 h2) [SMTPat (flip (flip phi))] = () let r_dassr (x: var) (e: exp int) (phi phi' : gexp bool) : Lemma (requires ( included phi (gsubst phi' x Right (exp_to_gexp e Right)) )) (ensures (exec_equiv phi phi' skip (assign x e))) [SMTPat (exec_equiv phi phi' skip (assign x e))] = r_dassl_derived x e (flip phi) (flip phi') let d_su1'_flip (c'' c c' : computation) (phi phi' phi'' : gexp bool) : Lemma (requires ( exec_equiv phi phi' skip c /\ exec_equiv phi' phi'' c'' c' )) (ensures (exec_equiv phi phi'' c'' (seq c c'))) [SMTPatOr [ [SMTPat (exec_equiv phi phi'' c'' (seq c c')); SMTPat (exec_equiv phi phi' skip c)]; [SMTPat (exec_equiv phi phi'' c'' (seq c c')); SMTPat (exec_equiv phi' phi'' c'' c')]; [SMTPat (exec_equiv phi phi' skip c); SMTPat (exec_equiv phi' phi'' c'' c')]; ]] = d_su1' c c' c'' (flip phi) (flip phi') (flip phi'')
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "Benton2004.RHL.fsti.checked" ], "interface_file": false, "source_file": "Benton2004.RHL.Derived.fst" }
[ { "abbrev": false, "full_module": "Benton2004.RHL", "short_module": null }, { "abbrev": false, "full_module": "Benton2004.RHL", "short_module": null }, { "abbrev": false, "full_module": "Benton2004.RHL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Benton2004.computation -> c': Benton2004.computation -> phi: Benton2004.RHL.gexp Prims.bool -> phi': Benton2004.RHL.gexp Prims.bool -> Type0
Prims.Tot
[ "total" ]
[]
[ "Benton2004.computation", "Benton2004.RHL.gexp", "Prims.bool", "Benton2004.RHL.exec_equiv" ]
[]
false
false
false
true
true
let related c c' phi phi' =
exec_equiv phi phi' c c'
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_compare_display_diff
val print_compare_display_diff: display:bool -> len:size_nat -> expected:lbytes len -> result:lbytes len -> FStar.All.ML bool
val print_compare_display_diff: display:bool -> len:size_nat -> expected:lbytes len -> result:lbytes len -> FStar.All.ML bool
let print_compare_display_diff flag len expected result = let r = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if not flag then r else ( let diff = map2 (fun a b -> a ^. b) expected result in if r then IO.print_string "\nSuccess !" else begin IO.print_string "\nFailure !"; IO.print_newline (); IO.print_string "\nDiff: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list diff); IO.print_newline (); IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_newline (); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); IO.print_newline () end; r)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 6, "end_line": 195, "start_col": 0, "start_line": 176 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x) let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x) let print_uint64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 x) let print_uint64_dec x = IO.print_uint64_dec (u64_to_UInt64 x) let print_uint64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 x) let print_label_nat64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_nat64_dec x; IO.print_string "\n") let print_label_uint8 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint8_hex_pad x; IO.print_string "\n") let print_label_uint32 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint32_hex_pad x; IO.print_string "\n") let print_label_uint64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint64_hex_pad x; IO.print_string "\n") let print_list_nat64 flag l = if not flag then () else ( repeat_range_all_ml 0 (List.Tot.length l) (fun i _ -> print_nat64_dec (List.Tot.index l i); IO.print_string " " ) ()) let print_string flag s = if flag then IO.print_string s else () let print_lbytes flag len b = if not flag then () else ( let q = 32 in let n = len / q in let r = len % q in if n = 0 then ( List.iter (fun a -> print_uint8_hex_pad a) (to_list b)) else ( repeat_range_all_ml 0 n (fun i _ -> let sb = sub #uint8 #len b (i * q) q in List.iter (fun a -> print_uint8_hex_pad a) (to_list sb); (if i < n - 1 then IO.print_string "\n" else ())) (); (if r <> 0 then IO.print_newline ()); let sb = sub #uint8 #len b (n * q) r in List.iter (fun a -> print_uint8_hex_pad a) (to_list sb))) let print_label_lbytes flag label len b = if not flag then () else ( IO.print_string label; IO.print_string ": \n"; print_lbytes flag len b; IO.print_newline ()) let print_compare flag len expected result = let r:bool = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if (not flag) then r else ( IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); r) let print_compare_display flag len expected result = let r = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if not flag then r else ( if r then IO.print_string "\nSuccess !" else begin IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); IO.print_string "\nFailure !" end; r)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
display: Prims.bool -> len: Lib.IntTypes.size_nat -> expected: Lib.ByteSequence.lbytes len -> result: Lib.ByteSequence.lbytes len -> FStar.All.ML Prims.bool
FStar.All.ML
[ "ml" ]
[]
[ "Prims.bool", "Lib.IntTypes.size_nat", "Lib.ByteSequence.lbytes", "Prims.op_Negation", "Prims.unit", "FStar.IO.print_string", "FStar.IO.print_newline", "FStar.List.iter", "Lib.IntTypes.uint8", "Lib.PrintSequence.print_uint8_hex_pad", "Lib.Sequence.to_list", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.int_t", "Lib.Sequence.lseq", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "Prims.eq2", "Lib.Sequence.index", "Lib.IntTypes.logxor", "Lib.Sequence.map2", "Lib.IntTypes.op_Hat_Dot", "Lib.Sequence.for_all2", "Prims.op_Equality", "Prims.l_or", "Prims.int", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.uint_v", "Lib.RawIntTypes.uint_to_nat" ]
[]
false
true
false
false
false
let print_compare_display_diff flag len expected result =
let r = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if not flag then r else (let diff = map2 (fun a b -> a ^. b) expected result in if r then IO.print_string "\nSuccess !" else (IO.print_string "\nFailure !"; IO.print_newline (); IO.print_string "\nDiff: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list diff); IO.print_newline (); IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_newline (); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); IO.print_newline ()); r)
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_nat64_dec_pad
val print_nat64_dec_pad: x:nat{x <= maxint U64} -> FStar.All.ML unit
val print_nat64_dec_pad: x:nat{x <= maxint U64} -> FStar.All.ML unit
let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x))
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 48, "start_col": 0, "start_line": 47 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat{x <= Lib.IntTypes.maxint Lib.IntTypes.U64} -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint", "Lib.IntTypes.U64", "FStar.IO.print_uint64_dec_pad", "Lib.RawIntTypes.u64_to_UInt64", "Lib.IntTypes.u64", "Prims.unit" ]
[]
false
true
false
false
false
let print_nat64_dec_pad x =
IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x))
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_compare_display
val print_compare_display: display:bool -> len:size_nat -> expected:lbytes len -> result:lbytes len -> FStar.All.ML bool
val print_compare_display: display:bool -> len:size_nat -> expected:lbytes len -> result:lbytes len -> FStar.All.ML bool
let print_compare_display flag len expected result = let r = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if not flag then r else ( if r then IO.print_string "\nSuccess !" else begin IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); IO.print_string "\nFailure !" end; r)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 6, "end_line": 174, "start_col": 0, "start_line": 162 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x) let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x) let print_uint64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 x) let print_uint64_dec x = IO.print_uint64_dec (u64_to_UInt64 x) let print_uint64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 x) let print_label_nat64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_nat64_dec x; IO.print_string "\n") let print_label_uint8 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint8_hex_pad x; IO.print_string "\n") let print_label_uint32 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint32_hex_pad x; IO.print_string "\n") let print_label_uint64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint64_hex_pad x; IO.print_string "\n") let print_list_nat64 flag l = if not flag then () else ( repeat_range_all_ml 0 (List.Tot.length l) (fun i _ -> print_nat64_dec (List.Tot.index l i); IO.print_string " " ) ()) let print_string flag s = if flag then IO.print_string s else () let print_lbytes flag len b = if not flag then () else ( let q = 32 in let n = len / q in let r = len % q in if n = 0 then ( List.iter (fun a -> print_uint8_hex_pad a) (to_list b)) else ( repeat_range_all_ml 0 n (fun i _ -> let sb = sub #uint8 #len b (i * q) q in List.iter (fun a -> print_uint8_hex_pad a) (to_list sb); (if i < n - 1 then IO.print_string "\n" else ())) (); (if r <> 0 then IO.print_newline ()); let sb = sub #uint8 #len b (n * q) r in List.iter (fun a -> print_uint8_hex_pad a) (to_list sb))) let print_label_lbytes flag label len b = if not flag then () else ( IO.print_string label; IO.print_string ": \n"; print_lbytes flag len b; IO.print_newline ()) let print_compare flag len expected result = let r:bool = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if (not flag) then r else ( IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); r)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
display: Prims.bool -> len: Lib.IntTypes.size_nat -> expected: Lib.ByteSequence.lbytes len -> result: Lib.ByteSequence.lbytes len -> FStar.All.ML Prims.bool
FStar.All.ML
[ "ml" ]
[]
[ "Prims.bool", "Lib.IntTypes.size_nat", "Lib.ByteSequence.lbytes", "Prims.op_Negation", "Prims.unit", "FStar.IO.print_string", "FStar.List.iter", "Lib.IntTypes.uint8", "Lib.PrintSequence.print_uint8_hex_pad", "Lib.Sequence.to_list", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Sequence.for_all2", "Prims.op_Equality", "Prims.nat", "Prims.l_or", "Prims.b2t", "Prims.int", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.uint_v", "Lib.RawIntTypes.uint_to_nat" ]
[]
false
true
false
false
false
let print_compare_display flag len expected result =
let r = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if not flag then r else (if r then IO.print_string "\nSuccess !" else (IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); IO.print_string "\nFailure !"); r)
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_compare
val print_compare: display:bool -> len:size_nat -> expected:lbytes len -> result:lbytes len -> FStar.All.ML bool
val print_compare: display:bool -> len:size_nat -> expected:lbytes len -> result:lbytes len -> FStar.All.ML bool
let print_compare flag len expected result = let r:bool = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if (not flag) then r else ( IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); r)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 160, "start_col": 0, "start_line": 153 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x) let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x) let print_uint64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 x) let print_uint64_dec x = IO.print_uint64_dec (u64_to_UInt64 x) let print_uint64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 x) let print_label_nat64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_nat64_dec x; IO.print_string "\n") let print_label_uint8 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint8_hex_pad x; IO.print_string "\n") let print_label_uint32 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint32_hex_pad x; IO.print_string "\n") let print_label_uint64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint64_hex_pad x; IO.print_string "\n") let print_list_nat64 flag l = if not flag then () else ( repeat_range_all_ml 0 (List.Tot.length l) (fun i _ -> print_nat64_dec (List.Tot.index l i); IO.print_string " " ) ()) let print_string flag s = if flag then IO.print_string s else () let print_lbytes flag len b = if not flag then () else ( let q = 32 in let n = len / q in let r = len % q in if n = 0 then ( List.iter (fun a -> print_uint8_hex_pad a) (to_list b)) else ( repeat_range_all_ml 0 n (fun i _ -> let sb = sub #uint8 #len b (i * q) q in List.iter (fun a -> print_uint8_hex_pad a) (to_list sb); (if i < n - 1 then IO.print_string "\n" else ())) (); (if r <> 0 then IO.print_newline ()); let sb = sub #uint8 #len b (n * q) r in List.iter (fun a -> print_uint8_hex_pad a) (to_list sb))) let print_label_lbytes flag label len b = if not flag then () else ( IO.print_string label; IO.print_string ": \n"; print_lbytes flag len b; IO.print_newline ())
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
display: Prims.bool -> len: Lib.IntTypes.size_nat -> expected: Lib.ByteSequence.lbytes len -> result: Lib.ByteSequence.lbytes len -> FStar.All.ML Prims.bool
FStar.All.ML
[ "ml" ]
[]
[ "Prims.bool", "Lib.IntTypes.size_nat", "Lib.ByteSequence.lbytes", "Prims.op_Negation", "Prims.unit", "FStar.List.iter", "Lib.IntTypes.uint8", "Lib.PrintSequence.print_uint8_hex_pad", "Lib.Sequence.to_list", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.IO.print_string", "Lib.Sequence.for_all2", "Prims.op_Equality", "Prims.nat", "Prims.l_or", "Prims.b2t", "Prims.int", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.uint_v", "Lib.RawIntTypes.uint_to_nat" ]
[]
false
true
false
false
false
let print_compare flag len expected result =
let r:bool = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if (not flag) then r else (IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); r)
false
Benton2004.RHL.Derived.fst
Benton2004.RHL.Derived.r_ass_derived
val r_ass_derived (x y: var) (e e': exp int) (p p': gexp bool) : Lemma (requires (included p (gsubst (gsubst p' x Left (exp_to_gexp e Left)) y Right (exp_to_gexp e' Right))) ) (ensures (exec_equiv p p' (assign x e) (assign y e'))) [SMTPat (exec_equiv p p' (assign x e) (assign y e'))]
val r_ass_derived (x y: var) (e e': exp int) (p p': gexp bool) : Lemma (requires (included p (gsubst (gsubst p' x Left (exp_to_gexp e Left)) y Right (exp_to_gexp e' Right))) ) (ensures (exec_equiv p p' (assign x e) (assign y e'))) [SMTPat (exec_equiv p p' (assign x e) (assign y e'))]
let r_ass_derived (x y: var) (e e' : exp int) (p p': gexp bool) : Lemma (requires ( included p (gsubst (gsubst p' x Left (exp_to_gexp e Left)) y Right (exp_to_gexp e' Right)) )) (ensures (exec_equiv p p' (assign x e) (assign y e') )) [SMTPat (exec_equiv p p' (assign x e) (assign y e'))] = Benton2004.RHL.r_ass x y e e' p'
{ "file_name": "examples/rel/Benton2004.RHL.Derived.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 38, "start_col": 0, "start_line": 21 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Benton2004.RHL.Derived include Benton2004.RHL (* Derived rules and patterns *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "Benton2004.RHL.fsti.checked" ], "interface_file": false, "source_file": "Benton2004.RHL.Derived.fst" }
[ { "abbrev": false, "full_module": "Benton2004.RHL", "short_module": null }, { "abbrev": false, "full_module": "Benton2004.RHL", "short_module": null }, { "abbrev": false, "full_module": "Benton2004.RHL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Benton2004.var -> y: Benton2004.var -> e: Benton2004.exp Prims.int -> e': Benton2004.exp Prims.int -> p: Benton2004.RHL.gexp Prims.bool -> p': Benton2004.RHL.gexp Prims.bool -> FStar.Pervasives.Lemma (requires Benton2004.RHL.included p (Benton2004.RHL.gsubst (Benton2004.RHL.gsubst p' x Benton2004.RHL.Left (Benton2004.RHL.exp_to_gexp e Benton2004.RHL.Left)) y Benton2004.RHL.Right (Benton2004.RHL.exp_to_gexp e' Benton2004.RHL.Right))) (ensures Benton2004.RHL.exec_equiv p p' (Benton2004.assign x e) (Benton2004.assign y e')) [SMTPat (Benton2004.RHL.exec_equiv p p' (Benton2004.assign x e) (Benton2004.assign y e'))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Benton2004.var", "Benton2004.exp", "Prims.int", "Benton2004.RHL.gexp", "Prims.bool", "Benton2004.RHL.r_ass", "Prims.unit", "Benton2004.RHL.included", "Benton2004.RHL.gsubst", "Benton2004.RHL.Left", "Benton2004.RHL.exp_to_gexp", "Benton2004.RHL.Right", "Prims.squash", "Benton2004.RHL.exec_equiv", "Benton2004.assign", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
true
false
true
false
false
let r_ass_derived (x y: var) (e e': exp int) (p p': gexp bool) : Lemma (requires (included p (gsubst (gsubst p' x Left (exp_to_gexp e Left)) y Right (exp_to_gexp e' Right))) ) (ensures (exec_equiv p p' (assign x e) (assign y e'))) [SMTPat (exec_equiv p p' (assign x e) (assign y e'))] =
Benton2004.RHL.r_ass x y e e' p'
false
Benton2004.RHL.Derived.fst
Benton2004.RHL.Derived.r_dassl_derived
val r_dassl_derived (x: var) (e: exp int) (phi phi': gexp bool) : Lemma (requires (included phi (gsubst phi' x Left (exp_to_gexp e Left)))) (ensures (exec_equiv phi phi' (assign x e) skip)) [SMTPat (exec_equiv phi phi' (assign x e) skip)]
val r_dassl_derived (x: var) (e: exp int) (phi phi': gexp bool) : Lemma (requires (included phi (gsubst phi' x Left (exp_to_gexp e Left)))) (ensures (exec_equiv phi phi' (assign x e) skip)) [SMTPat (exec_equiv phi phi' (assign x e) skip)]
let r_dassl_derived (x: var) (e: exp int) (phi phi': gexp bool) : Lemma (requires ( included phi (gsubst phi' x Left (exp_to_gexp e Left)) )) (ensures (exec_equiv phi phi' (assign x e) skip)) [SMTPat (exec_equiv phi phi' (assign x e) skip)] = Benton2004.RHL.r_dassl x e phi'
{ "file_name": "examples/rel/Benton2004.RHL.Derived.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 50, "start_col": 0, "start_line": 40 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Benton2004.RHL.Derived include Benton2004.RHL (* Derived rules and patterns *) let r_ass_derived (x y: var) (e e' : exp int) (p p': gexp bool) : Lemma (requires ( included p (gsubst (gsubst p' x Left (exp_to_gexp e Left)) y Right (exp_to_gexp e' Right)) )) (ensures (exec_equiv p p' (assign x e) (assign y e') )) [SMTPat (exec_equiv p p' (assign x e) (assign y e'))] = Benton2004.RHL.r_ass x y e e' p'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "Benton2004.RHL.fsti.checked" ], "interface_file": false, "source_file": "Benton2004.RHL.Derived.fst" }
[ { "abbrev": false, "full_module": "Benton2004.RHL", "short_module": null }, { "abbrev": false, "full_module": "Benton2004.RHL", "short_module": null }, { "abbrev": false, "full_module": "Benton2004.RHL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Benton2004.var -> e: Benton2004.exp Prims.int -> phi: Benton2004.RHL.gexp Prims.bool -> phi': Benton2004.RHL.gexp Prims.bool -> FStar.Pervasives.Lemma (requires Benton2004.RHL.included phi (Benton2004.RHL.gsubst phi' x Benton2004.RHL.Left (Benton2004.RHL.exp_to_gexp e Benton2004.RHL.Left))) (ensures Benton2004.RHL.exec_equiv phi phi' (Benton2004.assign x e) Benton2004.skip) [SMTPat (Benton2004.RHL.exec_equiv phi phi' (Benton2004.assign x e) Benton2004.skip)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Benton2004.var", "Benton2004.exp", "Prims.int", "Benton2004.RHL.gexp", "Prims.bool", "Benton2004.RHL.r_dassl", "Prims.unit", "Benton2004.RHL.included", "Benton2004.RHL.gsubst", "Benton2004.RHL.Left", "Benton2004.RHL.exp_to_gexp", "Prims.squash", "Benton2004.RHL.exec_equiv", "Benton2004.assign", "Benton2004.skip", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
true
false
true
false
false
let r_dassl_derived (x: var) (e: exp int) (phi phi': gexp bool) : Lemma (requires (included phi (gsubst phi' x Left (exp_to_gexp e Left)))) (ensures (exec_equiv phi phi' (assign x e) skip)) [SMTPat (exec_equiv phi phi' (assign x e) skip)] =
Benton2004.RHL.r_dassl x e phi'
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_list_nat64
val print_list_nat64: display:bool -> list size_nat -> FStar.All.ML unit
val print_list_nat64: display:bool -> list size_nat -> FStar.All.ML unit
let print_list_nat64 flag l = if not flag then () else ( repeat_range_all_ml 0 (List.Tot.length l) (fun i _ -> print_nat64_dec (List.Tot.index l i); IO.print_string " " ) ())
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 7, "end_line": 125, "start_col": 0, "start_line": 119 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x) let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x) let print_uint64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 x) let print_uint64_dec x = IO.print_uint64_dec (u64_to_UInt64 x) let print_uint64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 x) let print_label_nat64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_nat64_dec x; IO.print_string "\n") let print_label_uint8 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint8_hex_pad x; IO.print_string "\n") let print_label_uint32 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint32_hex_pad x; IO.print_string "\n") let print_label_uint64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint64_hex_pad x; IO.print_string "\n")
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
display: Prims.bool -> l: Prims.list Lib.IntTypes.size_nat -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.bool", "Prims.list", "Lib.IntTypes.size_nat", "Prims.op_Negation", "Prims.unit", "Lib.LoopCombinators.repeat_range_all_ml", "FStar.List.Tot.Base.length", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThan", "FStar.IO.print_string", "Lib.PrintSequence.print_nat64_dec", "FStar.List.Tot.Base.index" ]
[]
false
true
false
false
false
let print_list_nat64 flag l =
if not flag then () else (repeat_range_all_ml 0 (List.Tot.length l) (fun i _ -> print_nat64_dec (List.Tot.index l i); IO.print_string " ") ())
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_lbytes
val print_lbytes: display:bool -> len:size_nat -> lbytes len -> FStar.All.ML unit
val print_lbytes: display:bool -> len:size_nat -> lbytes len -> FStar.All.ML unit
let print_lbytes flag len b = if not flag then () else ( let q = 32 in let n = len / q in let r = len % q in if n = 0 then ( List.iter (fun a -> print_uint8_hex_pad a) (to_list b)) else ( repeat_range_all_ml 0 n (fun i _ -> let sb = sub #uint8 #len b (i * q) q in List.iter (fun a -> print_uint8_hex_pad a) (to_list sb); (if i < n - 1 then IO.print_string "\n" else ())) (); (if r <> 0 then IO.print_newline ()); let sb = sub #uint8 #len b (n * q) r in List.iter (fun a -> print_uint8_hex_pad a) (to_list sb)))
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 59, "end_line": 144, "start_col": 0, "start_line": 130 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x) let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x) let print_uint64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 x) let print_uint64_dec x = IO.print_uint64_dec (u64_to_UInt64 x) let print_uint64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 x) let print_label_nat64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_nat64_dec x; IO.print_string "\n") let print_label_uint8 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint8_hex_pad x; IO.print_string "\n") let print_label_uint32 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint32_hex_pad x; IO.print_string "\n") let print_label_uint64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint64_hex_pad x; IO.print_string "\n") let print_list_nat64 flag l = if not flag then () else ( repeat_range_all_ml 0 (List.Tot.length l) (fun i _ -> print_nat64_dec (List.Tot.index l i); IO.print_string " " ) ()) let print_string flag s = if flag then IO.print_string s else ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
display: Prims.bool -> len: Lib.IntTypes.size_nat -> b: Lib.ByteSequence.lbytes len -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Prims.bool", "Lib.IntTypes.size_nat", "Lib.ByteSequence.lbytes", "Prims.op_Negation", "Prims.unit", "Prims.op_Equality", "Prims.int", "FStar.List.iter", "Lib.IntTypes.uint8", "Lib.PrintSequence.print_uint8_hex_pad", "Lib.Sequence.to_list", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Multiply", "Prims.op_Addition", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "FStar.Mul.op_Star", "Prims.op_disEquality", "FStar.IO.print_newline", "Lib.LoopCombinators.repeat_range_all_ml", "Prims.op_GreaterThanOrEqual", "Prims.op_Subtraction", "FStar.IO.print_string", "Prims.op_Modulus", "Prims.op_Division" ]
[]
false
true
false
false
false
let print_lbytes flag len b =
if not flag then () else (let q = 32 in let n = len / q in let r = len % q in if n = 0 then (List.iter (fun a -> print_uint8_hex_pad a) (to_list b)) else (repeat_range_all_ml 0 n (fun i _ -> let sb = sub #uint8 #len b (i * q) q in List.iter (fun a -> print_uint8_hex_pad a) (to_list sb); (if i < n - 1 then IO.print_string "\n")) (); (if r <> 0 then IO.print_newline ()); let sb = sub #uint8 #len b (n * q) r in List.iter (fun a -> print_uint8_hex_pad a) (to_list sb)))
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_label_compare_display_diff
val print_label_compare_display_diff: display:bool -> s:string -> len:size_nat -> expected:lbytes len -> result:lbytes len -> FStar.All.ML bool
val print_label_compare_display_diff: display:bool -> s:string -> len:size_nat -> expected:lbytes len -> result:lbytes len -> FStar.All.ML bool
let print_label_compare_display_diff flag s len expected result = let r = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if not flag then r else ( let diff = map2 (fun a b -> a ^. b) expected result in if r then ( IO.print_string "\nSuccess ! "; IO.print_string s; IO.print_newline ()) else begin IO.print_string "\nFailure ! "; IO.print_string s; IO.print_newline (); IO.print_string "\nDiff: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list diff); IO.print_newline (); IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_newline (); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); IO.print_newline () end; r)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 6, "end_line": 238, "start_col": 0, "start_line": 215 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x) let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x) let print_uint64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 x) let print_uint64_dec x = IO.print_uint64_dec (u64_to_UInt64 x) let print_uint64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 x) let print_label_nat64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_nat64_dec x; IO.print_string "\n") let print_label_uint8 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint8_hex_pad x; IO.print_string "\n") let print_label_uint32 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint32_hex_pad x; IO.print_string "\n") let print_label_uint64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint64_hex_pad x; IO.print_string "\n") let print_list_nat64 flag l = if not flag then () else ( repeat_range_all_ml 0 (List.Tot.length l) (fun i _ -> print_nat64_dec (List.Tot.index l i); IO.print_string " " ) ()) let print_string flag s = if flag then IO.print_string s else () let print_lbytes flag len b = if not flag then () else ( let q = 32 in let n = len / q in let r = len % q in if n = 0 then ( List.iter (fun a -> print_uint8_hex_pad a) (to_list b)) else ( repeat_range_all_ml 0 n (fun i _ -> let sb = sub #uint8 #len b (i * q) q in List.iter (fun a -> print_uint8_hex_pad a) (to_list sb); (if i < n - 1 then IO.print_string "\n" else ())) (); (if r <> 0 then IO.print_newline ()); let sb = sub #uint8 #len b (n * q) r in List.iter (fun a -> print_uint8_hex_pad a) (to_list sb))) let print_label_lbytes flag label len b = if not flag then () else ( IO.print_string label; IO.print_string ": \n"; print_lbytes flag len b; IO.print_newline ()) let print_compare flag len expected result = let r:bool = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if (not flag) then r else ( IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); r) let print_compare_display flag len expected result = let r = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if not flag then r else ( if r then IO.print_string "\nSuccess !" else begin IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); IO.print_string "\nFailure !" end; r) let print_compare_display_diff flag len expected result = let r = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if not flag then r else ( let diff = map2 (fun a b -> a ^. b) expected result in if r then IO.print_string "\nSuccess !" else begin IO.print_string "\nFailure !"; IO.print_newline (); IO.print_string "\nDiff: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list diff); IO.print_newline (); IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_newline (); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); IO.print_newline () end; r) let print_label_compare_display flag s len expected result = let r = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if not flag then r else ( if r then ( IO.print_string "\nSuccess ! "; IO.print_string s) else begin IO.print_string "\nFailure ! "; IO.print_string s; IO.print_newline (); IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected) end; r)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
display: Prims.bool -> s: Prims.string -> len: Lib.IntTypes.size_nat -> expected: Lib.ByteSequence.lbytes len -> result: Lib.ByteSequence.lbytes len -> FStar.All.ML Prims.bool
FStar.All.ML
[ "ml" ]
[]
[ "Prims.bool", "Prims.string", "Lib.IntTypes.size_nat", "Lib.ByteSequence.lbytes", "Prims.op_Negation", "Prims.unit", "FStar.IO.print_newline", "FStar.IO.print_string", "FStar.List.iter", "Lib.IntTypes.uint8", "Lib.PrintSequence.print_uint8_hex_pad", "Lib.Sequence.to_list", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.int_t", "Lib.Sequence.lseq", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "Prims.eq2", "Lib.Sequence.index", "Lib.IntTypes.logxor", "Lib.Sequence.map2", "Lib.IntTypes.op_Hat_Dot", "Lib.Sequence.for_all2", "Prims.op_Equality", "Prims.l_or", "Prims.int", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.uint_v", "Lib.RawIntTypes.uint_to_nat" ]
[]
false
true
false
false
false
let print_label_compare_display_diff flag s len expected result =
let r = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if not flag then r else (let diff = map2 (fun a b -> a ^. b) expected result in if r then (IO.print_string "\nSuccess ! "; IO.print_string s; IO.print_newline ()) else (IO.print_string "\nFailure ! "; IO.print_string s; IO.print_newline (); IO.print_string "\nDiff: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list diff); IO.print_newline (); IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_newline (); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); IO.print_newline ()); r)
false
Benton2004.RHL.Derived.fst
Benton2004.RHL.Derived.r_dassr
val r_dassr (x: var) (e: exp int) (phi phi': gexp bool) : Lemma (requires (included phi (gsubst phi' x Right (exp_to_gexp e Right)))) (ensures (exec_equiv phi phi' skip (assign x e))) [SMTPat (exec_equiv phi phi' skip (assign x e))]
val r_dassr (x: var) (e: exp int) (phi phi': gexp bool) : Lemma (requires (included phi (gsubst phi' x Right (exp_to_gexp e Right)))) (ensures (exec_equiv phi phi' skip (assign x e))) [SMTPat (exec_equiv phi phi' skip (assign x e))]
let r_dassr (x: var) (e: exp int) (phi phi' : gexp bool) : Lemma (requires ( included phi (gsubst phi' x Right (exp_to_gexp e Right)) )) (ensures (exec_equiv phi phi' skip (assign x e))) [SMTPat (exec_equiv phi phi' skip (assign x e))] = r_dassl_derived x e (flip phi) (flip phi')
{ "file_name": "examples/rel/Benton2004.RHL.Derived.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 44, "end_line": 69, "start_col": 0, "start_line": 59 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Benton2004.RHL.Derived include Benton2004.RHL (* Derived rules and patterns *) let r_ass_derived (x y: var) (e e' : exp int) (p p': gexp bool) : Lemma (requires ( included p (gsubst (gsubst p' x Left (exp_to_gexp e Left)) y Right (exp_to_gexp e' Right)) )) (ensures (exec_equiv p p' (assign x e) (assign y e') )) [SMTPat (exec_equiv p p' (assign x e) (assign y e'))] = Benton2004.RHL.r_ass x y e e' p' let r_dassl_derived (x: var) (e: exp int) (phi phi': gexp bool) : Lemma (requires ( included phi (gsubst phi' x Left (exp_to_gexp e Left)) )) (ensures (exec_equiv phi phi' (assign x e) skip)) [SMTPat (exec_equiv phi phi' (assign x e) skip)] = Benton2004.RHL.r_dassl x e phi' let flip_flip (phi: gexp bool) : Lemma (forall h1 h2. (flip (flip phi)) h1 h2 == phi h1 h2) [SMTPat (flip (flip phi))] = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "Benton2004.RHL.fsti.checked" ], "interface_file": false, "source_file": "Benton2004.RHL.Derived.fst" }
[ { "abbrev": false, "full_module": "Benton2004.RHL", "short_module": null }, { "abbrev": false, "full_module": "Benton2004.RHL", "short_module": null }, { "abbrev": false, "full_module": "Benton2004.RHL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Benton2004.var -> e: Benton2004.exp Prims.int -> phi: Benton2004.RHL.gexp Prims.bool -> phi': Benton2004.RHL.gexp Prims.bool -> FStar.Pervasives.Lemma (requires Benton2004.RHL.included phi (Benton2004.RHL.gsubst phi' x Benton2004.RHL.Right (Benton2004.RHL.exp_to_gexp e Benton2004.RHL.Right))) (ensures Benton2004.RHL.exec_equiv phi phi' Benton2004.skip (Benton2004.assign x e)) [SMTPat (Benton2004.RHL.exec_equiv phi phi' Benton2004.skip (Benton2004.assign x e))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Benton2004.var", "Benton2004.exp", "Prims.int", "Benton2004.RHL.gexp", "Prims.bool", "Benton2004.RHL.Derived.r_dassl_derived", "Benton2004.RHL.flip", "Prims.unit", "Benton2004.RHL.included", "Benton2004.RHL.gsubst", "Benton2004.RHL.Right", "Benton2004.RHL.exp_to_gexp", "Prims.squash", "Benton2004.RHL.exec_equiv", "Benton2004.skip", "Benton2004.assign", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
true
false
true
false
false
let r_dassr (x: var) (e: exp int) (phi phi': gexp bool) : Lemma (requires (included phi (gsubst phi' x Right (exp_to_gexp e Right)))) (ensures (exec_equiv phi phi' skip (assign x e))) [SMTPat (exec_equiv phi phi' skip (assign x e))] =
r_dassl_derived x e (flip phi) (flip phi')
false
Benton2004.RHL.Derived.fst
Benton2004.RHL.Derived.d_su1'_flip
val d_su1'_flip (c'' c c': computation) (phi phi' phi'': gexp bool) : Lemma (requires (exec_equiv phi phi' skip c /\ exec_equiv phi' phi'' c'' c')) (ensures (exec_equiv phi phi'' c'' (seq c c'))) [ SMTPatOr [ [SMTPat (exec_equiv phi phi'' c'' (seq c c')); SMTPat (exec_equiv phi phi' skip c)]; [SMTPat (exec_equiv phi phi'' c'' (seq c c')); SMTPat (exec_equiv phi' phi'' c'' c')]; [SMTPat (exec_equiv phi phi' skip c); SMTPat (exec_equiv phi' phi'' c'' c')] ] ]
val d_su1'_flip (c'' c c': computation) (phi phi' phi'': gexp bool) : Lemma (requires (exec_equiv phi phi' skip c /\ exec_equiv phi' phi'' c'' c')) (ensures (exec_equiv phi phi'' c'' (seq c c'))) [ SMTPatOr [ [SMTPat (exec_equiv phi phi'' c'' (seq c c')); SMTPat (exec_equiv phi phi' skip c)]; [SMTPat (exec_equiv phi phi'' c'' (seq c c')); SMTPat (exec_equiv phi' phi'' c'' c')]; [SMTPat (exec_equiv phi phi' skip c); SMTPat (exec_equiv phi' phi'' c'' c')] ] ]
let d_su1'_flip (c'' c c' : computation) (phi phi' phi'' : gexp bool) : Lemma (requires ( exec_equiv phi phi' skip c /\ exec_equiv phi' phi'' c'' c' )) (ensures (exec_equiv phi phi'' c'' (seq c c'))) [SMTPatOr [ [SMTPat (exec_equiv phi phi'' c'' (seq c c')); SMTPat (exec_equiv phi phi' skip c)]; [SMTPat (exec_equiv phi phi'' c'' (seq c c')); SMTPat (exec_equiv phi' phi'' c'' c')]; [SMTPat (exec_equiv phi phi' skip c); SMTPat (exec_equiv phi' phi'' c'' c')]; ]] = d_su1' c c' c'' (flip phi) (flip phi') (flip phi'')
{ "file_name": "examples/rel/Benton2004.RHL.Derived.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 85, "start_col": 0, "start_line": 71 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Benton2004.RHL.Derived include Benton2004.RHL (* Derived rules and patterns *) let r_ass_derived (x y: var) (e e' : exp int) (p p': gexp bool) : Lemma (requires ( included p (gsubst (gsubst p' x Left (exp_to_gexp e Left)) y Right (exp_to_gexp e' Right)) )) (ensures (exec_equiv p p' (assign x e) (assign y e') )) [SMTPat (exec_equiv p p' (assign x e) (assign y e'))] = Benton2004.RHL.r_ass x y e e' p' let r_dassl_derived (x: var) (e: exp int) (phi phi': gexp bool) : Lemma (requires ( included phi (gsubst phi' x Left (exp_to_gexp e Left)) )) (ensures (exec_equiv phi phi' (assign x e) skip)) [SMTPat (exec_equiv phi phi' (assign x e) skip)] = Benton2004.RHL.r_dassl x e phi' let flip_flip (phi: gexp bool) : Lemma (forall h1 h2. (flip (flip phi)) h1 h2 == phi h1 h2) [SMTPat (flip (flip phi))] = () let r_dassr (x: var) (e: exp int) (phi phi' : gexp bool) : Lemma (requires ( included phi (gsubst phi' x Right (exp_to_gexp e Right)) )) (ensures (exec_equiv phi phi' skip (assign x e))) [SMTPat (exec_equiv phi phi' skip (assign x e))] = r_dassl_derived x e (flip phi) (flip phi')
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "Benton2004.RHL.fsti.checked" ], "interface_file": false, "source_file": "Benton2004.RHL.Derived.fst" }
[ { "abbrev": false, "full_module": "Benton2004.RHL", "short_module": null }, { "abbrev": false, "full_module": "Benton2004.RHL", "short_module": null }, { "abbrev": false, "full_module": "Benton2004.RHL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c'': Benton2004.computation -> c: Benton2004.computation -> c': Benton2004.computation -> phi: Benton2004.RHL.gexp Prims.bool -> phi': Benton2004.RHL.gexp Prims.bool -> phi'': Benton2004.RHL.gexp Prims.bool -> FStar.Pervasives.Lemma (requires Benton2004.RHL.exec_equiv phi phi' Benton2004.skip c /\ Benton2004.RHL.exec_equiv phi' phi'' c'' c') (ensures Benton2004.RHL.exec_equiv phi phi'' c'' (Benton2004.seq c c')) [ SMTPatOr [ [ SMTPat (Benton2004.RHL.exec_equiv phi phi'' c'' (Benton2004.seq c c')); SMTPat (Benton2004.RHL.exec_equiv phi phi' Benton2004.skip c) ]; [ SMTPat (Benton2004.RHL.exec_equiv phi phi'' c'' (Benton2004.seq c c')); SMTPat (Benton2004.RHL.exec_equiv phi' phi'' c'' c') ]; [ SMTPat (Benton2004.RHL.exec_equiv phi phi' Benton2004.skip c); SMTPat (Benton2004.RHL.exec_equiv phi' phi'' c'' c') ] ] ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Benton2004.computation", "Benton2004.RHL.gexp", "Prims.bool", "Benton2004.RHL.d_su1'", "Benton2004.RHL.flip", "Prims.unit", "Prims.l_and", "Benton2004.RHL.exec_equiv", "Benton2004.skip", "Prims.squash", "Benton2004.seq", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat_or", "Prims.list", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
true
false
true
false
false
let d_su1'_flip (c'' c c': computation) (phi phi' phi'': gexp bool) : Lemma (requires (exec_equiv phi phi' skip c /\ exec_equiv phi' phi'' c'' c')) (ensures (exec_equiv phi phi'' c'' (seq c c'))) [ SMTPatOr [ [SMTPat (exec_equiv phi phi'' c'' (seq c c')); SMTPat (exec_equiv phi phi' skip c)]; [SMTPat (exec_equiv phi phi'' c'' (seq c c')); SMTPat (exec_equiv phi' phi'' c'' c')]; [SMTPat (exec_equiv phi phi' skip c); SMTPat (exec_equiv phi' phi'' c'' c')] ] ] =
d_su1' c c' c'' (flip phi) (flip phi') (flip phi'')
false
Lib.PrintSequence.fst
Lib.PrintSequence.print_label_compare_display
val print_label_compare_display: display:bool -> s:string -> len:size_nat -> expected:lbytes len -> result:lbytes len -> FStar.All.ML bool
val print_label_compare_display: display:bool -> s:string -> len:size_nat -> expected:lbytes len -> result:lbytes len -> FStar.All.ML bool
let print_label_compare_display flag s len expected result = let r = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if not flag then r else ( if r then ( IO.print_string "\nSuccess ! "; IO.print_string s) else begin IO.print_string "\nFailure ! "; IO.print_string s; IO.print_newline (); IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected) end; r)
{ "file_name": "lib/Lib.PrintSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 6, "end_line": 213, "start_col": 0, "start_line": 197 }
module Lib.PrintSequence open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators let print_nat8_hex x = IO.print_uint8 (u8_to_UInt8 (u8 x)) let print_nat8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 (u8 x)) let print_nat8_dec x = IO.print_uint8_dec (u8_to_UInt8 (u8 x)) let print_nat8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 (u8 x)) let print_nat32_hex x = IO.print_uint32 (u32_to_UInt32 (u32 x)) let print_nat32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 (u32 x)) let print_nat32_dec x = IO.print_uint32_dec (u32_to_UInt32 (u32 x)) let print_nat32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 (u32 x)) let print_nat64_hex x = IO.print_uint64 (u64_to_UInt64 (u64 x)) let print_nat64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 (u64 x)) let print_nat64_dec x = IO.print_uint64_dec (u64_to_UInt64 (u64 x)) let print_nat64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 (u64 x)) let print_uint8_hex x = IO.print_uint8 (u8_to_UInt8 x) let print_uint8_hex_pad x = IO.print_uint8_hex_pad (u8_to_UInt8 x) let print_uint8_dec x = IO.print_uint8_dec (u8_to_UInt8 x) let print_uint8_dec_pad x = IO.print_uint8_dec_pad (u8_to_UInt8 x) let print_uint32_hex x = IO.print_uint32 (u32_to_UInt32 x) let print_uint32_hex_pad x = IO.print_uint32_hex_pad (u32_to_UInt32 x) let print_uint32_dec x = IO.print_uint32_dec (u32_to_UInt32 x) let print_uint32_dec_pad x = IO.print_uint32_dec_pad (u32_to_UInt32 x) let print_uint64_hex x = IO.print_uint64 (u64_to_UInt64 x) let print_uint64_hex_pad x = IO.print_uint64_hex_pad (u64_to_UInt64 x) let print_uint64_dec x = IO.print_uint64_dec (u64_to_UInt64 x) let print_uint64_dec_pad x = IO.print_uint64_dec_pad (u64_to_UInt64 x) let print_label_nat64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_nat64_dec x; IO.print_string "\n") let print_label_uint8 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint8_hex_pad x; IO.print_string "\n") let print_label_uint32 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint32_hex_pad x; IO.print_string "\n") let print_label_uint64 flag s x = if not flag then () else ( IO.print_string s; IO.print_string ": "; print_uint64_hex_pad x; IO.print_string "\n") let print_list_nat64 flag l = if not flag then () else ( repeat_range_all_ml 0 (List.Tot.length l) (fun i _ -> print_nat64_dec (List.Tot.index l i); IO.print_string " " ) ()) let print_string flag s = if flag then IO.print_string s else () let print_lbytes flag len b = if not flag then () else ( let q = 32 in let n = len / q in let r = len % q in if n = 0 then ( List.iter (fun a -> print_uint8_hex_pad a) (to_list b)) else ( repeat_range_all_ml 0 n (fun i _ -> let sb = sub #uint8 #len b (i * q) q in List.iter (fun a -> print_uint8_hex_pad a) (to_list sb); (if i < n - 1 then IO.print_string "\n" else ())) (); (if r <> 0 then IO.print_newline ()); let sb = sub #uint8 #len b (n * q) r in List.iter (fun a -> print_uint8_hex_pad a) (to_list sb))) let print_label_lbytes flag label len b = if not flag then () else ( IO.print_string label; IO.print_string ": \n"; print_lbytes flag len b; IO.print_newline ()) let print_compare flag len expected result = let r:bool = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if (not flag) then r else ( IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); r) let print_compare_display flag len expected result = let r = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if not flag then r else ( if r then IO.print_string "\nSuccess !" else begin IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); IO.print_string "\nFailure !" end; r) let print_compare_display_diff flag len expected result = let r = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if not flag then r else ( let diff = map2 (fun a b -> a ^. b) expected result in if r then IO.print_string "\nSuccess !" else begin IO.print_string "\nFailure !"; IO.print_newline (); IO.print_string "\nDiff: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list diff); IO.print_newline (); IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_newline (); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected); IO.print_newline () end; r)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Lib.PrintSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
display: Prims.bool -> s: Prims.string -> len: Lib.IntTypes.size_nat -> expected: Lib.ByteSequence.lbytes len -> result: Lib.ByteSequence.lbytes len -> FStar.All.ML Prims.bool
FStar.All.ML
[ "ml" ]
[]
[ "Prims.bool", "Prims.string", "Lib.IntTypes.size_nat", "Lib.ByteSequence.lbytes", "Prims.op_Negation", "Prims.unit", "FStar.IO.print_string", "FStar.List.iter", "Lib.IntTypes.uint8", "Lib.PrintSequence.print_uint8_hex_pad", "Lib.Sequence.to_list", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.IO.print_newline", "Lib.Sequence.for_all2", "Prims.op_Equality", "Prims.nat", "Prims.l_or", "Prims.b2t", "Prims.int", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.uint_v", "Lib.RawIntTypes.uint_to_nat" ]
[]
false
true
false
false
false
let print_label_compare_display flag s len expected result =
let r = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) expected result in if not flag then r else (if r then (IO.print_string "\nSuccess ! "; IO.print_string s) else (IO.print_string "\nFailure ! "; IO.print_string s; IO.print_newline (); IO.print_string "\nResult: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list result); IO.print_string "\nExpected: "; List.iter (fun a -> print_uint8_hex_pad a) (to_list expected)); r)
false