file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
listlengths 0
2
| mutual_with
listlengths 0
11
| ideal_premises
listlengths 0
236
| proof_features
listlengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.n_to_le_le_to_n | val n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t)
: Lemma (requires (Seq.length s == U32.v len))
(ensures
(le_to_n s < pow2 (8 `Prims.op_Multiply` (U32.v len)) /\ n_to_le len (le_to_n s) == s))
[SMTPat (n_to_le len (le_to_n s))] | val n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t)
: Lemma (requires (Seq.length s == U32.v len))
(ensures
(le_to_n s < pow2 (8 `Prims.op_Multiply` (U32.v len)) /\ n_to_le len (le_to_n s) == s))
[SMTPat (n_to_le len (le_to_n s))] | let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s)) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 41,
"end_line": 192,
"start_col": 0,
"start_line": 184
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: FStar.UInt32.t -> s: FStar.Seq.Base.seq FStar.UInt8.t
-> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length s == FStar.UInt32.v len)
(ensures
FStar.Krml.Endianness.le_to_n s < Prims.pow2 (8 * FStar.UInt32.v len) /\
FStar.Krml.Endianness.n_to_le len (FStar.Krml.Endianness.le_to_n s) == s)
[SMTPat (FStar.Krml.Endianness.n_to_le len (FStar.Krml.Endianness.le_to_n s))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt32.t",
"FStar.Seq.Base.seq",
"FStar.UInt8.t",
"FStar.Krml.Endianness.le_to_n_inj",
"FStar.Krml.Endianness.n_to_le",
"FStar.Krml.Endianness.le_to_n",
"Prims.unit",
"FStar.Krml.Endianness.lemma_le_to_n_is_bounded",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt32.n",
"FStar.Seq.Base.length",
"FStar.UInt32.v",
"Prims.squash",
"Prims.l_and",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Multiply",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"FStar.Krml.Endianness.bytes",
"Prims.nat",
"Prims.Nil"
] | [] | true | false | true | false | false | let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t)
: Lemma (requires (Seq.length s == U32.v len))
(ensures
(le_to_n s < pow2 (8 `Prims.op_Multiply` (U32.v len)) /\ n_to_le len (le_to_n s) == s))
[SMTPat (n_to_le len (le_to_n s))] =
| lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s)) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.n_to_be_be_to_n | val n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t)
: Lemma (requires (Seq.length s == U32.v len))
(ensures
(be_to_n s < pow2 (8 `Prims.op_Multiply` (U32.v len)) /\ n_to_be len (be_to_n s) == s))
[SMTPat (n_to_be len (be_to_n s))] | val n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t)
: Lemma (requires (Seq.length s == U32.v len))
(ensures
(be_to_n s < pow2 (8 `Prims.op_Multiply` (U32.v len)) /\ n_to_be len (be_to_n s) == s))
[SMTPat (n_to_be len (be_to_n s))] | let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s)) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 41,
"end_line": 181,
"start_col": 0,
"start_line": 173
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: FStar.UInt32.t -> s: FStar.Seq.Base.seq FStar.UInt8.t
-> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length s == FStar.UInt32.v len)
(ensures
FStar.Krml.Endianness.be_to_n s < Prims.pow2 (8 * FStar.UInt32.v len) /\
FStar.Krml.Endianness.n_to_be len (FStar.Krml.Endianness.be_to_n s) == s)
[SMTPat (FStar.Krml.Endianness.n_to_be len (FStar.Krml.Endianness.be_to_n s))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt32.t",
"FStar.Seq.Base.seq",
"FStar.UInt8.t",
"FStar.Krml.Endianness.be_to_n_inj",
"FStar.Krml.Endianness.n_to_be",
"FStar.Krml.Endianness.be_to_n",
"Prims.unit",
"FStar.Krml.Endianness.lemma_be_to_n_is_bounded",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt32.n",
"FStar.Seq.Base.length",
"FStar.UInt32.v",
"Prims.squash",
"Prims.l_and",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Multiply",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"FStar.Krml.Endianness.bytes",
"Prims.nat",
"Prims.Nil"
] | [] | true | false | true | false | false | let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t)
: Lemma (requires (Seq.length s == U32.v len))
(ensures
(be_to_n s < pow2 (8 `Prims.op_Multiply` (U32.v len)) /\ n_to_be len (be_to_n s) == s))
[SMTPat (n_to_be len (be_to_n s))] =
| lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s)) | false |
Hacl.Spec.Bignum.Multiplication.fst | Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_lemma | val bn_mul1_add_in_place_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen ->
Lemma (let (c, res) = bn_mul1_add_in_place a l acc in
v c * pow2 (bits t * aLen) + bn_v res == bn_v acc + bn_v a * v l) | val bn_mul1_add_in_place_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen ->
Lemma (let (c, res) = bn_mul1_add_in_place a l acc in
v c * pow2 (bits t * aLen) + bn_v res == bn_v acc + bn_v a * v l) | let bn_mul1_add_in_place_lemma #t #aLen a l acc =
let (c, res) = bn_mul1_add_in_place a l acc in
bn_mul1_add_in_place_lemma_loop a l acc aLen | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 46,
"end_line": 307,
"start_col": 0,
"start_line": 305
} | module Hacl.Spec.Bignum.Multiplication
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Lib
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val bn_mul1_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_f #t #aLen a l i c =
mul_wide_add a.[i] l c
val bn_mul1:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t ->
limb t & lbignum t aLen
let bn_mul1 #t #aLen a l =
generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0)
val bn_mul1_add_in_place_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_add_in_place_f #t #aLen a l acc i c =
mul_wide_add2 a.[i] l c acc.[i]
val bn_mul1_add_in_place:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen ->
limb t & lbignum t aLen
let bn_mul1_add_in_place #t #aLen a l acc =
generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0)
val bn_mul1_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> #resLen:size_nat
-> a:lbignum t aLen
-> b_j:limb t
-> j:size_nat{j + aLen <= resLen}
-> res:lbignum t resLen ->
limb t & lbignum t resLen
let bn_mul1_lshift_add #t #aLen #resLen a b_j j res =
let res' = sub res j aLen in
let c, res' = bn_mul1_add_in_place a b_j res' in
let res = update_sub res j aLen res' in
c, res
val bn_mul_:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> j:size_nat{j < bLen}
-> res:lbignum t (aLen + bLen) ->
lbignum t (aLen + bLen)
let bn_mul_ #t #aLen #bLen a b j res =
let c, res = bn_mul1_lshift_add a b.[j] j res in
res.[aLen + j] <- c
val bn_mul:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen ->
lbignum t (aLen + bLen)
let bn_mul #t #aLen #bLen a b =
let res = create (aLen + bLen) (uint #t 0) in
repeati bLen (bn_mul_ a b) res
val bn_mul1_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l))
let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) =
let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
let c, e = mul_wide_add a.[i - 1] l c1 in
assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1);
calc (==) {
v c * b2 + bn_v #t #i res;
(==) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
(==) { }
v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1;
(==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1;
(==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l);
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l;
(==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) }
(eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l;
(==) { bn_eval_unfold_i a i }
eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l)
val bn_mul1_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)
let rec bn_mul1_lemma_loop #t #aLen a l i =
let pbits = bits t in
let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
if i = 0 then begin
eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0);
assert (c == uint #t 0 /\ res == Seq.empty);
bn_eval0 #t #0 res;
assert_norm (pow2 0 = 1);
bn_eval0 a;
() end
else begin
let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in
generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1);
assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) ==
generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0)));
assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1));
bn_mul1_lemma_loop a l (i - 1);
assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l);
bn_mul1_lemma_loop_step a l i (c1, res1);
assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l);
() end
val bn_mul1_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t ->
Lemma (let (c, res) = bn_mul1 a l in
v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l)
let bn_mul1_lemma #t #aLen a l =
let (c, res) = bn_mul1 a l in
bn_mul1_lemma_loop a l aLen
#push-options "--z3rlimit 150"
val bn_mul1_add_in_place_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l))
let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) =
let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
let c, e = mul_wide_add2 a.[i - 1] l c1 acc.[i - 1] in
assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1 + v acc.[i - 1]);
calc (==) {
v c * b2 + bn_v #t #i res;
(==) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
(==) { }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l -
(v e + v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1 + v e * b1;
(==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) b1 }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1;
(==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l + v acc.[i - 1]) b1 }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 +
(v a.[i - 1] * v l + v acc.[i - 1]) * b1;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[i - 1] * v l + v acc.[i - 1]) * b1;
(==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] * v l) (v acc.[i - 1]) b1 }
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1 + v acc.[i - 1] * b1;
(==) { bn_eval_unfold_i acc i }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l);
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l;
(==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) }
eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l;
(==) { bn_eval_unfold_i a i }
eval_ aLen acc i + eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)
#pop-options
val bn_mul1_add_in_place_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)
let rec bn_mul1_add_in_place_lemma_loop #t #aLen a l acc i =
let pbits = bits t in
let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
if i = 0 then begin
eq_generate_elems0 aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0);
assert (c == uint #t 0 /\ res == Seq.empty);
bn_eval0 #t #0 res;
assert_norm (pow2 0 = 1);
bn_eval0 a;
bn_eval0 acc;
() end
else begin
let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
generate_elems_unfold aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) (i - 1);
assert (generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) ==
generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0)));
assert ((c, res) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1));
bn_mul1_add_in_place_lemma_loop a l acc (i - 1);
assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l);
bn_mul1_add_in_place_lemma_loop_step a l acc i (c1, res1);
assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l);
() end
val bn_mul1_add_in_place_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen ->
Lemma (let (c, res) = bn_mul1_add_in_place a l acc in
v c * pow2 (bits t * aLen) + bn_v res == bn_v acc + bn_v a * v l) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Multiplication.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
l: Hacl.Spec.Bignum.Definitions.limb t ->
acc: Hacl.Spec.Bignum.Definitions.lbignum t aLen
-> FStar.Pervasives.Lemma
(ensures
(let _ = Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place a l acc in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in
Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * aLen) +
Hacl.Spec.Bignum.Definitions.bn_v res ==
Hacl.Spec.Bignum.Definitions.bn_v acc +
Hacl.Spec.Bignum.Definitions.bn_v a * Lib.IntTypes.v l)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_lemma_loop",
"Prims.unit",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place"
] | [] | false | false | true | false | false | let bn_mul1_add_in_place_lemma #t #aLen a l acc =
| let c, res = bn_mul1_add_in_place a l acc in
bn_mul1_add_in_place_lemma_loop a l acc aLen | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.uint64_of_le | val uint64_of_le : b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8} -> FStar.UInt64.t | let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 20,
"end_line": 220,
"start_col": 0,
"start_line": 217
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8} -> FStar.UInt64.t | Prims.Tot | [
"total"
] | [] | [
"FStar.Krml.Endianness.bytes",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.UInt8.t",
"FStar.UInt64.uint_to_t",
"Prims.unit",
"FStar.Krml.Endianness.lemma_le_to_n_is_bounded",
"Prims.nat",
"FStar.Krml.Endianness.le_to_n",
"FStar.UInt64.t"
] | [] | false | false | false | false | false | let uint64_of_le (b: bytes{S.length b = 8}) =
| let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n | false |
|
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.le_of_uint64 | val le_of_uint64 (x: UInt64.t) : b: bytes{S.length b = 8} | val le_of_uint64 (x: UInt64.t) : b: bytes{S.length b = 8} | let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 26,
"end_line": 224,
"start_col": 0,
"start_line": 223
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt64.t -> b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8} | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.t",
"FStar.Krml.Endianness.n_to_le",
"FStar.UInt32.__uint_to_t",
"FStar.UInt64.v",
"FStar.Krml.Endianness.bytes",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.UInt8.t"
] | [] | false | false | false | false | false | let le_of_uint64 (x: UInt64.t) : b: bytes{S.length b = 8} =
| n_to_le 8ul (UInt64.v x) | false |
Steel.ST.HigherArray.fst | Steel.ST.HigherArray.intro_pts_to | val intro_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (#v: _) (p: P.perm) (s: Seq.seq elt)
: STGhost unit
opened
(R.pts_to (ptr_of a).base v)
(fun _ -> pts_to a p s)
(v == mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p /\
valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\
Seq.length s == length a)
(fun _ -> True) | val intro_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (#v: _) (p: P.perm) (s: Seq.seq elt)
: STGhost unit
opened
(R.pts_to (ptr_of a).base v)
(fun _ -> pts_to a p s)
(v == mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p /\
valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\
Seq.length s == length a)
(fun _ -> True) | let intro_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (#v: _) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened
(R.pts_to (ptr_of a).base v)
(fun _ -> pts_to a p s)
(
v == mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p /\
valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\
Seq.length s == length a
)
(fun _ -> True)
= change_r_pts_to (ptr_of a).base v (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p);
intro_pure _;
rewrite
(pts_to0 a p s)
(pts_to a p s) | {
"file_name": "lib/steel/Steel.ST.HigherArray.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 18,
"end_line": 165,
"start_col": 0,
"start_line": 152
} | (*
Copyright 2022 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.ST.HigherArray
module P = Steel.PCMFrac
module R = Steel.ST.PCMReference
module M = FStar.Map
module PM = Steel.PCMMap
[@@noextract_to "krml"]
let index_t (len: Ghost.erased nat) : Tot Type0 =
(i: nat { i < len })
[@@noextract_to "krml"]
let carrier (elt: Type u#a) (len: Ghost.erased nat) : Tot Type =
PM.map (index_t len) (P.fractional elt)
[@@noextract_to "krml"]
let pcm (elt: Type u#a) (len: Ghost.erased nat) : Tot (P.pcm (carrier elt len)) =
PM.pointwise (index_t len) (P.pcm_frac #elt)
[@@noextract_to "krml"]
let one (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.one
let composable (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.composable
[@@noextract_to "krml"]
let compose (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.op
[@@noextract_to "krml"]
let mk_carrier
(#elt: Type)
(len: nat)
(offset: nat)
(s: Seq.seq elt)
(p: P.perm)
: Tot (carrier elt len)
= let f (i: nat) : Tot (P.fractional elt) =
if offset + Seq.length s > len || i < offset || i >= offset + Seq.length s
then None
else Some (Seq.index s (i - offset), p)
in
M.map_literal f
let mk_carrier_inj
(#elt: Type)
(len: nat)
(offset: nat)
(s1 s2: Seq.seq elt)
(p1 p2: P.perm)
: Lemma
(requires (
mk_carrier len offset s1 p1 == mk_carrier len offset s2 p2 /\
offset + Seq.length s1 <= len /\
offset + Seq.length s2 <= len
))
(ensures (
s1 `Seq.equal` s2 /\
(Seq.length s1 > 0 ==> p1 == p2)
))
= assert (forall (i: nat) . i < Seq.length s1 ==>
(M.sel (mk_carrier len offset s1 p1) (offset + i) == Some (Seq.index s1 i, p1)));
assert (forall (i: nat) . i < Seq.length s2 ==>
M.sel (mk_carrier len offset s2 p2) (offset + i) == Some (Seq.index s2 i, p2))
[@@erasable]
let base_t (elt: Type u#a) : Tot Type0 = Ghost.erased (base_len: US.t & ref _ (pcm elt (US.v base_len)))
let base_len (#elt: Type) (b: base_t elt) : GTot nat = US.v (dfst b)
[@@noextract_to "krml"]
noeq
type ptr (elt: Type u#a) : Type0 = {
base_len: Ghost.erased US.t;
// U32.t to prove that A.read, A.write offset computation does not overflow. TODO: replace U32.t with size_t
base: (r: ref _ (pcm elt (US.v base_len)) { core_ref_is_null r ==> US.v base_len == 0 });
offset: (offset: nat { offset <= US.v base_len });
}
let null_ptr a = { base_len = 0sz; base = null #_ #(pcm a 0) ; offset = 0 }
let is_null_ptr p = is_null p.base
let base (#elt: Type) (p: ptr elt) : Tot (base_t elt) = (| Ghost.reveal p.base_len, p.base |)
let offset (#elt: Type) (p: ptr elt) : Ghost nat (requires True) (ensures (fun offset -> offset <= base_len (base p))) = p.offset
let ptr_base_offset_inj (#elt: Type) (p1 p2: ptr elt) : Lemma
(requires (
base p1 == base p2 /\
offset p1 == offset p2
))
(ensures (
p1 == p2
))
= ()
let base_len_null_ptr _ = ()
let length_fits #elt a = ()
let valid_perm
(len: nat)
(offset: nat)
(slice_len: nat)
(p: P.perm) : Tot prop =
let open FStar.Real in
((offset + slice_len <= len /\ slice_len > 0) ==> (p.P.v <=. one))
[@__reduce__]
let pts_to0 (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : Tot vprop =
R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p) `star`
pure (
valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\
Seq.length s == length a
)
let pts_to (#elt: Type u#1) (a: array elt) ([@@@ smt_fallback ] p: P.perm) ([@@@ smt_fallback ] s: Seq.seq elt) : Tot vprop =
pts_to0 a p s
// this lemma is necessary because Steel.PCMReference is marked unfold
let change_r_pts_to
(#opened: _)
(#carrier: Type u#1)
(#pcm: P.pcm carrier)
(p: ref carrier pcm)
(v: carrier)
(#carrier': Type u#1)
(#pcm': P.pcm carrier')
(p': ref carrier' pcm')
(v': carrier')
: STGhost unit opened
(R.pts_to p v)
(fun _ -> R.pts_to p' v')
(// keep on distinct lines for error messages
carrier == carrier' /\
pcm == pcm' /\
p == p' /\
v == v')
(fun _ -> True)
= rewrite
(R.pts_to p v)
(R.pts_to p' v') | {
"checked_file": "/",
"dependencies": [
"Steel.ST.PCMReference.fsti.checked",
"Steel.ST.Loops.fsti.checked",
"Steel.PCMMap.fst.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.ST.HigherArray.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.PCMMap",
"short_module": "PM"
},
{
"abbrev": true,
"full_module": "FStar.Map",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Steel.ST.PCMReference",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "Steel.PCMFrac",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.PtrdiffT",
"short_module": "UP"
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "Steel.FractionalPermission",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Steel.ST.HigherArray.array elt -> p: Steel.FractionalPermission.perm -> s: FStar.Seq.Base.seq elt
-> Steel.ST.Effect.Ghost.STGhost Prims.unit | Steel.ST.Effect.Ghost.STGhost | [] | [] | [
"Steel.Memory.inames",
"Steel.ST.HigherArray.array",
"Steel.ST.HigherArray.carrier",
"FStar.Ghost.hide",
"Prims.nat",
"FStar.SizeT.v",
"FStar.Ghost.reveal",
"FStar.SizeT.t",
"Steel.ST.HigherArray.__proj__Mkptr__item__base_len",
"Steel.ST.HigherArray.ptr_of",
"Steel.FractionalPermission.perm",
"FStar.Seq.Base.seq",
"Steel.ST.Util.rewrite",
"Steel.ST.HigherArray.pts_to0",
"Steel.ST.HigherArray.pts_to",
"Prims.unit",
"Steel.ST.Util.intro_pure",
"Prims.l_and",
"Steel.ST.HigherArray.valid_perm",
"Steel.ST.HigherArray.__proj__Mkptr__item__offset",
"FStar.Seq.Base.length",
"Prims.eq2",
"Steel.ST.HigherArray.length",
"Steel.ST.HigherArray.change_r_pts_to",
"Steel.ST.HigherArray.pcm",
"Steel.ST.HigherArray.__proj__Mkptr__item__base",
"Steel.ST.HigherArray.mk_carrier",
"Steel.ST.PCMReference.pts_to",
"Steel.Effect.Common.vprop",
"Prims.l_True"
] | [] | false | true | false | false | false | let intro_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (#v: _) (p: P.perm) (s: Seq.seq elt)
: STGhost unit
opened
(R.pts_to (ptr_of a).base v)
(fun _ -> pts_to a p s)
(v == mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p /\
valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\
Seq.length s == length a)
(fun _ -> True) =
| change_r_pts_to (ptr_of a).base
v
(ptr_of a).base
(mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p);
intro_pure _;
rewrite (pts_to0 a p s) (pts_to a p s) | false |
Vale.AES.X64.GF128_Init.fsti | Vale.AES.X64.GF128_Init.va_req_Keyhash_init | val va_req_Keyhash_init
(va_b0: va_code)
(va_s0: va_state)
(win: bool)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
: prop | val va_req_Keyhash_init
(va_b0: va_code)
(va_s0: va_state)
(win: bool)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
: prop | let va_req_Keyhash_init (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (key:(seq
nat32)) (roundkeys_b:buffer128) (hkeys_b:buffer128) : prop =
(va_require_total va_b0 (va_code_Keyhash_init win alg) va_s0 /\ va_get_ok va_s0 /\ (let
(round_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else
va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = (if win then
va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in Vale.X64.Memory.is_initial_heap
(va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (aesni_enabled /\ pclmulqdq_enabled /\
avx_enabled /\ sse_enabled) /\ (alg = AES_128 \/ alg = AES_256) /\
Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\ Vale.AES.AES_s.is_aes_key_LE alg key
/\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b ==
Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem
va_s0) round_ptr roundkeys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0)
Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) hkey_ptr hkeys_b 8
(va_get_mem_layout va_s0) Secret)) | {
"file_name": "obj/Vale.AES.X64.GF128_Init.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 38,
"end_line": 52,
"start_col": 0,
"start_line": 39
} | module Vale.AES.X64.GF128_Init
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open FStar.Seq
open Vale.Arch.Types
open Vale.Arch.HeapImpl
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.Math.Poly2.Lemmas
open Vale.AES.GF128_s
open Vale.AES.GF128
open Vale.AES.GHash
open Vale.AES.AES_s
open Vale.AES.AES256_helpers
open Vale.AES.X64.AES
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.InsAes
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.X64.CPU_Features_s
open Vale.AES.X64.PolyOps
open Vale.AES.X64.GF128_Mul
open Vale.AES.GHash
open Vale.AES.OptPublic
//-- Keyhash_init
val va_code_Keyhash_init : win:bool -> alg:algorithm -> Tot va_code | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.InsAes.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"Vale.AES.X64.PolyOps.fsti.checked",
"Vale.AES.X64.GF128_Mul.fsti.checked",
"Vale.AES.X64.AES.fsti.checked",
"Vale.AES.OptPublic.fsti.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"Vale.AES.AES_common_s.fst.checked",
"Vale.AES.AES256_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.X64.GF128_Init.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.GF128_Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.PolyOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsAes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES256_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
va_b0: Vale.X64.Decls.va_code ->
va_s0: Vale.X64.Decls.va_state ->
win: Prims.bool ->
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 ->
roundkeys_b: Vale.X64.Memory.buffer128 ->
hkeys_b: Vale.X64.Memory.buffer128
-> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"Vale.X64.Decls.va_code",
"Vale.X64.Decls.va_state",
"Prims.bool",
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.X64.Memory.nat32",
"Vale.X64.Memory.buffer128",
"Prims.l_and",
"Vale.X64.Decls.va_require_total",
"Vale.AES.X64.GF128_Init.va_code_Keyhash_init",
"Prims.b2t",
"Vale.X64.Decls.va_get_ok",
"Vale.X64.Memory.is_initial_heap",
"Vale.X64.Decls.va_get_mem_layout",
"Vale.X64.Decls.va_get_mem",
"Vale.X64.CPU_Features_s.aesni_enabled",
"Vale.X64.CPU_Features_s.pclmulqdq_enabled",
"Vale.X64.CPU_Features_s.avx_enabled",
"Vale.X64.CPU_Features_s.sse_enabled",
"Prims.l_or",
"Prims.op_Equality",
"Vale.AES.AES_common_s.AES_128",
"Vale.AES.AES_common_s.AES_256",
"Vale.X64.Decls.buffers_disjoint128",
"Vale.AES.AES_s.is_aes_key_LE",
"Prims.eq2",
"Vale.Def.Types_s.quad32",
"Vale.X64.Decls.buffer128_as_seq",
"Vale.AES.AES_s.key_to_round_keys_LE",
"Vale.X64.Decls.validSrcAddrs128",
"Prims.op_Addition",
"Vale.AES.AES_common_s.nr",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.X64.Decls.validDstAddrs128",
"Vale.X64.Decls.va_int_range",
"Vale.X64.Decls.va_get_reg64",
"Vale.X64.Machine_s.rRdx",
"Vale.X64.Machine_s.rRsi",
"Vale.X64.Machine_s.rRcx",
"Vale.X64.Machine_s.rRdi",
"Prims.prop"
] | [] | false | false | false | true | true | let va_req_Keyhash_init
(va_b0: va_code)
(va_s0: va_state)
(win: bool)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
: prop =
| (va_require_total va_b0 (va_code_Keyhash_init win alg) va_s0 /\ va_get_ok va_s0 /\
(let round_ptr:(va_int_range 0 18446744073709551615) =
(if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0)
in
let hkey_ptr:(va_int_range 0 18446744073709551615) =
(if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0)
in
Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\
(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\
(alg = AES_128 \/ alg = AES_256) /\ Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\
Vale.AES.AES_s.is_aes_key_LE alg key /\
Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b ==
Vale.AES.AES_s.key_to_round_keys_LE alg key /\
Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0)
round_ptr
roundkeys_b
(Vale.AES.AES_common_s.nr alg + 1)
(va_get_mem_layout va_s0)
Secret /\
Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0)
hkey_ptr
hkeys_b
8
(va_get_mem_layout va_s0)
Secret)) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.n_to_le | val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len)) | val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len)) | let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 5,
"end_line": 104,
"start_col": 0,
"start_line": 92
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b}) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: FStar.UInt32.t -> n: Prims.nat{n < Prims.pow2 (8 * FStar.UInt32.v len)}
-> Prims.Tot
(b:
FStar.Krml.Endianness.bytes
{FStar.Seq.Base.length b == FStar.UInt32.v len /\ n == FStar.Krml.Endianness.le_to_n b}) | Prims.Tot | [
"total",
""
] | [] | [
"FStar.UInt32.t",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"FStar.UInt32.v",
"Prims.op_Equality",
"FStar.UInt32.__uint_to_t",
"FStar.Seq.Base.empty",
"FStar.UInt8.t",
"Prims.bool",
"Prims.unit",
"FStar.Seq.Base.lemma_eq_intro",
"FStar.Seq.Properties.tail",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.cons",
"FStar.Krml.Endianness.bytes",
"Prims.l_and",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.Seq.Base.length",
"FStar.Krml.Endianness.le_to_n",
"FStar.Krml.Endianness.n_to_le",
"Prims._assert",
"FStar.Math.Lemmas.pow2_plus",
"Prims.op_Division",
"FStar.UInt8.uint_to_t",
"Prims.op_Modulus",
"FStar.UInt32.op_Subtraction_Hat",
"FStar.UInt32.n"
] | [
"recursion"
] | false | false | false | false | false | let rec n_to_le len n =
| if len = 0ul
then S.empty
else
let len = let open U32 in len -^ 1ul in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert (n' < pow2 (8 * U32.v len));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.uint64_of_be | val uint64_of_be : b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8} -> FStar.UInt64.t | let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 20,
"end_line": 230,
"start_col": 0,
"start_line": 227
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8} -> FStar.UInt64.t | Prims.Tot | [
"total"
] | [] | [
"FStar.Krml.Endianness.bytes",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.UInt8.t",
"FStar.UInt64.uint_to_t",
"Prims.unit",
"FStar.Krml.Endianness.lemma_be_to_n_is_bounded",
"Prims.nat",
"FStar.Krml.Endianness.be_to_n",
"FStar.UInt64.t"
] | [] | false | false | false | false | false | let uint64_of_be (b: bytes{S.length b = 8}) =
| let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n | false |
|
Hacl.Spec.Bignum.Multiplication.fst | Hacl.Spec.Bignum.Multiplication.bn_mul_lemma_ | val bn_mul_lemma_:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> j:size_nat{j < bLen}
-> acc:lbignum t (aLen + bLen) ->
Lemma (let res = bn_mul_ a b j acc in
v res.[aLen + j] * pow2 (bits t * (aLen + j)) + eval_ (aLen + bLen) res (aLen + j) ==
eval_ (aLen + bLen) acc (aLen + j) + bn_v a * v b.[j] * pow2 (bits t * j)) | val bn_mul_lemma_:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> j:size_nat{j < bLen}
-> acc:lbignum t (aLen + bLen) ->
Lemma (let res = bn_mul_ a b j acc in
v res.[aLen + j] * pow2 (bits t * (aLen + j)) + eval_ (aLen + bLen) res (aLen + j) ==
eval_ (aLen + bLen) acc (aLen + j) + bn_v a * v b.[j] * pow2 (bits t * j)) | let bn_mul_lemma_ #t #aLen #bLen a b j acc =
let c, res = bn_mul1_lshift_add a b.[j] j acc in
bn_mul1_lshift_add_lemma a b.[j] j acc;
let res1 = res.[aLen + j] <- c in
bn_eval_extensionality_j res res1 (aLen + j) | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 46,
"end_line": 376,
"start_col": 0,
"start_line": 371
} | module Hacl.Spec.Bignum.Multiplication
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Lib
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val bn_mul1_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_f #t #aLen a l i c =
mul_wide_add a.[i] l c
val bn_mul1:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t ->
limb t & lbignum t aLen
let bn_mul1 #t #aLen a l =
generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0)
val bn_mul1_add_in_place_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_add_in_place_f #t #aLen a l acc i c =
mul_wide_add2 a.[i] l c acc.[i]
val bn_mul1_add_in_place:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen ->
limb t & lbignum t aLen
let bn_mul1_add_in_place #t #aLen a l acc =
generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0)
val bn_mul1_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> #resLen:size_nat
-> a:lbignum t aLen
-> b_j:limb t
-> j:size_nat{j + aLen <= resLen}
-> res:lbignum t resLen ->
limb t & lbignum t resLen
let bn_mul1_lshift_add #t #aLen #resLen a b_j j res =
let res' = sub res j aLen in
let c, res' = bn_mul1_add_in_place a b_j res' in
let res = update_sub res j aLen res' in
c, res
val bn_mul_:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> j:size_nat{j < bLen}
-> res:lbignum t (aLen + bLen) ->
lbignum t (aLen + bLen)
let bn_mul_ #t #aLen #bLen a b j res =
let c, res = bn_mul1_lshift_add a b.[j] j res in
res.[aLen + j] <- c
val bn_mul:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen ->
lbignum t (aLen + bLen)
let bn_mul #t #aLen #bLen a b =
let res = create (aLen + bLen) (uint #t 0) in
repeati bLen (bn_mul_ a b) res
val bn_mul1_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l))
let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) =
let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
let c, e = mul_wide_add a.[i - 1] l c1 in
assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1);
calc (==) {
v c * b2 + bn_v #t #i res;
(==) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
(==) { }
v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1;
(==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1;
(==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l);
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l;
(==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) }
(eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l;
(==) { bn_eval_unfold_i a i }
eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l)
val bn_mul1_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)
let rec bn_mul1_lemma_loop #t #aLen a l i =
let pbits = bits t in
let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
if i = 0 then begin
eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0);
assert (c == uint #t 0 /\ res == Seq.empty);
bn_eval0 #t #0 res;
assert_norm (pow2 0 = 1);
bn_eval0 a;
() end
else begin
let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in
generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1);
assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) ==
generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0)));
assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1));
bn_mul1_lemma_loop a l (i - 1);
assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l);
bn_mul1_lemma_loop_step a l i (c1, res1);
assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l);
() end
val bn_mul1_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t ->
Lemma (let (c, res) = bn_mul1 a l in
v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l)
let bn_mul1_lemma #t #aLen a l =
let (c, res) = bn_mul1 a l in
bn_mul1_lemma_loop a l aLen
#push-options "--z3rlimit 150"
val bn_mul1_add_in_place_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l))
let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) =
let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
let c, e = mul_wide_add2 a.[i - 1] l c1 acc.[i - 1] in
assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1 + v acc.[i - 1]);
calc (==) {
v c * b2 + bn_v #t #i res;
(==) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
(==) { }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l -
(v e + v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1 + v e * b1;
(==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) b1 }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1;
(==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l + v acc.[i - 1]) b1 }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 +
(v a.[i - 1] * v l + v acc.[i - 1]) * b1;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[i - 1] * v l + v acc.[i - 1]) * b1;
(==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] * v l) (v acc.[i - 1]) b1 }
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1 + v acc.[i - 1] * b1;
(==) { bn_eval_unfold_i acc i }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l);
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l;
(==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) }
eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l;
(==) { bn_eval_unfold_i a i }
eval_ aLen acc i + eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)
#pop-options
val bn_mul1_add_in_place_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)
let rec bn_mul1_add_in_place_lemma_loop #t #aLen a l acc i =
let pbits = bits t in
let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
if i = 0 then begin
eq_generate_elems0 aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0);
assert (c == uint #t 0 /\ res == Seq.empty);
bn_eval0 #t #0 res;
assert_norm (pow2 0 = 1);
bn_eval0 a;
bn_eval0 acc;
() end
else begin
let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
generate_elems_unfold aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) (i - 1);
assert (generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) ==
generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0)));
assert ((c, res) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1));
bn_mul1_add_in_place_lemma_loop a l acc (i - 1);
assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l);
bn_mul1_add_in_place_lemma_loop_step a l acc i (c1, res1);
assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l);
() end
val bn_mul1_add_in_place_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen ->
Lemma (let (c, res) = bn_mul1_add_in_place a l acc in
v c * pow2 (bits t * aLen) + bn_v res == bn_v acc + bn_v a * v l)
let bn_mul1_add_in_place_lemma #t #aLen a l acc =
let (c, res) = bn_mul1_add_in_place a l acc in
bn_mul1_add_in_place_lemma_loop a l acc aLen
val bn_mul1_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> #resLen:size_nat
-> a:lbignum t aLen
-> b_j:limb t
-> j:size_nat{j + aLen <= resLen}
-> acc:lbignum t resLen ->
Lemma (let (c, res) = bn_mul1_lshift_add a b_j j acc in
v c * pow2 (bits t * (aLen + j)) + eval_ resLen res (aLen + j) ==
eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (bits t * j) /\
slice res (aLen + j) resLen == slice acc (aLen + j) resLen)
let bn_mul1_lshift_add_lemma #t #aLen #resLen a b_j j acc =
let pbits = bits t in
let res1 = sub acc j aLen in
let c, res2 = bn_mul1_add_in_place a b_j res1 in
bn_mul1_add_in_place_lemma a b_j res1;
assert (v c * pow2 (pbits * aLen) + bn_v res2 == bn_v res1 + bn_v a * v b_j);
let res = update_sub acc j aLen res2 in
bn_eval_split_i (sub res 0 (j + aLen)) j;
bn_eval_extensionality_j res (sub res 0 (j + aLen)) (j + aLen);
assert (eval_ resLen res (j + aLen) == bn_v #t #j (sub res 0 j) + pow2 (pbits * j) * bn_v res2);
eq_intro (sub res 0 j) (sub acc 0 j);
assert (bn_v #t #j (sub res 0 j) == bn_v #t #j (sub acc 0 j));
bn_eval_split_i (sub acc 0 (j + aLen)) j;
bn_eval_extensionality_j acc (sub acc 0 (j + aLen)) (j + aLen);
assert (eval_ resLen acc (j + aLen) == bn_v #t #j (sub acc 0 j) + pow2 (pbits * j) * bn_v res1);
calc (==) {
v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j);
(==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * j) }
v c * (pow2 (pbits * aLen) * pow2 (pbits * j)) + eval_ resLen res (aLen + j);
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * aLen)) (pow2 (pbits * j)) }
v c * pow2 (pbits * aLen) * pow2 (pbits * j) + eval_ resLen res (aLen + j);
(==) { }
(bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen res (aLen + j);
(==) { }
(bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen acc (j + aLen) - pow2 (pbits * j) * bn_v res1 + pow2 (pbits * j) * bn_v res2;
(==) { Math.Lemmas.distributivity_add_right (pow2 (pbits * j)) (bn_v res1) (bn_v a * v b_j - bn_v res2) }
pow2 (pbits * j) * (bn_v a * v b_j - bn_v res2) + eval_ resLen acc (j + aLen) + pow2 (pbits * j) * bn_v res2;
(==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * j)) (bn_v a * v b_j) (bn_v res2) }
pow2 (pbits * j) * (bn_v a * v b_j) + eval_ resLen acc (j + aLen);
};
assert (v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j) ==
eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (pbits * j));
eq_intro (slice res (aLen + j) resLen) (slice acc (aLen + j) resLen)
val bn_mul_lemma_:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> j:size_nat{j < bLen}
-> acc:lbignum t (aLen + bLen) ->
Lemma (let res = bn_mul_ a b j acc in
v res.[aLen + j] * pow2 (bits t * (aLen + j)) + eval_ (aLen + bLen) res (aLen + j) ==
eval_ (aLen + bLen) acc (aLen + j) + bn_v a * v b.[j] * pow2 (bits t * j)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Multiplication.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
b: Hacl.Spec.Bignum.Definitions.lbignum t bLen ->
j: Lib.IntTypes.size_nat{j < bLen} ->
acc: Hacl.Spec.Bignum.Definitions.lbignum t (aLen + bLen)
-> FStar.Pervasives.Lemma
(ensures
(let res = Hacl.Spec.Bignum.Multiplication.bn_mul_ a b j acc in
Lib.IntTypes.v res.[ aLen + j ] * Prims.pow2 (Lib.IntTypes.bits t * (aLen + j)) +
Hacl.Spec.Bignum.Definitions.eval_ (aLen + bLen) res (aLen + j) ==
Hacl.Spec.Bignum.Definitions.eval_ (aLen + bLen) acc (aLen + j) +
(Hacl.Spec.Bignum.Definitions.bn_v a * Lib.IntTypes.v b.[ j ]) *
Prims.pow2 (Lib.IntTypes.bits t * j))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.Definitions.bn_eval_extensionality_j",
"Lib.Sequence.lseq",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.upd",
"Lib.Sequence.index",
"Prims.l_Forall",
"Prims.nat",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.l_imp",
"Prims.op_disEquality",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.op_String_Assignment",
"Prims.unit",
"Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma",
"Lib.Sequence.op_String_Access",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add"
] | [] | false | false | true | false | false | let bn_mul_lemma_ #t #aLen #bLen a b j acc =
| let c, res = bn_mul1_lshift_add a b.[ j ] j acc in
bn_mul1_lshift_add_lemma a b.[ j ] j acc;
let res1 = res.[ aLen + j ] <- c in
bn_eval_extensionality_j res res1 (aLen + j) | false |
Vale.AES.X64.GF128_Init.fsti | Vale.AES.X64.GF128_Init.va_wp_Keyhash_init | val va_wp_Keyhash_init
(win: bool)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0 | val va_wp_Keyhash_init
(win: bool)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0 | let va_wp_Keyhash_init (win:bool) (alg:algorithm) (key:(seq nat32)) (roundkeys_b:buffer128)
(hkeys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ ->
va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0
18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64
rRsi va_s0) in Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\
(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ (alg = AES_128 \/ alg =
AES_256) /\ Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\
Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0)
roundkeys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128
(va_get_mem va_s0) round_ptr roundkeys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout
va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) hkey_ptr hkeys_b 8
(va_get_mem_layout va_s0) Secret) /\ (forall (va_x_mem:vale_heap) (va_x_rax:nat64)
(va_x_rcx:nat64) (va_x_rdx:nat64) (va_x_r8:nat64) (va_x_r12:nat64) (va_x_heap1:vale_heap)
(va_x_memLayout:vale_heap_layout) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32)
(va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32)
(va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 6 va_x_xmm6
(va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2
(va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_mem_layout va_x_memLayout
(va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rR8 va_x_r8
(va_upd_reg64 rRdx va_x_rdx (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rRax va_x_rax (va_upd_mem
va_x_mem va_s0))))))))))))))) in va_get_ok va_sM /\ (let (round_ptr:(va_int_range 0
18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64
rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ ->
va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in
Vale.X64.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\
Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_sM) hkeys_b)
(Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key
(Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ va_get_xmm 6 va_sM == va_get_xmm
6 va_s0 /\ va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) ==> va_k va_sM (()))) | {
"file_name": "obj/Vale.AES.X64.GF128_Init.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 88,
"end_line": 129,
"start_col": 0,
"start_line": 100
} | module Vale.AES.X64.GF128_Init
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open FStar.Seq
open Vale.Arch.Types
open Vale.Arch.HeapImpl
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.Math.Poly2.Lemmas
open Vale.AES.GF128_s
open Vale.AES.GF128
open Vale.AES.GHash
open Vale.AES.AES_s
open Vale.AES.AES256_helpers
open Vale.AES.X64.AES
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.InsAes
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.X64.CPU_Features_s
open Vale.AES.X64.PolyOps
open Vale.AES.X64.GF128_Mul
open Vale.AES.GHash
open Vale.AES.OptPublic
//-- Keyhash_init
val va_code_Keyhash_init : win:bool -> alg:algorithm -> Tot va_code
val va_codegen_success_Keyhash_init : win:bool -> alg:algorithm -> Tot va_pbool
let va_req_Keyhash_init (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (key:(seq
nat32)) (roundkeys_b:buffer128) (hkeys_b:buffer128) : prop =
(va_require_total va_b0 (va_code_Keyhash_init win alg) va_s0 /\ va_get_ok va_s0 /\ (let
(round_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else
va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = (if win then
va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in Vale.X64.Memory.is_initial_heap
(va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (aesni_enabled /\ pclmulqdq_enabled /\
avx_enabled /\ sse_enabled) /\ (alg = AES_128 \/ alg = AES_256) /\
Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\ Vale.AES.AES_s.is_aes_key_LE alg key
/\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b ==
Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem
va_s0) round_ptr roundkeys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0)
Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) hkey_ptr hkeys_b 8
(va_get_mem_layout va_s0) Secret))
let va_ens_Keyhash_init (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (key:(seq
nat32)) (roundkeys_b:buffer128) (hkeys_b:buffer128) (va_sM:va_state) (va_fM:va_fuel) : prop =
(va_req_Keyhash_init va_b0 va_s0 win alg key roundkeys_b hkeys_b /\ va_ensure_total va_b0 va_s0
va_sM va_fM /\ va_get_ok va_sM /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = (if
win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0
18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in
Vale.X64.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\
Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_sM) hkeys_b)
(Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key
(Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ va_get_xmm 6 va_sM == va_get_xmm
6 va_s0 /\ va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ va_state_eq va_sM
(va_update_flags va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM
(va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM
(va_update_mem_layout va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rR12 va_sM
(va_update_reg64 rR8 va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM
(va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))))))))))
val va_lemma_Keyhash_init : va_b0:va_code -> va_s0:va_state -> win:bool -> alg:algorithm ->
key:(seq nat32) -> roundkeys_b:buffer128 -> hkeys_b:buffer128
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Keyhash_init win alg) va_s0 /\ va_get_ok va_s0 /\ (let
(round_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else
va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = (if win then
va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in Vale.X64.Memory.is_initial_heap
(va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (aesni_enabled /\ pclmulqdq_enabled /\
avx_enabled /\ sse_enabled) /\ (alg = AES_128 \/ alg = AES_256) /\
Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\ Vale.AES.AES_s.is_aes_key_LE alg key
/\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b ==
Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem
va_s0) round_ptr roundkeys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0)
Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) hkey_ptr hkeys_b 8
(va_get_mem_layout va_s0) Secret)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(let (round_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0
else va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = (if win
then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in Vale.X64.Decls.modifies_buffer128
hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\ Vale.AES.OptPublic.hkeys_reqs_pub
(Vale.X64.Decls.s128 (va_get_mem va_sM) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32
(Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0
0))) /\ va_get_xmm 6 va_sM == va_get_xmm 6 va_s0 /\ va_get_reg64 rR12 va_sM == va_get_reg64
rR12 va_s0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 6 va_sM (va_update_xmm 5
va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1
va_sM (va_update_xmm 0 va_sM (va_update_mem_layout va_sM (va_update_mem_heaplet 1 va_sM
(va_update_reg64 rR12 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRdx va_sM
(va_update_reg64 rRcx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem
va_sM va_s0))))))))))))))))))) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.InsAes.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"Vale.AES.X64.PolyOps.fsti.checked",
"Vale.AES.X64.GF128_Mul.fsti.checked",
"Vale.AES.X64.AES.fsti.checked",
"Vale.AES.OptPublic.fsti.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"Vale.AES.AES_common_s.fst.checked",
"Vale.AES.AES256_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.X64.GF128_Init.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.GF128_Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.PolyOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsAes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES256_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
win: Prims.bool ->
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 ->
roundkeys_b: Vale.X64.Memory.buffer128 ->
hkeys_b: Vale.X64.Memory.buffer128 ->
va_s0: Vale.X64.Decls.va_state ->
va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0)
-> Type0 | Prims.Tot | [
"total"
] | [] | [
"Prims.bool",
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.X64.Memory.nat32",
"Vale.X64.Memory.buffer128",
"Vale.X64.Decls.va_state",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Vale.X64.Decls.va_get_ok",
"Vale.X64.Memory.is_initial_heap",
"Vale.X64.Decls.va_get_mem_layout",
"Vale.X64.Decls.va_get_mem",
"Vale.X64.CPU_Features_s.aesni_enabled",
"Vale.X64.CPU_Features_s.pclmulqdq_enabled",
"Vale.X64.CPU_Features_s.avx_enabled",
"Vale.X64.CPU_Features_s.sse_enabled",
"Prims.l_or",
"Prims.op_Equality",
"Vale.AES.AES_common_s.AES_128",
"Vale.AES.AES_common_s.AES_256",
"Vale.X64.Decls.buffers_disjoint128",
"Vale.AES.AES_s.is_aes_key_LE",
"Prims.eq2",
"Vale.Def.Types_s.quad32",
"Vale.X64.Decls.buffer128_as_seq",
"Vale.AES.AES_s.key_to_round_keys_LE",
"Vale.X64.Decls.validSrcAddrs128",
"Prims.op_Addition",
"Vale.AES.AES_common_s.nr",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.X64.Decls.validDstAddrs128",
"Vale.X64.Decls.va_int_range",
"Vale.X64.Decls.va_if",
"Vale.Def.Types_s.nat64",
"Vale.X64.Decls.va_get_reg64",
"Vale.X64.Machine_s.rRdx",
"Prims.l_not",
"Vale.X64.Machine_s.rRsi",
"Vale.X64.Machine_s.rRcx",
"Vale.X64.Machine_s.rRdi",
"Prims.l_Forall",
"Vale.X64.InsBasic.vale_heap",
"Vale.X64.Memory.nat64",
"Vale.Arch.HeapImpl.vale_heap_layout",
"Vale.X64.Decls.quad32",
"Vale.X64.Flags.t",
"Prims.l_imp",
"Vale.X64.Decls.modifies_buffer128",
"Vale.AES.OptPublic.hkeys_reqs_pub",
"Vale.X64.Decls.s128",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Vale.X64.Decls.va_get_xmm",
"Vale.X64.Machine_s.rR12",
"Vale.X64.State.vale_state",
"Vale.X64.Decls.va_upd_flags",
"Vale.X64.Decls.va_upd_xmm",
"Vale.X64.Decls.va_upd_mem_layout",
"Vale.X64.Decls.va_upd_mem_heaplet",
"Vale.X64.Decls.va_upd_reg64",
"Vale.X64.Machine_s.rR8",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Decls.va_upd_mem"
] | [] | false | false | false | true | true | let va_wp_Keyhash_init
(win: bool)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0 =
| (va_get_ok va_s0 /\
(let round_ptr:(va_int_range 0 18446744073709551615) =
va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0)
in
let hkey_ptr:(va_int_range 0 18446744073709551615) =
va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0)
in
Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\
(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\
(alg = AES_128 \/ alg = AES_256) /\ Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\
Vale.AES.AES_s.is_aes_key_LE alg key /\
Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b ==
Vale.AES.AES_s.key_to_round_keys_LE alg key /\
Vale.X64.Decls.validSrcAddrs128 (va_get_mem va_s0)
round_ptr
roundkeys_b
(Vale.AES.AES_common_s.nr alg + 1)
(va_get_mem_layout va_s0)
Secret /\
Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0)
hkey_ptr
hkeys_b
8
(va_get_mem_layout va_s0)
Secret) /\
(forall (va_x_mem: vale_heap) (va_x_rax: nat64) (va_x_rcx: nat64) (va_x_rdx: nat64)
(va_x_r8: nat64) (va_x_r12: nat64) (va_x_heap1: vale_heap) (va_x_memLayout: vale_heap_layout)
(va_x_xmm0: quad32) (va_x_xmm1: quad32) (va_x_xmm2: quad32) (va_x_xmm3: quad32)
(va_x_xmm4: quad32) (va_x_xmm5: quad32) (va_x_xmm6: quad32) (va_x_efl: Vale.X64.Flags.t).
let va_sM =
va_upd_flags va_x_efl
(va_upd_xmm 6
va_x_xmm6
(va_upd_xmm 5
va_x_xmm5
(va_upd_xmm 4
va_x_xmm4
(va_upd_xmm 3
va_x_xmm3
(va_upd_xmm 2
va_x_xmm2
(va_upd_xmm 1
va_x_xmm1
(va_upd_xmm 0
va_x_xmm0
(va_upd_mem_layout va_x_memLayout
(va_upd_mem_heaplet 1
va_x_heap1
(va_upd_reg64 rR12
va_x_r12
(va_upd_reg64 rR8
va_x_r8
(va_upd_reg64 rRdx
va_x_rdx
(va_upd_reg64 rRcx
va_x_rcx
(va_upd_reg64 rRax
va_x_rax
(va_upd_mem va_x_mem va_s0))))))))
)))))))
in
va_get_ok va_sM /\
(let round_ptr:(va_int_range 0 18446744073709551615) =
va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0)
in
let hkey_ptr:(va_int_range 0 18446744073709551615) =
va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0)
in
Vale.X64.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\
Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_sM) hkeys_b)
(Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg
key
(Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\
va_get_xmm 6 va_sM == va_get_xmm 6 va_s0 /\
va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) ==>
va_k va_sM (()))) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.be_of_uint64 | val be_of_uint64 (x: UInt64.t) : b: bytes{S.length b = 8} | val be_of_uint64 (x: UInt64.t) : b: bytes{S.length b = 8} | let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 26,
"end_line": 234,
"start_col": 0,
"start_line": 233
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt64.t -> b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8} | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.t",
"FStar.Krml.Endianness.n_to_be",
"FStar.UInt32.__uint_to_t",
"FStar.UInt64.v",
"FStar.Krml.Endianness.bytes",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.UInt8.t"
] | [] | false | false | false | false | false | let be_of_uint64 (x: UInt64.t) : b: bytes{S.length b = 8} =
| n_to_be 8ul (UInt64.v x) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.le_of_seq_uint32 | val le_of_seq_uint32 (s: S.seq UInt32.t)
: Tot (b: bytes{S.length b = 4 * S.length s}) (decreases (S.length s)) | val le_of_seq_uint32 (s: S.seq UInt32.t)
: Tot (b: bytes{S.length b = 4 * S.length s}) (decreases (S.length s)) | let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 68,
"end_line": 254,
"start_col": 0,
"start_line": 247
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: FStar.Seq.Base.seq FStar.UInt32.t
-> Prims.Tot
(b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 4 * FStar.Seq.Base.length s}) | Prims.Tot | [
"total",
""
] | [] | [
"FStar.Seq.Base.seq",
"FStar.UInt32.t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.Seq.Base.empty",
"FStar.UInt8.t",
"Prims.bool",
"FStar.Seq.Base.append",
"FStar.Krml.Endianness.le_of_uint32",
"FStar.Seq.Properties.head",
"FStar.Krml.Endianness.le_of_seq_uint32",
"FStar.Seq.Properties.tail",
"FStar.Krml.Endianness.bytes",
"Prims.b2t",
"FStar.Mul.op_Star"
] | [
"recursion"
] | false | false | false | false | false | let rec le_of_seq_uint32 (s: S.seq UInt32.t)
: Tot (b: bytes{S.length b = 4 * S.length s}) (decreases (S.length s)) =
| if S.length s = 0 then S.empty else S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.be_of_uint32 | val be_of_uint32 (x: UInt32.t) : b: bytes{S.length b = 4} | val be_of_uint32 (x: UInt32.t) : b: bytes{S.length b = 4} | let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 26,
"end_line": 214,
"start_col": 0,
"start_line": 213
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt32.t -> b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 4} | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt32.t",
"FStar.Krml.Endianness.n_to_be",
"FStar.UInt32.__uint_to_t",
"FStar.UInt32.v",
"FStar.Krml.Endianness.bytes",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.UInt8.t"
] | [] | false | false | false | false | false | let be_of_uint32 (x: UInt32.t) : b: bytes{S.length b = 4} =
| n_to_be 4ul (UInt32.v x) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.le_of_seq_uint64 | val le_of_seq_uint64 (s: S.seq UInt64.t)
: Tot (b: bytes{S.length b = 8 * S.length s}) (decreases (S.length s)) | val le_of_seq_uint64 (s: S.seq UInt64.t)
: Tot (b: bytes{S.length b = 8 * S.length s}) (decreases (S.length s)) | let rec le_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 68,
"end_line": 294,
"start_col": 0,
"start_line": 287
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint32")]
let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint32_of_be")]
let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint32")]
let rec be_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_le")]
let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: FStar.Seq.Base.seq FStar.UInt64.t
-> Prims.Tot
(b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8 * FStar.Seq.Base.length s}) | Prims.Tot | [
"total",
""
] | [] | [
"FStar.Seq.Base.seq",
"FStar.UInt64.t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.Seq.Base.empty",
"FStar.UInt8.t",
"Prims.bool",
"FStar.Seq.Base.append",
"FStar.Krml.Endianness.le_of_uint64",
"FStar.Seq.Properties.head",
"FStar.Krml.Endianness.le_of_seq_uint64",
"FStar.Seq.Properties.tail",
"FStar.Krml.Endianness.bytes",
"Prims.b2t",
"FStar.Mul.op_Star"
] | [
"recursion"
] | false | false | false | false | false | let rec le_of_seq_uint64 (s: S.seq UInt64.t)
: Tot (b: bytes{S.length b = 8 * S.length s}) (decreases (S.length s)) =
| if S.length s = 0 then S.empty else S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.be_of_seq_uint32 | val be_of_seq_uint32 (s: S.seq UInt32.t)
: Tot (b: bytes{S.length b = 4 * S.length s}) (decreases (S.length s)) | val be_of_seq_uint32 (s: S.seq UInt32.t)
: Tot (b: bytes{S.length b = 4 * S.length s}) (decreases (S.length s)) | let rec be_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 68,
"end_line": 274,
"start_col": 0,
"start_line": 267
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint32")]
let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint32_of_be")]
let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: FStar.Seq.Base.seq FStar.UInt32.t
-> Prims.Tot
(b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 4 * FStar.Seq.Base.length s}) | Prims.Tot | [
"total",
""
] | [] | [
"FStar.Seq.Base.seq",
"FStar.UInt32.t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.Seq.Base.empty",
"FStar.UInt8.t",
"Prims.bool",
"FStar.Seq.Base.append",
"FStar.Krml.Endianness.be_of_uint32",
"FStar.Seq.Properties.head",
"FStar.Krml.Endianness.be_of_seq_uint32",
"FStar.Seq.Properties.tail",
"FStar.Krml.Endianness.bytes",
"Prims.b2t",
"FStar.Mul.op_Star"
] | [
"recursion"
] | false | false | false | false | false | let rec be_of_seq_uint32 (s: S.seq UInt32.t)
: Tot (b: bytes{S.length b = 4 * S.length s}) (decreases (S.length s)) =
| if S.length s = 0 then S.empty else S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) | false |
Vale.AES.X64.GF128_Init.fsti | Vale.AES.X64.GF128_Init.va_quick_Keyhash_init | val va_quick_Keyhash_init
(win: bool)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
: (va_quickCode unit (va_code_Keyhash_init win alg)) | val va_quick_Keyhash_init
(win: bool)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
: (va_quickCode unit (va_code_Keyhash_init win alg)) | let va_quick_Keyhash_init (win:bool) (alg:algorithm) (key:(seq nat32)) (roundkeys_b:buffer128)
(hkeys_b:buffer128) : (va_quickCode unit (va_code_Keyhash_init win alg)) =
(va_QProc (va_code_Keyhash_init win alg) ([va_Mod_flags; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm
4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_mem_layout;
va_Mod_mem_heaplet 1; va_Mod_reg64 rR12; va_Mod_reg64 rR8; va_Mod_reg64 rRdx; va_Mod_reg64
rRcx; va_Mod_reg64 rRax; va_Mod_mem]) (va_wp_Keyhash_init win alg key roundkeys_b hkeys_b)
(va_wpProof_Keyhash_init win alg key roundkeys_b hkeys_b)) | {
"file_name": "obj/Vale.AES.X64.GF128_Init.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 62,
"end_line": 146,
"start_col": 0,
"start_line": 140
} | module Vale.AES.X64.GF128_Init
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open FStar.Seq
open Vale.Arch.Types
open Vale.Arch.HeapImpl
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.Math.Poly2.Lemmas
open Vale.AES.GF128_s
open Vale.AES.GF128
open Vale.AES.GHash
open Vale.AES.AES_s
open Vale.AES.AES256_helpers
open Vale.AES.X64.AES
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.InsAes
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.X64.CPU_Features_s
open Vale.AES.X64.PolyOps
open Vale.AES.X64.GF128_Mul
open Vale.AES.GHash
open Vale.AES.OptPublic
//-- Keyhash_init
val va_code_Keyhash_init : win:bool -> alg:algorithm -> Tot va_code
val va_codegen_success_Keyhash_init : win:bool -> alg:algorithm -> Tot va_pbool
let va_req_Keyhash_init (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (key:(seq
nat32)) (roundkeys_b:buffer128) (hkeys_b:buffer128) : prop =
(va_require_total va_b0 (va_code_Keyhash_init win alg) va_s0 /\ va_get_ok va_s0 /\ (let
(round_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else
va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = (if win then
va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in Vale.X64.Memory.is_initial_heap
(va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (aesni_enabled /\ pclmulqdq_enabled /\
avx_enabled /\ sse_enabled) /\ (alg = AES_128 \/ alg = AES_256) /\
Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\ Vale.AES.AES_s.is_aes_key_LE alg key
/\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b ==
Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem
va_s0) round_ptr roundkeys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0)
Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) hkey_ptr hkeys_b 8
(va_get_mem_layout va_s0) Secret))
let va_ens_Keyhash_init (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (key:(seq
nat32)) (roundkeys_b:buffer128) (hkeys_b:buffer128) (va_sM:va_state) (va_fM:va_fuel) : prop =
(va_req_Keyhash_init va_b0 va_s0 win alg key roundkeys_b hkeys_b /\ va_ensure_total va_b0 va_s0
va_sM va_fM /\ va_get_ok va_sM /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = (if
win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0
18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in
Vale.X64.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\
Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_sM) hkeys_b)
(Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key
(Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ va_get_xmm 6 va_sM == va_get_xmm
6 va_s0 /\ va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ va_state_eq va_sM
(va_update_flags va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM
(va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM
(va_update_mem_layout va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rR12 va_sM
(va_update_reg64 rR8 va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM
(va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))))))))))
val va_lemma_Keyhash_init : va_b0:va_code -> va_s0:va_state -> win:bool -> alg:algorithm ->
key:(seq nat32) -> roundkeys_b:buffer128 -> hkeys_b:buffer128
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Keyhash_init win alg) va_s0 /\ va_get_ok va_s0 /\ (let
(round_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else
va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = (if win then
va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in Vale.X64.Memory.is_initial_heap
(va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (aesni_enabled /\ pclmulqdq_enabled /\
avx_enabled /\ sse_enabled) /\ (alg = AES_128 \/ alg = AES_256) /\
Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\ Vale.AES.AES_s.is_aes_key_LE alg key
/\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b ==
Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem
va_s0) round_ptr roundkeys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0)
Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) hkey_ptr hkeys_b 8
(va_get_mem_layout va_s0) Secret)))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(let (round_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0
else va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = (if win
then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in Vale.X64.Decls.modifies_buffer128
hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\ Vale.AES.OptPublic.hkeys_reqs_pub
(Vale.X64.Decls.s128 (va_get_mem va_sM) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32
(Vale.AES.AES_s.aes_encrypt_LE alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0
0))) /\ va_get_xmm 6 va_sM == va_get_xmm 6 va_s0 /\ va_get_reg64 rR12 va_sM == va_get_reg64
rR12 va_s0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 6 va_sM (va_update_xmm 5
va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1
va_sM (va_update_xmm 0 va_sM (va_update_mem_layout va_sM (va_update_mem_heaplet 1 va_sM
(va_update_reg64 rR12 va_sM (va_update_reg64 rR8 va_sM (va_update_reg64 rRdx va_sM
(va_update_reg64 rRcx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem
va_sM va_s0)))))))))))))))))))
[@ va_qattr]
let va_wp_Keyhash_init (win:bool) (alg:algorithm) (key:(seq nat32)) (roundkeys_b:buffer128)
(hkeys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ ->
va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0
18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64
rRsi va_s0) in Vale.X64.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\
(aesni_enabled /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled) /\ (alg = AES_128 \/ alg =
AES_256) /\ Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\
Vale.AES.AES_s.is_aes_key_LE alg key /\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0)
roundkeys_b == Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128
(va_get_mem va_s0) round_ptr roundkeys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout
va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) hkey_ptr hkeys_b 8
(va_get_mem_layout va_s0) Secret) /\ (forall (va_x_mem:vale_heap) (va_x_rax:nat64)
(va_x_rcx:nat64) (va_x_rdx:nat64) (va_x_r8:nat64) (va_x_r12:nat64) (va_x_heap1:vale_heap)
(va_x_memLayout:vale_heap_layout) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32)
(va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32)
(va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 6 va_x_xmm6
(va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2
(va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_mem_layout va_x_memLayout
(va_upd_mem_heaplet 1 va_x_heap1 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rR8 va_x_r8
(va_upd_reg64 rRdx va_x_rdx (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rRax va_x_rax (va_upd_mem
va_x_mem va_s0))))))))))))))) in va_get_ok va_sM /\ (let (round_ptr:(va_int_range 0
18446744073709551615)) = va_if win (fun _ -> va_get_reg64 rRcx va_s0) (fun _ -> va_get_reg64
rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = va_if win (fun _ ->
va_get_reg64 rRdx va_s0) (fun _ -> va_get_reg64 rRsi va_s0) in
Vale.X64.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\
Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_sM) hkeys_b)
(Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key
(Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ va_get_xmm 6 va_sM == va_get_xmm
6 va_s0 /\ va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) ==> va_k va_sM (())))
val va_wpProof_Keyhash_init : win:bool -> alg:algorithm -> key:(seq nat32) -> roundkeys_b:buffer128
-> hkeys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Keyhash_init win alg key roundkeys_b hkeys_b va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Keyhash_init win alg) ([va_Mod_flags;
va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm
0; va_Mod_mem_layout; va_Mod_mem_heaplet 1; va_Mod_reg64 rR12; va_Mod_reg64 rR8; va_Mod_reg64
rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRax; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.InsAes.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"Vale.AES.X64.PolyOps.fsti.checked",
"Vale.AES.X64.GF128_Mul.fsti.checked",
"Vale.AES.X64.AES.fsti.checked",
"Vale.AES.OptPublic.fsti.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"Vale.AES.AES_common_s.fst.checked",
"Vale.AES.AES256_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.X64.GF128_Init.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.GF128_Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.PolyOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsAes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES256_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
win: Prims.bool ->
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 ->
roundkeys_b: Vale.X64.Memory.buffer128 ->
hkeys_b: Vale.X64.Memory.buffer128
-> Vale.X64.QuickCode.va_quickCode Prims.unit
(Vale.AES.X64.GF128_Init.va_code_Keyhash_init win alg) | Prims.Tot | [
"total"
] | [] | [
"Prims.bool",
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.X64.Memory.nat32",
"Vale.X64.Memory.buffer128",
"Vale.X64.QuickCode.va_QProc",
"Prims.unit",
"Vale.AES.X64.GF128_Init.va_code_Keyhash_init",
"Prims.Cons",
"Vale.X64.QuickCode.mod_t",
"Vale.X64.QuickCode.va_Mod_flags",
"Vale.X64.QuickCode.va_Mod_xmm",
"Vale.X64.QuickCode.va_Mod_mem_layout",
"Vale.X64.QuickCode.va_Mod_mem_heaplet",
"Vale.X64.QuickCode.va_Mod_reg64",
"Vale.X64.Machine_s.rR12",
"Vale.X64.Machine_s.rR8",
"Vale.X64.Machine_s.rRdx",
"Vale.X64.Machine_s.rRcx",
"Vale.X64.Machine_s.rRax",
"Vale.X64.QuickCode.va_Mod_mem",
"Prims.Nil",
"Vale.AES.X64.GF128_Init.va_wp_Keyhash_init",
"Vale.AES.X64.GF128_Init.va_wpProof_Keyhash_init",
"Vale.X64.QuickCode.va_quickCode"
] | [] | false | false | false | false | false | let va_quick_Keyhash_init
(win: bool)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
: (va_quickCode unit (va_code_Keyhash_init win alg)) =
| (va_QProc (va_code_Keyhash_init win alg)
([
va_Mod_flags; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2;
va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_mem_layout; va_Mod_mem_heaplet 1; va_Mod_reg64 rR12;
va_Mod_reg64 rR8; va_Mod_reg64 rRdx; va_Mod_reg64 rRcx; va_Mod_reg64 rRax; va_Mod_mem
])
(va_wp_Keyhash_init win alg key roundkeys_b hkeys_b)
(va_wpProof_Keyhash_init win alg key roundkeys_b hkeys_b)) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.seq_uint32_of_le | val seq_uint32_of_le (l: nat) (b: bytes{S.length b = 4 * l}) : s: S.seq UInt32.t {S.length s = l} | val seq_uint32_of_le (l: nat) (b: bytes{S.length b = 4 * l}) : s: S.seq UInt32.t {S.length s = l} | let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 58,
"end_line": 244,
"start_col": 0,
"start_line": 237
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Prims.nat -> b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 4 * l}
-> s: FStar.Seq.Base.seq FStar.UInt32.t {FStar.Seq.Base.length s = l} | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.Krml.Endianness.bytes",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.UInt8.t",
"FStar.Mul.op_Star",
"FStar.Seq.Base.empty",
"FStar.UInt32.t",
"Prims.bool",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.cons",
"FStar.Krml.Endianness.uint32_of_le",
"FStar.Krml.Endianness.seq_uint32_of_le",
"Prims.op_Subtraction",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.split"
] | [
"recursion"
] | false | false | false | false | false | let rec seq_uint32_of_le (l: nat) (b: bytes{S.length b = 4 * l})
: s: S.seq UInt32.t {S.length s = l} =
| if S.length b = 0
then S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.seq_uint64_of_le | val seq_uint64_of_le (l: nat) (b: bytes{S.length b = 8 * l}) : s: S.seq UInt64.t {S.length s = l} | val seq_uint64_of_le (l: nat) (b: bytes{S.length b = 8 * l}) : s: S.seq UInt64.t {S.length s = l} | let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 58,
"end_line": 284,
"start_col": 0,
"start_line": 277
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint32")]
let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint32_of_be")]
let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint32")]
let rec be_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Prims.nat -> b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8 * l}
-> s: FStar.Seq.Base.seq FStar.UInt64.t {FStar.Seq.Base.length s = l} | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.Krml.Endianness.bytes",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.UInt8.t",
"FStar.Mul.op_Star",
"FStar.Seq.Base.empty",
"FStar.UInt64.t",
"Prims.bool",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.cons",
"FStar.Krml.Endianness.uint64_of_le",
"FStar.Krml.Endianness.seq_uint64_of_le",
"Prims.op_Subtraction",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.split"
] | [
"recursion"
] | false | false | false | false | false | let rec seq_uint64_of_le (l: nat) (b: bytes{S.length b = 8 * l})
: s: S.seq UInt64.t {S.length s = l} =
| if S.length b = 0
then S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.seq_uint32_of_be | val seq_uint32_of_be (l: nat) (b: bytes{S.length b = 4 * l}) : s: S.seq UInt32.t {S.length s = l} | val seq_uint32_of_be (l: nat) (b: bytes{S.length b = 4 * l}) : s: S.seq UInt32.t {S.length s = l} | let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 58,
"end_line": 264,
"start_col": 0,
"start_line": 257
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint32")]
let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Prims.nat -> b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 4 * l}
-> s: FStar.Seq.Base.seq FStar.UInt32.t {FStar.Seq.Base.length s = l} | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.Krml.Endianness.bytes",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.UInt8.t",
"FStar.Mul.op_Star",
"FStar.Seq.Base.empty",
"FStar.UInt32.t",
"Prims.bool",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.cons",
"FStar.Krml.Endianness.uint32_of_be",
"FStar.Krml.Endianness.seq_uint32_of_be",
"Prims.op_Subtraction",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.split"
] | [
"recursion"
] | false | false | false | false | false | let rec seq_uint32_of_be (l: nat) (b: bytes{S.length b = 4 * l})
: s: S.seq UInt32.t {S.length s = l} =
| if S.length b = 0
then S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl) | false |
Hacl.Spec.Bignum.Multiplication.fst | Hacl.Spec.Bignum.Multiplication.bn_mul_loop_lemma | val bn_mul_loop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i <= bLen} ->
Lemma (let res = create (aLen + bLen) (uint #t 0) in
let resi = repeati i (bn_mul_ a b) res in
eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i) | val bn_mul_loop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i <= bLen} ->
Lemma (let res = create (aLen + bLen) (uint #t 0) in
let resi = repeati i (bn_mul_ a b) res in
eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i) | let rec bn_mul_loop_lemma #t #aLen #bLen a b i =
let res = create (aLen + bLen) (uint #t 0) in
let resi = repeati i (bn_mul_ a b) res in
if i = 0 then begin
eq_repeati0 i (bn_mul_ a b) res;
bn_eval0 b;
bn_eval_zeroes #t (aLen + bLen) (aLen + i);
() end
else begin
unfold_repeati i (bn_mul_ a b) res (i - 1);
let resi1 = repeati (i - 1) (bn_mul_ a b) res in
assert (resi == bn_mul_ a b (i - 1) resi1);
bn_mul_loop_lemma a b (i - 1);
assert (eval_ (aLen + bLen) resi1 (aLen + i - 1) == bn_v a * eval_ bLen b (i - 1));
bn_mul_loop_lemma_step a b i resi1;
assert (eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i);
() end | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 445,
"start_col": 0,
"start_line": 429
} | module Hacl.Spec.Bignum.Multiplication
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Lib
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val bn_mul1_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_f #t #aLen a l i c =
mul_wide_add a.[i] l c
val bn_mul1:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t ->
limb t & lbignum t aLen
let bn_mul1 #t #aLen a l =
generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0)
val bn_mul1_add_in_place_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_add_in_place_f #t #aLen a l acc i c =
mul_wide_add2 a.[i] l c acc.[i]
val bn_mul1_add_in_place:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen ->
limb t & lbignum t aLen
let bn_mul1_add_in_place #t #aLen a l acc =
generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0)
val bn_mul1_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> #resLen:size_nat
-> a:lbignum t aLen
-> b_j:limb t
-> j:size_nat{j + aLen <= resLen}
-> res:lbignum t resLen ->
limb t & lbignum t resLen
let bn_mul1_lshift_add #t #aLen #resLen a b_j j res =
let res' = sub res j aLen in
let c, res' = bn_mul1_add_in_place a b_j res' in
let res = update_sub res j aLen res' in
c, res
val bn_mul_:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> j:size_nat{j < bLen}
-> res:lbignum t (aLen + bLen) ->
lbignum t (aLen + bLen)
let bn_mul_ #t #aLen #bLen a b j res =
let c, res = bn_mul1_lshift_add a b.[j] j res in
res.[aLen + j] <- c
val bn_mul:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen ->
lbignum t (aLen + bLen)
let bn_mul #t #aLen #bLen a b =
let res = create (aLen + bLen) (uint #t 0) in
repeati bLen (bn_mul_ a b) res
val bn_mul1_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l))
let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) =
let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
let c, e = mul_wide_add a.[i - 1] l c1 in
assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1);
calc (==) {
v c * b2 + bn_v #t #i res;
(==) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
(==) { }
v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1;
(==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1;
(==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l);
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l;
(==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) }
(eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l;
(==) { bn_eval_unfold_i a i }
eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l)
val bn_mul1_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)
let rec bn_mul1_lemma_loop #t #aLen a l i =
let pbits = bits t in
let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
if i = 0 then begin
eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0);
assert (c == uint #t 0 /\ res == Seq.empty);
bn_eval0 #t #0 res;
assert_norm (pow2 0 = 1);
bn_eval0 a;
() end
else begin
let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in
generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1);
assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) ==
generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0)));
assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1));
bn_mul1_lemma_loop a l (i - 1);
assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l);
bn_mul1_lemma_loop_step a l i (c1, res1);
assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l);
() end
val bn_mul1_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t ->
Lemma (let (c, res) = bn_mul1 a l in
v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l)
let bn_mul1_lemma #t #aLen a l =
let (c, res) = bn_mul1 a l in
bn_mul1_lemma_loop a l aLen
#push-options "--z3rlimit 150"
val bn_mul1_add_in_place_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l))
let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) =
let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
let c, e = mul_wide_add2 a.[i - 1] l c1 acc.[i - 1] in
assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1 + v acc.[i - 1]);
calc (==) {
v c * b2 + bn_v #t #i res;
(==) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
(==) { }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l -
(v e + v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1 + v e * b1;
(==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) b1 }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1;
(==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l + v acc.[i - 1]) b1 }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 +
(v a.[i - 1] * v l + v acc.[i - 1]) * b1;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[i - 1] * v l + v acc.[i - 1]) * b1;
(==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] * v l) (v acc.[i - 1]) b1 }
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1 + v acc.[i - 1] * b1;
(==) { bn_eval_unfold_i acc i }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l);
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l;
(==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) }
eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l;
(==) { bn_eval_unfold_i a i }
eval_ aLen acc i + eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)
#pop-options
val bn_mul1_add_in_place_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)
let rec bn_mul1_add_in_place_lemma_loop #t #aLen a l acc i =
let pbits = bits t in
let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
if i = 0 then begin
eq_generate_elems0 aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0);
assert (c == uint #t 0 /\ res == Seq.empty);
bn_eval0 #t #0 res;
assert_norm (pow2 0 = 1);
bn_eval0 a;
bn_eval0 acc;
() end
else begin
let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
generate_elems_unfold aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) (i - 1);
assert (generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) ==
generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0)));
assert ((c, res) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1));
bn_mul1_add_in_place_lemma_loop a l acc (i - 1);
assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l);
bn_mul1_add_in_place_lemma_loop_step a l acc i (c1, res1);
assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l);
() end
val bn_mul1_add_in_place_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen ->
Lemma (let (c, res) = bn_mul1_add_in_place a l acc in
v c * pow2 (bits t * aLen) + bn_v res == bn_v acc + bn_v a * v l)
let bn_mul1_add_in_place_lemma #t #aLen a l acc =
let (c, res) = bn_mul1_add_in_place a l acc in
bn_mul1_add_in_place_lemma_loop a l acc aLen
val bn_mul1_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> #resLen:size_nat
-> a:lbignum t aLen
-> b_j:limb t
-> j:size_nat{j + aLen <= resLen}
-> acc:lbignum t resLen ->
Lemma (let (c, res) = bn_mul1_lshift_add a b_j j acc in
v c * pow2 (bits t * (aLen + j)) + eval_ resLen res (aLen + j) ==
eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (bits t * j) /\
slice res (aLen + j) resLen == slice acc (aLen + j) resLen)
let bn_mul1_lshift_add_lemma #t #aLen #resLen a b_j j acc =
let pbits = bits t in
let res1 = sub acc j aLen in
let c, res2 = bn_mul1_add_in_place a b_j res1 in
bn_mul1_add_in_place_lemma a b_j res1;
assert (v c * pow2 (pbits * aLen) + bn_v res2 == bn_v res1 + bn_v a * v b_j);
let res = update_sub acc j aLen res2 in
bn_eval_split_i (sub res 0 (j + aLen)) j;
bn_eval_extensionality_j res (sub res 0 (j + aLen)) (j + aLen);
assert (eval_ resLen res (j + aLen) == bn_v #t #j (sub res 0 j) + pow2 (pbits * j) * bn_v res2);
eq_intro (sub res 0 j) (sub acc 0 j);
assert (bn_v #t #j (sub res 0 j) == bn_v #t #j (sub acc 0 j));
bn_eval_split_i (sub acc 0 (j + aLen)) j;
bn_eval_extensionality_j acc (sub acc 0 (j + aLen)) (j + aLen);
assert (eval_ resLen acc (j + aLen) == bn_v #t #j (sub acc 0 j) + pow2 (pbits * j) * bn_v res1);
calc (==) {
v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j);
(==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * j) }
v c * (pow2 (pbits * aLen) * pow2 (pbits * j)) + eval_ resLen res (aLen + j);
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * aLen)) (pow2 (pbits * j)) }
v c * pow2 (pbits * aLen) * pow2 (pbits * j) + eval_ resLen res (aLen + j);
(==) { }
(bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen res (aLen + j);
(==) { }
(bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen acc (j + aLen) - pow2 (pbits * j) * bn_v res1 + pow2 (pbits * j) * bn_v res2;
(==) { Math.Lemmas.distributivity_add_right (pow2 (pbits * j)) (bn_v res1) (bn_v a * v b_j - bn_v res2) }
pow2 (pbits * j) * (bn_v a * v b_j - bn_v res2) + eval_ resLen acc (j + aLen) + pow2 (pbits * j) * bn_v res2;
(==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * j)) (bn_v a * v b_j) (bn_v res2) }
pow2 (pbits * j) * (bn_v a * v b_j) + eval_ resLen acc (j + aLen);
};
assert (v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j) ==
eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (pbits * j));
eq_intro (slice res (aLen + j) resLen) (slice acc (aLen + j) resLen)
val bn_mul_lemma_:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> j:size_nat{j < bLen}
-> acc:lbignum t (aLen + bLen) ->
Lemma (let res = bn_mul_ a b j acc in
v res.[aLen + j] * pow2 (bits t * (aLen + j)) + eval_ (aLen + bLen) res (aLen + j) ==
eval_ (aLen + bLen) acc (aLen + j) + bn_v a * v b.[j] * pow2 (bits t * j))
let bn_mul_lemma_ #t #aLen #bLen a b j acc =
let c, res = bn_mul1_lshift_add a b.[j] j acc in
bn_mul1_lshift_add_lemma a b.[j] j acc;
let res1 = res.[aLen + j] <- c in
bn_eval_extensionality_j res res1 (aLen + j)
val bn_mul_loop_lemma_step:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:pos{i <= bLen}
-> resi1:lbignum t (aLen + bLen) -> Lemma
(requires eval_ (aLen + bLen) resi1 (aLen + i - 1) == bn_v a * eval_ bLen b (i - 1))
(ensures
(let resi = bn_mul_ a b (i - 1) resi1 in
eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i))
let bn_mul_loop_lemma_step #t #aLen #bLen a b i resi1 =
let pbits = bits t in
let resi = bn_mul_ a b (i - 1) resi1 in
bn_mul_lemma_ a b (i - 1) resi1;
assert
(v resi.[aLen + i - 1] * pow2 (pbits * (aLen + i - 1)) + eval_ (aLen + bLen) resi (aLen + i - 1) ==
eval_ (aLen + bLen) resi1 (aLen + i - 1) + bn_v a * v b.[i - 1] * (pow2 (pbits * (i - 1))));
calc (==) {
eval_ (aLen + bLen) resi (aLen + i);
(==) { bn_eval_unfold_i resi (aLen + i) }
eval_ (aLen + bLen) resi (aLen + i - 1) + v resi.[aLen + i - 1] * pow2 (pbits * (aLen + i - 1));
(==) { }
eval_ (aLen + bLen) resi1 (aLen + i - 1) + bn_v a * v b.[i - 1] * (pow2 (pbits * (i - 1)));
(==) { }
bn_v a * eval_ bLen b (i - 1) + bn_v a * v b.[i - 1] * (pow2 (pbits * (i - 1)));
(==) { Math.Lemmas.paren_mul_right (bn_v a) (v b.[i - 1]) (pow2 (pbits * (i - 1))) }
bn_v a * eval_ bLen b (i - 1) + bn_v a * (v b.[i - 1] * (pow2 (pbits * (i - 1))));
(==) { Math.Lemmas.distributivity_add_right (bn_v a) (eval_ bLen b (i - 1)) (v b.[i - 1] * (pow2 (pbits * (i - 1)))) }
bn_v a * (eval_ bLen b (i - 1) + v b.[i - 1] * (pow2 (pbits * (i - 1))));
(==) { bn_eval_unfold_i b i }
bn_v a * eval_ bLen b i;
};
assert (eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i)
val bn_mul_loop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i <= bLen} ->
Lemma (let res = create (aLen + bLen) (uint #t 0) in
let resi = repeati i (bn_mul_ a b) res in
eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Multiplication.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
b: Hacl.Spec.Bignum.Definitions.lbignum t bLen ->
i: Prims.nat{i <= bLen}
-> FStar.Pervasives.Lemma
(ensures
(let res = Lib.Sequence.create (aLen + bLen) (Lib.IntTypes.uint 0) in
let resi =
Lib.LoopCombinators.repeati i (Hacl.Spec.Bignum.Multiplication.bn_mul_ a b) res
in
Hacl.Spec.Bignum.Definitions.eval_ (aLen + bLen) resi (aLen + i) ==
Hacl.Spec.Bignum.Definitions.bn_v a * Hacl.Spec.Bignum.Definitions.eval_ bLen b i)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Prims.unit",
"Hacl.Spec.Bignum.Definitions.bn_eval_zeroes",
"Hacl.Spec.Bignum.Definitions.bn_eval0",
"Lib.LoopCombinators.eq_repeati0",
"Hacl.Spec.Bignum.Multiplication.bn_mul_",
"Prims.bool",
"Prims._assert",
"Prims.eq2",
"Hacl.Spec.Bignum.Definitions.eval_",
"FStar.Mul.op_Star",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.Multiplication.bn_mul_loop_lemma_step",
"Prims.op_Subtraction",
"Hacl.Spec.Bignum.Multiplication.bn_mul_loop_lemma",
"Lib.LoopCombinators.repeati",
"Lib.LoopCombinators.unfold_repeati",
"Lib.Sequence.lseq",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.l_and",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.create",
"Lib.IntTypes.mk_int",
"Lib.IntTypes.SEC",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.op_LessThan",
"Lib.Sequence.index",
"Lib.Sequence.create",
"Lib.IntTypes.uint"
] | [
"recursion"
] | false | false | true | false | false | let rec bn_mul_loop_lemma #t #aLen #bLen a b i =
| let res = create (aLen + bLen) (uint #t 0) in
let resi = repeati i (bn_mul_ a b) res in
if i = 0
then
(eq_repeati0 i (bn_mul_ a b) res;
bn_eval0 b;
bn_eval_zeroes #t (aLen + bLen) (aLen + i);
())
else
(unfold_repeati i (bn_mul_ a b) res (i - 1);
let resi1 = repeati (i - 1) (bn_mul_ a b) res in
assert (resi == bn_mul_ a b (i - 1) resi1);
bn_mul_loop_lemma a b (i - 1);
assert (eval_ (aLen + bLen) resi1 (aLen + i - 1) == bn_v a * eval_ bLen b (i - 1));
bn_mul_loop_lemma_step a b i resi1;
assert (eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i);
()) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.be_of_seq_uint64 | val be_of_seq_uint64 (s: S.seq UInt64.t)
: Tot (b: bytes{S.length b = 8 * S.length s}) (decreases (S.length s)) | val be_of_seq_uint64 (s: S.seq UInt64.t)
: Tot (b: bytes{S.length b = 8 * S.length s}) (decreases (S.length s)) | let rec be_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 68,
"end_line": 314,
"start_col": 0,
"start_line": 307
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint32")]
let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint32_of_be")]
let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint32")]
let rec be_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_le")]
let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint64")]
let rec le_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_be")]
let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: FStar.Seq.Base.seq FStar.UInt64.t
-> Prims.Tot
(b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8 * FStar.Seq.Base.length s}) | Prims.Tot | [
"total",
""
] | [] | [
"FStar.Seq.Base.seq",
"FStar.UInt64.t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.Seq.Base.empty",
"FStar.UInt8.t",
"Prims.bool",
"FStar.Seq.Base.append",
"FStar.Krml.Endianness.be_of_uint64",
"FStar.Seq.Properties.head",
"FStar.Krml.Endianness.be_of_seq_uint64",
"FStar.Seq.Properties.tail",
"FStar.Krml.Endianness.bytes",
"Prims.b2t",
"FStar.Mul.op_Star"
] | [
"recursion"
] | false | false | false | false | false | let rec be_of_seq_uint64 (s: S.seq UInt64.t)
: Tot (b: bytes{S.length b = 8 * S.length s}) (decreases (S.length s)) =
| if S.length s = 0 then S.empty else S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s)) | false |
Hacl.Spec.Bignum.Multiplication.fst | Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_lemma_loop | val bn_mul1_add_in_place_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) | val bn_mul1_add_in_place_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) | let rec bn_mul1_add_in_place_lemma_loop #t #aLen a l acc i =
let pbits = bits t in
let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
if i = 0 then begin
eq_generate_elems0 aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0);
assert (c == uint #t 0 /\ res == Seq.empty);
bn_eval0 #t #0 res;
assert_norm (pow2 0 = 1);
bn_eval0 a;
bn_eval0 acc;
() end
else begin
let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
generate_elems_unfold aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) (i - 1);
assert (generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) ==
generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0)));
assert ((c, res) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1));
bn_mul1_add_in_place_lemma_loop a l acc (i - 1);
assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l);
bn_mul1_add_in_place_lemma_loop_step a l acc i (c1, res1);
assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l);
() end | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 293,
"start_col": 0,
"start_line": 272
} | module Hacl.Spec.Bignum.Multiplication
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Lib
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val bn_mul1_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_f #t #aLen a l i c =
mul_wide_add a.[i] l c
val bn_mul1:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t ->
limb t & lbignum t aLen
let bn_mul1 #t #aLen a l =
generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0)
val bn_mul1_add_in_place_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_add_in_place_f #t #aLen a l acc i c =
mul_wide_add2 a.[i] l c acc.[i]
val bn_mul1_add_in_place:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen ->
limb t & lbignum t aLen
let bn_mul1_add_in_place #t #aLen a l acc =
generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0)
val bn_mul1_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> #resLen:size_nat
-> a:lbignum t aLen
-> b_j:limb t
-> j:size_nat{j + aLen <= resLen}
-> res:lbignum t resLen ->
limb t & lbignum t resLen
let bn_mul1_lshift_add #t #aLen #resLen a b_j j res =
let res' = sub res j aLen in
let c, res' = bn_mul1_add_in_place a b_j res' in
let res = update_sub res j aLen res' in
c, res
val bn_mul_:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> j:size_nat{j < bLen}
-> res:lbignum t (aLen + bLen) ->
lbignum t (aLen + bLen)
let bn_mul_ #t #aLen #bLen a b j res =
let c, res = bn_mul1_lshift_add a b.[j] j res in
res.[aLen + j] <- c
val bn_mul:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen ->
lbignum t (aLen + bLen)
let bn_mul #t #aLen #bLen a b =
let res = create (aLen + bLen) (uint #t 0) in
repeati bLen (bn_mul_ a b) res
val bn_mul1_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l))
let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) =
let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
let c, e = mul_wide_add a.[i - 1] l c1 in
assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1);
calc (==) {
v c * b2 + bn_v #t #i res;
(==) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
(==) { }
v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1;
(==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1;
(==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l);
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l;
(==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) }
(eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l;
(==) { bn_eval_unfold_i a i }
eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l)
val bn_mul1_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)
let rec bn_mul1_lemma_loop #t #aLen a l i =
let pbits = bits t in
let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
if i = 0 then begin
eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0);
assert (c == uint #t 0 /\ res == Seq.empty);
bn_eval0 #t #0 res;
assert_norm (pow2 0 = 1);
bn_eval0 a;
() end
else begin
let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in
generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1);
assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) ==
generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0)));
assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1));
bn_mul1_lemma_loop a l (i - 1);
assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l);
bn_mul1_lemma_loop_step a l i (c1, res1);
assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l);
() end
val bn_mul1_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t ->
Lemma (let (c, res) = bn_mul1 a l in
v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l)
let bn_mul1_lemma #t #aLen a l =
let (c, res) = bn_mul1 a l in
bn_mul1_lemma_loop a l aLen
#push-options "--z3rlimit 150"
val bn_mul1_add_in_place_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l))
let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) =
let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
let c, e = mul_wide_add2 a.[i - 1] l c1 acc.[i - 1] in
assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1 + v acc.[i - 1]);
calc (==) {
v c * b2 + bn_v #t #i res;
(==) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
(==) { }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l -
(v e + v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1 + v e * b1;
(==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) b1 }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1;
(==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l + v acc.[i - 1]) b1 }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 +
(v a.[i - 1] * v l + v acc.[i - 1]) * b1;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[i - 1] * v l + v acc.[i - 1]) * b1;
(==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] * v l) (v acc.[i - 1]) b1 }
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1 + v acc.[i - 1] * b1;
(==) { bn_eval_unfold_i acc i }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l);
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l;
(==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) }
eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l;
(==) { bn_eval_unfold_i a i }
eval_ aLen acc i + eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)
#pop-options
val bn_mul1_add_in_place_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Multiplication.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
l: Hacl.Spec.Bignum.Definitions.limb t ->
acc: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
i: Prims.nat{i <= aLen}
-> FStar.Pervasives.Lemma
(ensures
(let _ =
Hacl.Spec.Lib.generate_elems aLen
i
(Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_f a l acc)
(Lib.IntTypes.uint 0)
in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in
let _ = _ in
Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * i) +
Hacl.Spec.Bignum.Definitions.bn_v res ==
Hacl.Spec.Bignum.Definitions.eval_ aLen acc i +
Hacl.Spec.Bignum.Definitions.eval_ aLen a i * Lib.IntTypes.v l)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.seq",
"Prims.eq2",
"Lib.Sequence.length",
"Prims.op_Equality",
"Prims.int",
"Prims.unit",
"Hacl.Spec.Bignum.Definitions.bn_eval0",
"FStar.Pervasives.assert_norm",
"Prims.pow2",
"Prims._assert",
"Prims.l_and",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Lib.IntTypes.uint",
"FStar.Seq.Base.seq",
"Prims.l_or",
"FStar.Seq.Base.length",
"FStar.Seq.Base.empty",
"Hacl.Spec.Lib.eq_generate_elems0",
"Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_f",
"Prims.bool",
"Prims.op_Subtraction",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Lib.IntTypes.v",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.Definitions.eval_",
"Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_lemma_loop_step",
"FStar.Pervasives.Native.Mktuple2",
"Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_lemma_loop",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Lib.generate_elem_f",
"Hacl.Spec.Lib.generate_elems",
"Hacl.Spec.Lib.generate_elems_unfold",
"Hacl.Spec.Lib.generate_elem_a",
"Lib.IntTypes.bits"
] | [
"recursion"
] | false | false | true | false | false | let rec bn_mul1_add_in_place_lemma_loop #t #aLen a l acc i =
| let pbits = bits t in
let c, res:generate_elem_a (limb t) (limb t) aLen i =
generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0)
in
if i = 0
then
(eq_generate_elems0 aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0);
assert (c == uint #t 0 /\ res == Seq.empty);
bn_eval0 #t #0 res;
assert_norm (pow2 0 = 1);
bn_eval0 a;
bn_eval0 acc;
())
else
let c1, res1:generate_elem_a (limb t) (limb t) aLen (i - 1) =
generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0)
in
generate_elems_unfold aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) (i - 1);
assert (generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) ==
generate_elem_f aLen
(bn_mul1_add_in_place_f a l acc)
(i - 1)
(generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0)));
assert ((c, res) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1));
bn_mul1_add_in_place_lemma_loop a l acc (i - 1);
assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 ==
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l);
bn_mul1_add_in_place_lemma_loop_step a l acc i (c1, res1);
assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l);
() | false |
Hacl.Spec.Bignum.Multiplication.fst | Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma_loop | val bn_mul1_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l) | val bn_mul1_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l) | let rec bn_mul1_lemma_loop #t #aLen a l i =
let pbits = bits t in
let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
if i = 0 then begin
eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0);
assert (c == uint #t 0 /\ res == Seq.empty);
bn_eval0 #t #0 res;
assert_norm (pow2 0 = 1);
bn_eval0 a;
() end
else begin
let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in
generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1);
assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) ==
generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0)));
assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1));
bn_mul1_lemma_loop a l (i - 1);
assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l);
bn_mul1_lemma_loop_step a l i (c1, res1);
assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l);
() end | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 189,
"start_col": 0,
"start_line": 169
} | module Hacl.Spec.Bignum.Multiplication
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Lib
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val bn_mul1_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_f #t #aLen a l i c =
mul_wide_add a.[i] l c
val bn_mul1:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t ->
limb t & lbignum t aLen
let bn_mul1 #t #aLen a l =
generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0)
val bn_mul1_add_in_place_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_add_in_place_f #t #aLen a l acc i c =
mul_wide_add2 a.[i] l c acc.[i]
val bn_mul1_add_in_place:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen ->
limb t & lbignum t aLen
let bn_mul1_add_in_place #t #aLen a l acc =
generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0)
val bn_mul1_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> #resLen:size_nat
-> a:lbignum t aLen
-> b_j:limb t
-> j:size_nat{j + aLen <= resLen}
-> res:lbignum t resLen ->
limb t & lbignum t resLen
let bn_mul1_lshift_add #t #aLen #resLen a b_j j res =
let res' = sub res j aLen in
let c, res' = bn_mul1_add_in_place a b_j res' in
let res = update_sub res j aLen res' in
c, res
val bn_mul_:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> j:size_nat{j < bLen}
-> res:lbignum t (aLen + bLen) ->
lbignum t (aLen + bLen)
let bn_mul_ #t #aLen #bLen a b j res =
let c, res = bn_mul1_lshift_add a b.[j] j res in
res.[aLen + j] <- c
val bn_mul:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen ->
lbignum t (aLen + bLen)
let bn_mul #t #aLen #bLen a b =
let res = create (aLen + bLen) (uint #t 0) in
repeati bLen (bn_mul_ a b) res
val bn_mul1_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l))
let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) =
let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
let c, e = mul_wide_add a.[i - 1] l c1 in
assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1);
calc (==) {
v c * b2 + bn_v #t #i res;
(==) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
(==) { }
v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1;
(==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1;
(==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l);
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l;
(==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) }
(eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l;
(==) { bn_eval_unfold_i a i }
eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l)
val bn_mul1_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Multiplication.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
l: Hacl.Spec.Bignum.Definitions.limb t ->
i: Prims.nat{i <= aLen}
-> FStar.Pervasives.Lemma
(ensures
(let _ =
Hacl.Spec.Lib.generate_elems aLen
i
(Hacl.Spec.Bignum.Multiplication.bn_mul1_f a l)
(Lib.IntTypes.uint 0)
in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in
let _ = _ in
Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * i) +
Hacl.Spec.Bignum.Definitions.bn_v res ==
Hacl.Spec.Bignum.Definitions.eval_ aLen a i * Lib.IntTypes.v l)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.seq",
"Prims.eq2",
"Lib.Sequence.length",
"Prims.op_Equality",
"Prims.int",
"Prims.unit",
"Hacl.Spec.Bignum.Definitions.bn_eval0",
"FStar.Pervasives.assert_norm",
"Prims.pow2",
"Prims._assert",
"Prims.l_and",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Lib.IntTypes.uint",
"FStar.Seq.Base.seq",
"Prims.l_or",
"FStar.Seq.Base.length",
"FStar.Seq.Base.empty",
"Hacl.Spec.Lib.eq_generate_elems0",
"Hacl.Spec.Bignum.Multiplication.bn_mul1_f",
"Prims.bool",
"Prims.op_Subtraction",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Lib.IntTypes.v",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.Definitions.eval_",
"Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma_loop_step",
"FStar.Pervasives.Native.Mktuple2",
"Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma_loop",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Lib.generate_elem_f",
"Hacl.Spec.Lib.generate_elems",
"Hacl.Spec.Lib.generate_elems_unfold",
"Hacl.Spec.Lib.generate_elem_a",
"Lib.IntTypes.bits"
] | [
"recursion"
] | false | false | true | false | false | let rec bn_mul1_lemma_loop #t #aLen a l i =
| let pbits = bits t in
let c, res:generate_elem_a (limb t) (limb t) aLen i =
generate_elems aLen i (bn_mul1_f a l) (uint #t 0)
in
if i = 0
then
(eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0);
assert (c == uint #t 0 /\ res == Seq.empty);
bn_eval0 #t #0 res;
assert_norm (pow2 0 = 1);
bn_eval0 a;
())
else
let c1, res1:generate_elem_a (limb t) (limb t) aLen (i - 1) =
generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0)
in
generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1);
assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) ==
generate_elem_f aLen
(bn_mul1_f a l)
(i - 1)
(generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0)));
assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1));
bn_mul1_lemma_loop a l (i - 1);
assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l);
bn_mul1_lemma_loop_step a l i (c1, res1);
assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l);
() | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.seq_uint64_of_be | val seq_uint64_of_be (l: nat) (b: bytes{S.length b = 8 * l}) : s: S.seq UInt64.t {S.length s = l} | val seq_uint64_of_be (l: nat) (b: bytes{S.length b = 8 * l}) : s: S.seq UInt64.t {S.length s = l} | let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 58,
"end_line": 304,
"start_col": 0,
"start_line": 297
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint32")]
let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint32_of_be")]
let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint32")]
let rec be_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_le")]
let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint64")]
let rec le_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Prims.nat -> b: FStar.Krml.Endianness.bytes{FStar.Seq.Base.length b = 8 * l}
-> s: FStar.Seq.Base.seq FStar.UInt64.t {FStar.Seq.Base.length s = l} | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.Krml.Endianness.bytes",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.UInt8.t",
"FStar.Mul.op_Star",
"FStar.Seq.Base.empty",
"FStar.UInt64.t",
"Prims.bool",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.cons",
"FStar.Krml.Endianness.uint64_of_be",
"FStar.Krml.Endianness.seq_uint64_of_be",
"Prims.op_Subtraction",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.split"
] | [
"recursion"
] | false | false | false | false | false | let rec seq_uint64_of_be (l: nat) (b: bytes{S.length b = 8 * l})
: s: S.seq UInt64.t {S.length s = l} =
| if S.length b = 0
then S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.offset_uint32_be | val offset_uint32_be (b: bytes) (n i: nat)
: Lemma (requires (S.length b = 4 * n /\ i < n))
(ensures (S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4))))
(decreases (S.length b))
[SMTPat (S.index (seq_uint32_of_be n b) i)] | val offset_uint32_be (b: bytes) (n i: nat)
: Lemma (requires (S.length b = 4 * n /\ i < n))
(ensures (S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4))))
(decreases (S.length b))
[SMTPat (S.index (seq_uint32_of_be n b) i)] | let rec offset_uint32_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_be tl (n - 1) (i - 1) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 41,
"end_line": 338,
"start_col": 0,
"start_line": 320
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint32")]
let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint32_of_be")]
let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint32")]
let rec be_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_le")]
let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint64")]
let rec le_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_be")]
let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint64")]
let rec be_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s))
#set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Krml.Endianness.bytes -> n: Prims.nat -> i: Prims.nat
-> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b = 4 * n /\ i < n)
(ensures
FStar.Seq.Base.index (FStar.Krml.Endianness.seq_uint32_of_be n b) i ==
FStar.Krml.Endianness.uint32_of_be (FStar.Seq.Base.slice b (4 * i) (4 * i + 4)))
(decreases FStar.Seq.Base.length b)
[SMTPat (FStar.Seq.Base.index (FStar.Krml.Endianness.seq_uint32_of_be n b) i)] | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"FStar.Krml.Endianness.bytes",
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.UInt8.t",
"FStar.Pervasives.false_elim",
"Prims.unit",
"Prims.bool",
"FStar.Seq.Base.seq",
"FStar.Krml.Endianness.offset_uint32_be",
"Prims.op_Subtraction",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.split",
"Prims.l_and",
"Prims.b2t",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Prims.squash",
"Prims.eq2",
"FStar.UInt32.t",
"FStar.Seq.Base.index",
"FStar.Krml.Endianness.seq_uint32_of_be",
"FStar.Krml.Endianness.uint32_of_be",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec offset_uint32_be (b: bytes) (n i: nat)
: Lemma (requires (S.length b = 4 * n /\ i < n))
(ensures (S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4))))
(decreases (S.length b))
[SMTPat (S.index (seq_uint32_of_be n b) i)] =
| if S.length b = 0
then false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then () else offset_uint32_be tl (n - 1) (i - 1) | false |
Hacl.Spec.Bignum.Multiplication.fst | Hacl.Spec.Bignum.Multiplication.bn_mul_loop_lemma_step | val bn_mul_loop_lemma_step:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:pos{i <= bLen}
-> resi1:lbignum t (aLen + bLen) -> Lemma
(requires eval_ (aLen + bLen) resi1 (aLen + i - 1) == bn_v a * eval_ bLen b (i - 1))
(ensures
(let resi = bn_mul_ a b (i - 1) resi1 in
eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i)) | val bn_mul_loop_lemma_step:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:pos{i <= bLen}
-> resi1:lbignum t (aLen + bLen) -> Lemma
(requires eval_ (aLen + bLen) resi1 (aLen + i - 1) == bn_v a * eval_ bLen b (i - 1))
(ensures
(let resi = bn_mul_ a b (i - 1) resi1 in
eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i)) | let bn_mul_loop_lemma_step #t #aLen #bLen a b i resi1 =
let pbits = bits t in
let resi = bn_mul_ a b (i - 1) resi1 in
bn_mul_lemma_ a b (i - 1) resi1;
assert
(v resi.[aLen + i - 1] * pow2 (pbits * (aLen + i - 1)) + eval_ (aLen + bLen) resi (aLen + i - 1) ==
eval_ (aLen + bLen) resi1 (aLen + i - 1) + bn_v a * v b.[i - 1] * (pow2 (pbits * (i - 1))));
calc (==) {
eval_ (aLen + bLen) resi (aLen + i);
(==) { bn_eval_unfold_i resi (aLen + i) }
eval_ (aLen + bLen) resi (aLen + i - 1) + v resi.[aLen + i - 1] * pow2 (pbits * (aLen + i - 1));
(==) { }
eval_ (aLen + bLen) resi1 (aLen + i - 1) + bn_v a * v b.[i - 1] * (pow2 (pbits * (i - 1)));
(==) { }
bn_v a * eval_ bLen b (i - 1) + bn_v a * v b.[i - 1] * (pow2 (pbits * (i - 1)));
(==) { Math.Lemmas.paren_mul_right (bn_v a) (v b.[i - 1]) (pow2 (pbits * (i - 1))) }
bn_v a * eval_ bLen b (i - 1) + bn_v a * (v b.[i - 1] * (pow2 (pbits * (i - 1))));
(==) { Math.Lemmas.distributivity_add_right (bn_v a) (eval_ bLen b (i - 1)) (v b.[i - 1] * (pow2 (pbits * (i - 1)))) }
bn_v a * (eval_ bLen b (i - 1) + v b.[i - 1] * (pow2 (pbits * (i - 1))));
(==) { bn_eval_unfold_i b i }
bn_v a * eval_ bLen b i;
};
assert (eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i) | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 73,
"end_line": 415,
"start_col": 0,
"start_line": 392
} | module Hacl.Spec.Bignum.Multiplication
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Lib
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val bn_mul1_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_f #t #aLen a l i c =
mul_wide_add a.[i] l c
val bn_mul1:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t ->
limb t & lbignum t aLen
let bn_mul1 #t #aLen a l =
generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0)
val bn_mul1_add_in_place_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_add_in_place_f #t #aLen a l acc i c =
mul_wide_add2 a.[i] l c acc.[i]
val bn_mul1_add_in_place:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen ->
limb t & lbignum t aLen
let bn_mul1_add_in_place #t #aLen a l acc =
generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0)
val bn_mul1_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> #resLen:size_nat
-> a:lbignum t aLen
-> b_j:limb t
-> j:size_nat{j + aLen <= resLen}
-> res:lbignum t resLen ->
limb t & lbignum t resLen
let bn_mul1_lshift_add #t #aLen #resLen a b_j j res =
let res' = sub res j aLen in
let c, res' = bn_mul1_add_in_place a b_j res' in
let res = update_sub res j aLen res' in
c, res
val bn_mul_:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> j:size_nat{j < bLen}
-> res:lbignum t (aLen + bLen) ->
lbignum t (aLen + bLen)
let bn_mul_ #t #aLen #bLen a b j res =
let c, res = bn_mul1_lshift_add a b.[j] j res in
res.[aLen + j] <- c
val bn_mul:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen ->
lbignum t (aLen + bLen)
let bn_mul #t #aLen #bLen a b =
let res = create (aLen + bLen) (uint #t 0) in
repeati bLen (bn_mul_ a b) res
val bn_mul1_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l))
let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) =
let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
let c, e = mul_wide_add a.[i - 1] l c1 in
assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1);
calc (==) {
v c * b2 + bn_v #t #i res;
(==) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
(==) { }
v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1;
(==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1;
(==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l);
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l;
(==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) }
(eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l;
(==) { bn_eval_unfold_i a i }
eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l)
val bn_mul1_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)
let rec bn_mul1_lemma_loop #t #aLen a l i =
let pbits = bits t in
let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
if i = 0 then begin
eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0);
assert (c == uint #t 0 /\ res == Seq.empty);
bn_eval0 #t #0 res;
assert_norm (pow2 0 = 1);
bn_eval0 a;
() end
else begin
let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in
generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1);
assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) ==
generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0)));
assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1));
bn_mul1_lemma_loop a l (i - 1);
assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l);
bn_mul1_lemma_loop_step a l i (c1, res1);
assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l);
() end
val bn_mul1_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t ->
Lemma (let (c, res) = bn_mul1 a l in
v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l)
let bn_mul1_lemma #t #aLen a l =
let (c, res) = bn_mul1 a l in
bn_mul1_lemma_loop a l aLen
#push-options "--z3rlimit 150"
val bn_mul1_add_in_place_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l))
let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) =
let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
let c, e = mul_wide_add2 a.[i - 1] l c1 acc.[i - 1] in
assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1 + v acc.[i - 1]);
calc (==) {
v c * b2 + bn_v #t #i res;
(==) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
(==) { }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l -
(v e + v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1 + v e * b1;
(==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) b1 }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1;
(==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l + v acc.[i - 1]) b1 }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 +
(v a.[i - 1] * v l + v acc.[i - 1]) * b1;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[i - 1] * v l + v acc.[i - 1]) * b1;
(==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] * v l) (v acc.[i - 1]) b1 }
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1 + v acc.[i - 1] * b1;
(==) { bn_eval_unfold_i acc i }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l);
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l;
(==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) }
eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l;
(==) { bn_eval_unfold_i a i }
eval_ aLen acc i + eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)
#pop-options
val bn_mul1_add_in_place_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)
let rec bn_mul1_add_in_place_lemma_loop #t #aLen a l acc i =
let pbits = bits t in
let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
if i = 0 then begin
eq_generate_elems0 aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0);
assert (c == uint #t 0 /\ res == Seq.empty);
bn_eval0 #t #0 res;
assert_norm (pow2 0 = 1);
bn_eval0 a;
bn_eval0 acc;
() end
else begin
let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
generate_elems_unfold aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) (i - 1);
assert (generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) ==
generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0)));
assert ((c, res) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1));
bn_mul1_add_in_place_lemma_loop a l acc (i - 1);
assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l);
bn_mul1_add_in_place_lemma_loop_step a l acc i (c1, res1);
assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l);
() end
val bn_mul1_add_in_place_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen ->
Lemma (let (c, res) = bn_mul1_add_in_place a l acc in
v c * pow2 (bits t * aLen) + bn_v res == bn_v acc + bn_v a * v l)
let bn_mul1_add_in_place_lemma #t #aLen a l acc =
let (c, res) = bn_mul1_add_in_place a l acc in
bn_mul1_add_in_place_lemma_loop a l acc aLen
val bn_mul1_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> #resLen:size_nat
-> a:lbignum t aLen
-> b_j:limb t
-> j:size_nat{j + aLen <= resLen}
-> acc:lbignum t resLen ->
Lemma (let (c, res) = bn_mul1_lshift_add a b_j j acc in
v c * pow2 (bits t * (aLen + j)) + eval_ resLen res (aLen + j) ==
eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (bits t * j) /\
slice res (aLen + j) resLen == slice acc (aLen + j) resLen)
let bn_mul1_lshift_add_lemma #t #aLen #resLen a b_j j acc =
let pbits = bits t in
let res1 = sub acc j aLen in
let c, res2 = bn_mul1_add_in_place a b_j res1 in
bn_mul1_add_in_place_lemma a b_j res1;
assert (v c * pow2 (pbits * aLen) + bn_v res2 == bn_v res1 + bn_v a * v b_j);
let res = update_sub acc j aLen res2 in
bn_eval_split_i (sub res 0 (j + aLen)) j;
bn_eval_extensionality_j res (sub res 0 (j + aLen)) (j + aLen);
assert (eval_ resLen res (j + aLen) == bn_v #t #j (sub res 0 j) + pow2 (pbits * j) * bn_v res2);
eq_intro (sub res 0 j) (sub acc 0 j);
assert (bn_v #t #j (sub res 0 j) == bn_v #t #j (sub acc 0 j));
bn_eval_split_i (sub acc 0 (j + aLen)) j;
bn_eval_extensionality_j acc (sub acc 0 (j + aLen)) (j + aLen);
assert (eval_ resLen acc (j + aLen) == bn_v #t #j (sub acc 0 j) + pow2 (pbits * j) * bn_v res1);
calc (==) {
v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j);
(==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * j) }
v c * (pow2 (pbits * aLen) * pow2 (pbits * j)) + eval_ resLen res (aLen + j);
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * aLen)) (pow2 (pbits * j)) }
v c * pow2 (pbits * aLen) * pow2 (pbits * j) + eval_ resLen res (aLen + j);
(==) { }
(bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen res (aLen + j);
(==) { }
(bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen acc (j + aLen) - pow2 (pbits * j) * bn_v res1 + pow2 (pbits * j) * bn_v res2;
(==) { Math.Lemmas.distributivity_add_right (pow2 (pbits * j)) (bn_v res1) (bn_v a * v b_j - bn_v res2) }
pow2 (pbits * j) * (bn_v a * v b_j - bn_v res2) + eval_ resLen acc (j + aLen) + pow2 (pbits * j) * bn_v res2;
(==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * j)) (bn_v a * v b_j) (bn_v res2) }
pow2 (pbits * j) * (bn_v a * v b_j) + eval_ resLen acc (j + aLen);
};
assert (v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j) ==
eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (pbits * j));
eq_intro (slice res (aLen + j) resLen) (slice acc (aLen + j) resLen)
val bn_mul_lemma_:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> j:size_nat{j < bLen}
-> acc:lbignum t (aLen + bLen) ->
Lemma (let res = bn_mul_ a b j acc in
v res.[aLen + j] * pow2 (bits t * (aLen + j)) + eval_ (aLen + bLen) res (aLen + j) ==
eval_ (aLen + bLen) acc (aLen + j) + bn_v a * v b.[j] * pow2 (bits t * j))
let bn_mul_lemma_ #t #aLen #bLen a b j acc =
let c, res = bn_mul1_lshift_add a b.[j] j acc in
bn_mul1_lshift_add_lemma a b.[j] j acc;
let res1 = res.[aLen + j] <- c in
bn_eval_extensionality_j res res1 (aLen + j)
val bn_mul_loop_lemma_step:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:pos{i <= bLen}
-> resi1:lbignum t (aLen + bLen) -> Lemma
(requires eval_ (aLen + bLen) resi1 (aLen + i - 1) == bn_v a * eval_ bLen b (i - 1))
(ensures
(let resi = bn_mul_ a b (i - 1) resi1 in
eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Multiplication.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
b: Hacl.Spec.Bignum.Definitions.lbignum t bLen ->
i: Prims.pos{i <= bLen} ->
resi1: Hacl.Spec.Bignum.Definitions.lbignum t (aLen + bLen)
-> FStar.Pervasives.Lemma
(requires
Hacl.Spec.Bignum.Definitions.eval_ (aLen + bLen) resi1 (aLen + i - 1) ==
Hacl.Spec.Bignum.Definitions.bn_v a * Hacl.Spec.Bignum.Definitions.eval_ bLen b (i - 1))
(ensures
(let resi = Hacl.Spec.Bignum.Multiplication.bn_mul_ a b (i - 1) resi1 in
Hacl.Spec.Bignum.Definitions.eval_ (aLen + bLen) resi (aLen + i) ==
Hacl.Spec.Bignum.Definitions.bn_v a * Hacl.Spec.Bignum.Definitions.eval_ bLen b i)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.pos",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.Bignum.Definitions.eval_",
"FStar.Mul.op_Star",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.nat",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Prims.op_Subtraction",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Lib.Sequence.op_String_Access",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.pow2",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Bignum.Definitions.bn_eval_unfold_i",
"Prims.squash",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.distributivity_add_right",
"Hacl.Spec.Bignum.Multiplication.bn_mul_lemma_",
"Hacl.Spec.Bignum.Multiplication.bn_mul_",
"Lib.IntTypes.bits"
] | [] | false | false | true | false | false | let bn_mul_loop_lemma_step #t #aLen #bLen a b i resi1 =
| let pbits = bits t in
let resi = bn_mul_ a b (i - 1) resi1 in
bn_mul_lemma_ a b (i - 1) resi1;
assert (v resi.[ aLen + i - 1 ] * pow2 (pbits * (aLen + i - 1)) +
eval_ (aLen + bLen) resi (aLen + i - 1) ==
eval_ (aLen + bLen) resi1 (aLen + i - 1) + (bn_v a * v b.[ i - 1 ]) * (pow2 (pbits * (i - 1))));
calc ( == ) {
eval_ (aLen + bLen) resi (aLen + i);
( == ) { bn_eval_unfold_i resi (aLen + i) }
eval_ (aLen + bLen) resi (aLen + i - 1) + v resi.[ aLen + i - 1 ] * pow2 (pbits * (aLen + i - 1));
( == ) { () }
eval_ (aLen + bLen) resi1 (aLen + i - 1) + (bn_v a * v b.[ i - 1 ]) * (pow2 (pbits * (i - 1)));
( == ) { () }
bn_v a * eval_ bLen b (i - 1) + (bn_v a * v b.[ i - 1 ]) * (pow2 (pbits * (i - 1)));
( == ) { Math.Lemmas.paren_mul_right (bn_v a) (v b.[ i - 1 ]) (pow2 (pbits * (i - 1))) }
bn_v a * eval_ bLen b (i - 1) + bn_v a * (v b.[ i - 1 ] * (pow2 (pbits * (i - 1))));
( == ) { Math.Lemmas.distributivity_add_right (bn_v a)
(eval_ bLen b (i - 1))
(v b.[ i - 1 ] * (pow2 (pbits * (i - 1)))) }
bn_v a * (eval_ bLen b (i - 1) + v b.[ i - 1 ] * (pow2 (pbits * (i - 1))));
( == ) { bn_eval_unfold_i b i }
bn_v a * eval_ bLen b i;
};
assert (eval_ (aLen + bLen) resi (aLen + i) == bn_v a * eval_ bLen b i) | false |
Vale.AES.X64.GF128_Init.fsti | Vale.AES.X64.GF128_Init.va_ens_Keyhash_init | val va_ens_Keyhash_init
(va_b0: va_code)
(va_s0: va_state)
(win: bool)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
(va_sM: va_state)
(va_fM: va_fuel)
: prop | val va_ens_Keyhash_init
(va_b0: va_code)
(va_s0: va_state)
(win: bool)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
(va_sM: va_state)
(va_fM: va_fuel)
: prop | let va_ens_Keyhash_init (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (key:(seq
nat32)) (roundkeys_b:buffer128) (hkeys_b:buffer128) (va_sM:va_state) (va_fM:va_fuel) : prop =
(va_req_Keyhash_init va_b0 va_s0 win alg key roundkeys_b hkeys_b /\ va_ensure_total va_b0 va_s0
va_sM va_fM /\ va_get_ok va_sM /\ (let (round_ptr:(va_int_range 0 18446744073709551615)) = (if
win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0
18446744073709551615)) = (if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in
Vale.X64.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\
Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_sM) hkeys_b)
(Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg key
(Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\ va_get_xmm 6 va_sM == va_get_xmm
6 va_s0 /\ va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\ va_state_eq va_sM
(va_update_flags va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM
(va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM
(va_update_mem_layout va_sM (va_update_mem_heaplet 1 va_sM (va_update_reg64 rR12 va_sM
(va_update_reg64 rR8 va_sM (va_update_reg64 rRdx va_sM (va_update_reg64 rRcx va_sM
(va_update_reg64 rRax va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) | {
"file_name": "obj/Vale.AES.X64.GF128_Init.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 96,
"end_line": 68,
"start_col": 0,
"start_line": 53
} | module Vale.AES.X64.GF128_Init
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open FStar.Seq
open Vale.Arch.Types
open Vale.Arch.HeapImpl
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.Math.Poly2.Lemmas
open Vale.AES.GF128_s
open Vale.AES.GF128
open Vale.AES.GHash
open Vale.AES.AES_s
open Vale.AES.AES256_helpers
open Vale.AES.X64.AES
open Vale.X64.Machine_s
open Vale.X64.Memory
open Vale.X64.State
open Vale.X64.Decls
open Vale.X64.InsBasic
open Vale.X64.InsMem
open Vale.X64.InsVector
open Vale.X64.InsAes
open Vale.X64.QuickCode
open Vale.X64.QuickCodes
open Vale.X64.CPU_Features_s
open Vale.AES.X64.PolyOps
open Vale.AES.X64.GF128_Mul
open Vale.AES.GHash
open Vale.AES.OptPublic
//-- Keyhash_init
val va_code_Keyhash_init : win:bool -> alg:algorithm -> Tot va_code
val va_codegen_success_Keyhash_init : win:bool -> alg:algorithm -> Tot va_pbool
let va_req_Keyhash_init (va_b0:va_code) (va_s0:va_state) (win:bool) (alg:algorithm) (key:(seq
nat32)) (roundkeys_b:buffer128) (hkeys_b:buffer128) : prop =
(va_require_total va_b0 (va_code_Keyhash_init win alg) va_s0 /\ va_get_ok va_s0 /\ (let
(round_ptr:(va_int_range 0 18446744073709551615)) = (if win then va_get_reg64 rRcx va_s0 else
va_get_reg64 rRdi va_s0) in let (hkey_ptr:(va_int_range 0 18446744073709551615)) = (if win then
va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0) in Vale.X64.Memory.is_initial_heap
(va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (aesni_enabled /\ pclmulqdq_enabled /\
avx_enabled /\ sse_enabled) /\ (alg = AES_128 \/ alg = AES_256) /\
Vale.X64.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\ Vale.AES.AES_s.is_aes_key_LE alg key
/\ Vale.X64.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b ==
Vale.AES.AES_s.key_to_round_keys_LE alg key /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem
va_s0) round_ptr roundkeys_b (Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0)
Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem va_s0) hkey_ptr hkeys_b 8 | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.QuickCodes.fsti.checked",
"Vale.X64.QuickCode.fst.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.InsVector.fsti.checked",
"Vale.X64.InsMem.fsti.checked",
"Vale.X64.InsBasic.fsti.checked",
"Vale.X64.InsAes.fsti.checked",
"Vale.X64.Flags.fsti.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"Vale.AES.X64.PolyOps.fsti.checked",
"Vale.AES.X64.GF128_Mul.fsti.checked",
"Vale.AES.X64.AES.fsti.checked",
"Vale.AES.OptPublic.fsti.checked",
"Vale.AES.GHash.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.AES_s.fst.checked",
"Vale.AES.AES_common_s.fst.checked",
"Vale.AES.AES256_helpers.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.X64.GF128_Init.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.GF128_Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.PolyOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.CPU_Features_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsAes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES256_helpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
va_b0: Vale.X64.Decls.va_code ->
va_s0: Vale.X64.Decls.va_state ->
win: Prims.bool ->
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 ->
roundkeys_b: Vale.X64.Memory.buffer128 ->
hkeys_b: Vale.X64.Memory.buffer128 ->
va_sM: Vale.X64.Decls.va_state ->
va_fM: Vale.X64.Decls.va_fuel
-> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"Vale.X64.Decls.va_code",
"Vale.X64.Decls.va_state",
"Prims.bool",
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.X64.Memory.nat32",
"Vale.X64.Memory.buffer128",
"Vale.X64.Decls.va_fuel",
"Prims.l_and",
"Vale.AES.X64.GF128_Init.va_req_Keyhash_init",
"Vale.X64.Decls.va_ensure_total",
"Prims.b2t",
"Vale.X64.Decls.va_get_ok",
"Vale.X64.Decls.modifies_buffer128",
"Vale.X64.Decls.va_get_mem",
"Vale.AES.OptPublic.hkeys_reqs_pub",
"Vale.X64.Decls.s128",
"Vale.Def.Types_s.reverse_bytes_quad32",
"Vale.AES.AES_s.aes_encrypt_LE",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Prims.eq2",
"Vale.X64.Decls.quad32",
"Vale.X64.Decls.va_get_xmm",
"Vale.Def.Types_s.nat64",
"Vale.X64.Decls.va_get_reg64",
"Vale.X64.Machine_s.rR12",
"Vale.X64.Decls.va_int_range",
"Vale.X64.Machine_s.rRdx",
"Vale.X64.Machine_s.rRsi",
"Vale.X64.Machine_s.rRcx",
"Vale.X64.Machine_s.rRdi",
"Vale.X64.Decls.va_state_eq",
"Vale.X64.Decls.va_update_flags",
"Vale.X64.Decls.va_update_xmm",
"Vale.X64.Decls.va_update_mem_layout",
"Vale.X64.Decls.va_update_mem_heaplet",
"Vale.X64.Decls.va_update_reg64",
"Vale.X64.Machine_s.rR8",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Decls.va_update_ok",
"Vale.X64.Decls.va_update_mem",
"Prims.prop"
] | [] | false | false | false | true | true | let va_ens_Keyhash_init
(va_b0: va_code)
(va_s0: va_state)
(win: bool)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
(va_sM: va_state)
(va_fM: va_fuel)
: prop =
| (va_req_Keyhash_init va_b0 va_s0 win alg key roundkeys_b hkeys_b /\
va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
(let round_ptr:(va_int_range 0 18446744073709551615) =
(if win then va_get_reg64 rRcx va_s0 else va_get_reg64 rRdi va_s0)
in
let hkey_ptr:(va_int_range 0 18446744073709551615) =
(if win then va_get_reg64 rRdx va_s0 else va_get_reg64 rRsi va_s0)
in
Vale.X64.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\
Vale.AES.OptPublic.hkeys_reqs_pub (Vale.X64.Decls.s128 (va_get_mem va_sM) hkeys_b)
(Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.AES_s.aes_encrypt_LE alg
key
(Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0))) /\
va_get_xmm 6 va_sM == va_get_xmm 6 va_s0 /\ va_get_reg64 rR12 va_sM == va_get_reg64 rR12 va_s0) /\
va_state_eq va_sM
(va_update_flags va_sM
(va_update_xmm 6
va_sM
(va_update_xmm 5
va_sM
(va_update_xmm 4
va_sM
(va_update_xmm 3
va_sM
(va_update_xmm 2
va_sM
(va_update_xmm 1
va_sM
(va_update_xmm 0
va_sM
(va_update_mem_layout va_sM
(va_update_mem_heaplet 1
va_sM
(va_update_reg64 rR12
va_sM
(va_update_reg64 rR8
va_sM
(va_update_reg64 rRdx
va_sM
(va_update_reg64 rRcx
va_sM
(va_update_reg64 rRax
va_sM
(va_update_ok va_sM
(va_update_mem va_sM va_s0))))))
)))))))))))) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.seq_uint32_of_be_be_of_seq_uint32 | val seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t)
: Lemma (requires (n == S.length s))
(ensures ((seq_uint32_of_be n (be_of_seq_uint32 s)) `S.equal` s))
(decreases n)
[SMTPat (seq_uint32_of_be n (be_of_seq_uint32 s))] | val seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t)
: Lemma (requires (n == S.length s))
(ensures ((seq_uint32_of_be n (be_of_seq_uint32 s)) `S.equal` s))
(decreases n)
[SMTPat (seq_uint32_of_be n (be_of_seq_uint32 s))] | let rec seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t) : Lemma
(requires (n == S.length s))
(ensures (seq_uint32_of_be n (be_of_seq_uint32 s) `S.equal` s))
(decreases n)
[SMTPat (seq_uint32_of_be n (be_of_seq_uint32 s))]
= if n = 0
then ()
else begin
assert (s `S.equal` S.cons (S.head s) (S.tail s));
seq_uint32_of_be_be_of_seq_uint32 (n - 1) (S.tail s);
let s' = be_of_seq_uint32 s in
S.lemma_split s' 4;
S.lemma_append_inj (S.slice s' 0 4) (S.slice s' 4 (S.length s')) (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
end | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 5,
"end_line": 526,
"start_col": 0,
"start_line": 513
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint32")]
let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint32_of_be")]
let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint32")]
let rec be_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_le")]
let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint64")]
let rec le_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_be")]
let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint64")]
let rec be_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s))
#set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50"
[@(deprecated "FStar.Endianness.offset_uint32_be")]
let rec offset_uint32_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_be tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint32_le")]
let rec offset_uint32_le (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_le n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_le tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint64_be")]
let rec offset_uint64_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 8 * n /\
i < n))
(ensures (
S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint64_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then
()
else
offset_uint64_be tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint64_le")]
let rec offset_uint64_le (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 8 * n /\
i < n))
(ensures (
S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint64_of_le n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then
()
else
offset_uint64_le tl (n - 1) (i - 1)
(** Reasoning about endian-ness and words. *)
#set-options "--max_fuel 1 --z3rlimit 20"
(* TODO: move to FStar.Seq.Properties, with the pattern *)
[@(deprecated "FStar.Endianness.tail_cons")]
let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma
(ensures (S.equal (S.tail (S.cons hd tl)) tl))
// [ SMTPat (S.tail (S.cons hd tl)) ]
=
()
[@(deprecated "FStar.Endianness.be_of_seq_uint32_append")]
let rec be_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma
(ensures (
S.equal (be_of_seq_uint32 (S.append s1 s2))
(S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2))))
(decreases (
S.length s1))
[ SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)) ]
=
Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties
if S.length s1 = 0 then begin
assert (S.equal (be_of_seq_uint32 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
()
end else begin
assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (be_of_seq_uint32 (S.append s1 s2))
(S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2))));
be_of_seq_uint32_append (S.tail s1) s2
end
[@(deprecated "FStar.Endianness.be_of_seq_uint32_base")]
let be_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma
(requires (
S.length s1 = 1 /\
S.length s2 = 4 /\
be_to_n s2 = U32.v (S.index s1 0)))
(ensures (S.equal s2 (be_of_seq_uint32 s1)))
[ SMTPat (be_to_n s2 = U32.v (S.index s1 0)) ]
=
()
[@(deprecated "FStar.Endianness.le_of_seq_uint32_append")]
let rec le_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma
(ensures (
S.equal (le_of_seq_uint32 (S.append s1 s2))
(S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2))))
(decreases (
S.length s1))
[ SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)) ]
=
Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties
if S.length s1 = 0 then begin
assert (S.equal (le_of_seq_uint32 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
()
end else begin
assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (le_of_seq_uint32 (S.append s1 s2))
(S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2))));
le_of_seq_uint32_append (S.tail s1) s2
end
[@(deprecated "FStar.Endianness.le_of_seq_uint32_base")]
let le_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma
(requires (
S.length s1 = 1 /\
S.length s2 = 4 /\
le_to_n s2 = U32.v (S.index s1 0)))
(ensures (S.equal s2 (le_of_seq_uint32 s1)))
[ SMTPat (le_to_n s2 = U32.v (S.index s1 0)) ]
=
()
[@(deprecated "FStar.Endianness.be_of_seq_uint64_append")]
let rec be_of_seq_uint64_append (s1 s2: S.seq U64.t): Lemma
(ensures (
S.equal (be_of_seq_uint64 (S.append s1 s2))
(S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2))))
(decreases (
S.length s1))
[ SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)) ]
=
Classical.forall_intro_2 (tail_cons #U64.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties
if S.length s1 = 0 then begin
assert (S.equal (be_of_seq_uint64 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
()
end else begin
assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (be_of_seq_uint64 (S.append s1 s2))
(S.append (be_of_uint64 (S.head s1)) (be_of_seq_uint64 (S.append (S.tail s1) s2))));
be_of_seq_uint64_append (S.tail s1) s2
end
[@(deprecated "FStar.Endianness.be_of_seq_uint64_base")]
let be_of_seq_uint64_base (s1: S.seq U64.t) (s2: S.seq U8.t): Lemma
(requires (
S.length s1 = 1 /\
S.length s2 = 8 /\
be_to_n s2 = U64.v (S.index s1 0)))
(ensures (S.equal s2 (be_of_seq_uint64 s1)))
[ SMTPat (be_to_n s2 = U64.v (S.index s1 0)) ]
=
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> s: FStar.Seq.Base.seq FStar.UInt32.t
-> FStar.Pervasives.Lemma (requires n == FStar.Seq.Base.length s)
(ensures
FStar.Seq.Base.equal (FStar.Krml.Endianness.seq_uint32_of_be n
(FStar.Krml.Endianness.be_of_seq_uint32 s))
s)
(decreases n)
[SMTPat (FStar.Krml.Endianness.seq_uint32_of_be n (FStar.Krml.Endianness.be_of_seq_uint32 s))] | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.nat",
"FStar.Seq.Base.seq",
"FStar.UInt32.t",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"FStar.Seq.Properties.lemma_append_inj",
"FStar.UInt8.t",
"FStar.Seq.Base.slice",
"FStar.Seq.Base.length",
"FStar.Krml.Endianness.be_of_uint32",
"FStar.Seq.Properties.head",
"FStar.Krml.Endianness.be_of_seq_uint32",
"FStar.Seq.Properties.tail",
"Prims.unit",
"FStar.Seq.Properties.lemma_split",
"FStar.Krml.Endianness.bytes",
"Prims.b2t",
"Prims.op_Multiply",
"FStar.Krml.Endianness.seq_uint32_of_be_be_of_seq_uint32",
"Prims.op_Subtraction",
"Prims._assert",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.cons",
"Prims.eq2",
"Prims.squash",
"FStar.Krml.Endianness.seq_uint32_of_be",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t)
: Lemma (requires (n == S.length s))
(ensures ((seq_uint32_of_be n (be_of_seq_uint32 s)) `S.equal` s))
(decreases n)
[SMTPat (seq_uint32_of_be n (be_of_seq_uint32 s))] =
| if n = 0
then ()
else
(assert (s `S.equal` (S.cons (S.head s) (S.tail s)));
seq_uint32_of_be_be_of_seq_uint32 (n - 1) (S.tail s);
let s' = be_of_seq_uint32 s in
S.lemma_split s' 4;
S.lemma_append_inj (S.slice s' 0 4)
(S.slice s' 4 (S.length s'))
(be_of_uint32 (S.head s))
(be_of_seq_uint32 (S.tail s))) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.be_of_seq_uint32_slice | val be_of_seq_uint32_slice (s: S.seq U32.t) (lo hi: nat)
: Lemma (requires (lo <= hi /\ hi <= S.length s))
(ensures
((be_of_seq_uint32 (S.slice s lo hi))
`S.equal`
(S.slice (be_of_seq_uint32 s) (4 * lo) (4 * hi)))) | val be_of_seq_uint32_slice (s: S.seq U32.t) (lo hi: nat)
: Lemma (requires (lo <= hi /\ hi <= S.length s))
(ensures
((be_of_seq_uint32 (S.slice s lo hi))
`S.equal`
(S.slice (be_of_seq_uint32 s) (4 * lo) (4 * hi)))) | let be_of_seq_uint32_slice (s: S.seq U32.t) (lo: nat) (hi: nat) : Lemma
(requires (lo <= hi /\ hi <= S.length s))
(ensures (be_of_seq_uint32 (S.slice s lo hi) `S.equal` S.slice (be_of_seq_uint32 s) (4 * lo) (4 * hi)))
= slice_seq_uint32_of_be (S.length s) (be_of_seq_uint32 s) lo hi | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 64,
"end_line": 560,
"start_col": 0,
"start_line": 557
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint32")]
let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint32_of_be")]
let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint32")]
let rec be_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_le")]
let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint64")]
let rec le_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_be")]
let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint64")]
let rec be_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s))
#set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50"
[@(deprecated "FStar.Endianness.offset_uint32_be")]
let rec offset_uint32_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_be tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint32_le")]
let rec offset_uint32_le (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_le n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_le tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint64_be")]
let rec offset_uint64_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 8 * n /\
i < n))
(ensures (
S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint64_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then
()
else
offset_uint64_be tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint64_le")]
let rec offset_uint64_le (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 8 * n /\
i < n))
(ensures (
S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint64_of_le n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then
()
else
offset_uint64_le tl (n - 1) (i - 1)
(** Reasoning about endian-ness and words. *)
#set-options "--max_fuel 1 --z3rlimit 20"
(* TODO: move to FStar.Seq.Properties, with the pattern *)
[@(deprecated "FStar.Endianness.tail_cons")]
let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma
(ensures (S.equal (S.tail (S.cons hd tl)) tl))
// [ SMTPat (S.tail (S.cons hd tl)) ]
=
()
[@(deprecated "FStar.Endianness.be_of_seq_uint32_append")]
let rec be_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma
(ensures (
S.equal (be_of_seq_uint32 (S.append s1 s2))
(S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2))))
(decreases (
S.length s1))
[ SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)) ]
=
Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties
if S.length s1 = 0 then begin
assert (S.equal (be_of_seq_uint32 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
()
end else begin
assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (be_of_seq_uint32 (S.append s1 s2))
(S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2))));
be_of_seq_uint32_append (S.tail s1) s2
end
[@(deprecated "FStar.Endianness.be_of_seq_uint32_base")]
let be_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma
(requires (
S.length s1 = 1 /\
S.length s2 = 4 /\
be_to_n s2 = U32.v (S.index s1 0)))
(ensures (S.equal s2 (be_of_seq_uint32 s1)))
[ SMTPat (be_to_n s2 = U32.v (S.index s1 0)) ]
=
()
[@(deprecated "FStar.Endianness.le_of_seq_uint32_append")]
let rec le_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma
(ensures (
S.equal (le_of_seq_uint32 (S.append s1 s2))
(S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2))))
(decreases (
S.length s1))
[ SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)) ]
=
Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties
if S.length s1 = 0 then begin
assert (S.equal (le_of_seq_uint32 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
()
end else begin
assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (le_of_seq_uint32 (S.append s1 s2))
(S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2))));
le_of_seq_uint32_append (S.tail s1) s2
end
[@(deprecated "FStar.Endianness.le_of_seq_uint32_base")]
let le_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma
(requires (
S.length s1 = 1 /\
S.length s2 = 4 /\
le_to_n s2 = U32.v (S.index s1 0)))
(ensures (S.equal s2 (le_of_seq_uint32 s1)))
[ SMTPat (le_to_n s2 = U32.v (S.index s1 0)) ]
=
()
[@(deprecated "FStar.Endianness.be_of_seq_uint64_append")]
let rec be_of_seq_uint64_append (s1 s2: S.seq U64.t): Lemma
(ensures (
S.equal (be_of_seq_uint64 (S.append s1 s2))
(S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2))))
(decreases (
S.length s1))
[ SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)) ]
=
Classical.forall_intro_2 (tail_cons #U64.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties
if S.length s1 = 0 then begin
assert (S.equal (be_of_seq_uint64 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
()
end else begin
assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (be_of_seq_uint64 (S.append s1 s2))
(S.append (be_of_uint64 (S.head s1)) (be_of_seq_uint64 (S.append (S.tail s1) s2))));
be_of_seq_uint64_append (S.tail s1) s2
end
[@(deprecated "FStar.Endianness.be_of_seq_uint64_base")]
let be_of_seq_uint64_base (s1: S.seq U64.t) (s2: S.seq U8.t): Lemma
(requires (
S.length s1 = 1 /\
S.length s2 = 8 /\
be_to_n s2 = U64.v (S.index s1 0)))
(ensures (S.equal s2 (be_of_seq_uint64 s1)))
[ SMTPat (be_to_n s2 = U64.v (S.index s1 0)) ]
=
()
[@(deprecated "FStar.Endianness.seq_uint32_of_be_be_of_seq_uint32")]
let rec seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t) : Lemma
(requires (n == S.length s))
(ensures (seq_uint32_of_be n (be_of_seq_uint32 s) `S.equal` s))
(decreases n)
[SMTPat (seq_uint32_of_be n (be_of_seq_uint32 s))]
= if n = 0
then ()
else begin
assert (s `S.equal` S.cons (S.head s) (S.tail s));
seq_uint32_of_be_be_of_seq_uint32 (n - 1) (S.tail s);
let s' = be_of_seq_uint32 s in
S.lemma_split s' 4;
S.lemma_append_inj (S.slice s' 0 4) (S.slice s' 4 (S.length s')) (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
end
[@(deprecated "FStar.Endianness.be_of_seq_uint32_seq_uint32_of_be")]
let rec be_of_seq_uint32_seq_uint32_of_be (n: nat) (s: S.seq U8.t) : Lemma
(requires (4 * n == S.length s))
(ensures (be_of_seq_uint32 (seq_uint32_of_be n s) `S.equal` s))
(decreases n)
[SMTPat (be_of_seq_uint32 (seq_uint32_of_be n s))]
= if n = 0
then ()
else begin
S.lemma_split s 4;
be_of_seq_uint32_seq_uint32_of_be (n - 1) (S.slice s 4 (S.length s));
let s' = seq_uint32_of_be n s in
let hd, tl = S.split s 4 in
assert (S.head s' == uint32_of_be hd);
tail_cons (uint32_of_be hd) (seq_uint32_of_be (n - 1) tl);
assert (S.tail s' == seq_uint32_of_be (n - 1) tl);
let s'' = be_of_seq_uint32 s' in
S.lemma_split s'' 4;
S.lemma_append_inj (S.slice s'' 0 4) (S.slice s'' 4 (S.length s'')) (be_of_uint32 (S.head s')) (be_of_seq_uint32 (S.tail s'));
n_to_be_be_to_n 4ul hd
end
[@(deprecated "FStar.Endianness.slice_seq_uint32_of_be")]
let slice_seq_uint32_of_be (n: nat) (s: S.seq U8.t) (lo: nat) (hi: nat) : Lemma
(requires (4 * n == S.length s /\ lo <= hi /\ hi <= n))
(ensures (S.slice (seq_uint32_of_be n s) lo hi) `S.equal` seq_uint32_of_be (hi - lo) (S.slice s (4 * lo) (4 * hi)))
= () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: FStar.Seq.Base.seq FStar.UInt32.t -> lo: Prims.nat -> hi: Prims.nat
-> FStar.Pervasives.Lemma (requires lo <= hi /\ hi <= FStar.Seq.Base.length s)
(ensures
FStar.Seq.Base.equal (FStar.Krml.Endianness.be_of_seq_uint32 (FStar.Seq.Base.slice s lo hi))
(FStar.Seq.Base.slice (FStar.Krml.Endianness.be_of_seq_uint32 s) (4 * lo) (4 * hi))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"FStar.UInt32.t",
"Prims.nat",
"FStar.Krml.Endianness.slice_seq_uint32_of_be",
"FStar.Seq.Base.length",
"FStar.Krml.Endianness.be_of_seq_uint32",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"FStar.Seq.Base.equal",
"FStar.UInt8.t",
"FStar.Seq.Base.slice",
"FStar.Mul.op_Star",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let be_of_seq_uint32_slice (s: S.seq U32.t) (lo hi: nat)
: Lemma (requires (lo <= hi /\ hi <= S.length s))
(ensures
((be_of_seq_uint32 (S.slice s lo hi))
`S.equal`
(S.slice (be_of_seq_uint32 s) (4 * lo) (4 * hi)))) =
| slice_seq_uint32_of_be (S.length s) (be_of_seq_uint32 s) lo hi | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.offset_uint64_le | val offset_uint64_le (b: bytes) (n i: nat)
: Lemma (requires (S.length b = 8 * n /\ i < n))
(ensures (S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8))))
(decreases (S.length b))
[SMTPat (S.index (seq_uint64_of_le n b) i)] | val offset_uint64_le (b: bytes) (n i: nat)
: Lemma (requires (S.length b = 8 * n /\ i < n))
(ensures (S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8))))
(decreases (S.length b))
[SMTPat (S.index (seq_uint64_of_le n b) i)] | let rec offset_uint64_le (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 8 * n /\
i < n))
(ensures (
S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint64_of_le n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then
()
else
offset_uint64_le tl (n - 1) (i - 1) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 41,
"end_line": 401,
"start_col": 0,
"start_line": 383
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint32")]
let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint32_of_be")]
let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint32")]
let rec be_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_le")]
let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint64")]
let rec le_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_be")]
let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint64")]
let rec be_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s))
#set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50"
[@(deprecated "FStar.Endianness.offset_uint32_be")]
let rec offset_uint32_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_be tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint32_le")]
let rec offset_uint32_le (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_le n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_le tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint64_be")]
let rec offset_uint64_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 8 * n /\
i < n))
(ensures (
S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint64_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then
()
else
offset_uint64_be tl (n - 1) (i - 1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Krml.Endianness.bytes -> n: Prims.nat -> i: Prims.nat
-> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b = 8 * n /\ i < n)
(ensures
FStar.Seq.Base.index (FStar.Krml.Endianness.seq_uint64_of_le n b) i ==
FStar.Krml.Endianness.uint64_of_le (FStar.Seq.Base.slice b (8 * i) (8 * i + 8)))
(decreases FStar.Seq.Base.length b)
[SMTPat (FStar.Seq.Base.index (FStar.Krml.Endianness.seq_uint64_of_le n b) i)] | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"FStar.Krml.Endianness.bytes",
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.UInt8.t",
"FStar.Pervasives.false_elim",
"Prims.unit",
"Prims.bool",
"FStar.Seq.Base.seq",
"FStar.Krml.Endianness.offset_uint64_le",
"Prims.op_Subtraction",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.split",
"Prims.l_and",
"Prims.b2t",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Prims.squash",
"Prims.eq2",
"FStar.UInt64.t",
"FStar.Seq.Base.index",
"FStar.Krml.Endianness.seq_uint64_of_le",
"FStar.Krml.Endianness.uint64_of_le",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec offset_uint64_le (b: bytes) (n i: nat)
: Lemma (requires (S.length b = 8 * n /\ i < n))
(ensures (S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8))))
(decreases (S.length b))
[SMTPat (S.index (seq_uint64_of_le n b) i)] =
| if S.length b = 0
then false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then () else offset_uint64_le tl (n - 1) (i - 1) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.offset_uint32_le | val offset_uint32_le (b: bytes) (n i: nat)
: Lemma (requires (S.length b = 4 * n /\ i < n))
(ensures (S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4))))
(decreases (S.length b))
[SMTPat (S.index (seq_uint32_of_le n b) i)] | val offset_uint32_le (b: bytes) (n i: nat)
: Lemma (requires (S.length b = 4 * n /\ i < n))
(ensures (S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4))))
(decreases (S.length b))
[SMTPat (S.index (seq_uint32_of_le n b) i)] | let rec offset_uint32_le (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_le n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_le tl (n - 1) (i - 1) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 41,
"end_line": 359,
"start_col": 0,
"start_line": 341
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint32")]
let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint32_of_be")]
let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint32")]
let rec be_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_le")]
let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint64")]
let rec le_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_be")]
let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint64")]
let rec be_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s))
#set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50"
[@(deprecated "FStar.Endianness.offset_uint32_be")]
let rec offset_uint32_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_be tl (n - 1) (i - 1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Krml.Endianness.bytes -> n: Prims.nat -> i: Prims.nat
-> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b = 4 * n /\ i < n)
(ensures
FStar.Seq.Base.index (FStar.Krml.Endianness.seq_uint32_of_le n b) i ==
FStar.Krml.Endianness.uint32_of_le (FStar.Seq.Base.slice b (4 * i) (4 * i + 4)))
(decreases FStar.Seq.Base.length b)
[SMTPat (FStar.Seq.Base.index (FStar.Krml.Endianness.seq_uint32_of_le n b) i)] | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"FStar.Krml.Endianness.bytes",
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.UInt8.t",
"FStar.Pervasives.false_elim",
"Prims.unit",
"Prims.bool",
"FStar.Seq.Base.seq",
"FStar.Krml.Endianness.offset_uint32_le",
"Prims.op_Subtraction",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.split",
"Prims.l_and",
"Prims.b2t",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Prims.squash",
"Prims.eq2",
"FStar.UInt32.t",
"FStar.Seq.Base.index",
"FStar.Krml.Endianness.seq_uint32_of_le",
"FStar.Krml.Endianness.uint32_of_le",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec offset_uint32_le (b: bytes) (n i: nat)
: Lemma (requires (S.length b = 4 * n /\ i < n))
(ensures (S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4))))
(decreases (S.length b))
[SMTPat (S.index (seq_uint32_of_le n b) i)] =
| if S.length b = 0
then false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then () else offset_uint32_le tl (n - 1) (i - 1) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.be_of_seq_uint32_seq_uint32_of_be | val be_of_seq_uint32_seq_uint32_of_be (n: nat) (s: S.seq U8.t)
: Lemma (requires (4 * n == S.length s))
(ensures ((be_of_seq_uint32 (seq_uint32_of_be n s)) `S.equal` s))
(decreases n)
[SMTPat (be_of_seq_uint32 (seq_uint32_of_be n s))] | val be_of_seq_uint32_seq_uint32_of_be (n: nat) (s: S.seq U8.t)
: Lemma (requires (4 * n == S.length s))
(ensures ((be_of_seq_uint32 (seq_uint32_of_be n s)) `S.equal` s))
(decreases n)
[SMTPat (be_of_seq_uint32 (seq_uint32_of_be n s))] | let rec be_of_seq_uint32_seq_uint32_of_be (n: nat) (s: S.seq U8.t) : Lemma
(requires (4 * n == S.length s))
(ensures (be_of_seq_uint32 (seq_uint32_of_be n s) `S.equal` s))
(decreases n)
[SMTPat (be_of_seq_uint32 (seq_uint32_of_be n s))]
= if n = 0
then ()
else begin
S.lemma_split s 4;
be_of_seq_uint32_seq_uint32_of_be (n - 1) (S.slice s 4 (S.length s));
let s' = seq_uint32_of_be n s in
let hd, tl = S.split s 4 in
assert (S.head s' == uint32_of_be hd);
tail_cons (uint32_of_be hd) (seq_uint32_of_be (n - 1) tl);
assert (S.tail s' == seq_uint32_of_be (n - 1) tl);
let s'' = be_of_seq_uint32 s' in
S.lemma_split s'' 4;
S.lemma_append_inj (S.slice s'' 0 4) (S.slice s'' 4 (S.length s'')) (be_of_uint32 (S.head s')) (be_of_seq_uint32 (S.tail s'));
n_to_be_be_to_n 4ul hd
end | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 5,
"end_line": 548,
"start_col": 0,
"start_line": 529
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint32")]
let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint32_of_be")]
let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint32")]
let rec be_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_le")]
let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint64")]
let rec le_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_be")]
let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint64")]
let rec be_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s))
#set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50"
[@(deprecated "FStar.Endianness.offset_uint32_be")]
let rec offset_uint32_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_be tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint32_le")]
let rec offset_uint32_le (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_le n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_le tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint64_be")]
let rec offset_uint64_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 8 * n /\
i < n))
(ensures (
S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint64_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then
()
else
offset_uint64_be tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint64_le")]
let rec offset_uint64_le (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 8 * n /\
i < n))
(ensures (
S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint64_of_le n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then
()
else
offset_uint64_le tl (n - 1) (i - 1)
(** Reasoning about endian-ness and words. *)
#set-options "--max_fuel 1 --z3rlimit 20"
(* TODO: move to FStar.Seq.Properties, with the pattern *)
[@(deprecated "FStar.Endianness.tail_cons")]
let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma
(ensures (S.equal (S.tail (S.cons hd tl)) tl))
// [ SMTPat (S.tail (S.cons hd tl)) ]
=
()
[@(deprecated "FStar.Endianness.be_of_seq_uint32_append")]
let rec be_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma
(ensures (
S.equal (be_of_seq_uint32 (S.append s1 s2))
(S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2))))
(decreases (
S.length s1))
[ SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)) ]
=
Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties
if S.length s1 = 0 then begin
assert (S.equal (be_of_seq_uint32 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
()
end else begin
assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (be_of_seq_uint32 (S.append s1 s2))
(S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2))));
be_of_seq_uint32_append (S.tail s1) s2
end
[@(deprecated "FStar.Endianness.be_of_seq_uint32_base")]
let be_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma
(requires (
S.length s1 = 1 /\
S.length s2 = 4 /\
be_to_n s2 = U32.v (S.index s1 0)))
(ensures (S.equal s2 (be_of_seq_uint32 s1)))
[ SMTPat (be_to_n s2 = U32.v (S.index s1 0)) ]
=
()
[@(deprecated "FStar.Endianness.le_of_seq_uint32_append")]
let rec le_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma
(ensures (
S.equal (le_of_seq_uint32 (S.append s1 s2))
(S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2))))
(decreases (
S.length s1))
[ SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)) ]
=
Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties
if S.length s1 = 0 then begin
assert (S.equal (le_of_seq_uint32 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
()
end else begin
assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (le_of_seq_uint32 (S.append s1 s2))
(S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2))));
le_of_seq_uint32_append (S.tail s1) s2
end
[@(deprecated "FStar.Endianness.le_of_seq_uint32_base")]
let le_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma
(requires (
S.length s1 = 1 /\
S.length s2 = 4 /\
le_to_n s2 = U32.v (S.index s1 0)))
(ensures (S.equal s2 (le_of_seq_uint32 s1)))
[ SMTPat (le_to_n s2 = U32.v (S.index s1 0)) ]
=
()
[@(deprecated "FStar.Endianness.be_of_seq_uint64_append")]
let rec be_of_seq_uint64_append (s1 s2: S.seq U64.t): Lemma
(ensures (
S.equal (be_of_seq_uint64 (S.append s1 s2))
(S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2))))
(decreases (
S.length s1))
[ SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)) ]
=
Classical.forall_intro_2 (tail_cons #U64.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties
if S.length s1 = 0 then begin
assert (S.equal (be_of_seq_uint64 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
()
end else begin
assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (be_of_seq_uint64 (S.append s1 s2))
(S.append (be_of_uint64 (S.head s1)) (be_of_seq_uint64 (S.append (S.tail s1) s2))));
be_of_seq_uint64_append (S.tail s1) s2
end
[@(deprecated "FStar.Endianness.be_of_seq_uint64_base")]
let be_of_seq_uint64_base (s1: S.seq U64.t) (s2: S.seq U8.t): Lemma
(requires (
S.length s1 = 1 /\
S.length s2 = 8 /\
be_to_n s2 = U64.v (S.index s1 0)))
(ensures (S.equal s2 (be_of_seq_uint64 s1)))
[ SMTPat (be_to_n s2 = U64.v (S.index s1 0)) ]
=
()
[@(deprecated "FStar.Endianness.seq_uint32_of_be_be_of_seq_uint32")]
let rec seq_uint32_of_be_be_of_seq_uint32 (n: nat) (s: S.seq U32.t) : Lemma
(requires (n == S.length s))
(ensures (seq_uint32_of_be n (be_of_seq_uint32 s) `S.equal` s))
(decreases n)
[SMTPat (seq_uint32_of_be n (be_of_seq_uint32 s))]
= if n = 0
then ()
else begin
assert (s `S.equal` S.cons (S.head s) (S.tail s));
seq_uint32_of_be_be_of_seq_uint32 (n - 1) (S.tail s);
let s' = be_of_seq_uint32 s in
S.lemma_split s' 4;
S.lemma_append_inj (S.slice s' 0 4) (S.slice s' 4 (S.length s')) (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> s: FStar.Seq.Base.seq FStar.UInt8.t
-> FStar.Pervasives.Lemma (requires 4 * n == FStar.Seq.Base.length s)
(ensures
FStar.Seq.Base.equal (FStar.Krml.Endianness.be_of_seq_uint32 (FStar.Krml.Endianness.seq_uint32_of_be
n
s))
s)
(decreases n)
[SMTPat (FStar.Krml.Endianness.be_of_seq_uint32 (FStar.Krml.Endianness.seq_uint32_of_be n s))] | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.nat",
"FStar.Seq.Base.seq",
"FStar.UInt8.t",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"FStar.Krml.Endianness.n_to_be_be_to_n",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Seq.Properties.lemma_append_inj",
"FStar.Seq.Base.slice",
"FStar.Seq.Base.length",
"FStar.Krml.Endianness.be_of_uint32",
"FStar.Seq.Properties.head",
"FStar.UInt32.t",
"FStar.Krml.Endianness.be_of_seq_uint32",
"FStar.Seq.Properties.tail",
"FStar.Seq.Properties.lemma_split",
"FStar.Krml.Endianness.bytes",
"Prims.b2t",
"Prims.op_Multiply",
"Prims._assert",
"Prims.eq2",
"FStar.Krml.Endianness.seq_uint32_of_be",
"Prims.op_Subtraction",
"FStar.Krml.Endianness.tail_cons",
"FStar.Krml.Endianness.uint32_of_be",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.split",
"FStar.Krml.Endianness.be_of_seq_uint32_seq_uint32_of_be",
"FStar.Mul.op_Star",
"Prims.squash",
"FStar.Seq.Base.equal",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec be_of_seq_uint32_seq_uint32_of_be (n: nat) (s: S.seq U8.t)
: Lemma (requires (4 * n == S.length s))
(ensures ((be_of_seq_uint32 (seq_uint32_of_be n s)) `S.equal` s))
(decreases n)
[SMTPat (be_of_seq_uint32 (seq_uint32_of_be n s))] =
| if n = 0
then ()
else
(S.lemma_split s 4;
be_of_seq_uint32_seq_uint32_of_be (n - 1) (S.slice s 4 (S.length s));
let s' = seq_uint32_of_be n s in
let hd, tl = S.split s 4 in
assert (S.head s' == uint32_of_be hd);
tail_cons (uint32_of_be hd) (seq_uint32_of_be (n - 1) tl);
assert (S.tail s' == seq_uint32_of_be (n - 1) tl);
let s'' = be_of_seq_uint32 s' in
S.lemma_split s'' 4;
S.lemma_append_inj (S.slice s'' 0 4)
(S.slice s'' 4 (S.length s''))
(be_of_uint32 (S.head s'))
(be_of_seq_uint32 (S.tail s'));
n_to_be_be_to_n 4ul hd) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.offset_uint64_be | val offset_uint64_be (b: bytes) (n i: nat)
: Lemma (requires (S.length b = 8 * n /\ i < n))
(ensures (S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8))))
(decreases (S.length b))
[SMTPat (S.index (seq_uint64_of_be n b) i)] | val offset_uint64_be (b: bytes) (n i: nat)
: Lemma (requires (S.length b = 8 * n /\ i < n))
(ensures (S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8))))
(decreases (S.length b))
[SMTPat (S.index (seq_uint64_of_be n b) i)] | let rec offset_uint64_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 8 * n /\
i < n))
(ensures (
S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint64_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then
()
else
offset_uint64_be tl (n - 1) (i - 1) | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 41,
"end_line": 380,
"start_col": 0,
"start_line": 362
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint32")]
let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint32_of_be")]
let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint32")]
let rec be_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_le")]
let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint64")]
let rec le_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_be")]
let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint64")]
let rec be_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s))
#set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50"
[@(deprecated "FStar.Endianness.offset_uint32_be")]
let rec offset_uint32_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_be tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint32_le")]
let rec offset_uint32_le (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_le n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_le tl (n - 1) (i - 1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Krml.Endianness.bytes -> n: Prims.nat -> i: Prims.nat
-> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b = 8 * n /\ i < n)
(ensures
FStar.Seq.Base.index (FStar.Krml.Endianness.seq_uint64_of_be n b) i ==
FStar.Krml.Endianness.uint64_of_be (FStar.Seq.Base.slice b (8 * i) (8 * i + 8)))
(decreases FStar.Seq.Base.length b)
[SMTPat (FStar.Seq.Base.index (FStar.Krml.Endianness.seq_uint64_of_be n b) i)] | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"FStar.Krml.Endianness.bytes",
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"FStar.UInt8.t",
"FStar.Pervasives.false_elim",
"Prims.unit",
"Prims.bool",
"FStar.Seq.Base.seq",
"FStar.Krml.Endianness.offset_uint64_be",
"Prims.op_Subtraction",
"FStar.Pervasives.Native.tuple2",
"FStar.Seq.Properties.split",
"Prims.l_and",
"Prims.b2t",
"FStar.Mul.op_Star",
"Prims.op_LessThan",
"Prims.squash",
"Prims.eq2",
"FStar.UInt64.t",
"FStar.Seq.Base.index",
"FStar.Krml.Endianness.seq_uint64_of_be",
"FStar.Krml.Endianness.uint64_of_be",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec offset_uint64_be (b: bytes) (n i: nat)
: Lemma (requires (S.length b = 8 * n /\ i < n))
(ensures (S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8))))
(decreases (S.length b))
[SMTPat (S.index (seq_uint64_of_be n b) i)] =
| if S.length b = 0
then false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then () else offset_uint64_be tl (n - 1) (i - 1) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.be_of_seq_uint32_append | val be_of_seq_uint32_append (s1 s2: S.seq U32.t)
: Lemma
(ensures
(S.equal (be_of_seq_uint32 (S.append s1 s2))
(S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2))))
(decreases (S.length s1))
[SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2))] | val be_of_seq_uint32_append (s1 s2: S.seq U32.t)
: Lemma
(ensures
(S.equal (be_of_seq_uint32 (S.append s1 s2))
(S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2))))
(decreases (S.length s1))
[SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2))] | let rec be_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma
(ensures (
S.equal (be_of_seq_uint32 (S.append s1 s2))
(S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2))))
(decreases (
S.length s1))
[ SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)) ]
=
Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties
if S.length s1 = 0 then begin
assert (S.equal (be_of_seq_uint32 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
()
end else begin
assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (be_of_seq_uint32 (S.append s1 s2))
(S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2))));
be_of_seq_uint32_append (S.tail s1) s2
end | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 5,
"end_line": 435,
"start_col": 0,
"start_line": 417
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint32")]
let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint32_of_be")]
let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint32")]
let rec be_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_le")]
let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint64")]
let rec le_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_be")]
let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint64")]
let rec be_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s))
#set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50"
[@(deprecated "FStar.Endianness.offset_uint32_be")]
let rec offset_uint32_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_be tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint32_le")]
let rec offset_uint32_le (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_le n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_le tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint64_be")]
let rec offset_uint64_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 8 * n /\
i < n))
(ensures (
S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint64_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then
()
else
offset_uint64_be tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint64_le")]
let rec offset_uint64_le (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 8 * n /\
i < n))
(ensures (
S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint64_of_le n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then
()
else
offset_uint64_le tl (n - 1) (i - 1)
(** Reasoning about endian-ness and words. *)
#set-options "--max_fuel 1 --z3rlimit 20"
(* TODO: move to FStar.Seq.Properties, with the pattern *)
[@(deprecated "FStar.Endianness.tail_cons")]
let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma
(ensures (S.equal (S.tail (S.cons hd tl)) tl))
// [ SMTPat (S.tail (S.cons hd tl)) ]
=
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s1: FStar.Seq.Base.seq FStar.UInt32.t -> s2: FStar.Seq.Base.seq FStar.UInt32.t
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.equal (FStar.Krml.Endianness.be_of_seq_uint32 (FStar.Seq.Base.append s1 s2))
(FStar.Seq.Base.append (FStar.Krml.Endianness.be_of_seq_uint32 s1)
(FStar.Krml.Endianness.be_of_seq_uint32 s2)))
(decreases FStar.Seq.Base.length s1)
[
SMTPat (FStar.Seq.Base.append (FStar.Krml.Endianness.be_of_seq_uint32 s1)
(FStar.Krml.Endianness.be_of_seq_uint32 s2))
] | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"FStar.Seq.Base.seq",
"FStar.UInt32.t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.append",
"FStar.UInt8.t",
"FStar.Krml.Endianness.be_of_seq_uint32",
"FStar.Seq.Base.empty",
"Prims.bool",
"FStar.Krml.Endianness.be_of_seq_uint32_append",
"FStar.Seq.Properties.tail",
"FStar.Krml.Endianness.be_of_uint32",
"FStar.Seq.Properties.head",
"FStar.Seq.Base.cons",
"FStar.Classical.forall_intro_2",
"FStar.Krml.Endianness.tail_cons",
"Prims.l_True",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec be_of_seq_uint32_append (s1 s2: S.seq U32.t)
: Lemma
(ensures
(S.equal (be_of_seq_uint32 (S.append s1 s2))
(S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2))))
(decreases (S.length s1))
[SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2))] =
| Classical.forall_intro_2 (tail_cons #U32.t);
if S.length s1 = 0
then
(assert (S.equal (be_of_seq_uint32 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
())
else
(assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (be_of_seq_uint32 (S.append s1 s2))
(S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2))));
be_of_seq_uint32_append (S.tail s1) s2) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.le_of_seq_uint32_append | val le_of_seq_uint32_append (s1 s2: S.seq U32.t)
: Lemma
(ensures
(S.equal (le_of_seq_uint32 (S.append s1 s2))
(S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2))))
(decreases (S.length s1))
[SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2))] | val le_of_seq_uint32_append (s1 s2: S.seq U32.t)
: Lemma
(ensures
(S.equal (le_of_seq_uint32 (S.append s1 s2))
(S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2))))
(decreases (S.length s1))
[SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2))] | let rec le_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma
(ensures (
S.equal (le_of_seq_uint32 (S.append s1 s2))
(S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2))))
(decreases (
S.length s1))
[ SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)) ]
=
Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties
if S.length s1 = 0 then begin
assert (S.equal (le_of_seq_uint32 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
()
end else begin
assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (le_of_seq_uint32 (S.append s1 s2))
(S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2))));
le_of_seq_uint32_append (S.tail s1) s2
end | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 5,
"end_line": 467,
"start_col": 0,
"start_line": 449
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint32")]
let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint32_of_be")]
let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint32")]
let rec be_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_le")]
let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint64")]
let rec le_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_be")]
let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint64")]
let rec be_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s))
#set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50"
[@(deprecated "FStar.Endianness.offset_uint32_be")]
let rec offset_uint32_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_be tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint32_le")]
let rec offset_uint32_le (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_le n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_le tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint64_be")]
let rec offset_uint64_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 8 * n /\
i < n))
(ensures (
S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint64_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then
()
else
offset_uint64_be tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint64_le")]
let rec offset_uint64_le (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 8 * n /\
i < n))
(ensures (
S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint64_of_le n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then
()
else
offset_uint64_le tl (n - 1) (i - 1)
(** Reasoning about endian-ness and words. *)
#set-options "--max_fuel 1 --z3rlimit 20"
(* TODO: move to FStar.Seq.Properties, with the pattern *)
[@(deprecated "FStar.Endianness.tail_cons")]
let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma
(ensures (S.equal (S.tail (S.cons hd tl)) tl))
// [ SMTPat (S.tail (S.cons hd tl)) ]
=
()
[@(deprecated "FStar.Endianness.be_of_seq_uint32_append")]
let rec be_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma
(ensures (
S.equal (be_of_seq_uint32 (S.append s1 s2))
(S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2))))
(decreases (
S.length s1))
[ SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)) ]
=
Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties
if S.length s1 = 0 then begin
assert (S.equal (be_of_seq_uint32 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
()
end else begin
assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (be_of_seq_uint32 (S.append s1 s2))
(S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2))));
be_of_seq_uint32_append (S.tail s1) s2
end
[@(deprecated "FStar.Endianness.be_of_seq_uint32_base")]
let be_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma
(requires (
S.length s1 = 1 /\
S.length s2 = 4 /\
be_to_n s2 = U32.v (S.index s1 0)))
(ensures (S.equal s2 (be_of_seq_uint32 s1)))
[ SMTPat (be_to_n s2 = U32.v (S.index s1 0)) ]
=
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s1: FStar.Seq.Base.seq FStar.UInt32.t -> s2: FStar.Seq.Base.seq FStar.UInt32.t
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.equal (FStar.Krml.Endianness.le_of_seq_uint32 (FStar.Seq.Base.append s1 s2))
(FStar.Seq.Base.append (FStar.Krml.Endianness.le_of_seq_uint32 s1)
(FStar.Krml.Endianness.le_of_seq_uint32 s2)))
(decreases FStar.Seq.Base.length s1)
[
SMTPat (FStar.Seq.Base.append (FStar.Krml.Endianness.le_of_seq_uint32 s1)
(FStar.Krml.Endianness.le_of_seq_uint32 s2))
] | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"FStar.Seq.Base.seq",
"FStar.UInt32.t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.append",
"FStar.UInt8.t",
"FStar.Krml.Endianness.le_of_seq_uint32",
"FStar.Seq.Base.empty",
"Prims.bool",
"FStar.Krml.Endianness.le_of_seq_uint32_append",
"FStar.Seq.Properties.tail",
"FStar.Krml.Endianness.le_of_uint32",
"FStar.Seq.Properties.head",
"FStar.Seq.Base.cons",
"FStar.Classical.forall_intro_2",
"FStar.Krml.Endianness.tail_cons",
"Prims.l_True",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec le_of_seq_uint32_append (s1 s2: S.seq U32.t)
: Lemma
(ensures
(S.equal (le_of_seq_uint32 (S.append s1 s2))
(S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2))))
(decreases (S.length s1))
[SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2))] =
| Classical.forall_intro_2 (tail_cons #U32.t);
if S.length s1 = 0
then
(assert (S.equal (le_of_seq_uint32 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
())
else
(assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (le_of_seq_uint32 (S.append s1 s2))
(S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2))));
le_of_seq_uint32_append (S.tail s1) s2) | false |
FStar.Krml.Endianness.fst | FStar.Krml.Endianness.be_of_seq_uint64_append | val be_of_seq_uint64_append (s1 s2: S.seq U64.t)
: Lemma
(ensures
(S.equal (be_of_seq_uint64 (S.append s1 s2))
(S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2))))
(decreases (S.length s1))
[SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2))] | val be_of_seq_uint64_append (s1 s2: S.seq U64.t)
: Lemma
(ensures
(S.equal (be_of_seq_uint64 (S.append s1 s2))
(S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2))))
(decreases (S.length s1))
[SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2))] | let rec be_of_seq_uint64_append (s1 s2: S.seq U64.t): Lemma
(ensures (
S.equal (be_of_seq_uint64 (S.append s1 s2))
(S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2))))
(decreases (
S.length s1))
[ SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2)) ]
=
Classical.forall_intro_2 (tail_cons #U64.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties
if S.length s1 = 0 then begin
assert (S.equal (be_of_seq_uint64 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
()
end else begin
assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (be_of_seq_uint64 (S.append s1 s2))
(S.append (be_of_uint64 (S.head s1)) (be_of_seq_uint64 (S.append (S.tail s1) s2))));
be_of_seq_uint64_append (S.tail s1) s2
end | {
"file_name": "krmllib/FStar.Krml.Endianness.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 5,
"end_line": 499,
"start_col": 0,
"start_line": 481
} | module FStar.Krml.Endianness
open FStar.Mul
open FStar.HyperStack.All
module U8 = FStar.UInt8
module U32 = FStar.UInt32
module U64 = FStar.UInt64
module Math = FStar.Math.Lemmas
module S = FStar.Seq
(* Selectively imported from Hacl*'s FStar.Endianness.fst library, with several
name changes *)
inline_for_extraction noextract
type bytes = S.seq U8.t
/// lt_to_n interprets a byte sequence as a little-endian natural number
[@(deprecated "FStar.Endianness.le_to_n")]
val le_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec le_to_n b =
if S.length b = 0 then 0
else U8.v (S.head b) + pow2 8 * le_to_n (S.tail b)
/// be_to_n interprets a byte sequence as a big-endian natural number
[@(deprecated "FStar.Endianness.be_to_n")]
val be_to_n : b:bytes -> Tot nat (decreases (S.length b))
let rec be_to_n b =
if S.length b = 0 then 0
else U8.v (S.last b) + pow2 8 * be_to_n (S.slice b 0 (S.length b - 1))
[@(deprecated "FStar.Endianness.lemma_euclidean_division")]
private val lemma_euclidean_division: r:nat -> b:nat -> q:pos -> Lemma
(requires (r < q))
(ensures (r + q * b < q * (b+1)))
let lemma_euclidean_division r b q = ()
[@(deprecated "FStar.Endianness.lemma_factorise")]
private val lemma_factorise: a:nat -> b:nat -> Lemma (a + a * b == a * (b + 1))
let lemma_factorise a b = ()
[@(deprecated "FStar.Endianness.lemma_le_to_n_is_bounded")]
val lemma_le_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (le_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_le_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 1 (Seq.length b) in
assert(Seq.length s = Seq.length b - 1);
lemma_le_to_n_is_bounded s;
assert(UInt8.v (Seq.index b 0) < pow2 8);
assert(le_to_n s < pow2 (8 * Seq.length s));
assert(le_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.index b 0)) (le_to_n s) (pow2 8);
assert(le_to_n b <= pow2 8 * (le_to_n s + 1));
assert(le_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
[@(deprecated "FStar.Endianness.lemma_be_to_n_is_bounded")]
val lemma_be_to_n_is_bounded: b:bytes -> Lemma
(requires True)
(ensures (be_to_n b < pow2 (8 * Seq.length b)))
(decreases (Seq.length b))
let rec lemma_be_to_n_is_bounded b =
if Seq.length b = 0 then ()
else
begin
let s = Seq.slice b 0 (Seq.length b - 1) in
assert(Seq.length s = Seq.length b - 1);
lemma_be_to_n_is_bounded s;
assert(UInt8.v (Seq.last b) < pow2 8);
assert(be_to_n s < pow2 (8 * Seq.length s));
assert(be_to_n b < pow2 8 + pow2 8 * pow2 (8 * (Seq.length b - 1)));
lemma_euclidean_division (UInt8.v (Seq.last b)) (be_to_n s) (pow2 8);
assert(be_to_n b <= pow2 8 * (be_to_n s + 1));
assert(be_to_n b <= pow2 8 * pow2 (8 * (Seq.length b - 1)));
Math.Lemmas.pow2_plus 8 (8 * (Seq.length b - 1));
lemma_factorise 8 (Seq.length b - 1)
end
/// n_to_le encodes a number as a little-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_le")]
val n_to_le : len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == le_to_n b})
(decreases (U32.v len))
let rec n_to_le len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_le len n' in
let b = S.cons byte b' in
S.lemma_eq_intro b' (S.tail b);
b
/// n_to_be encodes a numbers as a big-endian byte sequence of a fixed,
/// sufficiently large length
[@(deprecated "FStar.Endianness.n_to_be")]
val n_to_be:
len:U32.t -> n:nat{n < pow2 (8 * U32.v len)} ->
Tot (b:bytes{S.length b == U32.v len /\ n == be_to_n b})
(decreases (U32.v len))
let rec n_to_be len n =
if len = 0ul then
S.empty
else
let len = U32.(len -^ 1ul) in
let byte = U8.uint_to_t (n % 256) in
let n' = n / 256 in
Math.pow2_plus 8 (8 * U32.v len);
assert(n' < pow2 (8 * U32.v len ));
let b' = n_to_be len n' in
let b'' = S.create 1 byte in
let b = S.append b' b'' in
S.lemma_eq_intro b' (S.slice b 0 (U32.v len));
b
[@(deprecated "FStar.Endianness.n_to_le_inj")]
let n_to_le_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_le len n1 == n_to_le len n2))
(ensures (n1 == n2)) =
// this lemma easily follows from le_to_n . (n_to_le len) == id, the inversion
// proof in the spec for n_to_le
()
[@(deprecated "FStar.Endianness.n_to_be_inj")]
let n_to_be_inj (len:U32.t) (n1 n2: (n:nat{n < pow2 (8 * U32.v len)})) :
Lemma (requires (n_to_be len n1 == n_to_be len n2))
(ensures (n1 == n2)) =
()
[@(deprecated "FStar.Endianness.be_to_n_inj")]
let rec be_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ be_to_n b1 == be_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
be_to_n_inj (Seq.slice b1 0 (Seq.length b1 - 1)) (Seq.slice b2 0 (Seq.length b2 - 1));
Seq.lemma_split b1 (Seq.length b1 - 1);
Seq.lemma_split b2 (Seq.length b2 - 1)
end
[@(deprecated "FStar.Endianness.le_to_n_inj")]
let rec le_to_n_inj
(b1 b2: Seq.seq U8.t)
: Lemma
(requires (Seq.length b1 == Seq.length b2 /\ le_to_n b1 == le_to_n b2))
(ensures (Seq.equal b1 b2))
(decreases (Seq.length b1))
= if Seq.length b1 = 0
then ()
else begin
le_to_n_inj (Seq.slice b1 1 (Seq.length b1)) (Seq.slice b2 1 (Seq.length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
[@(deprecated "FStar.Endianness.n_to_be_be_to_n")]
let n_to_be_be_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
be_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_be len (be_to_n s) == s
))
[SMTPat (n_to_be len (be_to_n s))]
= lemma_be_to_n_is_bounded s;
be_to_n_inj s (n_to_be len (be_to_n s))
[@(deprecated "FStar.Endianness.n_to_le_le_to_n")]
let n_to_le_le_to_n (len: U32.t) (s: Seq.seq U8.t) : Lemma
(requires (Seq.length s == U32.v len))
(ensures (
le_to_n s < pow2 (8 `Prims.op_Multiply` U32.v len) /\
n_to_le len (le_to_n s) == s
))
[SMTPat (n_to_le len (le_to_n s))]
= lemma_le_to_n_is_bounded s;
le_to_n_inj s (n_to_le len (le_to_n s))
(** A series of specializations to deal with machine integers *)
[@(deprecated "FStar.Endianness.uint32_of_le")]
let uint32_of_le (b: bytes { S.length b = 4 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint32")]
let le_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_le 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint32_of_be")]
let uint32_of_be (b: bytes { S.length b = 4 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt32.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint32")]
let be_of_uint32 (x: UInt32.t): b:bytes{ S.length b = 4 } =
n_to_be 4ul (UInt32.v x)
[@(deprecated "FStar.Endianness.uint64_of_le")]
let uint64_of_le (b: bytes { S.length b = 8 }) =
let n = le_to_n b in
lemma_le_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.le_of_uint64")]
let le_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_le 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.uint64_of_be")]
let uint64_of_be (b: bytes { S.length b = 8 }) =
let n = be_to_n b in
lemma_be_to_n_is_bounded b;
UInt64.uint_to_t n
[@(deprecated "FStar.Endianness.be_of_uint64")]
let be_of_uint64 (x: UInt64.t): b:bytes{ S.length b = 8 } =
n_to_be 8ul (UInt64.v x)
[@(deprecated "FStar.Endianness.seq_uint32_of_le")]
let rec seq_uint32_of_le (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_le hd) (seq_uint32_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint32")]
let rec le_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint32 (S.head s)) (le_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint32_of_be")]
let rec seq_uint32_of_be (l: nat) (b: bytes{ S.length b = 4 * l }):
s:S.seq UInt32.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 4 in
S.cons (uint32_of_be hd) (seq_uint32_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint32")]
let rec be_of_seq_uint32 (s: S.seq UInt32.t):
Tot (b:bytes { S.length b = 4 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint32 (S.head s)) (be_of_seq_uint32 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_le")]
let rec seq_uint64_of_le (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_le hd) (seq_uint64_of_le (l - 1) tl)
[@(deprecated "FStar.Endianness.le_of_seq_uint64")]
let rec le_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (le_of_uint64 (S.head s)) (le_of_seq_uint64 (S.tail s))
[@(deprecated "FStar.Endianness.seq_uint64_of_be")]
let rec seq_uint64_of_be (l: nat) (b: bytes{ S.length b = 8 * l }):
s:S.seq UInt64.t { S.length s = l }
=
if S.length b = 0 then
S.empty
else
let hd, tl = Seq.split b 8 in
S.cons (uint64_of_be hd) (seq_uint64_of_be (l - 1) tl)
[@(deprecated "FStar.Endianness.be_of_seq_uint64")]
let rec be_of_seq_uint64 (s: S.seq UInt64.t):
Tot (b:bytes { S.length b = 8 * S.length s })
(decreases (S.length s))
=
if S.length s = 0 then
S.empty
else
S.append (be_of_uint64 (S.head s)) (be_of_seq_uint64 (S.tail s))
#set-options "--max_fuel 1 --max_ifuel 0 --z3rlimit 50"
[@(deprecated "FStar.Endianness.offset_uint32_be")]
let rec offset_uint32_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_be n b) i == uint32_of_be (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_be tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint32_le")]
let rec offset_uint32_le (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 4 * n /\
i < n))
(ensures (
S.index (seq_uint32_of_le n b) i == uint32_of_le (S.slice b (4 * i) (4 * i + 4))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint32_of_le n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 4 in
if i = 0 then
()
else
offset_uint32_le tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint64_be")]
let rec offset_uint64_be (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 8 * n /\
i < n))
(ensures (
S.index (seq_uint64_of_be n b) i == uint64_of_be (S.slice b (8 * i) (8 * i + 8))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint64_of_be n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then
()
else
offset_uint64_be tl (n - 1) (i - 1)
[@(deprecated "FStar.Endianness.offset_uint64_le")]
let rec offset_uint64_le (b: bytes) (n: nat) (i: nat):
Lemma
(requires (
S.length b = 8 * n /\
i < n))
(ensures (
S.index (seq_uint64_of_le n b) i == uint64_of_le (S.slice b (8 * i) (8 * i + 8))))
(decreases (
S.length b))
[ SMTPat (S.index (seq_uint64_of_le n b) i) ]
=
if S.length b = 0 then
false_elim ()
else
let hd, tl = Seq.split b 8 in
if i = 0 then
()
else
offset_uint64_le tl (n - 1) (i - 1)
(** Reasoning about endian-ness and words. *)
#set-options "--max_fuel 1 --z3rlimit 20"
(* TODO: move to FStar.Seq.Properties, with the pattern *)
[@(deprecated "FStar.Endianness.tail_cons")]
let tail_cons (#a: Type) (hd: a) (tl: S.seq a): Lemma
(ensures (S.equal (S.tail (S.cons hd tl)) tl))
// [ SMTPat (S.tail (S.cons hd tl)) ]
=
()
[@(deprecated "FStar.Endianness.be_of_seq_uint32_append")]
let rec be_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma
(ensures (
S.equal (be_of_seq_uint32 (S.append s1 s2))
(S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2))))
(decreases (
S.length s1))
[ SMTPat (S.append (be_of_seq_uint32 s1) (be_of_seq_uint32 s2)) ]
=
Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties
if S.length s1 = 0 then begin
assert (S.equal (be_of_seq_uint32 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
()
end else begin
assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (be_of_seq_uint32 (S.append s1 s2))
(S.append (be_of_uint32 (S.head s1)) (be_of_seq_uint32 (S.append (S.tail s1) s2))));
be_of_seq_uint32_append (S.tail s1) s2
end
[@(deprecated "FStar.Endianness.be_of_seq_uint32_base")]
let be_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma
(requires (
S.length s1 = 1 /\
S.length s2 = 4 /\
be_to_n s2 = U32.v (S.index s1 0)))
(ensures (S.equal s2 (be_of_seq_uint32 s1)))
[ SMTPat (be_to_n s2 = U32.v (S.index s1 0)) ]
=
()
[@(deprecated "FStar.Endianness.le_of_seq_uint32_append")]
let rec le_of_seq_uint32_append (s1 s2: S.seq U32.t): Lemma
(ensures (
S.equal (le_of_seq_uint32 (S.append s1 s2))
(S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2))))
(decreases (
S.length s1))
[ SMTPat (S.append (le_of_seq_uint32 s1) (le_of_seq_uint32 s2)) ]
=
Classical.forall_intro_2 (tail_cons #U32.t); // TODO: this is a local pattern, remove once tail_cons lands in FStar.Seq.Properties
if S.length s1 = 0 then begin
assert (S.equal (le_of_seq_uint32 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
()
end else begin
assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (le_of_seq_uint32 (S.append s1 s2))
(S.append (le_of_uint32 (S.head s1)) (le_of_seq_uint32 (S.append (S.tail s1) s2))));
le_of_seq_uint32_append (S.tail s1) s2
end
[@(deprecated "FStar.Endianness.le_of_seq_uint32_base")]
let le_of_seq_uint32_base (s1: S.seq U32.t) (s2: S.seq U8.t): Lemma
(requires (
S.length s1 = 1 /\
S.length s2 = 4 /\
le_to_n s2 = U32.v (S.index s1 0)))
(ensures (S.equal s2 (le_of_seq_uint32 s1)))
[ SMTPat (le_to_n s2 = U32.v (S.index s1 0)) ]
=
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Krml.Endianness.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Lemmas",
"short_module": "Math"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Krml",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s1: FStar.Seq.Base.seq FStar.UInt64.t -> s2: FStar.Seq.Base.seq FStar.UInt64.t
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.equal (FStar.Krml.Endianness.be_of_seq_uint64 (FStar.Seq.Base.append s1 s2))
(FStar.Seq.Base.append (FStar.Krml.Endianness.be_of_seq_uint64 s1)
(FStar.Krml.Endianness.be_of_seq_uint64 s2)))
(decreases FStar.Seq.Base.length s1)
[
SMTPat (FStar.Seq.Base.append (FStar.Krml.Endianness.be_of_seq_uint64 s1)
(FStar.Krml.Endianness.be_of_seq_uint64 s2))
] | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"FStar.Seq.Base.seq",
"FStar.UInt64.t",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.append",
"FStar.UInt8.t",
"FStar.Krml.Endianness.be_of_seq_uint64",
"FStar.Seq.Base.empty",
"Prims.bool",
"FStar.Krml.Endianness.be_of_seq_uint64_append",
"FStar.Seq.Properties.tail",
"FStar.Krml.Endianness.be_of_uint64",
"FStar.Seq.Properties.head",
"FStar.Seq.Base.cons",
"FStar.Classical.forall_intro_2",
"FStar.Krml.Endianness.tail_cons",
"Prims.l_True",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec be_of_seq_uint64_append (s1 s2: S.seq U64.t)
: Lemma
(ensures
(S.equal (be_of_seq_uint64 (S.append s1 s2))
(S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2))))
(decreases (S.length s1))
[SMTPat (S.append (be_of_seq_uint64 s1) (be_of_seq_uint64 s2))] =
| Classical.forall_intro_2 (tail_cons #U64.t);
if S.length s1 = 0
then
(assert (S.equal (be_of_seq_uint64 s1) S.empty);
assert (S.equal (S.append s1 s2) s2);
())
else
(assert (S.equal (S.append s1 s2) (S.cons (S.head s1) (S.append (S.tail s1) s2)));
assert (S.equal (be_of_seq_uint64 (S.append s1 s2))
(S.append (be_of_uint64 (S.head s1)) (be_of_seq_uint64 (S.append (S.tail s1) s2))));
be_of_seq_uint64_append (S.tail s1) s2) | false |
Hacl.Spec.Bignum.Multiplication.fst | Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add_lemma | val bn_mul1_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> #resLen:size_nat
-> a:lbignum t aLen
-> b_j:limb t
-> j:size_nat{j + aLen <= resLen}
-> acc:lbignum t resLen ->
Lemma (let (c, res) = bn_mul1_lshift_add a b_j j acc in
v c * pow2 (bits t * (aLen + j)) + eval_ resLen res (aLen + j) ==
eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (bits t * j) /\
slice res (aLen + j) resLen == slice acc (aLen + j) resLen) | val bn_mul1_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> #resLen:size_nat
-> a:lbignum t aLen
-> b_j:limb t
-> j:size_nat{j + aLen <= resLen}
-> acc:lbignum t resLen ->
Lemma (let (c, res) = bn_mul1_lshift_add a b_j j acc in
v c * pow2 (bits t * (aLen + j)) + eval_ resLen res (aLen + j) ==
eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (bits t * j) /\
slice res (aLen + j) resLen == slice acc (aLen + j) resLen) | let bn_mul1_lshift_add_lemma #t #aLen #resLen a b_j j acc =
let pbits = bits t in
let res1 = sub acc j aLen in
let c, res2 = bn_mul1_add_in_place a b_j res1 in
bn_mul1_add_in_place_lemma a b_j res1;
assert (v c * pow2 (pbits * aLen) + bn_v res2 == bn_v res1 + bn_v a * v b_j);
let res = update_sub acc j aLen res2 in
bn_eval_split_i (sub res 0 (j + aLen)) j;
bn_eval_extensionality_j res (sub res 0 (j + aLen)) (j + aLen);
assert (eval_ resLen res (j + aLen) == bn_v #t #j (sub res 0 j) + pow2 (pbits * j) * bn_v res2);
eq_intro (sub res 0 j) (sub acc 0 j);
assert (bn_v #t #j (sub res 0 j) == bn_v #t #j (sub acc 0 j));
bn_eval_split_i (sub acc 0 (j + aLen)) j;
bn_eval_extensionality_j acc (sub acc 0 (j + aLen)) (j + aLen);
assert (eval_ resLen acc (j + aLen) == bn_v #t #j (sub acc 0 j) + pow2 (pbits * j) * bn_v res1);
calc (==) {
v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j);
(==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * j) }
v c * (pow2 (pbits * aLen) * pow2 (pbits * j)) + eval_ resLen res (aLen + j);
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * aLen)) (pow2 (pbits * j)) }
v c * pow2 (pbits * aLen) * pow2 (pbits * j) + eval_ resLen res (aLen + j);
(==) { }
(bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen res (aLen + j);
(==) { }
(bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen acc (j + aLen) - pow2 (pbits * j) * bn_v res1 + pow2 (pbits * j) * bn_v res2;
(==) { Math.Lemmas.distributivity_add_right (pow2 (pbits * j)) (bn_v res1) (bn_v a * v b_j - bn_v res2) }
pow2 (pbits * j) * (bn_v a * v b_j - bn_v res2) + eval_ resLen acc (j + aLen) + pow2 (pbits * j) * bn_v res2;
(==) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * j)) (bn_v a * v b_j) (bn_v res2) }
pow2 (pbits * j) * (bn_v a * v b_j) + eval_ resLen acc (j + aLen);
};
assert (v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j) ==
eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (pbits * j));
eq_intro (slice res (aLen + j) resLen) (slice acc (aLen + j) resLen) | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 70,
"end_line": 356,
"start_col": 0,
"start_line": 323
} | module Hacl.Spec.Bignum.Multiplication
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Lib
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val bn_mul1_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_f #t #aLen a l i c =
mul_wide_add a.[i] l c
val bn_mul1:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t ->
limb t & lbignum t aLen
let bn_mul1 #t #aLen a l =
generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0)
val bn_mul1_add_in_place_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_add_in_place_f #t #aLen a l acc i c =
mul_wide_add2 a.[i] l c acc.[i]
val bn_mul1_add_in_place:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen ->
limb t & lbignum t aLen
let bn_mul1_add_in_place #t #aLen a l acc =
generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0)
val bn_mul1_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> #resLen:size_nat
-> a:lbignum t aLen
-> b_j:limb t
-> j:size_nat{j + aLen <= resLen}
-> res:lbignum t resLen ->
limb t & lbignum t resLen
let bn_mul1_lshift_add #t #aLen #resLen a b_j j res =
let res' = sub res j aLen in
let c, res' = bn_mul1_add_in_place a b_j res' in
let res = update_sub res j aLen res' in
c, res
val bn_mul_:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> j:size_nat{j < bLen}
-> res:lbignum t (aLen + bLen) ->
lbignum t (aLen + bLen)
let bn_mul_ #t #aLen #bLen a b j res =
let c, res = bn_mul1_lshift_add a b.[j] j res in
res.[aLen + j] <- c
val bn_mul:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen ->
lbignum t (aLen + bLen)
let bn_mul #t #aLen #bLen a b =
let res = create (aLen + bLen) (uint #t 0) in
repeati bLen (bn_mul_ a b) res
val bn_mul1_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l))
let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) =
let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
let c, e = mul_wide_add a.[i - 1] l c1 in
assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1);
calc (==) {
v c * b2 + bn_v #t #i res;
(==) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
(==) { }
v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1;
(==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1;
(==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l);
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l;
(==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) }
(eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l;
(==) { bn_eval_unfold_i a i }
eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l)
val bn_mul1_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)
let rec bn_mul1_lemma_loop #t #aLen a l i =
let pbits = bits t in
let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
if i = 0 then begin
eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0);
assert (c == uint #t 0 /\ res == Seq.empty);
bn_eval0 #t #0 res;
assert_norm (pow2 0 = 1);
bn_eval0 a;
() end
else begin
let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in
generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1);
assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) ==
generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0)));
assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1));
bn_mul1_lemma_loop a l (i - 1);
assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l);
bn_mul1_lemma_loop_step a l i (c1, res1);
assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l);
() end
val bn_mul1_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t ->
Lemma (let (c, res) = bn_mul1 a l in
v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l)
let bn_mul1_lemma #t #aLen a l =
let (c, res) = bn_mul1 a l in
bn_mul1_lemma_loop a l aLen
#push-options "--z3rlimit 150"
val bn_mul1_add_in_place_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l))
let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) =
let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
let c, e = mul_wide_add2 a.[i - 1] l c1 acc.[i - 1] in
assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1 + v acc.[i - 1]);
calc (==) {
v c * b2 + bn_v #t #i res;
(==) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
(==) { }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l -
(v e + v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1 + v e * b1;
(==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) b1 }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1;
(==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l + v acc.[i - 1]) b1 }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 +
(v a.[i - 1] * v l + v acc.[i - 1]) * b1;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[i - 1] * v l + v acc.[i - 1]) * b1;
(==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] * v l) (v acc.[i - 1]) b1 }
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1 + v acc.[i - 1] * b1;
(==) { bn_eval_unfold_i acc i }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l);
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l;
(==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) }
eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l;
(==) { bn_eval_unfold_i a i }
eval_ aLen acc i + eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)
#pop-options
val bn_mul1_add_in_place_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)
let rec bn_mul1_add_in_place_lemma_loop #t #aLen a l acc i =
let pbits = bits t in
let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
if i = 0 then begin
eq_generate_elems0 aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0);
assert (c == uint #t 0 /\ res == Seq.empty);
bn_eval0 #t #0 res;
assert_norm (pow2 0 = 1);
bn_eval0 a;
bn_eval0 acc;
() end
else begin
let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0) in
generate_elems_unfold aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) (i - 1);
assert (generate_elems aLen i (bn_mul1_add_in_place_f a l acc) (uint #t 0) ==
generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_add_in_place_f a l acc) (uint #t 0)));
assert ((c, res) == generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1));
bn_mul1_add_in_place_lemma_loop a l acc (i - 1);
assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l);
bn_mul1_add_in_place_lemma_loop_step a l acc i (c1, res1);
assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l);
() end
val bn_mul1_add_in_place_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen ->
Lemma (let (c, res) = bn_mul1_add_in_place a l acc in
v c * pow2 (bits t * aLen) + bn_v res == bn_v acc + bn_v a * v l)
let bn_mul1_add_in_place_lemma #t #aLen a l acc =
let (c, res) = bn_mul1_add_in_place a l acc in
bn_mul1_add_in_place_lemma_loop a l acc aLen
val bn_mul1_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> #resLen:size_nat
-> a:lbignum t aLen
-> b_j:limb t
-> j:size_nat{j + aLen <= resLen}
-> acc:lbignum t resLen ->
Lemma (let (c, res) = bn_mul1_lshift_add a b_j j acc in
v c * pow2 (bits t * (aLen + j)) + eval_ resLen res (aLen + j) ==
eval_ resLen acc (aLen + j) + bn_v a * v b_j * pow2 (bits t * j) /\
slice res (aLen + j) resLen == slice acc (aLen + j) resLen) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Multiplication.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
b_j: Hacl.Spec.Bignum.Definitions.limb t ->
j: Lib.IntTypes.size_nat{j + aLen <= resLen} ->
acc: Hacl.Spec.Bignum.Definitions.lbignum t resLen
-> FStar.Pervasives.Lemma
(ensures
(let _ = Hacl.Spec.Bignum.Multiplication.bn_mul1_lshift_add a b_j j acc in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in
Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * (aLen + j)) +
Hacl.Spec.Bignum.Definitions.eval_ resLen res (aLen + j) ==
Hacl.Spec.Bignum.Definitions.eval_ resLen acc (aLen + j) +
(Hacl.Spec.Bignum.Definitions.bn_v a * Lib.IntTypes.v b_j) *
Prims.pow2 (Lib.IntTypes.bits t * j) /\
Lib.Sequence.slice res (aLen + j) resLen == Lib.Sequence.slice acc (aLen + j) resLen)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.Sequence.eq_intro",
"Prims.op_Subtraction",
"Lib.Sequence.slice",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"FStar.Mul.op_Star",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Prims.pow2",
"Hacl.Spec.Bignum.Definitions.eval_",
"Hacl.Spec.Bignum.Definitions.bn_v",
"FStar.Calc.calc_finish",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.pow2_plus",
"Prims.squash",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.distributivity_add_right",
"FStar.Math.Lemmas.distributivity_sub_right",
"Lib.Sequence.sub",
"Hacl.Spec.Bignum.Definitions.bn_eval_extensionality_j",
"Hacl.Spec.Bignum.Definitions.bn_eval_split_i",
"Prims.nat",
"Lib.Sequence.lseq",
"Prims.l_and",
"Prims.l_Forall",
"Prims.l_or",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Lib.Sequence.index",
"Lib.Sequence.update_sub",
"Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_lemma",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Lib.IntTypes.bits"
] | [] | false | false | true | false | false | let bn_mul1_lshift_add_lemma #t #aLen #resLen a b_j j acc =
| let pbits = bits t in
let res1 = sub acc j aLen in
let c, res2 = bn_mul1_add_in_place a b_j res1 in
bn_mul1_add_in_place_lemma a b_j res1;
assert (v c * pow2 (pbits * aLen) + bn_v res2 == bn_v res1 + bn_v a * v b_j);
let res = update_sub acc j aLen res2 in
bn_eval_split_i (sub res 0 (j + aLen)) j;
bn_eval_extensionality_j res (sub res 0 (j + aLen)) (j + aLen);
assert (eval_ resLen res (j + aLen) == bn_v #t #j (sub res 0 j) + pow2 (pbits * j) * bn_v res2);
eq_intro (sub res 0 j) (sub acc 0 j);
assert (bn_v #t #j (sub res 0 j) == bn_v #t #j (sub acc 0 j));
bn_eval_split_i (sub acc 0 (j + aLen)) j;
bn_eval_extensionality_j acc (sub acc 0 (j + aLen)) (j + aLen);
assert (eval_ resLen acc (j + aLen) == bn_v #t #j (sub acc 0 j) + pow2 (pbits * j) * bn_v res1);
calc ( == ) {
v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j);
( == ) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * j) }
v c * (pow2 (pbits * aLen) * pow2 (pbits * j)) + eval_ resLen res (aLen + j);
( == ) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * aLen)) (pow2 (pbits * j)) }
(v c * pow2 (pbits * aLen)) * pow2 (pbits * j) + eval_ resLen res (aLen + j);
( == ) { () }
(bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen res (aLen + j);
( == ) { () }
(bn_v res1 + bn_v a * v b_j - bn_v res2) * pow2 (pbits * j) + eval_ resLen acc (j + aLen) -
pow2 (pbits * j) * bn_v res1 +
pow2 (pbits * j) * bn_v res2;
( == ) { Math.Lemmas.distributivity_add_right (pow2 (pbits * j))
(bn_v res1)
(bn_v a * v b_j - bn_v res2) }
pow2 (pbits * j) * (bn_v a * v b_j - bn_v res2) + eval_ resLen acc (j + aLen) +
pow2 (pbits * j) * bn_v res2;
( == ) { Math.Lemmas.distributivity_sub_right (pow2 (pbits * j)) (bn_v a * v b_j) (bn_v res2) }
pow2 (pbits * j) * (bn_v a * v b_j) + eval_ resLen acc (j + aLen);
};
assert (v c * pow2 (pbits * (aLen + j)) + eval_ resLen res (aLen + j) ==
eval_ resLen acc (aLen + j) + (bn_v a * v b_j) * pow2 (pbits * j));
eq_intro (slice res (aLen + j) resLen) (slice acc (aLen + j) resLen) | false |
Hacl.Spec.Bignum.Multiplication.fst | Hacl.Spec.Bignum.Multiplication.bn_mul1_lemma_loop_step | val bn_mul1_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)) | val bn_mul1_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)) | let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) =
let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
let c, e = mul_wide_add a.[i - 1] l c1 in
assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1);
calc (==) {
v c * b2 + bn_v #t #i res;
(==) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
(==) { }
v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1;
(==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1;
(==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l);
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l;
(==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) }
(eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l;
(==) { bn_eval_unfold_i a i }
eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l) | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 60,
"end_line": 157,
"start_col": 0,
"start_line": 127
} | module Hacl.Spec.Bignum.Multiplication
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Lib
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val bn_mul1_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_f #t #aLen a l i c =
mul_wide_add a.[i] l c
val bn_mul1:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t ->
limb t & lbignum t aLen
let bn_mul1 #t #aLen a l =
generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0)
val bn_mul1_add_in_place_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_add_in_place_f #t #aLen a l acc i c =
mul_wide_add2 a.[i] l c acc.[i]
val bn_mul1_add_in_place:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen ->
limb t & lbignum t aLen
let bn_mul1_add_in_place #t #aLen a l acc =
generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0)
val bn_mul1_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> #resLen:size_nat
-> a:lbignum t aLen
-> b_j:limb t
-> j:size_nat{j + aLen <= resLen}
-> res:lbignum t resLen ->
limb t & lbignum t resLen
let bn_mul1_lshift_add #t #aLen #resLen a b_j j res =
let res' = sub res j aLen in
let c, res' = bn_mul1_add_in_place a b_j res' in
let res = update_sub res j aLen res' in
c, res
val bn_mul_:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> j:size_nat{j < bLen}
-> res:lbignum t (aLen + bLen) ->
lbignum t (aLen + bLen)
let bn_mul_ #t #aLen #bLen a b j res =
let c, res = bn_mul1_lshift_add a b.[j] j res in
res.[aLen + j] <- c
val bn_mul:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen ->
lbignum t (aLen + bLen)
let bn_mul #t #aLen #bLen a b =
let res = create (aLen + bLen) (uint #t 0) in
repeati bLen (bn_mul_ a b) res
val bn_mul1_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Multiplication.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
l: Hacl.Spec.Bignum.Definitions.limb t ->
i: Prims.pos{i <= aLen} ->
c1_res1:
Hacl.Spec.Lib.generate_elem_a (Hacl.Spec.Bignum.Definitions.limb t)
(Hacl.Spec.Bignum.Definitions.limb t)
aLen
(i - 1)
-> FStar.Pervasives.Lemma
(requires
(let _ = c1_res1 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in
Lib.IntTypes.v c1 * Prims.pow2 (Lib.IntTypes.bits t * (i - 1)) +
Hacl.Spec.Bignum.Definitions.bn_v res1 ==
Hacl.Spec.Bignum.Definitions.eval_ aLen a (i - 1) * Lib.IntTypes.v l)
<:
Type0))
(ensures
(let _ = c1_res1 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in
let _ =
Hacl.Spec.Lib.generate_elem_f aLen
(Hacl.Spec.Bignum.Multiplication.bn_mul1_f a l)
(i - 1)
(c1,
res1)
in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in
Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * i) +
Hacl.Spec.Bignum.Definitions.bn_v res ==
Hacl.Spec.Bignum.Definitions.eval_ aLen a i * Lib.IntTypes.v l)
<:
Type0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.pos",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Hacl.Spec.Lib.generate_elem_a",
"Prims.op_Subtraction",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.nat",
"Lib.Sequence.length",
"Prims.op_Addition",
"Prims._assert",
"Prims.int",
"FStar.Mul.op_Star",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.Definitions.eval_",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Lib.Sequence.op_String_Access",
"Prims.pow2",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Bignum.Definitions.bn_eval_snoc",
"Prims.squash",
"FStar.Math.Lemmas.distributivity_add_left",
"FStar.Math.Lemmas.distributivity_sub_left",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.paren_mul_right",
"Hacl.Spec.Bignum.Definitions.bn_eval_unfold_i",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Base.mul_wide_add",
"Hacl.Spec.Lib.generate_elem_f",
"Hacl.Spec.Bignum.Multiplication.bn_mul1_f",
"FStar.Pervasives.Native.Mktuple2",
"Lib.IntTypes.bits"
] | [] | false | false | true | false | false | let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) =
| let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let c, res = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
let c, e = mul_wide_add a.[ i - 1 ] l c1 in
assert (v e + v c * pow2 pbits == v a.[ i - 1 ] * v l + v c1);
calc ( == ) {
v c * b2 + bn_v #t #i res;
( == ) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
( == ) { () }
v c * b2 + eval_ aLen a (i - 1) * v l - (v e + v c * pow2 pbits - v a.[ i - 1 ] * v l) * b1 +
v e * b1;
( == ) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[ i - 1 ] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[ i - 1 ] * v l) * b1;
( == ) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[ i - 1 ] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 + (v a.[ i - 1 ] * v l) * b1;
( == ) { (Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1;
Math.Lemmas.pow2_plus pbits (pbits * (i - 1))) }
eval_ aLen a (i - 1) * v l + (v a.[ i - 1 ] * v l) * b1;
( == ) { Math.Lemmas.paren_mul_right (v a.[ i - 1 ]) (v l) b1 }
eval_ aLen a (i - 1) * v l + v a.[ i - 1 ] * (b1 * v l);
( == ) { Math.Lemmas.paren_mul_right (v a.[ i - 1 ]) b1 (v l) }
eval_ aLen a (i - 1) * v l + (v a.[ i - 1 ] * b1) * v l;
( == ) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[ i - 1 ] * b1) (v l) }
(eval_ aLen a (i - 1) + v a.[ i - 1 ] * b1) * v l;
( == ) { bn_eval_unfold_i a i }
eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l) | false |
Steel.HigherReference.fst | Steel.HigherReference.ref | val ref ([@@@unused] a:Type u#1) : Type u#0 | val ref ([@@@unused] a:Type u#1) : Type u#0 | let ref a = Mem.ref (fractional a) pcm_frac | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 43,
"end_line": 31,
"start_col": 0,
"start_line": 31
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.ref",
"Steel.PCMFrac.fractional",
"Steel.PCMFrac.pcm_frac"
] | [] | false | false | false | true | true | let ref a =
| Mem.ref (fractional a) pcm_frac | false |
Steel.HigherReference.fst | Steel.HigherReference.null | val null (#a:Type u#1) : ref a | val null (#a:Type u#1) : ref a | let null #a = Mem.null #(fractional a) #pcm_frac | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 48,
"end_line": 32,
"start_col": 0,
"start_line": 32
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Steel.HigherReference.ref a | Prims.Tot | [
"total"
] | [] | [
"Steel.Memory.null",
"Steel.PCMFrac.fractional",
"Steel.PCMFrac.pcm_frac",
"Steel.HigherReference.ref"
] | [] | false | false | false | true | false | let null #a =
| Mem.null #(fractional a) #pcm_frac | false |
Steel.HigherReference.fst | Steel.HigherReference.pts_to_raw | val pts_to_raw (#a: Type) (r: ref a) (p: perm) (v: erased a) : vprop | val pts_to_raw (#a: Type) (r: ref a) (p: perm) (v: erased a) : vprop | let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 52,
"end_line": 38,
"start_col": 0,
"start_line": 37
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop = | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.HigherReference.ref a -> p: Steel.FractionalPermission.perm -> v: FStar.Ghost.erased a
-> Steel.Effect.Common.vprop | Prims.Tot | [
"total"
] | [] | [
"Steel.HigherReference.ref",
"Steel.FractionalPermission.perm",
"FStar.Ghost.erased",
"Steel.Effect.Common.to_vprop",
"Steel.Memory.pts_to",
"Steel.PCMFrac.fractional",
"Steel.PCMFrac.pcm_frac",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Ghost.reveal",
"Steel.Effect.Common.vprop"
] | [] | false | false | false | true | false | let pts_to_raw (#a: Type) (r: ref a) (p: perm) (v: erased a) : vprop =
| to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) | false |
Steel.HigherReference.fst | Steel.HigherReference.pts_to' | val pts_to' (#a: Type u#1) (r: ref a) (p: perm) (v: erased a) : vprop | val pts_to' (#a: Type u#1) (r: ref a) (p: perm) (v: erased a) : vprop | let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p) | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 108,
"end_line": 40,
"start_col": 0,
"start_line": 40
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p))) | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.HigherReference.ref a -> p: Steel.FractionalPermission.perm -> v: FStar.Ghost.erased a
-> Steel.Effect.Common.vprop | Prims.Tot | [
"total"
] | [] | [
"Steel.HigherReference.ref",
"Steel.FractionalPermission.perm",
"FStar.Ghost.erased",
"Steel.Effect.Common.star",
"Steel.HigherReference.pts_to_raw",
"Steel.Effect.Common.pure",
"Steel.HigherReference.perm_ok",
"Steel.Effect.Common.vprop"
] | [] | false | false | false | true | false | let pts_to' (#a: Type u#1) (r: ref a) (p: perm) (v: erased a) : vprop =
| (pts_to_raw r p v) `star` (pure (perm_ok p)) | false |
Steel.HigherReference.fst | Steel.HigherReference.pts_to_sl | val pts_to_sl (#a:Type u#1) (r:ref a) (p:perm) (v:a) : slprop u#1 | val pts_to_sl (#a:Type u#1) (r:ref a) (p:perm) (v:a) : slprop u#1 | let pts_to_sl #a r p v = hp_of (pts_to' r p v) | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 47,
"end_line": 41,
"start_col": 0,
"start_line": 41
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__] | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.HigherReference.ref a -> p: Steel.FractionalPermission.perm -> v: a -> Steel.Memory.slprop | Prims.Tot | [
"total"
] | [] | [
"Steel.HigherReference.ref",
"Steel.FractionalPermission.perm",
"Steel.Effect.Common.hp_of",
"Steel.HigherReference.pts_to'",
"FStar.Ghost.hide",
"Steel.Memory.slprop"
] | [] | false | false | false | true | false | let pts_to_sl #a r p v =
| hp_of (pts_to' r p v) | false |
Hacl.Impl.Poly1305.Field32xN_128.fst | Hacl.Impl.Poly1305.Field32xN_128.fmul_r2_normalize | val fmul_r2_normalize:
out:felem 2
-> p:precomp_r 2
-> Stack unit
(requires fun h ->
live h out /\ live h p /\
felem_fits h out (3, 3, 3, 3, 3) /\
load_precompute_r_post h p)
(ensures fun h0 _ h1 ->
modifies (loc out) h0 h1 /\
felem_fits h1 out (2, 2, 2, 2, 2) /\
(let r = feval h0 (gsub p 0ul 5ul) in
(feval h1 out).[0] == Vec.normalize_2 r.[0] (feval h0 out))) | val fmul_r2_normalize:
out:felem 2
-> p:precomp_r 2
-> Stack unit
(requires fun h ->
live h out /\ live h p /\
felem_fits h out (3, 3, 3, 3, 3) /\
load_precompute_r_post h p)
(ensures fun h0 _ h1 ->
modifies (loc out) h0 h1 /\
felem_fits h1 out (2, 2, 2, 2, 2) /\
(let r = feval h0 (gsub p 0ul 5ul) in
(feval h1 out).[0] == Vec.normalize_2 r.[0] (feval h0 out))) | let fmul_r2_normalize out p =
let r = sub p 0ul 5ul in
let r2 = sub p 10ul 5ul in
let a0 = out.(0ul) in
let a1 = out.(1ul) in
let a2 = out.(2ul) in
let a3 = out.(3ul) in
let a4 = out.(4ul) in
let r10 = r.(0ul) in
let r11 = r.(1ul) in
let r12 = r.(2ul) in
let r13 = r.(3ul) in
let r14 = r.(4ul) in
let r20 = r2.(0ul) in
let r21 = r2.(1ul) in
let r22 = r2.(2ul) in
let r23 = r2.(3ul) in
let r24 = r2.(4ul) in
let (o0, o1, o2, o3, o4) =
fmul_r2_normalize5 (a0, a1, a2, a3, a4) (r10, r11, r12, r13, r14) (r20, r21, r22, r23, r24) in
out.(0ul) <- o0;
out.(1ul) <- o1;
out.(2ul) <- o2;
out.(3ul) <- o3;
out.(4ul) <- o4 | {
"file_name": "code/poly1305/Hacl.Impl.Poly1305.Field32xN_128.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 101,
"start_col": 0,
"start_line": 73
} | module Hacl.Impl.Poly1305.Field32xN_128
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
include Hacl.Spec.Poly1305.Field32xN
open Hacl.Spec.Poly1305.Field32xN.Lemmas
module Vec = Hacl.Spec.Poly1305.Vec
module ST = FStar.HyperStack.ST
open Hacl.Impl.Poly1305.Field32xN
/// See comments in Hacl.Impl.Poly1305.Field32xN_256
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50 --using_facts_from '* -FStar.Seq'"
val load_acc2:
acc:felem 2
-> b:lbuffer uint8 32ul
-> Stack unit
(requires fun h ->
live h acc /\ live h b /\ disjoint acc b /\
felem_fits h acc (2, 2, 2, 2, 2))
(ensures fun h0 _ h1 ->
modifies (loc acc) h0 h1 /\
felem_fits h1 acc (3, 3, 3, 3, 3) /\
feval h1 acc == Vec.load_acc2 (as_seq h0 b) (feval h0 acc).[0])
let load_acc2 acc b =
push_frame();
let e = create 5ul (zero 2) in
load_blocks e b;
let acc0 = acc.(0ul) in
let acc1 = acc.(1ul) in
let acc2 = acc.(2ul) in
let acc3 = acc.(3ul) in
let acc4 = acc.(4ul) in
let e0 = e.(0ul) in
let e1 = e.(1ul) in
let e2 = e.(2ul) in
let e3 = e.(3ul) in
let e4 = e.(4ul) in
let (acc0, acc1, acc2, acc3, acc4) =
load_acc5_2 (acc0, acc1, acc2, acc3, acc4) (e0, e1, e2, e3, e4) in
acc.(0ul) <- acc0;
acc.(1ul) <- acc1;
acc.(2ul) <- acc2;
acc.(3ul) <- acc3;
acc.(4ul) <- acc4;
pop_frame()
val fmul_r2_normalize:
out:felem 2
-> p:precomp_r 2
-> Stack unit
(requires fun h ->
live h out /\ live h p /\
felem_fits h out (3, 3, 3, 3, 3) /\
load_precompute_r_post h p)
(ensures fun h0 _ h1 ->
modifies (loc out) h0 h1 /\
felem_fits h1 out (2, 2, 2, 2, 2) /\
(let r = feval h0 (gsub p 0ul 5ul) in | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Poly1305.Vec.fst.checked",
"Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked",
"Hacl.Spec.Poly1305.Field32xN.fst.checked",
"Hacl.Impl.Poly1305.Field32xN.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Poly1305.Field32xN_128.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Poly1305.Vec",
"short_module": "Vec"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | out: Hacl.Impl.Poly1305.Field32xN.felem 2 -> p: Hacl.Impl.Poly1305.Field32xN.precomp_r 2
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.Poly1305.Field32xN.felem",
"Hacl.Impl.Poly1305.Field32xN.precomp_r",
"Hacl.Spec.Poly1305.Field32xN.uint64xN",
"Lib.Buffer.op_Array_Assignment",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"Hacl.Spec.Poly1305.Field32xN.felem5",
"Hacl.Spec.Poly1305.Field32xN.fmul_r2_normalize5",
"FStar.Pervasives.Native.Mktuple5",
"Lib.Buffer.op_Array_Access",
"Lib.Buffer.MUT",
"Lib.Buffer.lbuffer_t",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.sub"
] | [] | false | true | false | false | false | let fmul_r2_normalize out p =
| let r = sub p 0ul 5ul in
let r2 = sub p 10ul 5ul in
let a0 = out.(0ul) in
let a1 = out.(1ul) in
let a2 = out.(2ul) in
let a3 = out.(3ul) in
let a4 = out.(4ul) in
let r10 = r.(0ul) in
let r11 = r.(1ul) in
let r12 = r.(2ul) in
let r13 = r.(3ul) in
let r14 = r.(4ul) in
let r20 = r2.(0ul) in
let r21 = r2.(1ul) in
let r22 = r2.(2ul) in
let r23 = r2.(3ul) in
let r24 = r2.(4ul) in
let o0, o1, o2, o3, o4 =
fmul_r2_normalize5 (a0, a1, a2, a3, a4) (r10, r11, r12, r13, r14) (r20, r21, r22, r23, r24)
in
out.(0ul) <- o0;
out.(1ul) <- o1;
out.(2ul) <- o2;
out.(3ul) <- o3;
out.(4ul) <- o4 | false |
Steel.HigherReference.fst | Steel.HigherReference.ghost_ref | val ghost_ref (a:Type u#1) : Type u#0 | val ghost_ref (a:Type u#1) : Type u#0 | let ghost_ref a = erased (ref a) | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 32,
"end_line": 389,
"start_col": 0,
"start_line": 389
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
}
let pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
= let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p0) `star` pure (perm_ok p1)) m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0))
(Some (Ghost.reveal v1, p1))
m
let pts_to_not_null (#a:Type u#1)
(r:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl r p v) m)
(ensures r =!= null)
= Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m;
Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m
let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m))
(ensures (x == y))
=
Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r =
extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1)
(fun m -> pts_to_ref_injective r p0 p1 v0 v1 m);
rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) =
pts_to_witinv r p
let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a)
: SteelGhost unit uses
(pts_to_raw r p v)
(fun _ -> pts_to r p v)
(requires fun _ -> perm_ok p)
(ensures fun _ _ _ -> True)
= intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let pts_to_perm
#_ #_ #p #v r
= rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ());
elim_pure (perm_ok p);
intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let alloc #a x =
let v = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
let r = RP.alloc v in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m ->
emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m
);
extract_info_raw (pts_to r full_perm x) (~ (is_null r))
(fun m -> pts_to_not_null r full_perm x m);
return r
let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.atomic_read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a)
: SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v))
(fun v -> pts_to r p v `star` q v)
= let vs:erased a = witness_exists () in
rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ());
let v = read r in
rewrite_slprop (q vs) (q v) (fun _ -> ());
return v
let write (#a:Type) (#v:erased a) (r:ref a) (x:a)
: SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let atomic_write #opened #a #v r x
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.atomic_write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let free (#a:Type) (#v:erased a) (r:ref a)
: SteelT unit (pts_to r full_perm v) (fun _ -> emp)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
rewrite_slprop
(pts_to r full_perm v)
(RP.pts_to r v_old `star` pure (perm_ok full_perm))
(fun _ -> ());
elim_pure (perm_ok full_perm);
RP.free r v_old;
drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
let share_atomic_raw_gen #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) (p1 p2: perm)
: SteelGhost unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r p1 v0 `star` pts_to_raw r p2 v0)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= rewrite_slprop
(pts_to_raw r p v0)
(RP.pts_to r _)
(fun _ -> ());
RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, p1)) (Some (Ghost.reveal v0, p2));
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p1 v0)
(fun _ -> ());
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p2 v0)
(fun _ -> ())
let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a)
: SteelGhostT unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0)
= share_atomic_raw_gen r v0 (half_perm p) (half_perm p)
let share_gen (#a:Type) (#uses:_) (#p:perm) (#v:erased a) (r:ref a)
(p1 p2: perm)
: SteelGhost unit uses
(pts_to r p v)
(fun _ -> pts_to r p1 v `star` pts_to r p2 v)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop
(pts_to r p v)
(pts_to' r p v)
(fun _ -> ());
elim_pure (perm_ok p);
share_atomic_raw_gen r v p1 p2;
intro_pts_to p1 r;
intro_pts_to p2 r
let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a)
: SteelGhostT unit uses
(pts_to r p v)
(fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
= share_gen r (half_perm p) (half_perm p)
let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a)
: SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses
(pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1)
(fun _ -> pts_to_raw r (sum_perm p0 p1) v0)
=
rewrite_slprop
(pts_to_raw r p0 v0)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0))))
(fun _ -> ());
rewrite_slprop
(pts_to_raw r p1 v1)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1))))
(fun _ -> ());
let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r (sum_perm p0 p1) v0)
(fun _ -> ())
let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a)
= let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in
let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(pts_to r p0 v0)
(pts_to_raw r p0 v0 `star` pure (perm_ok p0))
(fun _ -> ());
rewrite_slprop
(pts_to r p1 v1)
(pts_to_raw r p1 v1 `star` pure (perm_ok p1))
(fun _ -> ());
elim_pure (perm_ok p0);
elim_pure (perm_ok p1);
let _ = gather_atomic_raw r v0 v1 in
intro_pts_to (sum_perm p0 p1) r
let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) =
if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `Mem.equiv` r)
(ensures Mem.((p `star` q) `equiv` (p `star` r)))
= let open Steel.Memory in
calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let cas_action_helper (p q r s:slprop) (m:mem)
: Lemma
(requires interp Mem.(p `star` q `star` r `star` s) m)
(ensures interp Mem.(p `star` q `star` s) m)
= let open Steel.Memory in
calc (equiv) {
r `star` s;
(equiv) { star_commutative r s }
s `star` r;
};
calc (equiv) {
p `star` q `star` r `star` s;
(equiv) { Mem.star_associative (p `star` q) r s }
(p `star` q) `star` (r `star` s);
(equiv) { equiv_ext_right (p `star` q)
(r `star` s)
(s `star` r) }
(p `star` q) `star` (s `star` r);
(equiv) { star_associative (p `star` q) s r }
(p `star` q `star` s) `star` r;
};
assert (interp ((p `star` q `star` s) `star` r) m);
affine_star (p `star` q `star` s) r m
let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)}))
(#uses:inames)
(r:ref t)
(v:Ghost.erased t)
(v_old:t)
(v_new:t)
(fr:slprop)
: MstTot
(b:bool{b <==> (Ghost.reveal v == v_old)})
uses
(pts_to_sl r full_perm v)
(cas_provides r v v_new)
fr
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 : full_mem = NMSTTotal.get () in
let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let fv' = Some (v_new, full_perm) in
assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0);
assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0);
cas_action_helper (Mem.pts_to r fv)
(Mem.pure (perm_ok full_perm))
fr
(locks_invariant uses m0)
m0;
assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0);
let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in
assert (compatible pcm_frac fv fv_actual);
let Some (v', p) = fv_actual in
assert (v == Ghost.hide v');
assert (p == full_perm);
let b =
if eq v' v_old
then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true)
else false
in
b
(*** GHOST REFERENCES ***) | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Ghost.erased",
"Steel.HigherReference.ref"
] | [] | false | false | false | true | true | let ghost_ref a =
| erased (ref a) | false |
Steel.HigherReference.fst | Steel.HigherReference.ghost_pts_to_sl | val ghost_pts_to_sl (#a:_) (r:ghost_ref a) (p:perm) (x:a) : slprop u#1 | val ghost_pts_to_sl (#a:_) (r:ghost_ref a) (p:perm) (x:a) : slprop u#1 | let ghost_pts_to_sl #a (r:ghost_ref a) (p:perm) (x:a) = pts_to_sl (reveal r) p x | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 80,
"end_line": 392,
"start_col": 0,
"start_line": 392
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
}
let pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
= let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p0) `star` pure (perm_ok p1)) m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0))
(Some (Ghost.reveal v1, p1))
m
let pts_to_not_null (#a:Type u#1)
(r:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl r p v) m)
(ensures r =!= null)
= Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m;
Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m
let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m))
(ensures (x == y))
=
Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r =
extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1)
(fun m -> pts_to_ref_injective r p0 p1 v0 v1 m);
rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) =
pts_to_witinv r p
let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a)
: SteelGhost unit uses
(pts_to_raw r p v)
(fun _ -> pts_to r p v)
(requires fun _ -> perm_ok p)
(ensures fun _ _ _ -> True)
= intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let pts_to_perm
#_ #_ #p #v r
= rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ());
elim_pure (perm_ok p);
intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let alloc #a x =
let v = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
let r = RP.alloc v in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m ->
emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m
);
extract_info_raw (pts_to r full_perm x) (~ (is_null r))
(fun m -> pts_to_not_null r full_perm x m);
return r
let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.atomic_read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a)
: SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v))
(fun v -> pts_to r p v `star` q v)
= let vs:erased a = witness_exists () in
rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ());
let v = read r in
rewrite_slprop (q vs) (q v) (fun _ -> ());
return v
let write (#a:Type) (#v:erased a) (r:ref a) (x:a)
: SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let atomic_write #opened #a #v r x
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.atomic_write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let free (#a:Type) (#v:erased a) (r:ref a)
: SteelT unit (pts_to r full_perm v) (fun _ -> emp)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
rewrite_slprop
(pts_to r full_perm v)
(RP.pts_to r v_old `star` pure (perm_ok full_perm))
(fun _ -> ());
elim_pure (perm_ok full_perm);
RP.free r v_old;
drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
let share_atomic_raw_gen #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) (p1 p2: perm)
: SteelGhost unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r p1 v0 `star` pts_to_raw r p2 v0)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= rewrite_slprop
(pts_to_raw r p v0)
(RP.pts_to r _)
(fun _ -> ());
RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, p1)) (Some (Ghost.reveal v0, p2));
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p1 v0)
(fun _ -> ());
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p2 v0)
(fun _ -> ())
let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a)
: SteelGhostT unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0)
= share_atomic_raw_gen r v0 (half_perm p) (half_perm p)
let share_gen (#a:Type) (#uses:_) (#p:perm) (#v:erased a) (r:ref a)
(p1 p2: perm)
: SteelGhost unit uses
(pts_to r p v)
(fun _ -> pts_to r p1 v `star` pts_to r p2 v)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop
(pts_to r p v)
(pts_to' r p v)
(fun _ -> ());
elim_pure (perm_ok p);
share_atomic_raw_gen r v p1 p2;
intro_pts_to p1 r;
intro_pts_to p2 r
let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a)
: SteelGhostT unit uses
(pts_to r p v)
(fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
= share_gen r (half_perm p) (half_perm p)
let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a)
: SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses
(pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1)
(fun _ -> pts_to_raw r (sum_perm p0 p1) v0)
=
rewrite_slprop
(pts_to_raw r p0 v0)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0))))
(fun _ -> ());
rewrite_slprop
(pts_to_raw r p1 v1)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1))))
(fun _ -> ());
let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r (sum_perm p0 p1) v0)
(fun _ -> ())
let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a)
= let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in
let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(pts_to r p0 v0)
(pts_to_raw r p0 v0 `star` pure (perm_ok p0))
(fun _ -> ());
rewrite_slprop
(pts_to r p1 v1)
(pts_to_raw r p1 v1 `star` pure (perm_ok p1))
(fun _ -> ());
elim_pure (perm_ok p0);
elim_pure (perm_ok p1);
let _ = gather_atomic_raw r v0 v1 in
intro_pts_to (sum_perm p0 p1) r
let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) =
if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `Mem.equiv` r)
(ensures Mem.((p `star` q) `equiv` (p `star` r)))
= let open Steel.Memory in
calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let cas_action_helper (p q r s:slprop) (m:mem)
: Lemma
(requires interp Mem.(p `star` q `star` r `star` s) m)
(ensures interp Mem.(p `star` q `star` s) m)
= let open Steel.Memory in
calc (equiv) {
r `star` s;
(equiv) { star_commutative r s }
s `star` r;
};
calc (equiv) {
p `star` q `star` r `star` s;
(equiv) { Mem.star_associative (p `star` q) r s }
(p `star` q) `star` (r `star` s);
(equiv) { equiv_ext_right (p `star` q)
(r `star` s)
(s `star` r) }
(p `star` q) `star` (s `star` r);
(equiv) { star_associative (p `star` q) s r }
(p `star` q `star` s) `star` r;
};
assert (interp ((p `star` q `star` s) `star` r) m);
affine_star (p `star` q `star` s) r m
let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)}))
(#uses:inames)
(r:ref t)
(v:Ghost.erased t)
(v_old:t)
(v_new:t)
(fr:slprop)
: MstTot
(b:bool{b <==> (Ghost.reveal v == v_old)})
uses
(pts_to_sl r full_perm v)
(cas_provides r v v_new)
fr
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 : full_mem = NMSTTotal.get () in
let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let fv' = Some (v_new, full_perm) in
assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0);
assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0);
cas_action_helper (Mem.pts_to r fv)
(Mem.pure (perm_ok full_perm))
fr
(locks_invariant uses m0)
m0;
assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0);
let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in
assert (compatible pcm_frac fv fv_actual);
let Some (v', p) = fv_actual in
assert (v == Ghost.hide v');
assert (p == full_perm);
let b =
if eq v' v_old
then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true)
else false
in
b
(*** GHOST REFERENCES ***)
let ghost_ref a = erased (ref a) | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.HigherReference.ghost_ref a -> p: Steel.FractionalPermission.perm -> x: a
-> Steel.Memory.slprop | Prims.Tot | [
"total"
] | [] | [
"Steel.HigherReference.ghost_ref",
"Steel.FractionalPermission.perm",
"Steel.HigherReference.pts_to_sl",
"FStar.Ghost.reveal",
"Steel.HigherReference.ref",
"Steel.Memory.slprop"
] | [] | false | false | false | true | false | let ghost_pts_to_sl #a (r: ghost_ref a) (p: perm) (x: a) =
| pts_to_sl (reveal r) p x | false |
Steel.HigherReference.fst | Steel.HigherReference.cas_provides | val cas_provides : r: Steel.HigherReference.ref t -> v: FStar.Ghost.erased t -> v_new: t -> b: Prims.bool
-> Steel.Memory.slprop | let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) =
if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 70,
"end_line": 308,
"start_col": 0,
"start_line": 307
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
}
let pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
= let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p0) `star` pure (perm_ok p1)) m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0))
(Some (Ghost.reveal v1, p1))
m
let pts_to_not_null (#a:Type u#1)
(r:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl r p v) m)
(ensures r =!= null)
= Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m;
Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m
let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m))
(ensures (x == y))
=
Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r =
extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1)
(fun m -> pts_to_ref_injective r p0 p1 v0 v1 m);
rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) =
pts_to_witinv r p
let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a)
: SteelGhost unit uses
(pts_to_raw r p v)
(fun _ -> pts_to r p v)
(requires fun _ -> perm_ok p)
(ensures fun _ _ _ -> True)
= intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let pts_to_perm
#_ #_ #p #v r
= rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ());
elim_pure (perm_ok p);
intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let alloc #a x =
let v = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
let r = RP.alloc v in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m ->
emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m
);
extract_info_raw (pts_to r full_perm x) (~ (is_null r))
(fun m -> pts_to_not_null r full_perm x m);
return r
let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.atomic_read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a)
: SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v))
(fun v -> pts_to r p v `star` q v)
= let vs:erased a = witness_exists () in
rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ());
let v = read r in
rewrite_slprop (q vs) (q v) (fun _ -> ());
return v
let write (#a:Type) (#v:erased a) (r:ref a) (x:a)
: SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let atomic_write #opened #a #v r x
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.atomic_write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let free (#a:Type) (#v:erased a) (r:ref a)
: SteelT unit (pts_to r full_perm v) (fun _ -> emp)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
rewrite_slprop
(pts_to r full_perm v)
(RP.pts_to r v_old `star` pure (perm_ok full_perm))
(fun _ -> ());
elim_pure (perm_ok full_perm);
RP.free r v_old;
drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
let share_atomic_raw_gen #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) (p1 p2: perm)
: SteelGhost unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r p1 v0 `star` pts_to_raw r p2 v0)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= rewrite_slprop
(pts_to_raw r p v0)
(RP.pts_to r _)
(fun _ -> ());
RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, p1)) (Some (Ghost.reveal v0, p2));
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p1 v0)
(fun _ -> ());
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p2 v0)
(fun _ -> ())
let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a)
: SteelGhostT unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0)
= share_atomic_raw_gen r v0 (half_perm p) (half_perm p)
let share_gen (#a:Type) (#uses:_) (#p:perm) (#v:erased a) (r:ref a)
(p1 p2: perm)
: SteelGhost unit uses
(pts_to r p v)
(fun _ -> pts_to r p1 v `star` pts_to r p2 v)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop
(pts_to r p v)
(pts_to' r p v)
(fun _ -> ());
elim_pure (perm_ok p);
share_atomic_raw_gen r v p1 p2;
intro_pts_to p1 r;
intro_pts_to p2 r
let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a)
: SteelGhostT unit uses
(pts_to r p v)
(fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
= share_gen r (half_perm p) (half_perm p)
let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a)
: SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses
(pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1)
(fun _ -> pts_to_raw r (sum_perm p0 p1) v0)
=
rewrite_slprop
(pts_to_raw r p0 v0)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0))))
(fun _ -> ());
rewrite_slprop
(pts_to_raw r p1 v1)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1))))
(fun _ -> ());
let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r (sum_perm p0 p1) v0)
(fun _ -> ())
let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a)
= let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in
let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(pts_to r p0 v0)
(pts_to_raw r p0 v0 `star` pure (perm_ok p0))
(fun _ -> ());
rewrite_slprop
(pts_to r p1 v1)
(pts_to_raw r p1 v1 `star` pure (perm_ok p1))
(fun _ -> ());
elim_pure (perm_ok p0);
elim_pure (perm_ok p1);
let _ = gather_atomic_raw r v0 v1 in
intro_pts_to (sum_perm p0 p1) r | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.HigherReference.ref t -> v: FStar.Ghost.erased t -> v_new: t -> b: Prims.bool
-> Steel.Memory.slprop | Prims.Tot | [
"total"
] | [] | [
"Steel.HigherReference.ref",
"FStar.Ghost.erased",
"Prims.bool",
"Steel.HigherReference.pts_to_sl",
"Steel.FractionalPermission.full_perm",
"FStar.Ghost.reveal",
"Steel.Memory.slprop"
] | [] | false | false | false | true | false | let cas_provides #t (r: ref t) (v: Ghost.erased t) (v_new: t) (b: bool) =
| if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v | false |
|
Steel.HigherReference.fst | Steel.HigherReference.pts_to_witinv | val pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) | val pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) | let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m))
(ensures (x == y))
=
Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 73,
"end_line": 106,
"start_col": 0,
"start_line": 99
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
}
let pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
= let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p0) `star` pure (perm_ok p1)) m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0))
(Some (Ghost.reveal v1, p1))
m
let pts_to_not_null (#a:Type u#1)
(r:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl r p v) m)
(ensures r =!= null)
= Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m;
Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.HigherReference.ref a -> p: Steel.FractionalPermission.perm
-> FStar.Pervasives.Lemma
(ensures Steel.Memory.is_witness_invariant (Steel.HigherReference.pts_to_sl r p)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.HigherReference.ref",
"Steel.FractionalPermission.perm",
"FStar.Classical.forall_intro_3",
"FStar.Ghost.erased",
"Steel.Memory.mem",
"Prims.l_imp",
"Prims.l_and",
"Steel.Memory.interp",
"Steel.HigherReference.pts_to_sl",
"FStar.Ghost.reveal",
"Prims.eq2",
"FStar.Classical.move_requires",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Steel.Memory.pts_to_join",
"Steel.PCMFrac.fractional",
"Steel.PCMFrac.pcm_frac",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"Steel.Memory.is_witness_invariant"
] | [] | false | false | true | false | false | let pts_to_witinv (#a: Type) (r: ref a) (p: perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
| let aux (x y: erased a) (m: mem)
: Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y))
=
Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) | false |
Steel.HigherReference.fst | Steel.HigherReference.is_null | val is_null (#a:Type u#1) (r:ref a) : (b:bool{b <==> r == null}) | val is_null (#a:Type u#1) (r:ref a) : (b:bool{b <==> r == null}) | let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 58,
"end_line": 33,
"start_col": 0,
"start_line": 33
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.HigherReference.ref a -> b: Prims.bool{b <==> r == Steel.HigherReference.null} | Prims.Tot | [
"total"
] | [] | [
"Steel.HigherReference.ref",
"Steel.Memory.is_null",
"Steel.PCMFrac.fractional",
"Steel.PCMFrac.pcm_frac",
"Prims.bool",
"Prims.l_iff",
"Prims.b2t",
"Prims.eq2",
"Steel.HigherReference.null"
] | [] | false | false | false | false | false | let is_null #a r =
| Mem.is_null #(fractional a) #pcm_frac r | false |
Steel.HigherReference.fst | Steel.HigherReference.abcd_acbd | val abcd_acbd (a b c d: slprop)
: Lemma
(let open Mem in ((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d))) | val abcd_acbd (a b c d: slprop)
: Lemma
(let open Mem in ((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d))) | let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
} | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 4,
"end_line": 66,
"start_col": 0,
"start_line": 43
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v) | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Steel.Memory.slprop -> b: Steel.Memory.slprop -> c: Steel.Memory.slprop -> d: Steel.Memory.slprop
-> FStar.Pervasives.Lemma
(ensures
Steel.Memory.equiv (Steel.Memory.star (Steel.Memory.star a b) (Steel.Memory.star c d))
(Steel.Memory.star (Steel.Memory.star a c) (Steel.Memory.star b d))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.slprop",
"FStar.Calc.calc_finish",
"Steel.Memory.equiv",
"Steel.Memory.star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Steel.Memory.star_associative",
"Prims.squash",
"Steel.Memory.star_congruence",
"Steel.Memory.star_commutative",
"Prims.l_True",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let abcd_acbd (a b c d: slprop)
: Lemma
(let open Mem in ((a `star` b) `star` (c `star` d)) `equiv` ((a `star` c) `star` (b `star` d))) =
| let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { (star_associative b c d;
star_congruence a (b `star` (c `star` d)) a ((b `star` c) `star` d)) }
(a `star` ((b `star` c) `star` d));
(equiv) { (star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d) a ((c `star` b) `star` d)) }
(a `star` ((c `star` b) `star` d));
(equiv) { (star_associative c b d;
star_congruence a ((c `star` b) `star` d) a (c `star` (b `star` d))) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
} | false |
Steel.HigherReference.fst | Steel.HigherReference.pts_to_not_null | val pts_to_not_null (#a:Type u#1)
(x:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl x p v) m)
(ensures x =!= null) | val pts_to_not_null (#a:Type u#1)
(x:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl x p v) m)
(ensures x =!= null) | let pts_to_not_null (#a:Type u#1)
(r:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl r p v) m)
(ensures r =!= null)
= Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m;
Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 54,
"end_line": 97,
"start_col": 0,
"start_line": 89
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
}
let pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
= let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p0) `star` pure (perm_ok p1)) m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0))
(Some (Ghost.reveal v1, p1))
m | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Steel.HigherReference.ref a -> p: Steel.FractionalPermission.perm -> v: a -> m: Steel.Memory.mem
-> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.HigherReference.pts_to_sl x p v) m)
(ensures ~(x == Steel.HigherReference.null)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.HigherReference.ref",
"Steel.FractionalPermission.perm",
"Steel.Memory.mem",
"Steel.Memory.pts_to_not_null",
"Steel.PCMFrac.fractional",
"Steel.PCMFrac.pcm_frac",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Ghost.reveal",
"FStar.Ghost.hide",
"Prims.unit",
"Steel.Memory.affine_star",
"Steel.Effect.Common.hp_of",
"Steel.HigherReference.pts_to_raw",
"Steel.Memory.pure",
"Steel.HigherReference.perm_ok",
"Steel.Memory.interp",
"Steel.HigherReference.pts_to_sl",
"Prims.squash",
"Prims.l_not",
"Prims.eq2",
"Steel.HigherReference.null",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let pts_to_not_null (#a: Type u#1) (r: ref a) (p: perm) (v: a) (m: mem)
: Lemma (requires interp (pts_to_sl r p v) m) (ensures r =!= null) =
| Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m;
Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m | false |
Steel.HigherReference.fst | Steel.HigherReference.pts_to_framon | val pts_to_framon (#a: Type) (r: ref a) (p: perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) | val pts_to_framon (#a: Type) (r: ref a) (p: perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) | let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) =
pts_to_witinv r p | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 19,
"end_line": 114,
"start_col": 0,
"start_line": 113
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
}
let pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
= let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p0) `star` pure (perm_ok p1)) m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0))
(Some (Ghost.reveal v1, p1))
m
let pts_to_not_null (#a:Type u#1)
(r:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl r p v) m)
(ensures r =!= null)
= Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m;
Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m
let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m))
(ensures (x == y))
=
Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r =
extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1)
(fun m -> pts_to_ref_injective r p0 p1 v0 v1 m);
rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.HigherReference.ref a -> p: Steel.FractionalPermission.perm
-> FStar.Pervasives.Lemma
(ensures Steel.Memory.is_frame_monotonic (Steel.HigherReference.pts_to_sl r p)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.HigherReference.ref",
"Steel.FractionalPermission.perm",
"Steel.HigherReference.pts_to_witinv",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Steel.Memory.is_frame_monotonic",
"Steel.HigherReference.pts_to_sl",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let pts_to_framon (#a: Type) (r: ref a) (p: perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) =
| pts_to_witinv r p | false |
Steel.HigherReference.fst | Steel.HigherReference.pts_to_ref_injective | val pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1) | val pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1) | let pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
= let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p0) `star` pure (perm_ok p1)) m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0))
(Some (Ghost.reveal v1, p1))
m | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 31,
"end_line": 87,
"start_col": 0,
"start_line": 68
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
} | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
r: Steel.HigherReference.ref a ->
p0: Steel.FractionalPermission.perm ->
p1: Steel.FractionalPermission.perm ->
v0: a ->
v1: a ->
m: Steel.Memory.mem
-> FStar.Pervasives.Lemma
(requires
Steel.Memory.interp (Steel.Memory.star (Steel.HigherReference.pts_to_sl r p0 v0)
(Steel.HigherReference.pts_to_sl r p1 v1))
m) (ensures v0 == v1) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.HigherReference.ref",
"Steel.FractionalPermission.perm",
"Steel.Memory.mem",
"Steel.Memory.pts_to_compatible",
"Steel.PCMFrac.fractional",
"Steel.PCMFrac.pcm_frac",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Ghost.reveal",
"FStar.Ghost.hide",
"Prims.unit",
"Steel.Memory.affine_star",
"Steel.Memory.star",
"Steel.Effect.Common.hp_of",
"Steel.HigherReference.pts_to_raw",
"Steel.Memory.pure",
"Steel.HigherReference.perm_ok",
"Steel.HigherReference.abcd_acbd",
"Steel.Memory.interp",
"Steel.HigherReference.pts_to_sl",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let pts_to_ref_injective (#a: Type u#1) (r: ref a) (p0 p1: perm) (v0 v1: a) (m: mem)
: Lemma (requires interp ((pts_to_sl r p0 v0) `Mem.star` (pts_to_sl r p1 v1)) m)
(ensures v0 == v1) =
| let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star ((hp_of (pts_to_raw r p0 v0)) `star` (hp_of (pts_to_raw r p1 v1)))
((pure (perm_ok p0)) `star` (pure (perm_ok p1)))
m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) m | false |
Hacl.Impl.Poly1305.Field32xN_128.fst | Hacl.Impl.Poly1305.Field32xN_128.load_acc2 | val load_acc2:
acc:felem 2
-> b:lbuffer uint8 32ul
-> Stack unit
(requires fun h ->
live h acc /\ live h b /\ disjoint acc b /\
felem_fits h acc (2, 2, 2, 2, 2))
(ensures fun h0 _ h1 ->
modifies (loc acc) h0 h1 /\
felem_fits h1 acc (3, 3, 3, 3, 3) /\
feval h1 acc == Vec.load_acc2 (as_seq h0 b) (feval h0 acc).[0]) | val load_acc2:
acc:felem 2
-> b:lbuffer uint8 32ul
-> Stack unit
(requires fun h ->
live h acc /\ live h b /\ disjoint acc b /\
felem_fits h acc (2, 2, 2, 2, 2))
(ensures fun h0 _ h1 ->
modifies (loc acc) h0 h1 /\
felem_fits h1 acc (3, 3, 3, 3, 3) /\
feval h1 acc == Vec.load_acc2 (as_seq h0 b) (feval h0 acc).[0]) | let load_acc2 acc b =
push_frame();
let e = create 5ul (zero 2) in
load_blocks e b;
let acc0 = acc.(0ul) in
let acc1 = acc.(1ul) in
let acc2 = acc.(2ul) in
let acc3 = acc.(3ul) in
let acc4 = acc.(4ul) in
let e0 = e.(0ul) in
let e1 = e.(1ul) in
let e2 = e.(2ul) in
let e3 = e.(3ul) in
let e4 = e.(4ul) in
let (acc0, acc1, acc2, acc3, acc4) =
load_acc5_2 (acc0, acc1, acc2, acc3, acc4) (e0, e1, e2, e3, e4) in
acc.(0ul) <- acc0;
acc.(1ul) <- acc1;
acc.(2ul) <- acc2;
acc.(3ul) <- acc3;
acc.(4ul) <- acc4;
pop_frame() | {
"file_name": "code/poly1305/Hacl.Impl.Poly1305.Field32xN_128.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 57,
"start_col": 0,
"start_line": 34
} | module Hacl.Impl.Poly1305.Field32xN_128
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
include Hacl.Spec.Poly1305.Field32xN
open Hacl.Spec.Poly1305.Field32xN.Lemmas
module Vec = Hacl.Spec.Poly1305.Vec
module ST = FStar.HyperStack.ST
open Hacl.Impl.Poly1305.Field32xN
/// See comments in Hacl.Impl.Poly1305.Field32xN_256
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 50 --using_facts_from '* -FStar.Seq'"
val load_acc2:
acc:felem 2
-> b:lbuffer uint8 32ul
-> Stack unit
(requires fun h ->
live h acc /\ live h b /\ disjoint acc b /\
felem_fits h acc (2, 2, 2, 2, 2))
(ensures fun h0 _ h1 ->
modifies (loc acc) h0 h1 /\
felem_fits h1 acc (3, 3, 3, 3, 3) /\ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Poly1305.Vec.fst.checked",
"Hacl.Spec.Poly1305.Field32xN.Lemmas.fst.checked",
"Hacl.Spec.Poly1305.Field32xN.fst.checked",
"Hacl.Impl.Poly1305.Field32xN.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Poly1305.Field32xN_128.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Poly1305.Vec",
"short_module": "Vec"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | acc: Hacl.Impl.Poly1305.Field32xN.felem 2 -> b: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Impl.Poly1305.Field32xN.felem",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Hacl.Spec.Poly1305.Field32xN.uint64xN",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Lib.Buffer.op_Array_Assignment",
"Hacl.Spec.Poly1305.Field32xN.felem5",
"Hacl.Spec.Poly1305.Field32xN.load_acc5_2",
"FStar.Pervasives.Native.Mktuple5",
"Lib.Buffer.op_Array_Access",
"Lib.Buffer.MUT",
"Hacl.Impl.Poly1305.Field32xN.load_blocks",
"Lib.Buffer.lbuffer_t",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Hacl.Spec.Poly1305.Field32xN.zero",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let load_acc2 acc b =
| push_frame ();
let e = create 5ul (zero 2) in
load_blocks e b;
let acc0 = acc.(0ul) in
let acc1 = acc.(1ul) in
let acc2 = acc.(2ul) in
let acc3 = acc.(3ul) in
let acc4 = acc.(4ul) in
let e0 = e.(0ul) in
let e1 = e.(1ul) in
let e2 = e.(2ul) in
let e3 = e.(3ul) in
let e4 = e.(4ul) in
let acc0, acc1, acc2, acc3, acc4 =
load_acc5_2 (acc0, acc1, acc2, acc3, acc4) (e0, e1, e2, e3, e4)
in
acc.(0ul) <- acc0;
acc.(1ul) <- acc1;
acc.(2ul) <- acc2;
acc.(3ul) <- acc3;
acc.(4ul) <- acc4;
pop_frame () | false |
LatticeEff.fst | LatticeEff.wpof2 | val wpof2 (#a: _) (l: list eff_label) : wp a | val wpof2 (#a: _) (l: list eff_label) : wp a | let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 4,
"end_line": 51,
"start_col": 0,
"start_line": 43
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Prims.list LatticeEff.eff_label -> LatticeEff.wp a | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"LatticeEff.eff_label",
"LatticeEff.wp",
"FStar.Pervasives.all_post_h",
"FStar.Monotonic.Heap.heap",
"Prims.l_Forall",
"FStar.Pervasives.result",
"Prims.l_True",
"Prims.l_imp",
"Prims.eq2",
"Prims.bool",
"LatticeEff.WR",
"LatticeEff.EXN",
"Prims.b2t",
"FStar.Pervasives.uu___is_V",
"LatticeEff.annot",
"LatticeEff.interp"
] | [] | false | false | false | true | false | let wpof2 #a (l: list eff_label) : wp a =
| let i = interp l in
let wp:wp a =
fun p s0 -> (forall r s1. (i WR == false ==> s1 == s0) ==> (i EXN == false ==> V? r) ==> p r s1)
in
wp | false |
Steel.HigherReference.fst | Steel.HigherReference.equiv_ext_right | val equiv_ext_right (p q r: slprop)
: Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) | val equiv_ext_right (p q r: slprop)
: Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) | let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `Mem.equiv` r)
(ensures Mem.((p `star` q) `equiv` (p `star` r)))
= let open Steel.Memory in
calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
} | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 323,
"start_col": 0,
"start_line": 310
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
}
let pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
= let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p0) `star` pure (perm_ok p1)) m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0))
(Some (Ghost.reveal v1, p1))
m
let pts_to_not_null (#a:Type u#1)
(r:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl r p v) m)
(ensures r =!= null)
= Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m;
Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m
let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m))
(ensures (x == y))
=
Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r =
extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1)
(fun m -> pts_to_ref_injective r p0 p1 v0 v1 m);
rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) =
pts_to_witinv r p
let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a)
: SteelGhost unit uses
(pts_to_raw r p v)
(fun _ -> pts_to r p v)
(requires fun _ -> perm_ok p)
(ensures fun _ _ _ -> True)
= intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let pts_to_perm
#_ #_ #p #v r
= rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ());
elim_pure (perm_ok p);
intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let alloc #a x =
let v = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
let r = RP.alloc v in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m ->
emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m
);
extract_info_raw (pts_to r full_perm x) (~ (is_null r))
(fun m -> pts_to_not_null r full_perm x m);
return r
let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.atomic_read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a)
: SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v))
(fun v -> pts_to r p v `star` q v)
= let vs:erased a = witness_exists () in
rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ());
let v = read r in
rewrite_slprop (q vs) (q v) (fun _ -> ());
return v
let write (#a:Type) (#v:erased a) (r:ref a) (x:a)
: SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let atomic_write #opened #a #v r x
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.atomic_write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let free (#a:Type) (#v:erased a) (r:ref a)
: SteelT unit (pts_to r full_perm v) (fun _ -> emp)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
rewrite_slprop
(pts_to r full_perm v)
(RP.pts_to r v_old `star` pure (perm_ok full_perm))
(fun _ -> ());
elim_pure (perm_ok full_perm);
RP.free r v_old;
drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
let share_atomic_raw_gen #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) (p1 p2: perm)
: SteelGhost unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r p1 v0 `star` pts_to_raw r p2 v0)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= rewrite_slprop
(pts_to_raw r p v0)
(RP.pts_to r _)
(fun _ -> ());
RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, p1)) (Some (Ghost.reveal v0, p2));
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p1 v0)
(fun _ -> ());
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p2 v0)
(fun _ -> ())
let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a)
: SteelGhostT unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0)
= share_atomic_raw_gen r v0 (half_perm p) (half_perm p)
let share_gen (#a:Type) (#uses:_) (#p:perm) (#v:erased a) (r:ref a)
(p1 p2: perm)
: SteelGhost unit uses
(pts_to r p v)
(fun _ -> pts_to r p1 v `star` pts_to r p2 v)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop
(pts_to r p v)
(pts_to' r p v)
(fun _ -> ());
elim_pure (perm_ok p);
share_atomic_raw_gen r v p1 p2;
intro_pts_to p1 r;
intro_pts_to p2 r
let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a)
: SteelGhostT unit uses
(pts_to r p v)
(fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
= share_gen r (half_perm p) (half_perm p)
let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a)
: SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses
(pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1)
(fun _ -> pts_to_raw r (sum_perm p0 p1) v0)
=
rewrite_slprop
(pts_to_raw r p0 v0)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0))))
(fun _ -> ());
rewrite_slprop
(pts_to_raw r p1 v1)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1))))
(fun _ -> ());
let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r (sum_perm p0 p1) v0)
(fun _ -> ())
let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a)
= let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in
let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(pts_to r p0 v0)
(pts_to_raw r p0 v0 `star` pure (perm_ok p0))
(fun _ -> ());
rewrite_slprop
(pts_to r p1 v1)
(pts_to_raw r p1 v1 `star` pure (perm_ok p1))
(fun _ -> ());
elim_pure (perm_ok p0);
elim_pure (perm_ok p1);
let _ = gather_atomic_raw r v0 v1 in
intro_pts_to (sum_perm p0 p1) r
let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) =
if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Steel.Memory.slprop -> q: Steel.Memory.slprop -> r: Steel.Memory.slprop
-> FStar.Pervasives.Lemma (requires Steel.Memory.equiv q r)
(ensures Steel.Memory.equiv (Steel.Memory.star p q) (Steel.Memory.star p r)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.slprop",
"FStar.Calc.calc_finish",
"Steel.Memory.equiv",
"Steel.Memory.star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Steel.Memory.star_commutative",
"Prims.squash",
"Steel.Memory.equiv_extensional_on_star",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let equiv_ext_right (p q r: slprop)
: Lemma (requires q `Mem.equiv` r) (ensures Mem.((p `star` q) `equiv` (p `star` r))) =
| let open Steel.Memory in
calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
} | false |
LatticeEff.fst | LatticeEff.ann_le | val ann_le (ann1 ann2: annot) : prop | val ann_le (ann1 ann2: annot) : prop | let ann_le (ann1 ann2 : annot) : prop =
forall x. ann1 x ==> ann2 x | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 92,
"start_col": 0,
"start_line": 91
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l
let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ann1: LatticeEff.annot -> ann2: LatticeEff.annot -> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"LatticeEff.annot",
"Prims.l_Forall",
"LatticeEff.eff_label",
"Prims.l_imp",
"Prims.b2t",
"Prims.prop"
] | [] | false | false | false | true | true | let ann_le (ann1 ann2: annot) : prop =
| forall x. ann1 x ==> ann2 x | false |
SteelFramingTestSuite.fst | SteelFramingTestSuite.test_if7 | val test_if7 (b: bool) (r1 r2: ref)
: SteelT unit ((ptr r1) `star` (ptr r2)) (fun _ -> (ptr r1) `star` (ptr r2)) | val test_if7 (b: bool) (r1 r2: ref)
: SteelT unit ((ptr r1) `star` (ptr r2)) (fun _ -> (ptr r1) `star` (ptr r2)) | let test_if7 (b:bool) (r1 r2: ref) : SteelT unit
(ptr r1 `star` ptr r2)
(fun _ -> ptr r1 `star` ptr r2)
= if b then (write r1 0; write r2 0) else (write r2 0; write r1 0);
write r2 0 | {
"file_name": "share/steel/tests/SteelFramingTestSuite.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 14,
"end_line": 138,
"start_col": 0,
"start_line": 134
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module SteelFramingTestSuite
open Steel.Memory
open Steel.Effect
/// A collection of small unit tests for the framing tactic
assume val p : vprop
assume val f (x:int) : SteelT unit p (fun _ -> p)
let test () : SteelT unit (p `star` p `star` p) (fun _ -> p `star` p `star` p)
= f 0; ()
assume val ref : Type0
assume val ptr (_:ref) : vprop
assume val alloc (x:int) : SteelT ref emp (fun y -> ptr y)
assume val free (r:ref) : SteelT unit (ptr r) (fun _ -> emp)
assume val read (r:ref) : SteelT int (ptr r) (fun _ -> ptr r)
assume val write (r:ref) (v: int) : SteelT unit (ptr r) (fun _ -> ptr r)
let unused x = x // work around another gensym heisenbug
let test0 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b1 `star` ptr b2 `star` ptr b3)
=
let x = read b1 in
x
let test1 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b1 `star` ptr b2 `star` ptr b3)
=
let x = (let y = read b1 in y) in
x
let test2 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b3 `star` ptr b2 `star` ptr b1)
=
let x = read b1 in
x
let test3 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
=
let x = read b3 in
x
let test4 (b1 b2 b3: ref) : SteelT unit
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
=
let x = read b3 in
write b2 x
let test5 (b1 b2 b3: ref) : SteelT unit
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
=
let x = read b3 in
write b2 (x + 1)
let test6 (b1 b2 b3: ref) : SteelT unit
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
=
let x = read b3 in
let b4 = alloc x in
write b2 (x + 1);
free b4
// With the formalism relying on can_be_split_post, this example fails if we normalize return_pre eqs goals before unification
// When solving this equality, we have the goal
// (*?u19*) _ _ == return_pre ((fun x -> (fun x -> (*?u758*) _ x x) x) r)
// with x and r in the context of ?u19
// Not normalizing allows us to solve it as a function applied to x and r
// Normalizing would lead to solve it to an slprop with x and r in the context,
// but which would later fail when trying to prove the equivalence with (fun r -> ptr r)
// in the postcondition
let test7 (_:unit) : SteelT ref emp ptr
= let r = alloc 0 in
let x = read r in
write r 0;
r
let test8 (b1 b2 b3:ref) : SteelT unit
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
= write b2 0
open Steel.Effect.Atomic
let test_if1 (b:bool) : SteelT unit emp (fun _ -> emp)
= if b then noop () else noop ()
let test_if2 (b:bool) (r: ref) : SteelT unit (ptr r) (fun _ -> ptr r)
= if b then write r 0 else write r 1
let test_if3 (b:bool) (r:ref) : SteelT unit (ptr r) (fun _ -> ptr r)
= if b then noop () else noop ()
let test_if4 (b:bool) : SteelT unit emp (fun _ -> emp)
= if b then (let r = alloc 0 in free r) else (noop ())
let test_if5 (b:bool) : SteelT ref emp (fun r -> ptr r)
= if b then alloc 0 else alloc 1
let test_if6 (b:bool) : SteelT ref emp (fun r -> ptr r)
= let r = if b then alloc 0 else alloc 1 in
let x = read r in
write r 0;
r | {
"checked_file": "/",
"dependencies": [
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "SteelFramingTestSuite.fst"
} | [
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Prims.bool -> r1: SteelFramingTestSuite.ref -> r2: SteelFramingTestSuite.ref
-> Steel.Effect.SteelT Prims.unit | Steel.Effect.SteelT | [] | [] | [
"Prims.bool",
"SteelFramingTestSuite.ref",
"SteelFramingTestSuite.write",
"Prims.unit",
"Steel.Effect.Common.star",
"SteelFramingTestSuite.ptr",
"Steel.Effect.Common.vprop"
] | [] | false | true | false | false | false | let test_if7 (b: bool) (r1 r2: ref)
: SteelT unit ((ptr r1) `star` (ptr r2)) (fun _ -> (ptr r1) `star` (ptr r2)) =
| if b
then
(write r1 0;
write r2 0)
else
(write r2 0;
write r1 0);
write r2 0 | false |
Steel.HigherReference.fst | Steel.HigherReference.cas_action_helper | val cas_action_helper (p q r s: slprop) (m: mem)
: Lemma (requires interp Mem.(((p `star` q) `star` r) `star` s) m)
(ensures interp Mem.((p `star` q) `star` s) m) | val cas_action_helper (p q r s: slprop) (m: mem)
: Lemma (requires interp Mem.(((p `star` q) `star` r) `star` s) m)
(ensures interp Mem.((p `star` q) `star` s) m) | let cas_action_helper (p q r s:slprop) (m:mem)
: Lemma
(requires interp Mem.(p `star` q `star` r `star` s) m)
(ensures interp Mem.(p `star` q `star` s) m)
= let open Steel.Memory in
calc (equiv) {
r `star` s;
(equiv) { star_commutative r s }
s `star` r;
};
calc (equiv) {
p `star` q `star` r `star` s;
(equiv) { Mem.star_associative (p `star` q) r s }
(p `star` q) `star` (r `star` s);
(equiv) { equiv_ext_right (p `star` q)
(r `star` s)
(s `star` r) }
(p `star` q) `star` (s `star` r);
(equiv) { star_associative (p `star` q) s r }
(p `star` q `star` s) `star` r;
};
assert (interp ((p `star` q `star` s) `star` r) m);
affine_star (p `star` q `star` s) r m | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 41,
"end_line": 347,
"start_col": 0,
"start_line": 325
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
}
let pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
= let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p0) `star` pure (perm_ok p1)) m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0))
(Some (Ghost.reveal v1, p1))
m
let pts_to_not_null (#a:Type u#1)
(r:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl r p v) m)
(ensures r =!= null)
= Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m;
Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m
let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m))
(ensures (x == y))
=
Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r =
extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1)
(fun m -> pts_to_ref_injective r p0 p1 v0 v1 m);
rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) =
pts_to_witinv r p
let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a)
: SteelGhost unit uses
(pts_to_raw r p v)
(fun _ -> pts_to r p v)
(requires fun _ -> perm_ok p)
(ensures fun _ _ _ -> True)
= intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let pts_to_perm
#_ #_ #p #v r
= rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ());
elim_pure (perm_ok p);
intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let alloc #a x =
let v = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
let r = RP.alloc v in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m ->
emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m
);
extract_info_raw (pts_to r full_perm x) (~ (is_null r))
(fun m -> pts_to_not_null r full_perm x m);
return r
let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.atomic_read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a)
: SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v))
(fun v -> pts_to r p v `star` q v)
= let vs:erased a = witness_exists () in
rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ());
let v = read r in
rewrite_slprop (q vs) (q v) (fun _ -> ());
return v
let write (#a:Type) (#v:erased a) (r:ref a) (x:a)
: SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let atomic_write #opened #a #v r x
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.atomic_write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let free (#a:Type) (#v:erased a) (r:ref a)
: SteelT unit (pts_to r full_perm v) (fun _ -> emp)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
rewrite_slprop
(pts_to r full_perm v)
(RP.pts_to r v_old `star` pure (perm_ok full_perm))
(fun _ -> ());
elim_pure (perm_ok full_perm);
RP.free r v_old;
drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
let share_atomic_raw_gen #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) (p1 p2: perm)
: SteelGhost unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r p1 v0 `star` pts_to_raw r p2 v0)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= rewrite_slprop
(pts_to_raw r p v0)
(RP.pts_to r _)
(fun _ -> ());
RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, p1)) (Some (Ghost.reveal v0, p2));
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p1 v0)
(fun _ -> ());
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p2 v0)
(fun _ -> ())
let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a)
: SteelGhostT unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0)
= share_atomic_raw_gen r v0 (half_perm p) (half_perm p)
let share_gen (#a:Type) (#uses:_) (#p:perm) (#v:erased a) (r:ref a)
(p1 p2: perm)
: SteelGhost unit uses
(pts_to r p v)
(fun _ -> pts_to r p1 v `star` pts_to r p2 v)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop
(pts_to r p v)
(pts_to' r p v)
(fun _ -> ());
elim_pure (perm_ok p);
share_atomic_raw_gen r v p1 p2;
intro_pts_to p1 r;
intro_pts_to p2 r
let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a)
: SteelGhostT unit uses
(pts_to r p v)
(fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
= share_gen r (half_perm p) (half_perm p)
let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a)
: SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses
(pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1)
(fun _ -> pts_to_raw r (sum_perm p0 p1) v0)
=
rewrite_slprop
(pts_to_raw r p0 v0)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0))))
(fun _ -> ());
rewrite_slprop
(pts_to_raw r p1 v1)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1))))
(fun _ -> ());
let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r (sum_perm p0 p1) v0)
(fun _ -> ())
let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a)
= let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in
let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(pts_to r p0 v0)
(pts_to_raw r p0 v0 `star` pure (perm_ok p0))
(fun _ -> ());
rewrite_slprop
(pts_to r p1 v1)
(pts_to_raw r p1 v1 `star` pure (perm_ok p1))
(fun _ -> ());
elim_pure (perm_ok p0);
elim_pure (perm_ok p1);
let _ = gather_atomic_raw r v0 v1 in
intro_pts_to (sum_perm p0 p1) r
let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) =
if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `Mem.equiv` r)
(ensures Mem.((p `star` q) `equiv` (p `star` r)))
= let open Steel.Memory in
calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
} | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
p: Steel.Memory.slprop ->
q: Steel.Memory.slprop ->
r: Steel.Memory.slprop ->
s: Steel.Memory.slprop ->
m: Steel.Memory.mem
-> FStar.Pervasives.Lemma
(requires
Steel.Memory.interp (Steel.Memory.star (Steel.Memory.star (Steel.Memory.star p q) r) s) m)
(ensures Steel.Memory.interp (Steel.Memory.star (Steel.Memory.star p q) s) m) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.Memory.slprop",
"Steel.Memory.mem",
"Steel.Memory.affine_star",
"Steel.Memory.star",
"Prims.unit",
"Prims._assert",
"Steel.Memory.interp",
"FStar.Calc.calc_finish",
"Steel.Memory.equiv",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Steel.Memory.star_associative",
"Prims.squash",
"Steel.HigherReference.equiv_ext_right",
"Steel.Memory.star_commutative",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let cas_action_helper (p q r s: slprop) (m: mem)
: Lemma (requires interp Mem.(((p `star` q) `star` r) `star` s) m)
(ensures interp Mem.((p `star` q) `star` s) m) =
| let open Steel.Memory in
calc (equiv) {
r `star` s;
(equiv) { star_commutative r s }
s `star` r;
};
calc (equiv) {
((p `star` q) `star` r) `star` s;
(equiv) { Mem.star_associative (p `star` q) r s }
(p `star` q) `star` (r `star` s);
(equiv) { equiv_ext_right (p `star` q) (r `star` s) (s `star` r) }
(p `star` q) `star` (s `star` r);
(equiv) { star_associative (p `star` q) s r }
((p `star` q) `star` s) `star` r;
};
assert (interp (((p `star` q) `star` s) `star` r) m);
affine_star ((p `star` q) `star` s) r m | false |
LatticeEff.fst | LatticeEff.ite | val ite : p: Type0 -> q: Type0 -> r: Type0 -> Prims.logical | let ite (p q r : Type0) = (p ==> q) /\ (~p ==> r) | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 49,
"end_line": 114,
"start_col": 0,
"start_line": 114
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l
let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let ann_le (ann1 ann2 : annot) : prop =
forall x. ann1 x ==> ann2 x
let return (a:Type) (x:a)
: repr a []
=
fun () -> x
let bind (a b : Type)
(labs1 labs2 : list eff_label)
(c : repr a labs1)
(f : (x:a -> repr b labs2))
: Tot (repr b (labs1@labs2))
= fun () -> f (c ()) ()
let subcomp (a:Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
: Pure (repr a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Type0 -> q: Type0 -> r: Type0 -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Prims.l_and",
"Prims.l_imp",
"Prims.l_not",
"Prims.logical"
] | [] | false | false | false | true | true | let ite (p q r: Type0) =
| (p ==> q) /\ (~p ==> r) | false |
|
Steel.HigherReference.fst | Steel.HigherReference.ghost_pts_to_witinv | val ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) | val ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) | let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m))
(ensures (x == y))
[SMTPat ()]
=
Mem.pts_to_join (Ghost.reveal r) (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
assert (forall x y m. interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m ==> x == y);
assert (is_witness_invariant (ghost_pts_to_sl r p)) | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 53,
"end_line": 408,
"start_col": 0,
"start_line": 399
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
}
let pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
= let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p0) `star` pure (perm_ok p1)) m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0))
(Some (Ghost.reveal v1, p1))
m
let pts_to_not_null (#a:Type u#1)
(r:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl r p v) m)
(ensures r =!= null)
= Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m;
Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m
let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m))
(ensures (x == y))
=
Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r =
extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1)
(fun m -> pts_to_ref_injective r p0 p1 v0 v1 m);
rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) =
pts_to_witinv r p
let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a)
: SteelGhost unit uses
(pts_to_raw r p v)
(fun _ -> pts_to r p v)
(requires fun _ -> perm_ok p)
(ensures fun _ _ _ -> True)
= intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let pts_to_perm
#_ #_ #p #v r
= rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ());
elim_pure (perm_ok p);
intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let alloc #a x =
let v = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
let r = RP.alloc v in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m ->
emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m
);
extract_info_raw (pts_to r full_perm x) (~ (is_null r))
(fun m -> pts_to_not_null r full_perm x m);
return r
let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.atomic_read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a)
: SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v))
(fun v -> pts_to r p v `star` q v)
= let vs:erased a = witness_exists () in
rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ());
let v = read r in
rewrite_slprop (q vs) (q v) (fun _ -> ());
return v
let write (#a:Type) (#v:erased a) (r:ref a) (x:a)
: SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let atomic_write #opened #a #v r x
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.atomic_write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let free (#a:Type) (#v:erased a) (r:ref a)
: SteelT unit (pts_to r full_perm v) (fun _ -> emp)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
rewrite_slprop
(pts_to r full_perm v)
(RP.pts_to r v_old `star` pure (perm_ok full_perm))
(fun _ -> ());
elim_pure (perm_ok full_perm);
RP.free r v_old;
drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
let share_atomic_raw_gen #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) (p1 p2: perm)
: SteelGhost unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r p1 v0 `star` pts_to_raw r p2 v0)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= rewrite_slprop
(pts_to_raw r p v0)
(RP.pts_to r _)
(fun _ -> ());
RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, p1)) (Some (Ghost.reveal v0, p2));
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p1 v0)
(fun _ -> ());
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p2 v0)
(fun _ -> ())
let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a)
: SteelGhostT unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0)
= share_atomic_raw_gen r v0 (half_perm p) (half_perm p)
let share_gen (#a:Type) (#uses:_) (#p:perm) (#v:erased a) (r:ref a)
(p1 p2: perm)
: SteelGhost unit uses
(pts_to r p v)
(fun _ -> pts_to r p1 v `star` pts_to r p2 v)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop
(pts_to r p v)
(pts_to' r p v)
(fun _ -> ());
elim_pure (perm_ok p);
share_atomic_raw_gen r v p1 p2;
intro_pts_to p1 r;
intro_pts_to p2 r
let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a)
: SteelGhostT unit uses
(pts_to r p v)
(fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
= share_gen r (half_perm p) (half_perm p)
let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a)
: SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses
(pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1)
(fun _ -> pts_to_raw r (sum_perm p0 p1) v0)
=
rewrite_slprop
(pts_to_raw r p0 v0)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0))))
(fun _ -> ());
rewrite_slprop
(pts_to_raw r p1 v1)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1))))
(fun _ -> ());
let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r (sum_perm p0 p1) v0)
(fun _ -> ())
let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a)
= let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in
let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(pts_to r p0 v0)
(pts_to_raw r p0 v0 `star` pure (perm_ok p0))
(fun _ -> ());
rewrite_slprop
(pts_to r p1 v1)
(pts_to_raw r p1 v1 `star` pure (perm_ok p1))
(fun _ -> ());
elim_pure (perm_ok p0);
elim_pure (perm_ok p1);
let _ = gather_atomic_raw r v0 v1 in
intro_pts_to (sum_perm p0 p1) r
let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) =
if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `Mem.equiv` r)
(ensures Mem.((p `star` q) `equiv` (p `star` r)))
= let open Steel.Memory in
calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let cas_action_helper (p q r s:slprop) (m:mem)
: Lemma
(requires interp Mem.(p `star` q `star` r `star` s) m)
(ensures interp Mem.(p `star` q `star` s) m)
= let open Steel.Memory in
calc (equiv) {
r `star` s;
(equiv) { star_commutative r s }
s `star` r;
};
calc (equiv) {
p `star` q `star` r `star` s;
(equiv) { Mem.star_associative (p `star` q) r s }
(p `star` q) `star` (r `star` s);
(equiv) { equiv_ext_right (p `star` q)
(r `star` s)
(s `star` r) }
(p `star` q) `star` (s `star` r);
(equiv) { star_associative (p `star` q) s r }
(p `star` q `star` s) `star` r;
};
assert (interp ((p `star` q `star` s) `star` r) m);
affine_star (p `star` q `star` s) r m
let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)}))
(#uses:inames)
(r:ref t)
(v:Ghost.erased t)
(v_old:t)
(v_new:t)
(fr:slprop)
: MstTot
(b:bool{b <==> (Ghost.reveal v == v_old)})
uses
(pts_to_sl r full_perm v)
(cas_provides r v v_new)
fr
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 : full_mem = NMSTTotal.get () in
let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let fv' = Some (v_new, full_perm) in
assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0);
assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0);
cas_action_helper (Mem.pts_to r fv)
(Mem.pure (perm_ok full_perm))
fr
(locks_invariant uses m0)
m0;
assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0);
let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in
assert (compatible pcm_frac fv fv_actual);
let Some (v', p) = fv_actual in
assert (v == Ghost.hide v');
assert (p == full_perm);
let b =
if eq v' v_old
then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true)
else false
in
b
(*** GHOST REFERENCES ***)
let ghost_ref a = erased (ref a)
[@@__reduce__]
let ghost_pts_to_sl #a (r:ghost_ref a) (p:perm) (x:a) = pts_to_sl (reveal r) p x
let reveal_ghost_ref _ = ()
let reveal_ghost_pts_to_sl _ _ _ = () | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.HigherReference.ghost_ref a -> p: Steel.FractionalPermission.perm
-> FStar.Pervasives.Lemma
(ensures Steel.Memory.is_witness_invariant (Steel.HigherReference.ghost_pts_to_sl r p)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Steel.HigherReference.ghost_ref",
"Steel.FractionalPermission.perm",
"Prims._assert",
"Steel.Memory.is_witness_invariant",
"Steel.HigherReference.ghost_pts_to_sl",
"Prims.unit",
"Prims.l_Forall",
"Steel.Memory.mem",
"Prims.l_imp",
"Prims.l_and",
"Steel.Memory.interp",
"Prims.eq2",
"FStar.Ghost.erased",
"FStar.Ghost.reveal",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil",
"Steel.Memory.pts_to_join",
"Steel.PCMFrac.fractional",
"Steel.PCMFrac.pcm_frac",
"Steel.HigherReference.ref",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"Prims.l_True"
] | [] | false | false | true | false | false | let ghost_pts_to_witinv (#a: Type) (r: ghost_ref a) (p: perm)
: Lemma (is_witness_invariant (ghost_pts_to_sl r p)) =
| let aux (x y: erased a) (m: mem)
: Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m))
(ensures (x == y))
[SMTPat ()] =
Mem.pts_to_join (Ghost.reveal r) (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
assert (forall x y m.
interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m ==> x == y);
assert (is_witness_invariant (ghost_pts_to_sl r p)) | false |
LatticeEff.fst | LatticeEff.interp | val interp (l: list eff_label) : annot | val interp (l: list eff_label) : annot | let interp (l : list eff_label) : annot =
fun lab -> mem lab l | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 22,
"end_line": 24,
"start_col": 0,
"start_line": 23
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Prims.list LatticeEff.eff_label -> LatticeEff.annot | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"LatticeEff.eff_label",
"FStar.List.Tot.Base.mem",
"Prims.bool",
"LatticeEff.annot"
] | [] | false | false | false | true | false | let interp (l: list eff_label) : annot =
| fun lab -> mem lab l | false |
LatticeEff.fst | LatticeEff.sublist | val sublist : l1: Prims.list LatticeEff.eff_label -> l2: Prims.list LatticeEff.eff_label -> Prims.logical | let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2 | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 66,
"start_col": 0,
"start_line": 65
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l1: Prims.list LatticeEff.eff_label -> l2: Prims.list LatticeEff.eff_label -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"LatticeEff.eff_label",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.b2t",
"FStar.List.Tot.Base.mem",
"Prims.logical"
] | [] | false | false | false | true | true | let sublist (l1 l2: list eff_label) =
| forall x. mem x l1 ==> mem x l2 | false |
|
LatticeEff.fst | LatticeEff.interp_at | val interp_at (l1 l2: list eff_label) (l: eff_label)
: Lemma (interp (l1 @ l2) l == (interp l1 l || interp l2 l)) [SMTPat (interp (l1 @ l2) l)] | val interp_at (l1 l2: list eff_label) (l: eff_label)
: Lemma (interp (l1 @ l2) l == (interp l1 l || interp l2 l)) [SMTPat (interp (l1 @ l2) l)] | let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 63,
"start_col": 0,
"start_line": 58
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
l1: Prims.list LatticeEff.eff_label ->
l2: Prims.list LatticeEff.eff_label ->
l: LatticeEff.eff_label
-> FStar.Pervasives.Lemma
(ensures LatticeEff.interp (l1 @ l2) l == (LatticeEff.interp l1 l || LatticeEff.interp l2 l))
[SMTPat (LatticeEff.interp (l1 @ l2) l)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.list",
"LatticeEff.eff_label",
"LatticeEff.interp_at",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.bool",
"LatticeEff.interp",
"FStar.List.Tot.Base.op_At",
"Prims.op_BarBar",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec interp_at (l1 l2: list eff_label) (l: eff_label)
: Lemma (interp (l1 @ l2) l == (interp l1 l || interp l2 l)) [SMTPat (interp (l1 @ l2) l)] =
| match l1 with
| [] -> ()
| _ :: l1 -> interp_at l1 l2 l | false |
LatticeEff.fst | LatticeEff.coerce | val coerce (#a #b: _) (x: a{a == b}) : b | val coerce (#a #b: _) (x: a{a == b}) : b | let coerce #a #b (x:a{a == b}) : b = x | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 9,
"start_col": 0,
"start_line": 9
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: a{a == b} -> b | Prims.Tot | [
"total"
] | [] | [
"Prims.eq2"
] | [] | false | false | false | false | false | let coerce #a #b (x: a{a == b}) : b =
| x | false |
LatticeEff.fst | LatticeEff.interp_sublist | val interp_sublist (l1 l2: list eff_label) (l: eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)] | val interp_sublist (l1 l2: list eff_label) (l: eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)] | let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 80,
"start_col": 0,
"start_line": 74
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
l1: Prims.list LatticeEff.eff_label ->
l2: Prims.list LatticeEff.eff_label ->
l: LatticeEff.eff_label
-> FStar.Pervasives.Lemma (requires LatticeEff.sublist l1 l2)
(ensures LatticeEff.interp l1 l ==> LatticeEff.interp l2 l)
[SMTPat (LatticeEff.interp l1 l); SMTPat (LatticeEff.sublist l1 l2)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.list",
"LatticeEff.eff_label",
"LatticeEff.interp_sublist",
"Prims.unit",
"LatticeEff.sublist",
"Prims.squash",
"Prims.l_imp",
"Prims.b2t",
"LatticeEff.interp",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.bool",
"Prims.logical",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec interp_sublist (l1 l2: list eff_label) (l: eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)] =
| match l1 with
| [] -> ()
| _ :: l1 -> interp_sublist l1 l2 l | false |
LatticeEff.fst | LatticeEff.return | val return (a: Type) (x: a) : repr a [] | val return (a: Type) (x: a) : repr a [] | let return (a:Type) (x:a)
: repr a []
=
fun () -> x | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 13,
"end_line": 97,
"start_col": 0,
"start_line": 94
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l
let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let ann_le (ann1 ann2 : annot) : prop =
forall x. ann1 x ==> ann2 x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> x: a -> LatticeEff.repr a [] | Prims.Tot | [
"total"
] | [] | [
"Prims.unit",
"LatticeEff.repr",
"Prims.Nil",
"LatticeEff.eff_label"
] | [] | false | false | false | true | false | let return (a: Type) (x: a) : repr a [] =
| fun () -> x | false |
LatticeEff.fst | LatticeEff.sublist_at | val sublist_at (l1 l2: list eff_label)
: Lemma (sublist l1 (l1 @ l2) /\ sublist l2 (l1 @ l2))
[SMTPatOr [[SMTPat (sublist l1 (l1 @ l2))]; [SMTPat (sublist l2 (l1 @ l2))]]] | val sublist_at (l1 l2: list eff_label)
: Lemma (sublist l1 (l1 @ l2) /\ sublist l2 (l1 @ l2))
[SMTPatOr [[SMTPat (sublist l1 (l1 @ l2))]; [SMTPat (sublist l2 (l1 @ l2))]]] | let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2 | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 89,
"start_col": 0,
"start_line": 82
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l1: Prims.list LatticeEff.eff_label -> l2: Prims.list LatticeEff.eff_label
-> FStar.Pervasives.Lemma
(ensures LatticeEff.sublist l1 (l1 @ l2) /\ LatticeEff.sublist l2 (l1 @ l2))
[
SMTPatOr [
[SMTPat (LatticeEff.sublist l1 (l1 @ l2))];
[SMTPat (LatticeEff.sublist l2 (l1 @ l2))]
]
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.list",
"LatticeEff.eff_label",
"LatticeEff.sublist_at",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"LatticeEff.sublist",
"FStar.List.Tot.Base.op_At",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat_or",
"FStar.Pervasives.smt_pat",
"Prims.logical",
"Prims.Nil"
] | [
"recursion"
] | false | false | true | false | false | let rec sublist_at (l1 l2: list eff_label)
: Lemma (sublist l1 (l1 @ l2) /\ sublist l2 (l1 @ l2))
[SMTPatOr [[SMTPat (sublist l1 (l1 @ l2))]; [SMTPat (sublist l2 (l1 @ l2))]]] =
| match l1 with
| [] -> ()
| _ :: l1 -> sublist_at l1 l2 | false |
LatticeEff.fst | LatticeEff.bind | val bind (a b: Type) (labs1 labs2: list eff_label) (c: repr a labs1) (f: (x: a -> repr b labs2))
: Tot (repr b (labs1 @ labs2)) | val bind (a b: Type) (labs1 labs2: list eff_label) (c: repr a labs1) (f: (x: a -> repr b labs2))
: Tot (repr b (labs1 @ labs2)) | let bind (a b : Type)
(labs1 labs2 : list eff_label)
(c : repr a labs1)
(f : (x:a -> repr b labs2))
: Tot (repr b (labs1@labs2))
= fun () -> f (c ()) () | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 25,
"end_line": 104,
"start_col": 0,
"start_line": 99
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l
let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let ann_le (ann1 ann2 : annot) : prop =
forall x. ann1 x ==> ann2 x
let return (a:Type) (x:a)
: repr a []
=
fun () -> x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Type ->
b: Type ->
labs1: Prims.list LatticeEff.eff_label ->
labs2: Prims.list LatticeEff.eff_label ->
c: LatticeEff.repr a labs1 ->
f: (x: a -> LatticeEff.repr b labs2)
-> LatticeEff.repr b (labs1 @ labs2) | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"LatticeEff.eff_label",
"LatticeEff.repr",
"Prims.unit",
"FStar.List.Tot.Base.op_At"
] | [] | false | false | false | false | false | let bind (a b: Type) (labs1 labs2: list eff_label) (c: repr a labs1) (f: (x: a -> repr b labs2))
: Tot (repr b (labs1 @ labs2)) =
| fun () -> f (c ()) () | false |
LatticeEff.fst | LatticeEff.subcomp | val subcomp (a: Type) (labs1 labs2: list eff_label) (f: repr a labs1)
: Pure (repr a labs2) (requires (sublist labs1 labs2)) (ensures (fun _ -> True)) | val subcomp (a: Type) (labs1 labs2: list eff_label) (f: repr a labs1)
: Pure (repr a labs2) (requires (sublist labs1 labs2)) (ensures (fun _ -> True)) | let subcomp (a:Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
: Pure (repr a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 112,
"start_col": 0,
"start_line": 106
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l
let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let ann_le (ann1 ann2 : annot) : prop =
forall x. ann1 x ==> ann2 x
let return (a:Type) (x:a)
: repr a []
=
fun () -> x
let bind (a b : Type)
(labs1 labs2 : list eff_label)
(c : repr a labs1)
(f : (x:a -> repr b labs2))
: Tot (repr b (labs1@labs2))
= fun () -> f (c ()) () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Type ->
labs1: Prims.list LatticeEff.eff_label ->
labs2: Prims.list LatticeEff.eff_label ->
f: LatticeEff.repr a labs1
-> Prims.Pure (LatticeEff.repr a labs2) | Prims.Pure | [] | [] | [
"Prims.list",
"LatticeEff.eff_label",
"LatticeEff.repr",
"LatticeEff.sublist",
"Prims.l_True"
] | [] | false | false | false | false | false | let subcomp (a: Type) (labs1 labs2: list eff_label) (f: repr a labs1)
: Pure (repr a labs2) (requires (sublist labs1 labs2)) (ensures (fun _ -> True)) =
| f | false |
LatticeEff.fst | LatticeEff.put | val put (s: state{forall s1. heap_rel s1 s}) : EFF unit [WR] | val put (s: state{forall s1. heap_rel s1 s}) : EFF unit [WR] | let put (s:state{forall s1. heap_rel s1 s}) : EFF unit [WR] =
EFF?.reflect (fun () -> gst_put s) | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 36,
"end_line": 157,
"start_col": 0,
"start_line": 156
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l
let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let ann_le (ann1 ann2 : annot) : prop =
forall x. ann1 x ==> ann2 x
let return (a:Type) (x:a)
: repr a []
=
fun () -> x
let bind (a b : Type)
(labs1 labs2 : list eff_label)
(c : repr a labs1)
(f : (x:a -> repr b labs2))
: Tot (repr b (labs1@labs2))
= fun () -> f (c ()) ()
let subcomp (a:Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
: Pure (repr a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let ite (p q r : Type0) = (p ==> q) /\ (~p ==> r)
let if_then_else
(a : Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
(g : repr a labs2)
(p : bool)
: Type
= repr a (labs1@labs2)
total
reifiable
reflectable
effect {
EFF (a:Type) (_:list eff_label)
with {repr; return; bind; subcomp; if_then_else}
}
let lift_pure_eff
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (repr a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp;
fun () -> f ()
sub_effect PURE ~> EFF = lift_pure_eff
let get () : EFF H.heap [] =
EFF?.reflect (fun () -> get ())
let (!) #a (r:ref a) : EFF a [] =
EFF?.reflect (fun () -> !r)
let (:=) #a (r:ref a) (v:a) : EFF unit [WR] =
EFF?.reflect (fun () -> r := v)
(* GM: The refinement is clearly crap, just trying to get a typeable | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: LatticeEff.state{forall (s1: FStar.Monotonic.Heap.heap). FStar.ST.heap_rel s1 s}
-> LatticeEff.EFF Prims.unit | LatticeEff.EFF | [] | [] | [
"LatticeEff.state",
"Prims.l_Forall",
"FStar.Monotonic.Heap.heap",
"FStar.ST.heap_rel",
"Prims.unit",
"FStar.ST.gst_put",
"Prims.Cons",
"LatticeEff.eff_label",
"LatticeEff.WR",
"Prims.Nil"
] | [] | false | true | false | false | false | let put (s: state{forall s1. heap_rel s1 s}) : EFF unit [WR] =
| EFF?.reflect (fun () -> gst_put s) | false |
LatticeEff.fst | LatticeEff.lift_pure_eff | val lift_pure_eff (a: Type) (wp: pure_wp a) (f: (unit -> PURE a wp))
: Pure (repr a []) (requires (wp (fun _ -> True))) (ensures (fun _ -> True)) | val lift_pure_eff (a: Type) (wp: pure_wp a) (f: (unit -> PURE a wp))
: Pure (repr a []) (requires (wp (fun _ -> True))) (ensures (fun _ -> True)) | let lift_pure_eff
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (repr a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp;
fun () -> f () | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 141,
"start_col": 0,
"start_line": 133
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l
let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let ann_le (ann1 ann2 : annot) : prop =
forall x. ann1 x ==> ann2 x
let return (a:Type) (x:a)
: repr a []
=
fun () -> x
let bind (a b : Type)
(labs1 labs2 : list eff_label)
(c : repr a labs1)
(f : (x:a -> repr b labs2))
: Tot (repr b (labs1@labs2))
= fun () -> f (c ()) ()
let subcomp (a:Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
: Pure (repr a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let ite (p q r : Type0) = (p ==> q) /\ (~p ==> r)
let if_then_else
(a : Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
(g : repr a labs2)
(p : bool)
: Type
= repr a (labs1@labs2)
total
reifiable
reflectable
effect {
EFF (a:Type) (_:list eff_label)
with {repr; return; bind; subcomp; if_then_else}
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> wp: Prims.pure_wp a -> f: (_: Prims.unit -> Prims.PURE a)
-> Prims.Pure (LatticeEff.repr a []) | Prims.Pure | [] | [] | [
"Prims.pure_wp",
"Prims.unit",
"FStar.Monotonic.Pure.elim_pure_wp_monotonicity",
"LatticeEff.repr",
"Prims.Nil",
"LatticeEff.eff_label",
"Prims.l_True"
] | [] | false | false | false | false | false | let lift_pure_eff (a: Type) (wp: pure_wp a) (f: (unit -> PURE a wp))
: Pure (repr a []) (requires (wp (fun _ -> True))) (ensures (fun _ -> True)) =
| FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp;
fun () -> f () | false |
LatticeEff.fst | LatticeEff.get | val get: Prims.unit -> EFF H.heap [] | val get: Prims.unit -> EFF H.heap [] | let get () : EFF H.heap [] =
EFF?.reflect (fun () -> get ()) | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 146,
"start_col": 0,
"start_line": 145
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l
let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let ann_le (ann1 ann2 : annot) : prop =
forall x. ann1 x ==> ann2 x
let return (a:Type) (x:a)
: repr a []
=
fun () -> x
let bind (a b : Type)
(labs1 labs2 : list eff_label)
(c : repr a labs1)
(f : (x:a -> repr b labs2))
: Tot (repr b (labs1@labs2))
= fun () -> f (c ()) ()
let subcomp (a:Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
: Pure (repr a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let ite (p q r : Type0) = (p ==> q) /\ (~p ==> r)
let if_then_else
(a : Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
(g : repr a labs2)
(p : bool)
: Type
= repr a (labs1@labs2)
total
reifiable
reflectable
effect {
EFF (a:Type) (_:list eff_label)
with {repr; return; bind; subcomp; if_then_else}
}
let lift_pure_eff
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (repr a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp;
fun () -> f ()
sub_effect PURE ~> EFF = lift_pure_eff | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> LatticeEff.EFF FStar.Monotonic.Heap.heap | LatticeEff.EFF | [] | [] | [
"Prims.unit",
"FStar.ST.get",
"FStar.Monotonic.Heap.heap",
"Prims.Nil",
"LatticeEff.eff_label"
] | [] | false | true | false | false | false | let get () : EFF H.heap [] =
| EFF?.reflect (fun () -> get ()) | false |
LatticeEff.fst | LatticeEff.test1 | val test1 (r: ref int) (x y: int) : EFF int [EXN; WR] | val test1 (r: ref int) (x y: int) : EFF int [EXN; WR] | let test1 (r:ref int) (x y : int) : EFF int [EXN; WR] =
let z = !r in
if x + z > 0
then raise (Failure "nope")
else (r := 42; y - z) | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 23,
"end_line": 172,
"start_col": 0,
"start_line": 168
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l
let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let ann_le (ann1 ann2 : annot) : prop =
forall x. ann1 x ==> ann2 x
let return (a:Type) (x:a)
: repr a []
=
fun () -> x
let bind (a b : Type)
(labs1 labs2 : list eff_label)
(c : repr a labs1)
(f : (x:a -> repr b labs2))
: Tot (repr b (labs1@labs2))
= fun () -> f (c ()) ()
let subcomp (a:Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
: Pure (repr a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let ite (p q r : Type0) = (p ==> q) /\ (~p ==> r)
let if_then_else
(a : Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
(g : repr a labs2)
(p : bool)
: Type
= repr a (labs1@labs2)
total
reifiable
reflectable
effect {
EFF (a:Type) (_:list eff_label)
with {repr; return; bind; subcomp; if_then_else}
}
let lift_pure_eff
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (repr a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp;
fun () -> f ()
sub_effect PURE ~> EFF = lift_pure_eff
let get () : EFF H.heap [] =
EFF?.reflect (fun () -> get ())
let (!) #a (r:ref a) : EFF a [] =
EFF?.reflect (fun () -> !r)
let (:=) #a (r:ref a) (v:a) : EFF unit [WR] =
EFF?.reflect (fun () -> r := v)
(* GM: The refinement is clearly crap, just trying to get a typeable
put-like thing here. *)
let put (s:state{forall s1. heap_rel s1 s}) : EFF unit [WR] =
EFF?.reflect (fun () -> gst_put s)
let raise #a (e:exn) : EFF a [EXN] =
EFF?.reflect (fun () -> raise e)
let test0 (r:ref int) (x y : int) : EFF int [EXN] =
let z = !r in
if x + z > 0
then raise (Failure "nope")
else y - z | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: FStar.ST.ref Prims.int -> x: Prims.int -> y: Prims.int -> LatticeEff.EFF Prims.int | LatticeEff.EFF | [] | [] | [
"FStar.ST.ref",
"Prims.int",
"Prims.op_GreaterThan",
"Prims.op_Addition",
"LatticeEff.raise",
"FStar.All.Failure",
"Prims.bool",
"Prims.op_Subtraction",
"Prims.unit",
"LatticeEff.op_Colon_Equals",
"LatticeEff.op_Bang",
"Prims.Cons",
"LatticeEff.eff_label",
"LatticeEff.EXN",
"LatticeEff.WR",
"Prims.Nil"
] | [] | false | true | false | false | false | let test1 (r: ref int) (x y: int) : EFF int [EXN; WR] =
| let z = !r in
if x + z > 0
then raise (Failure "nope")
else
(r := 42;
y - z) | false |
LatticeEff.fst | LatticeEff.catch | val catch (#a #labs: _) (f: (unit -> EFF a (EXN :: labs))) (g: (unit -> EFF a labs)) : EFF a labs | val catch (#a #labs: _) (f: (unit -> EFF a (EXN :: labs))) (g: (unit -> EFF a labs)) : EFF a labs | let catch #a #labs (f : unit -> EFF a (EXN::labs)) (g : unit -> EFF a labs) : EFF a labs =
EFF?.reflect begin
fun () -> try_with (reify (f ())) (reify (g ()))
end | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 197,
"start_col": 0,
"start_line": 194
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l
let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let ann_le (ann1 ann2 : annot) : prop =
forall x. ann1 x ==> ann2 x
let return (a:Type) (x:a)
: repr a []
=
fun () -> x
let bind (a b : Type)
(labs1 labs2 : list eff_label)
(c : repr a labs1)
(f : (x:a -> repr b labs2))
: Tot (repr b (labs1@labs2))
= fun () -> f (c ()) ()
let subcomp (a:Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
: Pure (repr a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let ite (p q r : Type0) = (p ==> q) /\ (~p ==> r)
let if_then_else
(a : Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
(g : repr a labs2)
(p : bool)
: Type
= repr a (labs1@labs2)
total
reifiable
reflectable
effect {
EFF (a:Type) (_:list eff_label)
with {repr; return; bind; subcomp; if_then_else}
}
let lift_pure_eff
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (repr a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp;
fun () -> f ()
sub_effect PURE ~> EFF = lift_pure_eff
let get () : EFF H.heap [] =
EFF?.reflect (fun () -> get ())
let (!) #a (r:ref a) : EFF a [] =
EFF?.reflect (fun () -> !r)
let (:=) #a (r:ref a) (v:a) : EFF unit [WR] =
EFF?.reflect (fun () -> r := v)
(* GM: The refinement is clearly crap, just trying to get a typeable
put-like thing here. *)
let put (s:state{forall s1. heap_rel s1 s}) : EFF unit [WR] =
EFF?.reflect (fun () -> gst_put s)
let raise #a (e:exn) : EFF a [EXN] =
EFF?.reflect (fun () -> raise e)
let test0 (r:ref int) (x y : int) : EFF int [EXN] =
let z = !r in
if x + z > 0
then raise (Failure "nope")
else y - z
let test1 (r:ref int) (x y : int) : EFF int [EXN; WR] =
let z = !r in
if x + z > 0
then raise (Failure "nope")
else (r := 42; y - z)
let sublist_at_self (l1 : list eff_label)
: Lemma (sublist (l1@l1) l1)
[SMTPat (l1@l1)]
= Classical.forall_intro (List.Tot.Properties.append_mem l1 l1)
let labpoly #labs (f g : unit -> EFF int labs) : EFF int labs =
f () + g ()
assume val try_with
(#a:_) (#wpf:_) (#wpg:_)
($f : unit -> ALL a wpf)
($g : unit -> ALL a wpg)
: ALL a (fun p s0 -> wpf (fun r s1 -> match r with
| V _ -> p r s1
| _ -> wpg p s1) s0)
(* no rollback *)
(* GM: NB: this looks incredibly simple, but took like an hour to get right | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> LatticeEff.EFF a) -> g: (_: Prims.unit -> LatticeEff.EFF a) -> LatticeEff.EFF a | LatticeEff.EFF | [] | [] | [
"Prims.list",
"LatticeEff.eff_label",
"Prims.unit",
"Prims.Cons",
"LatticeEff.EXN",
"LatticeEff.try_with",
"LatticeEff.wpof2"
] | [] | false | true | false | false | false | let catch #a #labs (f: (unit -> EFF a (EXN :: labs))) (g: (unit -> EFF a labs)) : EFF a labs =
| EFF?.reflect (fun () -> try_with (reify (f ())) (reify (g ()))) | false |
LatticeEff.fst | LatticeEff.raise | val raise (#a: _) (e: exn) : EFF a [EXN] | val raise (#a: _) (e: exn) : EFF a [EXN] | let raise #a (e:exn) : EFF a [EXN] =
EFF?.reflect (fun () -> raise e) | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 34,
"end_line": 160,
"start_col": 0,
"start_line": 159
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l
let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let ann_le (ann1 ann2 : annot) : prop =
forall x. ann1 x ==> ann2 x
let return (a:Type) (x:a)
: repr a []
=
fun () -> x
let bind (a b : Type)
(labs1 labs2 : list eff_label)
(c : repr a labs1)
(f : (x:a -> repr b labs2))
: Tot (repr b (labs1@labs2))
= fun () -> f (c ()) ()
let subcomp (a:Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
: Pure (repr a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let ite (p q r : Type0) = (p ==> q) /\ (~p ==> r)
let if_then_else
(a : Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
(g : repr a labs2)
(p : bool)
: Type
= repr a (labs1@labs2)
total
reifiable
reflectable
effect {
EFF (a:Type) (_:list eff_label)
with {repr; return; bind; subcomp; if_then_else}
}
let lift_pure_eff
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (repr a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp;
fun () -> f ()
sub_effect PURE ~> EFF = lift_pure_eff
let get () : EFF H.heap [] =
EFF?.reflect (fun () -> get ())
let (!) #a (r:ref a) : EFF a [] =
EFF?.reflect (fun () -> !r)
let (:=) #a (r:ref a) (v:a) : EFF unit [WR] =
EFF?.reflect (fun () -> r := v)
(* GM: The refinement is clearly crap, just trying to get a typeable
put-like thing here. *)
let put (s:state{forall s1. heap_rel s1 s}) : EFF unit [WR] =
EFF?.reflect (fun () -> gst_put s) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Prims.exn -> LatticeEff.EFF a | LatticeEff.EFF | [] | [] | [
"Prims.exn",
"Prims.unit",
"FStar.Exn.raise",
"Prims.Cons",
"LatticeEff.eff_label",
"LatticeEff.EXN",
"Prims.Nil"
] | [] | false | true | false | false | false | let raise #a (e: exn) : EFF a [EXN] =
| EFF?.reflect (fun () -> raise e) | false |
Hacl.Spec.Bignum.Multiplication.fst | Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_lemma_loop_step | val bn_mul1_add_in_place_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)) | val bn_mul1_add_in_place_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)) | let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) =
let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
let c, e = mul_wide_add2 a.[i - 1] l c1 acc.[i - 1] in
assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1 + v acc.[i - 1]);
calc (==) {
v c * b2 + bn_v #t #i res;
(==) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
(==) { }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l -
(v e + v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1 + v e * b1;
(==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) b1 }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l - v acc.[i - 1]) * b1;
(==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l + v acc.[i - 1]) b1 }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 +
(v a.[i - 1] * v l + v acc.[i - 1]) * b1;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[i - 1] * v l + v acc.[i - 1]) * b1;
(==) { Math.Lemmas.distributivity_add_left (v a.[i - 1] * v l) (v acc.[i - 1]) b1 }
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1 + v acc.[i - 1] * b1;
(==) { bn_eval_unfold_i acc i }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l);
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l;
(==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) }
eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l;
(==) { bn_eval_unfold_i a i }
eval_ aLen acc i + eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Multiplication.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 79,
"end_line": 258,
"start_col": 0,
"start_line": 222
} | module Hacl.Spec.Bignum.Multiplication
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Lib
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val bn_mul1_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_f #t #aLen a l i c =
mul_wide_add a.[i] l c
val bn_mul1:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t ->
limb t & lbignum t aLen
let bn_mul1 #t #aLen a l =
generate_elems aLen aLen (bn_mul1_f a l) (uint #t 0)
val bn_mul1_add_in_place_f:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:size_nat{i < aLen}
-> c:limb t ->
limb t & limb t // carry & out
let bn_mul1_add_in_place_f #t #aLen a l acc i c =
mul_wide_add2 a.[i] l c acc.[i]
val bn_mul1_add_in_place:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen ->
limb t & lbignum t aLen
let bn_mul1_add_in_place #t #aLen a l acc =
generate_elems aLen aLen (bn_mul1_add_in_place_f a l acc) (uint #t 0)
val bn_mul1_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> #resLen:size_nat
-> a:lbignum t aLen
-> b_j:limb t
-> j:size_nat{j + aLen <= resLen}
-> res:lbignum t resLen ->
limb t & lbignum t resLen
let bn_mul1_lshift_add #t #aLen #resLen a b_j j res =
let res' = sub res j aLen in
let c, res' = bn_mul1_add_in_place a b_j res' in
let res = update_sub res j aLen res' in
c, res
val bn_mul_:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen
-> j:size_nat{j < bLen}
-> res:lbignum t (aLen + bLen) ->
lbignum t (aLen + bLen)
let bn_mul_ #t #aLen #bLen a b j res =
let c, res = bn_mul1_lshift_add a b.[j] j res in
res.[aLen + j] <- c
val bn_mul:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat{aLen + bLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t bLen ->
lbignum t (aLen + bLen)
let bn_mul #t #aLen #bLen a b =
let res = create (aLen + bLen) (uint #t 0) in
repeati bLen (bn_mul_ a b) res
val bn_mul1_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l))
let bn_mul1_lemma_loop_step #t #aLen a l i (c1, res1) =
let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let (c, res) = generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1) in
let c, e = mul_wide_add a.[i - 1] l c1 in
assert (v e + v c * pow2 pbits == v a.[i - 1] * v l + v c1);
calc (==) {
v c * b2 + bn_v #t #i res;
(==) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
(==) { }
v c * b2 + eval_ aLen a (i - 1) * v l -(v e + v c * pow2 pbits - v a.[i - 1] * v l) * b1 + v e * b1;
(==) { Math.Lemmas.distributivity_add_left (v e) (v c * pow2 pbits - v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits - v a.[i - 1] * v l) * b1;
(==) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits) (v a.[i - 1] * v l) b1 }
v c * b2 + eval_ aLen a (i - 1) * v l - v c * pow2 pbits * b1 + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1; Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * v l * b1;
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) (v l) b1 }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * (b1 * v l);
(==) { Math.Lemmas.paren_mul_right (v a.[i - 1]) b1 (v l) }
eval_ aLen a (i - 1) * v l + v a.[i - 1] * b1 * v l;
(==) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[i - 1] * b1) (v l) }
(eval_ aLen a (i - 1) + v a.[i - 1] * b1) * v l;
(==) { bn_eval_unfold_i a i }
eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen a i * v l)
val bn_mul1_lemma_loop:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> i:nat{i <= aLen} ->
Lemma (let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen a i * v l)
let rec bn_mul1_lemma_loop #t #aLen a l i =
let pbits = bits t in
let (c, res) : generate_elem_a (limb t) (limb t) aLen i = generate_elems aLen i (bn_mul1_f a l) (uint #t 0) in
if i = 0 then begin
eq_generate_elems0 aLen i (bn_mul1_f a l) (uint #t 0);
assert (c == uint #t 0 /\ res == Seq.empty);
bn_eval0 #t #0 res;
assert_norm (pow2 0 = 1);
bn_eval0 a;
() end
else begin
let (c1, res1) : generate_elem_a (limb t) (limb t) aLen (i - 1) = generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0) in
generate_elems_unfold aLen i (bn_mul1_f a l) (uint #t 0) (i - 1);
assert (generate_elems aLen i (bn_mul1_f a l) (uint #t 0) ==
generate_elem_f aLen (bn_mul1_f a l) (i - 1) (generate_elems aLen (i - 1) (bn_mul1_f a l) (uint #t 0)));
assert ((c, res) == generate_elem_f aLen (bn_mul1_f a l) (i - 1) (c1, res1));
bn_mul1_lemma_loop a l (i - 1);
assert (v c1 * pow2 (pbits * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen a (i - 1) * v l);
bn_mul1_lemma_loop_step a l i (c1, res1);
assert (v c * pow2 (pbits * i) + bn_v #t #i res == eval_ aLen a i * v l);
() end
val bn_mul1_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t ->
Lemma (let (c, res) = bn_mul1 a l in
v c * pow2 (bits t * aLen) + bn_v res == bn_v a * v l)
let bn_mul1_lemma #t #aLen a l =
let (c, res) = bn_mul1 a l in
bn_mul1_lemma_loop a l aLen
#push-options "--z3rlimit 150"
val bn_mul1_add_in_place_lemma_loop_step:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> l:limb t
-> acc:lbignum t aLen
-> i:pos{i <= aLen}
-> c1_res1:generate_elem_a (limb t) (limb t) aLen (i - 1) -> Lemma
(requires
(let (c1, res1) = c1_res1 in
v c1 * pow2 (bits t * (i - 1)) + bn_v #t #(i - 1) res1 == eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l))
(ensures
(let (c1, res1) = c1_res1 in
let (c, res) = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
v c * pow2 (bits t * i) + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Multiplication.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 150,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
l: Hacl.Spec.Bignum.Definitions.limb t ->
acc: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
i: Prims.pos{i <= aLen} ->
c1_res1:
Hacl.Spec.Lib.generate_elem_a (Hacl.Spec.Bignum.Definitions.limb t)
(Hacl.Spec.Bignum.Definitions.limb t)
aLen
(i - 1)
-> FStar.Pervasives.Lemma
(requires
(let _ = c1_res1 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in
Lib.IntTypes.v c1 * Prims.pow2 (Lib.IntTypes.bits t * (i - 1)) +
Hacl.Spec.Bignum.Definitions.bn_v res1 ==
Hacl.Spec.Bignum.Definitions.eval_ aLen acc (i - 1) +
Hacl.Spec.Bignum.Definitions.eval_ aLen a (i - 1) * Lib.IntTypes.v l)
<:
Type0))
(ensures
(let _ = c1_res1 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 res1 = _ in
let _ =
Hacl.Spec.Lib.generate_elem_f aLen
(Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_f a l acc)
(i - 1)
(c1,
res1)
in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in
Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * i) +
Hacl.Spec.Bignum.Definitions.bn_v res ==
Hacl.Spec.Bignum.Definitions.eval_ aLen acc i +
Hacl.Spec.Bignum.Definitions.eval_ aLen a i * Lib.IntTypes.v l)
<:
Type0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.pos",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Hacl.Spec.Lib.generate_elem_a",
"Prims.op_Subtraction",
"Lib.Sequence.seq",
"Prims.eq2",
"Prims.nat",
"Lib.Sequence.length",
"Prims.op_Addition",
"Prims._assert",
"Prims.int",
"FStar.Mul.op_Star",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.Definitions.eval_",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Lib.Sequence.op_String_Access",
"Prims.pow2",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Bignum.Definitions.bn_eval_snoc",
"Prims.squash",
"FStar.Math.Lemmas.distributivity_add_left",
"FStar.Math.Lemmas.distributivity_sub_left",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.paren_mul_right",
"Hacl.Spec.Bignum.Definitions.bn_eval_unfold_i",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Base.mul_wide_add2",
"Hacl.Spec.Lib.generate_elem_f",
"Hacl.Spec.Bignum.Multiplication.bn_mul1_add_in_place_f",
"FStar.Pervasives.Native.Mktuple2",
"Lib.IntTypes.bits"
] | [] | false | false | true | false | false | let bn_mul1_add_in_place_lemma_loop_step #t #aLen a l acc i (c1, res1) =
| let pbits = bits t in
let b1 = pow2 (pbits * (i - 1)) in
let b2 = pow2 (pbits * i) in
let c, res = generate_elem_f aLen (bn_mul1_add_in_place_f a l acc) (i - 1) (c1, res1) in
let c, e = mul_wide_add2 a.[ i - 1 ] l c1 acc.[ i - 1 ] in
assert (v e + v c * pow2 pbits == v a.[ i - 1 ] * v l + v c1 + v acc.[ i - 1 ]);
calc ( == ) {
v c * b2 + bn_v #t #i res;
( == ) { bn_eval_snoc #t #(i - 1) res1 e }
v c * b2 + bn_v #t #(i - 1) res1 + v e * b1;
( == ) { () }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l -
(v e + v c * pow2 pbits - v a.[ i - 1 ] * v l - v acc.[ i - 1 ]) * b1 +
v e * b1;
( == ) { Math.Lemmas.distributivity_add_left (v e)
(v c * pow2 pbits - v a.[ i - 1 ] * v l - v acc.[ i - 1 ])
b1 }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l -
(v c * pow2 pbits - v a.[ i - 1 ] * v l - v acc.[ i - 1 ]) * b1;
( == ) { Math.Lemmas.distributivity_sub_left (v c * pow2 pbits)
(v a.[ i - 1 ] * v l + v acc.[ i - 1 ])
b1 }
v c * b2 + eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l - (v c * pow2 pbits) * b1 +
(v a.[ i - 1 ] * v l + v acc.[ i - 1 ]) * b1;
( == ) { (Math.Lemmas.paren_mul_right (v c) (pow2 pbits) b1;
Math.Lemmas.pow2_plus pbits (pbits * (i - 1))) }
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[ i - 1 ] * v l + v acc.[ i - 1 ]) * b1;
( == ) { Math.Lemmas.distributivity_add_left (v a.[ i - 1 ] * v l) (v acc.[ i - 1 ]) b1 }
eval_ aLen acc (i - 1) + eval_ aLen a (i - 1) * v l + (v a.[ i - 1 ] * v l) * b1 +
v acc.[ i - 1 ] * b1;
( == ) { bn_eval_unfold_i acc i }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + (v a.[ i - 1 ] * v l) * b1;
( == ) { Math.Lemmas.paren_mul_right (v a.[ i - 1 ]) (v l) b1 }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + v a.[ i - 1 ] * (b1 * v l);
( == ) { Math.Lemmas.paren_mul_right (v a.[ i - 1 ]) b1 (v l) }
eval_ aLen acc i + eval_ aLen a (i - 1) * v l + (v a.[ i - 1 ] * b1) * v l;
( == ) { Math.Lemmas.distributivity_add_left (eval_ aLen a (i - 1)) (v a.[ i - 1 ] * b1) (v l) }
eval_ aLen acc i + (eval_ aLen a (i - 1) + v a.[ i - 1 ] * b1) * v l;
( == ) { bn_eval_unfold_i a i }
eval_ aLen acc i + eval_ aLen a i * v l;
};
assert (v c * b2 + bn_v #t #i res == eval_ aLen acc i + eval_ aLen a i * v l) | false |
LatticeEff.fst | LatticeEff.test_catch | val test_catch (f: (unit -> EFF int [EXN; WR])) : EFF int [WR] | val test_catch (f: (unit -> EFF int [EXN; WR])) : EFF int [WR] | let test_catch (f : unit -> EFF int [EXN;WR]) : EFF int [WR] =
catch f g | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 202,
"start_col": 0,
"start_line": 201
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l
let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let ann_le (ann1 ann2 : annot) : prop =
forall x. ann1 x ==> ann2 x
let return (a:Type) (x:a)
: repr a []
=
fun () -> x
let bind (a b : Type)
(labs1 labs2 : list eff_label)
(c : repr a labs1)
(f : (x:a -> repr b labs2))
: Tot (repr b (labs1@labs2))
= fun () -> f (c ()) ()
let subcomp (a:Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
: Pure (repr a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let ite (p q r : Type0) = (p ==> q) /\ (~p ==> r)
let if_then_else
(a : Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
(g : repr a labs2)
(p : bool)
: Type
= repr a (labs1@labs2)
total
reifiable
reflectable
effect {
EFF (a:Type) (_:list eff_label)
with {repr; return; bind; subcomp; if_then_else}
}
let lift_pure_eff
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (repr a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp;
fun () -> f ()
sub_effect PURE ~> EFF = lift_pure_eff
let get () : EFF H.heap [] =
EFF?.reflect (fun () -> get ())
let (!) #a (r:ref a) : EFF a [] =
EFF?.reflect (fun () -> !r)
let (:=) #a (r:ref a) (v:a) : EFF unit [WR] =
EFF?.reflect (fun () -> r := v)
(* GM: The refinement is clearly crap, just trying to get a typeable
put-like thing here. *)
let put (s:state{forall s1. heap_rel s1 s}) : EFF unit [WR] =
EFF?.reflect (fun () -> gst_put s)
let raise #a (e:exn) : EFF a [EXN] =
EFF?.reflect (fun () -> raise e)
let test0 (r:ref int) (x y : int) : EFF int [EXN] =
let z = !r in
if x + z > 0
then raise (Failure "nope")
else y - z
let test1 (r:ref int) (x y : int) : EFF int [EXN; WR] =
let z = !r in
if x + z > 0
then raise (Failure "nope")
else (r := 42; y - z)
let sublist_at_self (l1 : list eff_label)
: Lemma (sublist (l1@l1) l1)
[SMTPat (l1@l1)]
= Classical.forall_intro (List.Tot.Properties.append_mem l1 l1)
let labpoly #labs (f g : unit -> EFF int labs) : EFF int labs =
f () + g ()
assume val try_with
(#a:_) (#wpf:_) (#wpg:_)
($f : unit -> ALL a wpf)
($g : unit -> ALL a wpg)
: ALL a (fun p s0 -> wpf (fun r s1 -> match r with
| V _ -> p r s1
| _ -> wpg p s1) s0)
(* no rollback *)
(* GM: NB: this looks incredibly simple, but took like an hour to get right
* when the WP of try_with wasn't exactly what was expected :-) *)
let catch #a #labs (f : unit -> EFF a (EXN::labs)) (g : unit -> EFF a labs) : EFF a labs =
EFF?.reflect begin
fun () -> try_with (reify (f ())) (reify (g ()))
end
let g #labs () : EFF int labs = 42 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> LatticeEff.EFF Prims.int) -> LatticeEff.EFF Prims.int | LatticeEff.EFF | [] | [] | [
"Prims.unit",
"Prims.int",
"Prims.Cons",
"LatticeEff.eff_label",
"LatticeEff.EXN",
"LatticeEff.WR",
"Prims.Nil",
"LatticeEff.catch",
"LatticeEff.g"
] | [] | false | true | false | false | false | let test_catch (f: (unit -> EFF int [EXN; WR])) : EFF int [WR] =
| catch f g | false |
LatticeEff.fst | LatticeEff.labpoly | val labpoly (#labs: _) (f g: (unit -> EFF int labs)) : EFF int labs | val labpoly (#labs: _) (f g: (unit -> EFF int labs)) : EFF int labs | let labpoly #labs (f g : unit -> EFF int labs) : EFF int labs =
f () + g () | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 13,
"end_line": 181,
"start_col": 0,
"start_line": 180
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l
let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let ann_le (ann1 ann2 : annot) : prop =
forall x. ann1 x ==> ann2 x
let return (a:Type) (x:a)
: repr a []
=
fun () -> x
let bind (a b : Type)
(labs1 labs2 : list eff_label)
(c : repr a labs1)
(f : (x:a -> repr b labs2))
: Tot (repr b (labs1@labs2))
= fun () -> f (c ()) ()
let subcomp (a:Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
: Pure (repr a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let ite (p q r : Type0) = (p ==> q) /\ (~p ==> r)
let if_then_else
(a : Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
(g : repr a labs2)
(p : bool)
: Type
= repr a (labs1@labs2)
total
reifiable
reflectable
effect {
EFF (a:Type) (_:list eff_label)
with {repr; return; bind; subcomp; if_then_else}
}
let lift_pure_eff
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (repr a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp;
fun () -> f ()
sub_effect PURE ~> EFF = lift_pure_eff
let get () : EFF H.heap [] =
EFF?.reflect (fun () -> get ())
let (!) #a (r:ref a) : EFF a [] =
EFF?.reflect (fun () -> !r)
let (:=) #a (r:ref a) (v:a) : EFF unit [WR] =
EFF?.reflect (fun () -> r := v)
(* GM: The refinement is clearly crap, just trying to get a typeable
put-like thing here. *)
let put (s:state{forall s1. heap_rel s1 s}) : EFF unit [WR] =
EFF?.reflect (fun () -> gst_put s)
let raise #a (e:exn) : EFF a [EXN] =
EFF?.reflect (fun () -> raise e)
let test0 (r:ref int) (x y : int) : EFF int [EXN] =
let z = !r in
if x + z > 0
then raise (Failure "nope")
else y - z
let test1 (r:ref int) (x y : int) : EFF int [EXN; WR] =
let z = !r in
if x + z > 0
then raise (Failure "nope")
else (r := 42; y - z)
let sublist_at_self (l1 : list eff_label)
: Lemma (sublist (l1@l1) l1)
[SMTPat (l1@l1)]
= Classical.forall_intro (List.Tot.Properties.append_mem l1 l1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> LatticeEff.EFF Prims.int) -> g: (_: Prims.unit -> LatticeEff.EFF Prims.int)
-> LatticeEff.EFF Prims.int | LatticeEff.EFF | [] | [] | [
"Prims.list",
"LatticeEff.eff_label",
"Prims.unit",
"Prims.int",
"Prims.op_Addition"
] | [] | false | true | false | false | false | let labpoly #labs (f: (unit -> EFF int labs)) (g: (unit -> EFF int labs)) : EFF int labs =
| f () + g () | false |
LatticeEff.fst | LatticeEff.sublist_at_self | val sublist_at_self (l1: list eff_label) : Lemma (sublist (l1 @ l1) l1) [SMTPat (l1 @ l1)] | val sublist_at_self (l1: list eff_label) : Lemma (sublist (l1 @ l1) l1) [SMTPat (l1 @ l1)] | let sublist_at_self (l1 : list eff_label)
: Lemma (sublist (l1@l1) l1)
[SMTPat (l1@l1)]
= Classical.forall_intro (List.Tot.Properties.append_mem l1 l1) | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 65,
"end_line": 178,
"start_col": 0,
"start_line": 175
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l
let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let ann_le (ann1 ann2 : annot) : prop =
forall x. ann1 x ==> ann2 x
let return (a:Type) (x:a)
: repr a []
=
fun () -> x
let bind (a b : Type)
(labs1 labs2 : list eff_label)
(c : repr a labs1)
(f : (x:a -> repr b labs2))
: Tot (repr b (labs1@labs2))
= fun () -> f (c ()) ()
let subcomp (a:Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
: Pure (repr a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let ite (p q r : Type0) = (p ==> q) /\ (~p ==> r)
let if_then_else
(a : Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
(g : repr a labs2)
(p : bool)
: Type
= repr a (labs1@labs2)
total
reifiable
reflectable
effect {
EFF (a:Type) (_:list eff_label)
with {repr; return; bind; subcomp; if_then_else}
}
let lift_pure_eff
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (repr a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp;
fun () -> f ()
sub_effect PURE ~> EFF = lift_pure_eff
let get () : EFF H.heap [] =
EFF?.reflect (fun () -> get ())
let (!) #a (r:ref a) : EFF a [] =
EFF?.reflect (fun () -> !r)
let (:=) #a (r:ref a) (v:a) : EFF unit [WR] =
EFF?.reflect (fun () -> r := v)
(* GM: The refinement is clearly crap, just trying to get a typeable
put-like thing here. *)
let put (s:state{forall s1. heap_rel s1 s}) : EFF unit [WR] =
EFF?.reflect (fun () -> gst_put s)
let raise #a (e:exn) : EFF a [EXN] =
EFF?.reflect (fun () -> raise e)
let test0 (r:ref int) (x y : int) : EFF int [EXN] =
let z = !r in
if x + z > 0
then raise (Failure "nope")
else y - z
let test1 (r:ref int) (x y : int) : EFF int [EXN; WR] =
let z = !r in
if x + z > 0
then raise (Failure "nope")
else (r := 42; y - z) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l1: Prims.list LatticeEff.eff_label
-> FStar.Pervasives.Lemma (ensures LatticeEff.sublist (l1 @ l1) l1) [SMTPat (l1 @ l1)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.list",
"LatticeEff.eff_label",
"FStar.Classical.forall_intro",
"Prims.b2t",
"Prims.op_Equality",
"Prims.bool",
"FStar.List.Tot.Base.mem",
"FStar.List.Tot.Base.op_At",
"Prims.op_BarBar",
"FStar.List.Tot.Properties.append_mem",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"LatticeEff.sublist",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | false | false | true | false | false | let sublist_at_self (l1: list eff_label) : Lemma (sublist (l1 @ l1) l1) [SMTPat (l1 @ l1)] =
| Classical.forall_intro (List.Tot.Properties.append_mem l1 l1) | false |
LatticeEff.fst | LatticeEff.g | val g: #labs: _ -> Prims.unit -> EFF int labs | val g: #labs: _ -> Prims.unit -> EFF int labs | let g #labs () : EFF int labs = 42 | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 34,
"end_line": 199,
"start_col": 0,
"start_line": 199
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l
let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let ann_le (ann1 ann2 : annot) : prop =
forall x. ann1 x ==> ann2 x
let return (a:Type) (x:a)
: repr a []
=
fun () -> x
let bind (a b : Type)
(labs1 labs2 : list eff_label)
(c : repr a labs1)
(f : (x:a -> repr b labs2))
: Tot (repr b (labs1@labs2))
= fun () -> f (c ()) ()
let subcomp (a:Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
: Pure (repr a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let ite (p q r : Type0) = (p ==> q) /\ (~p ==> r)
let if_then_else
(a : Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
(g : repr a labs2)
(p : bool)
: Type
= repr a (labs1@labs2)
total
reifiable
reflectable
effect {
EFF (a:Type) (_:list eff_label)
with {repr; return; bind; subcomp; if_then_else}
}
let lift_pure_eff
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (repr a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp;
fun () -> f ()
sub_effect PURE ~> EFF = lift_pure_eff
let get () : EFF H.heap [] =
EFF?.reflect (fun () -> get ())
let (!) #a (r:ref a) : EFF a [] =
EFF?.reflect (fun () -> !r)
let (:=) #a (r:ref a) (v:a) : EFF unit [WR] =
EFF?.reflect (fun () -> r := v)
(* GM: The refinement is clearly crap, just trying to get a typeable
put-like thing here. *)
let put (s:state{forall s1. heap_rel s1 s}) : EFF unit [WR] =
EFF?.reflect (fun () -> gst_put s)
let raise #a (e:exn) : EFF a [EXN] =
EFF?.reflect (fun () -> raise e)
let test0 (r:ref int) (x y : int) : EFF int [EXN] =
let z = !r in
if x + z > 0
then raise (Failure "nope")
else y - z
let test1 (r:ref int) (x y : int) : EFF int [EXN; WR] =
let z = !r in
if x + z > 0
then raise (Failure "nope")
else (r := 42; y - z)
let sublist_at_self (l1 : list eff_label)
: Lemma (sublist (l1@l1) l1)
[SMTPat (l1@l1)]
= Classical.forall_intro (List.Tot.Properties.append_mem l1 l1)
let labpoly #labs (f g : unit -> EFF int labs) : EFF int labs =
f () + g ()
assume val try_with
(#a:_) (#wpf:_) (#wpg:_)
($f : unit -> ALL a wpf)
($g : unit -> ALL a wpg)
: ALL a (fun p s0 -> wpf (fun r s1 -> match r with
| V _ -> p r s1
| _ -> wpg p s1) s0)
(* no rollback *)
(* GM: NB: this looks incredibly simple, but took like an hour to get right
* when the WP of try_with wasn't exactly what was expected :-) *)
let catch #a #labs (f : unit -> EFF a (EXN::labs)) (g : unit -> EFF a labs) : EFF a labs =
EFF?.reflect begin
fun () -> try_with (reify (f ())) (reify (g ()))
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> LatticeEff.EFF Prims.int | LatticeEff.EFF | [] | [] | [
"Prims.list",
"LatticeEff.eff_label",
"Prims.unit",
"Prims.int"
] | [] | false | true | false | false | false | let g #labs () : EFF int labs =
| 42 | false |
LatticeEff.fst | LatticeEff.test0 | val test0 (r: ref int) (x y: int) : EFF int [EXN] | val test0 (r: ref int) (x y: int) : EFF int [EXN] | let test0 (r:ref int) (x y : int) : EFF int [EXN] =
let z = !r in
if x + z > 0
then raise (Failure "nope")
else y - z | {
"file_name": "examples/layeredeffects/LatticeEff.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 12,
"end_line": 166,
"start_col": 0,
"start_line": 162
} | module LatticeEff
open FStar.Tactics.V2
open FStar.List.Tot
open FStar.All
module H = FStar.Heap
// GM: Force a type equality by SMT
let coerce #a #b (x:a{a == b}) : b = x
let unreachable #a () : Pure a (requires False) (ensures (fun _ -> False)) = coerce "whatever"
type eff_label =
// GM: Can we do this one? ALL's WPs are unary and this is a
// relational property.
// | RD
| WR
//| DIV
| EXN
type annot = eff_label -> bool
let interp (l : list eff_label) : annot =
fun lab -> mem lab l
type state = H.heap
type wp a = all_wp_h H.heap a
// boring, exponential
//let wpof1 #a (l : list eff_label) : all_wp_h H.heap a =
// let i = interp l in
// match i ST, i EXN with
// | false, false ->
// fun p s0 -> forall x. p (V x) s0
// | true , false ->
// fun p s0 -> forall x s1. p (V x) s1
// | false, true ->
// fun p s0 -> forall r. p r s0
// | true, true ->
// fun p s0 -> forall r s1. p r s1
(* more generic *)
let wpof2 #a (l : list eff_label) : wp a =
let i = interp l in
let wp : wp a = fun p s0 ->
(forall r s1.
(i WR == false ==> s1 == s0) ==>
(i EXN == false ==> V? r) ==>
p r s1)
in
wp
type repr (a:Type u#aa)
(labs : list u#0 eff_label) // #2074
: Type u#0
= unit -> ALL a (wpof2 labs)
let rec interp_at (l1 l2 : list eff_label) (l : eff_label)
: Lemma (interp (l1@l2) l == (interp l1 l || interp l2 l))
[SMTPat (interp (l1@l2) l)]
= match l1 with
| [] -> ()
| _::l1 -> interp_at l1 l2 l
let sublist (l1 l2 : list eff_label) =
forall x. mem x l1 ==> mem x l2
let sublist_refl
(l : list eff_label)
: Lemma (sublist l l)
[SMTPat (sublist l l)]
= ()
let rec interp_sublist (l1 l2 : list eff_label) (l : eff_label)
: Lemma (requires (sublist l1 l2))
(ensures (interp l1 l ==> interp l2 l))
[SMTPat (interp l1 l); SMTPat (sublist l1 l2)]
= match l1 with
| [] -> ()
| _::l1 -> interp_sublist l1 l2 l
let rec sublist_at
(l1 l2 : list eff_label)
: Lemma (sublist l1 (l1@l2) /\ sublist l2 (l1@l2))
[SMTPatOr [[SMTPat (sublist l1 (l1@l2))];
[SMTPat (sublist l2 (l1@l2))]]]
= match l1 with
| [] -> ()
| _::l1 -> sublist_at l1 l2
let ann_le (ann1 ann2 : annot) : prop =
forall x. ann1 x ==> ann2 x
let return (a:Type) (x:a)
: repr a []
=
fun () -> x
let bind (a b : Type)
(labs1 labs2 : list eff_label)
(c : repr a labs1)
(f : (x:a -> repr b labs2))
: Tot (repr b (labs1@labs2))
= fun () -> f (c ()) ()
let subcomp (a:Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
: Pure (repr a labs2)
(requires (sublist labs1 labs2))
(ensures (fun _ -> True))
= f
let ite (p q r : Type0) = (p ==> q) /\ (~p ==> r)
let if_then_else
(a : Type)
(labs1 labs2 : list eff_label)
(f : repr a labs1)
(g : repr a labs2)
(p : bool)
: Type
= repr a (labs1@labs2)
total
reifiable
reflectable
effect {
EFF (a:Type) (_:list eff_label)
with {repr; return; bind; subcomp; if_then_else}
}
let lift_pure_eff
(a:Type)
(wp : pure_wp a)
(f : unit -> PURE a wp)
: Pure (repr a [])
(requires (wp (fun _ -> True)))
(ensures (fun _ -> True))
= FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp;
fun () -> f ()
sub_effect PURE ~> EFF = lift_pure_eff
let get () : EFF H.heap [] =
EFF?.reflect (fun () -> get ())
let (!) #a (r:ref a) : EFF a [] =
EFF?.reflect (fun () -> !r)
let (:=) #a (r:ref a) (v:a) : EFF unit [WR] =
EFF?.reflect (fun () -> r := v)
(* GM: The refinement is clearly crap, just trying to get a typeable
put-like thing here. *)
let put (s:state{forall s1. heap_rel s1 s}) : EFF unit [WR] =
EFF?.reflect (fun () -> gst_put s)
let raise #a (e:exn) : EFF a [EXN] =
EFF?.reflect (fun () -> raise e) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.List.Tot.Properties.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Heap.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "LatticeEff.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Heap",
"short_module": "H"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: FStar.ST.ref Prims.int -> x: Prims.int -> y: Prims.int -> LatticeEff.EFF Prims.int | LatticeEff.EFF | [] | [] | [
"FStar.ST.ref",
"Prims.int",
"Prims.op_GreaterThan",
"Prims.op_Addition",
"LatticeEff.raise",
"FStar.All.Failure",
"Prims.bool",
"Prims.op_Subtraction",
"LatticeEff.op_Bang",
"Prims.Cons",
"LatticeEff.eff_label",
"LatticeEff.EXN",
"Prims.Nil"
] | [] | false | true | false | false | false | let test0 (r: ref int) (x y: int) : EFF int [EXN] =
| let z = !r in
if x + z > 0 then raise (Failure "nope") else y - z | false |
Steel.HigherReference.fst | Steel.HigherReference.ghost_share | val ghost_share (#a:Type) (#u:_)
(#p:perm)
(#x:erased a)
(r:ghost_ref a)
: SteelGhostT unit u
(ghost_pts_to r p x)
(fun _ -> ghost_pts_to r (half_perm p) x `star`
ghost_pts_to r (half_perm p) x) | val ghost_share (#a:Type) (#u:_)
(#p:perm)
(#x:erased a)
(r:ghost_ref a)
: SteelGhostT unit u
(ghost_pts_to r p x)
(fun _ -> ghost_pts_to r (half_perm p) x `star`
ghost_pts_to r (half_perm p) x) | let ghost_share r = share (reveal r) | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 36,
"end_line": 440,
"start_col": 0,
"start_line": 440
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
}
let pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
= let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p0) `star` pure (perm_ok p1)) m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0))
(Some (Ghost.reveal v1, p1))
m
let pts_to_not_null (#a:Type u#1)
(r:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl r p v) m)
(ensures r =!= null)
= Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m;
Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m
let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m))
(ensures (x == y))
=
Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r =
extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1)
(fun m -> pts_to_ref_injective r p0 p1 v0 v1 m);
rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) =
pts_to_witinv r p
let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a)
: SteelGhost unit uses
(pts_to_raw r p v)
(fun _ -> pts_to r p v)
(requires fun _ -> perm_ok p)
(ensures fun _ _ _ -> True)
= intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let pts_to_perm
#_ #_ #p #v r
= rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ());
elim_pure (perm_ok p);
intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let alloc #a x =
let v = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
let r = RP.alloc v in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m ->
emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m
);
extract_info_raw (pts_to r full_perm x) (~ (is_null r))
(fun m -> pts_to_not_null r full_perm x m);
return r
let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.atomic_read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a)
: SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v))
(fun v -> pts_to r p v `star` q v)
= let vs:erased a = witness_exists () in
rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ());
let v = read r in
rewrite_slprop (q vs) (q v) (fun _ -> ());
return v
let write (#a:Type) (#v:erased a) (r:ref a) (x:a)
: SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let atomic_write #opened #a #v r x
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.atomic_write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let free (#a:Type) (#v:erased a) (r:ref a)
: SteelT unit (pts_to r full_perm v) (fun _ -> emp)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
rewrite_slprop
(pts_to r full_perm v)
(RP.pts_to r v_old `star` pure (perm_ok full_perm))
(fun _ -> ());
elim_pure (perm_ok full_perm);
RP.free r v_old;
drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
let share_atomic_raw_gen #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) (p1 p2: perm)
: SteelGhost unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r p1 v0 `star` pts_to_raw r p2 v0)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= rewrite_slprop
(pts_to_raw r p v0)
(RP.pts_to r _)
(fun _ -> ());
RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, p1)) (Some (Ghost.reveal v0, p2));
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p1 v0)
(fun _ -> ());
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p2 v0)
(fun _ -> ())
let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a)
: SteelGhostT unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0)
= share_atomic_raw_gen r v0 (half_perm p) (half_perm p)
let share_gen (#a:Type) (#uses:_) (#p:perm) (#v:erased a) (r:ref a)
(p1 p2: perm)
: SteelGhost unit uses
(pts_to r p v)
(fun _ -> pts_to r p1 v `star` pts_to r p2 v)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop
(pts_to r p v)
(pts_to' r p v)
(fun _ -> ());
elim_pure (perm_ok p);
share_atomic_raw_gen r v p1 p2;
intro_pts_to p1 r;
intro_pts_to p2 r
let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a)
: SteelGhostT unit uses
(pts_to r p v)
(fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
= share_gen r (half_perm p) (half_perm p)
let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a)
: SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses
(pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1)
(fun _ -> pts_to_raw r (sum_perm p0 p1) v0)
=
rewrite_slprop
(pts_to_raw r p0 v0)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0))))
(fun _ -> ());
rewrite_slprop
(pts_to_raw r p1 v1)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1))))
(fun _ -> ());
let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r (sum_perm p0 p1) v0)
(fun _ -> ())
let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a)
= let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in
let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(pts_to r p0 v0)
(pts_to_raw r p0 v0 `star` pure (perm_ok p0))
(fun _ -> ());
rewrite_slprop
(pts_to r p1 v1)
(pts_to_raw r p1 v1 `star` pure (perm_ok p1))
(fun _ -> ());
elim_pure (perm_ok p0);
elim_pure (perm_ok p1);
let _ = gather_atomic_raw r v0 v1 in
intro_pts_to (sum_perm p0 p1) r
let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) =
if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `Mem.equiv` r)
(ensures Mem.((p `star` q) `equiv` (p `star` r)))
= let open Steel.Memory in
calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let cas_action_helper (p q r s:slprop) (m:mem)
: Lemma
(requires interp Mem.(p `star` q `star` r `star` s) m)
(ensures interp Mem.(p `star` q `star` s) m)
= let open Steel.Memory in
calc (equiv) {
r `star` s;
(equiv) { star_commutative r s }
s `star` r;
};
calc (equiv) {
p `star` q `star` r `star` s;
(equiv) { Mem.star_associative (p `star` q) r s }
(p `star` q) `star` (r `star` s);
(equiv) { equiv_ext_right (p `star` q)
(r `star` s)
(s `star` r) }
(p `star` q) `star` (s `star` r);
(equiv) { star_associative (p `star` q) s r }
(p `star` q `star` s) `star` r;
};
assert (interp ((p `star` q `star` s) `star` r) m);
affine_star (p `star` q `star` s) r m
let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)}))
(#uses:inames)
(r:ref t)
(v:Ghost.erased t)
(v_old:t)
(v_new:t)
(fr:slprop)
: MstTot
(b:bool{b <==> (Ghost.reveal v == v_old)})
uses
(pts_to_sl r full_perm v)
(cas_provides r v v_new)
fr
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 : full_mem = NMSTTotal.get () in
let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let fv' = Some (v_new, full_perm) in
assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0);
assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0);
cas_action_helper (Mem.pts_to r fv)
(Mem.pure (perm_ok full_perm))
fr
(locks_invariant uses m0)
m0;
assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0);
let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in
assert (compatible pcm_frac fv fv_actual);
let Some (v', p) = fv_actual in
assert (v == Ghost.hide v');
assert (p == full_perm);
let b =
if eq v' v_old
then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true)
else false
in
b
(*** GHOST REFERENCES ***)
let ghost_ref a = erased (ref a)
[@@__reduce__]
let ghost_pts_to_sl #a (r:ghost_ref a) (p:perm) (x:a) = pts_to_sl (reveal r) p x
let reveal_ghost_ref _ = ()
let reveal_ghost_pts_to_sl _ _ _ = ()
#push-options "--z3rlimit 20 --warn_error -271"
let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m))
(ensures (x == y))
[SMTPat ()]
=
Mem.pts_to_join (Ghost.reveal r) (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
assert (forall x y m. interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m ==> x == y);
assert (is_witness_invariant (ghost_pts_to_sl r p))
#pop-options
let ghost_alloc_aux (#a:Type) (#u:_) (x:a)
: SteelGhostT (ref a) u
emp
(fun r -> pts_to r full_perm (Ghost.hide x))
= let v : fractional a = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
rewrite_slprop emp (to_vprop Mem.emp) (fun _ -> reveal_emp());
let r : ref a = as_atomic_action_ghost (Steel.Memory.alloc_action u v) in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m);
r
let ghost_alloc x =
let r = ghost_alloc_aux (reveal x) in
hide r
let ghost_free #a #u #v r =
let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
rewrite_slprop
(pts_to r full_perm v)
(RP.pts_to r v_old `star` pure (perm_ok full_perm))
(fun _ -> ());
elim_pure (perm_ok full_perm);
as_atomic_action_ghost (free_action u r v_old);
drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.HigherReference.ghost_ref a -> Steel.Effect.Atomic.SteelGhostT Prims.unit | Steel.Effect.Atomic.SteelGhostT | [] | [] | [
"Steel.Memory.inames",
"Steel.FractionalPermission.perm",
"FStar.Ghost.erased",
"Steel.HigherReference.ghost_ref",
"Steel.HigherReference.share",
"FStar.Ghost.reveal",
"Steel.HigherReference.ref",
"Prims.unit"
] | [] | false | true | false | false | false | let ghost_share r =
| share (reveal r) | false |
Steel.HigherReference.fst | Steel.HigherReference.ghost_share_gen | val ghost_share_gen (#a:Type) (#u:_)
(#p:perm)
(#x:erased a)
(r:ghost_ref a)
(p1 p2: perm)
: SteelGhost unit u
(ghost_pts_to r p x)
(fun _ -> ghost_pts_to r p1 x `star`
ghost_pts_to r p2 x)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True) | val ghost_share_gen (#a:Type) (#u:_)
(#p:perm)
(#x:erased a)
(r:ghost_ref a)
(p1 p2: perm)
: SteelGhost unit u
(ghost_pts_to r p x)
(fun _ -> ghost_pts_to r p1 x `star`
ghost_pts_to r p2 x)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True) | let ghost_share_gen r p1 p2 = share_gen (reveal r) p1 p2 | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 56,
"end_line": 439,
"start_col": 0,
"start_line": 439
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
}
let pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
= let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p0) `star` pure (perm_ok p1)) m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0))
(Some (Ghost.reveal v1, p1))
m
let pts_to_not_null (#a:Type u#1)
(r:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl r p v) m)
(ensures r =!= null)
= Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m;
Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m
let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m))
(ensures (x == y))
=
Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r =
extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1)
(fun m -> pts_to_ref_injective r p0 p1 v0 v1 m);
rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) =
pts_to_witinv r p
let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a)
: SteelGhost unit uses
(pts_to_raw r p v)
(fun _ -> pts_to r p v)
(requires fun _ -> perm_ok p)
(ensures fun _ _ _ -> True)
= intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let pts_to_perm
#_ #_ #p #v r
= rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ());
elim_pure (perm_ok p);
intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let alloc #a x =
let v = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
let r = RP.alloc v in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m ->
emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m
);
extract_info_raw (pts_to r full_perm x) (~ (is_null r))
(fun m -> pts_to_not_null r full_perm x m);
return r
let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.atomic_read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a)
: SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v))
(fun v -> pts_to r p v `star` q v)
= let vs:erased a = witness_exists () in
rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ());
let v = read r in
rewrite_slprop (q vs) (q v) (fun _ -> ());
return v
let write (#a:Type) (#v:erased a) (r:ref a) (x:a)
: SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let atomic_write #opened #a #v r x
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.atomic_write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let free (#a:Type) (#v:erased a) (r:ref a)
: SteelT unit (pts_to r full_perm v) (fun _ -> emp)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
rewrite_slprop
(pts_to r full_perm v)
(RP.pts_to r v_old `star` pure (perm_ok full_perm))
(fun _ -> ());
elim_pure (perm_ok full_perm);
RP.free r v_old;
drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
let share_atomic_raw_gen #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) (p1 p2: perm)
: SteelGhost unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r p1 v0 `star` pts_to_raw r p2 v0)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= rewrite_slprop
(pts_to_raw r p v0)
(RP.pts_to r _)
(fun _ -> ());
RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, p1)) (Some (Ghost.reveal v0, p2));
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p1 v0)
(fun _ -> ());
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p2 v0)
(fun _ -> ())
let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a)
: SteelGhostT unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0)
= share_atomic_raw_gen r v0 (half_perm p) (half_perm p)
let share_gen (#a:Type) (#uses:_) (#p:perm) (#v:erased a) (r:ref a)
(p1 p2: perm)
: SteelGhost unit uses
(pts_to r p v)
(fun _ -> pts_to r p1 v `star` pts_to r p2 v)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop
(pts_to r p v)
(pts_to' r p v)
(fun _ -> ());
elim_pure (perm_ok p);
share_atomic_raw_gen r v p1 p2;
intro_pts_to p1 r;
intro_pts_to p2 r
let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a)
: SteelGhostT unit uses
(pts_to r p v)
(fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
= share_gen r (half_perm p) (half_perm p)
let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a)
: SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses
(pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1)
(fun _ -> pts_to_raw r (sum_perm p0 p1) v0)
=
rewrite_slprop
(pts_to_raw r p0 v0)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0))))
(fun _ -> ());
rewrite_slprop
(pts_to_raw r p1 v1)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1))))
(fun _ -> ());
let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r (sum_perm p0 p1) v0)
(fun _ -> ())
let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a)
= let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in
let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(pts_to r p0 v0)
(pts_to_raw r p0 v0 `star` pure (perm_ok p0))
(fun _ -> ());
rewrite_slprop
(pts_to r p1 v1)
(pts_to_raw r p1 v1 `star` pure (perm_ok p1))
(fun _ -> ());
elim_pure (perm_ok p0);
elim_pure (perm_ok p1);
let _ = gather_atomic_raw r v0 v1 in
intro_pts_to (sum_perm p0 p1) r
let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) =
if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `Mem.equiv` r)
(ensures Mem.((p `star` q) `equiv` (p `star` r)))
= let open Steel.Memory in
calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let cas_action_helper (p q r s:slprop) (m:mem)
: Lemma
(requires interp Mem.(p `star` q `star` r `star` s) m)
(ensures interp Mem.(p `star` q `star` s) m)
= let open Steel.Memory in
calc (equiv) {
r `star` s;
(equiv) { star_commutative r s }
s `star` r;
};
calc (equiv) {
p `star` q `star` r `star` s;
(equiv) { Mem.star_associative (p `star` q) r s }
(p `star` q) `star` (r `star` s);
(equiv) { equiv_ext_right (p `star` q)
(r `star` s)
(s `star` r) }
(p `star` q) `star` (s `star` r);
(equiv) { star_associative (p `star` q) s r }
(p `star` q `star` s) `star` r;
};
assert (interp ((p `star` q `star` s) `star` r) m);
affine_star (p `star` q `star` s) r m
let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)}))
(#uses:inames)
(r:ref t)
(v:Ghost.erased t)
(v_old:t)
(v_new:t)
(fr:slprop)
: MstTot
(b:bool{b <==> (Ghost.reveal v == v_old)})
uses
(pts_to_sl r full_perm v)
(cas_provides r v v_new)
fr
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 : full_mem = NMSTTotal.get () in
let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let fv' = Some (v_new, full_perm) in
assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0);
assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0);
cas_action_helper (Mem.pts_to r fv)
(Mem.pure (perm_ok full_perm))
fr
(locks_invariant uses m0)
m0;
assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0);
let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in
assert (compatible pcm_frac fv fv_actual);
let Some (v', p) = fv_actual in
assert (v == Ghost.hide v');
assert (p == full_perm);
let b =
if eq v' v_old
then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true)
else false
in
b
(*** GHOST REFERENCES ***)
let ghost_ref a = erased (ref a)
[@@__reduce__]
let ghost_pts_to_sl #a (r:ghost_ref a) (p:perm) (x:a) = pts_to_sl (reveal r) p x
let reveal_ghost_ref _ = ()
let reveal_ghost_pts_to_sl _ _ _ = ()
#push-options "--z3rlimit 20 --warn_error -271"
let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m))
(ensures (x == y))
[SMTPat ()]
=
Mem.pts_to_join (Ghost.reveal r) (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
assert (forall x y m. interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m ==> x == y);
assert (is_witness_invariant (ghost_pts_to_sl r p))
#pop-options
let ghost_alloc_aux (#a:Type) (#u:_) (x:a)
: SteelGhostT (ref a) u
emp
(fun r -> pts_to r full_perm (Ghost.hide x))
= let v : fractional a = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
rewrite_slprop emp (to_vprop Mem.emp) (fun _ -> reveal_emp());
let r : ref a = as_atomic_action_ghost (Steel.Memory.alloc_action u v) in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m);
r
let ghost_alloc x =
let r = ghost_alloc_aux (reveal x) in
hide r
let ghost_free #a #u #v r =
let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
rewrite_slprop
(pts_to r full_perm v)
(RP.pts_to r v_old `star` pure (perm_ok full_perm))
(fun _ -> ());
elim_pure (perm_ok full_perm);
as_atomic_action_ghost (free_action u r v_old);
drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac))) | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
r: Steel.HigherReference.ghost_ref a ->
p1: Steel.FractionalPermission.perm ->
p2: Steel.FractionalPermission.perm
-> Steel.Effect.Atomic.SteelGhost Prims.unit | Steel.Effect.Atomic.SteelGhost | [] | [] | [
"Steel.Memory.inames",
"Steel.FractionalPermission.perm",
"FStar.Ghost.erased",
"Steel.HigherReference.ghost_ref",
"Steel.HigherReference.share_gen",
"FStar.Ghost.reveal",
"Steel.HigherReference.ref",
"Prims.unit"
] | [] | false | true | false | false | false | let ghost_share_gen r p1 p2 =
| share_gen (reveal r) p1 p2 | false |
Steel.HigherReference.fst | Steel.HigherReference.ghost_gather | val ghost_gather (#a:Type) (#u:_)
(#p0 #p1:perm)
(#x0 #x1:erased a)
(r:ghost_ref a)
: SteelGhost unit u
(ghost_pts_to r p0 x0 `star`
ghost_pts_to r p1 x1)
(fun _ -> ghost_pts_to r (sum_perm p0 p1) x0)
(requires fun _ -> True)
(ensures fun _ _ _ -> x0 == x1) | val ghost_gather (#a:Type) (#u:_)
(#p0 #p1:perm)
(#x0 #x1:erased a)
(r:ghost_ref a)
: SteelGhost unit u
(ghost_pts_to r p0 x0 `star`
ghost_pts_to r p1 x1)
(fun _ -> ghost_pts_to r (sum_perm p0 p1) x0)
(requires fun _ -> True)
(ensures fun _ _ _ -> x0 == x1) | let ghost_gather r = gather (reveal r) | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 38,
"end_line": 441,
"start_col": 0,
"start_line": 441
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
}
let pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
= let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p0) `star` pure (perm_ok p1)) m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0))
(Some (Ghost.reveal v1, p1))
m
let pts_to_not_null (#a:Type u#1)
(r:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl r p v) m)
(ensures r =!= null)
= Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m;
Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m
let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m))
(ensures (x == y))
=
Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r =
extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1)
(fun m -> pts_to_ref_injective r p0 p1 v0 v1 m);
rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) =
pts_to_witinv r p
let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a)
: SteelGhost unit uses
(pts_to_raw r p v)
(fun _ -> pts_to r p v)
(requires fun _ -> perm_ok p)
(ensures fun _ _ _ -> True)
= intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let pts_to_perm
#_ #_ #p #v r
= rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ());
elim_pure (perm_ok p);
intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let alloc #a x =
let v = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
let r = RP.alloc v in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m ->
emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m
);
extract_info_raw (pts_to r full_perm x) (~ (is_null r))
(fun m -> pts_to_not_null r full_perm x m);
return r
let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.atomic_read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a)
: SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v))
(fun v -> pts_to r p v `star` q v)
= let vs:erased a = witness_exists () in
rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ());
let v = read r in
rewrite_slprop (q vs) (q v) (fun _ -> ());
return v
let write (#a:Type) (#v:erased a) (r:ref a) (x:a)
: SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let atomic_write #opened #a #v r x
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.atomic_write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let free (#a:Type) (#v:erased a) (r:ref a)
: SteelT unit (pts_to r full_perm v) (fun _ -> emp)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
rewrite_slprop
(pts_to r full_perm v)
(RP.pts_to r v_old `star` pure (perm_ok full_perm))
(fun _ -> ());
elim_pure (perm_ok full_perm);
RP.free r v_old;
drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
let share_atomic_raw_gen #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) (p1 p2: perm)
: SteelGhost unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r p1 v0 `star` pts_to_raw r p2 v0)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= rewrite_slprop
(pts_to_raw r p v0)
(RP.pts_to r _)
(fun _ -> ());
RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, p1)) (Some (Ghost.reveal v0, p2));
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p1 v0)
(fun _ -> ());
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p2 v0)
(fun _ -> ())
let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a)
: SteelGhostT unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0)
= share_atomic_raw_gen r v0 (half_perm p) (half_perm p)
let share_gen (#a:Type) (#uses:_) (#p:perm) (#v:erased a) (r:ref a)
(p1 p2: perm)
: SteelGhost unit uses
(pts_to r p v)
(fun _ -> pts_to r p1 v `star` pts_to r p2 v)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop
(pts_to r p v)
(pts_to' r p v)
(fun _ -> ());
elim_pure (perm_ok p);
share_atomic_raw_gen r v p1 p2;
intro_pts_to p1 r;
intro_pts_to p2 r
let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a)
: SteelGhostT unit uses
(pts_to r p v)
(fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
= share_gen r (half_perm p) (half_perm p)
let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a)
: SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses
(pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1)
(fun _ -> pts_to_raw r (sum_perm p0 p1) v0)
=
rewrite_slprop
(pts_to_raw r p0 v0)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0))))
(fun _ -> ());
rewrite_slprop
(pts_to_raw r p1 v1)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1))))
(fun _ -> ());
let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r (sum_perm p0 p1) v0)
(fun _ -> ())
let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a)
= let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in
let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(pts_to r p0 v0)
(pts_to_raw r p0 v0 `star` pure (perm_ok p0))
(fun _ -> ());
rewrite_slprop
(pts_to r p1 v1)
(pts_to_raw r p1 v1 `star` pure (perm_ok p1))
(fun _ -> ());
elim_pure (perm_ok p0);
elim_pure (perm_ok p1);
let _ = gather_atomic_raw r v0 v1 in
intro_pts_to (sum_perm p0 p1) r
let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) =
if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `Mem.equiv` r)
(ensures Mem.((p `star` q) `equiv` (p `star` r)))
= let open Steel.Memory in
calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let cas_action_helper (p q r s:slprop) (m:mem)
: Lemma
(requires interp Mem.(p `star` q `star` r `star` s) m)
(ensures interp Mem.(p `star` q `star` s) m)
= let open Steel.Memory in
calc (equiv) {
r `star` s;
(equiv) { star_commutative r s }
s `star` r;
};
calc (equiv) {
p `star` q `star` r `star` s;
(equiv) { Mem.star_associative (p `star` q) r s }
(p `star` q) `star` (r `star` s);
(equiv) { equiv_ext_right (p `star` q)
(r `star` s)
(s `star` r) }
(p `star` q) `star` (s `star` r);
(equiv) { star_associative (p `star` q) s r }
(p `star` q `star` s) `star` r;
};
assert (interp ((p `star` q `star` s) `star` r) m);
affine_star (p `star` q `star` s) r m
let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)}))
(#uses:inames)
(r:ref t)
(v:Ghost.erased t)
(v_old:t)
(v_new:t)
(fr:slprop)
: MstTot
(b:bool{b <==> (Ghost.reveal v == v_old)})
uses
(pts_to_sl r full_perm v)
(cas_provides r v v_new)
fr
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 : full_mem = NMSTTotal.get () in
let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let fv' = Some (v_new, full_perm) in
assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0);
assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0);
cas_action_helper (Mem.pts_to r fv)
(Mem.pure (perm_ok full_perm))
fr
(locks_invariant uses m0)
m0;
assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0);
let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in
assert (compatible pcm_frac fv fv_actual);
let Some (v', p) = fv_actual in
assert (v == Ghost.hide v');
assert (p == full_perm);
let b =
if eq v' v_old
then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true)
else false
in
b
(*** GHOST REFERENCES ***)
let ghost_ref a = erased (ref a)
[@@__reduce__]
let ghost_pts_to_sl #a (r:ghost_ref a) (p:perm) (x:a) = pts_to_sl (reveal r) p x
let reveal_ghost_ref _ = ()
let reveal_ghost_pts_to_sl _ _ _ = ()
#push-options "--z3rlimit 20 --warn_error -271"
let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m))
(ensures (x == y))
[SMTPat ()]
=
Mem.pts_to_join (Ghost.reveal r) (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
assert (forall x y m. interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m ==> x == y);
assert (is_witness_invariant (ghost_pts_to_sl r p))
#pop-options
let ghost_alloc_aux (#a:Type) (#u:_) (x:a)
: SteelGhostT (ref a) u
emp
(fun r -> pts_to r full_perm (Ghost.hide x))
= let v : fractional a = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
rewrite_slprop emp (to_vprop Mem.emp) (fun _ -> reveal_emp());
let r : ref a = as_atomic_action_ghost (Steel.Memory.alloc_action u v) in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m);
r
let ghost_alloc x =
let r = ghost_alloc_aux (reveal x) in
hide r
let ghost_free #a #u #v r =
let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
rewrite_slprop
(pts_to r full_perm v)
(RP.pts_to r v_old `star` pure (perm_ok full_perm))
(fun _ -> ());
elim_pure (perm_ok full_perm);
as_atomic_action_ghost (free_action u r v_old);
drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
let ghost_share_gen r p1 p2 = share_gen (reveal r) p1 p2 | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.HigherReference.ghost_ref a -> Steel.Effect.Atomic.SteelGhost Prims.unit | Steel.Effect.Atomic.SteelGhost | [] | [] | [
"Steel.Memory.inames",
"Steel.FractionalPermission.perm",
"FStar.Ghost.erased",
"Steel.HigherReference.ghost_ref",
"Steel.HigherReference.gather",
"FStar.Ghost.reveal",
"Steel.HigherReference.ref",
"Prims.unit"
] | [] | false | true | false | false | false | let ghost_gather r =
| gather (reveal r) | false |
Steel.HigherReference.fst | Steel.HigherReference.ghost_pts_to_injective_eq | val ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a)
: SteelGhost unit u
(ghost_pts_to r p v0 `star` ghost_pts_to r q v1)
(fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0)
(requires fun _ -> True)
(ensures fun _ _ _ -> v0 == v1) | val ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a)
: SteelGhost unit u
(ghost_pts_to r p v0 `star` ghost_pts_to r q v1)
(fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0)
(requires fun _ -> True)
(ensures fun _ _ _ -> v0 == v1) | let ghost_pts_to_injective_eq #_ #_ #p0 #p1 r v0 v1 =
higher_ref_pts_to_injective_eq #_ #_ #p0 #p1 #v0 #v1 (reveal r) | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 65,
"end_line": 444,
"start_col": 0,
"start_line": 443
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
}
let pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
= let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p0) `star` pure (perm_ok p1)) m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0))
(Some (Ghost.reveal v1, p1))
m
let pts_to_not_null (#a:Type u#1)
(r:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl r p v) m)
(ensures r =!= null)
= Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m;
Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m
let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m))
(ensures (x == y))
=
Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r =
extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1)
(fun m -> pts_to_ref_injective r p0 p1 v0 v1 m);
rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) =
pts_to_witinv r p
let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a)
: SteelGhost unit uses
(pts_to_raw r p v)
(fun _ -> pts_to r p v)
(requires fun _ -> perm_ok p)
(ensures fun _ _ _ -> True)
= intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let pts_to_perm
#_ #_ #p #v r
= rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ());
elim_pure (perm_ok p);
intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let alloc #a x =
let v = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
let r = RP.alloc v in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m ->
emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m
);
extract_info_raw (pts_to r full_perm x) (~ (is_null r))
(fun m -> pts_to_not_null r full_perm x m);
return r
let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.atomic_read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a)
: SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v))
(fun v -> pts_to r p v `star` q v)
= let vs:erased a = witness_exists () in
rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ());
let v = read r in
rewrite_slprop (q vs) (q v) (fun _ -> ());
return v
let write (#a:Type) (#v:erased a) (r:ref a) (x:a)
: SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let atomic_write #opened #a #v r x
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.atomic_write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let free (#a:Type) (#v:erased a) (r:ref a)
: SteelT unit (pts_to r full_perm v) (fun _ -> emp)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
rewrite_slprop
(pts_to r full_perm v)
(RP.pts_to r v_old `star` pure (perm_ok full_perm))
(fun _ -> ());
elim_pure (perm_ok full_perm);
RP.free r v_old;
drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
let share_atomic_raw_gen #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) (p1 p2: perm)
: SteelGhost unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r p1 v0 `star` pts_to_raw r p2 v0)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= rewrite_slprop
(pts_to_raw r p v0)
(RP.pts_to r _)
(fun _ -> ());
RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, p1)) (Some (Ghost.reveal v0, p2));
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p1 v0)
(fun _ -> ());
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p2 v0)
(fun _ -> ())
let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a)
: SteelGhostT unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0)
= share_atomic_raw_gen r v0 (half_perm p) (half_perm p)
let share_gen (#a:Type) (#uses:_) (#p:perm) (#v:erased a) (r:ref a)
(p1 p2: perm)
: SteelGhost unit uses
(pts_to r p v)
(fun _ -> pts_to r p1 v `star` pts_to r p2 v)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop
(pts_to r p v)
(pts_to' r p v)
(fun _ -> ());
elim_pure (perm_ok p);
share_atomic_raw_gen r v p1 p2;
intro_pts_to p1 r;
intro_pts_to p2 r
let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a)
: SteelGhostT unit uses
(pts_to r p v)
(fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
= share_gen r (half_perm p) (half_perm p)
let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a)
: SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses
(pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1)
(fun _ -> pts_to_raw r (sum_perm p0 p1) v0)
=
rewrite_slprop
(pts_to_raw r p0 v0)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0))))
(fun _ -> ());
rewrite_slprop
(pts_to_raw r p1 v1)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1))))
(fun _ -> ());
let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r (sum_perm p0 p1) v0)
(fun _ -> ())
let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a)
= let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in
let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(pts_to r p0 v0)
(pts_to_raw r p0 v0 `star` pure (perm_ok p0))
(fun _ -> ());
rewrite_slprop
(pts_to r p1 v1)
(pts_to_raw r p1 v1 `star` pure (perm_ok p1))
(fun _ -> ());
elim_pure (perm_ok p0);
elim_pure (perm_ok p1);
let _ = gather_atomic_raw r v0 v1 in
intro_pts_to (sum_perm p0 p1) r
let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) =
if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `Mem.equiv` r)
(ensures Mem.((p `star` q) `equiv` (p `star` r)))
= let open Steel.Memory in
calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let cas_action_helper (p q r s:slprop) (m:mem)
: Lemma
(requires interp Mem.(p `star` q `star` r `star` s) m)
(ensures interp Mem.(p `star` q `star` s) m)
= let open Steel.Memory in
calc (equiv) {
r `star` s;
(equiv) { star_commutative r s }
s `star` r;
};
calc (equiv) {
p `star` q `star` r `star` s;
(equiv) { Mem.star_associative (p `star` q) r s }
(p `star` q) `star` (r `star` s);
(equiv) { equiv_ext_right (p `star` q)
(r `star` s)
(s `star` r) }
(p `star` q) `star` (s `star` r);
(equiv) { star_associative (p `star` q) s r }
(p `star` q `star` s) `star` r;
};
assert (interp ((p `star` q `star` s) `star` r) m);
affine_star (p `star` q `star` s) r m
let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)}))
(#uses:inames)
(r:ref t)
(v:Ghost.erased t)
(v_old:t)
(v_new:t)
(fr:slprop)
: MstTot
(b:bool{b <==> (Ghost.reveal v == v_old)})
uses
(pts_to_sl r full_perm v)
(cas_provides r v v_new)
fr
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 : full_mem = NMSTTotal.get () in
let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let fv' = Some (v_new, full_perm) in
assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0);
assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0);
cas_action_helper (Mem.pts_to r fv)
(Mem.pure (perm_ok full_perm))
fr
(locks_invariant uses m0)
m0;
assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0);
let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in
assert (compatible pcm_frac fv fv_actual);
let Some (v', p) = fv_actual in
assert (v == Ghost.hide v');
assert (p == full_perm);
let b =
if eq v' v_old
then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true)
else false
in
b
(*** GHOST REFERENCES ***)
let ghost_ref a = erased (ref a)
[@@__reduce__]
let ghost_pts_to_sl #a (r:ghost_ref a) (p:perm) (x:a) = pts_to_sl (reveal r) p x
let reveal_ghost_ref _ = ()
let reveal_ghost_pts_to_sl _ _ _ = ()
#push-options "--z3rlimit 20 --warn_error -271"
let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m))
(ensures (x == y))
[SMTPat ()]
=
Mem.pts_to_join (Ghost.reveal r) (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
assert (forall x y m. interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m ==> x == y);
assert (is_witness_invariant (ghost_pts_to_sl r p))
#pop-options
let ghost_alloc_aux (#a:Type) (#u:_) (x:a)
: SteelGhostT (ref a) u
emp
(fun r -> pts_to r full_perm (Ghost.hide x))
= let v : fractional a = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
rewrite_slprop emp (to_vprop Mem.emp) (fun _ -> reveal_emp());
let r : ref a = as_atomic_action_ghost (Steel.Memory.alloc_action u v) in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m);
r
let ghost_alloc x =
let r = ghost_alloc_aux (reveal x) in
hide r
let ghost_free #a #u #v r =
let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
rewrite_slprop
(pts_to r full_perm v)
(RP.pts_to r v_old `star` pure (perm_ok full_perm))
(fun _ -> ());
elim_pure (perm_ok full_perm);
as_atomic_action_ghost (free_action u r v_old);
drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
let ghost_share_gen r p1 p2 = share_gen (reveal r) p1 p2
let ghost_share r = share (reveal r)
let ghost_gather r = gather (reveal r) | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.HigherReference.ghost_ref a -> v0: FStar.Ghost.erased a -> v1: FStar.Ghost.erased a
-> Steel.Effect.Atomic.SteelGhost Prims.unit | Steel.Effect.Atomic.SteelGhost | [] | [] | [
"Steel.Memory.inames",
"Steel.FractionalPermission.perm",
"Steel.HigherReference.ghost_ref",
"FStar.Ghost.erased",
"Steel.HigherReference.higher_ref_pts_to_injective_eq",
"FStar.Ghost.reveal",
"Steel.HigherReference.ref",
"Prims.unit"
] | [] | false | true | false | false | false | let ghost_pts_to_injective_eq #_ #_ #p0 #p1 r v0 v1 =
| higher_ref_pts_to_injective_eq #_ #_ #p0 #p1 #v0 #v1 (reveal r) | false |
SteelFramingTestSuite.fst | SteelFramingTestSuite.test_if10 | val test_if10 (b: bool) (r1 r2 r3: ref)
: SteelT unit
(((ptr r1) `star` (ptr r2)) `star` (ptr r3))
(fun _ -> ((ptr r1) `star` (ptr r2)) `star` (ptr r3)) | val test_if10 (b: bool) (r1 r2 r3: ref)
: SteelT unit
(((ptr r1) `star` (ptr r2)) `star` (ptr r3))
(fun _ -> ((ptr r1) `star` (ptr r2)) `star` (ptr r3)) | let test_if10 (b:bool) (r1 r2 r3: ref) : SteelT unit
(ptr r1 `star` ptr r2 `star` ptr r3)
(fun _ -> ptr r1 `star` ptr r2 `star` ptr r3)
= if b then (write r1 0; write r2 0) else (write r2 0; write r1 0);
write r2 0 | {
"file_name": "share/steel/tests/SteelFramingTestSuite.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 14,
"end_line": 161,
"start_col": 0,
"start_line": 157
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module SteelFramingTestSuite
open Steel.Memory
open Steel.Effect
/// A collection of small unit tests for the framing tactic
assume val p : vprop
assume val f (x:int) : SteelT unit p (fun _ -> p)
let test () : SteelT unit (p `star` p `star` p) (fun _ -> p `star` p `star` p)
= f 0; ()
assume val ref : Type0
assume val ptr (_:ref) : vprop
assume val alloc (x:int) : SteelT ref emp (fun y -> ptr y)
assume val free (r:ref) : SteelT unit (ptr r) (fun _ -> emp)
assume val read (r:ref) : SteelT int (ptr r) (fun _ -> ptr r)
assume val write (r:ref) (v: int) : SteelT unit (ptr r) (fun _ -> ptr r)
let unused x = x // work around another gensym heisenbug
let test0 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b1 `star` ptr b2 `star` ptr b3)
=
let x = read b1 in
x
let test1 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b1 `star` ptr b2 `star` ptr b3)
=
let x = (let y = read b1 in y) in
x
let test2 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b3 `star` ptr b2 `star` ptr b1)
=
let x = read b1 in
x
let test3 (b1 b2 b3: ref) : SteelT int
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
=
let x = read b3 in
x
let test4 (b1 b2 b3: ref) : SteelT unit
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
=
let x = read b3 in
write b2 x
let test5 (b1 b2 b3: ref) : SteelT unit
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
=
let x = read b3 in
write b2 (x + 1)
let test6 (b1 b2 b3: ref) : SteelT unit
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
=
let x = read b3 in
let b4 = alloc x in
write b2 (x + 1);
free b4
// With the formalism relying on can_be_split_post, this example fails if we normalize return_pre eqs goals before unification
// When solving this equality, we have the goal
// (*?u19*) _ _ == return_pre ((fun x -> (fun x -> (*?u758*) _ x x) x) r)
// with x and r in the context of ?u19
// Not normalizing allows us to solve it as a function applied to x and r
// Normalizing would lead to solve it to an slprop with x and r in the context,
// but which would later fail when trying to prove the equivalence with (fun r -> ptr r)
// in the postcondition
let test7 (_:unit) : SteelT ref emp ptr
= let r = alloc 0 in
let x = read r in
write r 0;
r
let test8 (b1 b2 b3:ref) : SteelT unit
(ptr b1 `star` ptr b2 `star` ptr b3)
(fun _ -> ptr b2 `star` ptr b1 `star` ptr b3)
= write b2 0
open Steel.Effect.Atomic
let test_if1 (b:bool) : SteelT unit emp (fun _ -> emp)
= if b then noop () else noop ()
let test_if2 (b:bool) (r: ref) : SteelT unit (ptr r) (fun _ -> ptr r)
= if b then write r 0 else write r 1
let test_if3 (b:bool) (r:ref) : SteelT unit (ptr r) (fun _ -> ptr r)
= if b then noop () else noop ()
let test_if4 (b:bool) : SteelT unit emp (fun _ -> emp)
= if b then (let r = alloc 0 in free r) else (noop ())
let test_if5 (b:bool) : SteelT ref emp (fun r -> ptr r)
= if b then alloc 0 else alloc 1
let test_if6 (b:bool) : SteelT ref emp (fun r -> ptr r)
= let r = if b then alloc 0 else alloc 1 in
let x = read r in
write r 0;
r
(* First test with different (but equivalent) slprops in both branches *)
let test_if7 (b:bool) (r1 r2: ref) : SteelT unit
(ptr r1 `star` ptr r2)
(fun _ -> ptr r1 `star` ptr r2)
= if b then (write r1 0; write r2 0) else (write r2 0; write r1 0);
write r2 0
(* Test with different slprops in both branches. The second branch captures the outer frame in its context *)
let test_if8 (b:bool) (r1 r2: ref) : SteelT unit
(ptr r1 `star` ptr r2)
(fun _ -> ptr r1 `star` ptr r2)
= if b then (write r1 0; write r2 0) else (write r2 0);
write r2 0
let test_if9 (b:bool) (r1 r2: ref) : SteelT unit
(ptr r1 `star` ptr r2)
(fun _ -> ptr r1 `star` ptr r2)
= write r1 0;
if b then (write r1 0) else (write r2 0);
write r2 0;
if b then (write r1 0) else (write r2 0);
write r1 0 | {
"checked_file": "/",
"dependencies": [
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "SteelFramingTestSuite.fst"
} | [
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: Prims.bool ->
r1: SteelFramingTestSuite.ref ->
r2: SteelFramingTestSuite.ref ->
r3: SteelFramingTestSuite.ref
-> Steel.Effect.SteelT Prims.unit | Steel.Effect.SteelT | [] | [] | [
"Prims.bool",
"SteelFramingTestSuite.ref",
"SteelFramingTestSuite.write",
"Prims.unit",
"Steel.Effect.Common.star",
"SteelFramingTestSuite.ptr",
"Steel.Effect.Common.vprop"
] | [] | false | true | false | false | false | let test_if10 (b: bool) (r1 r2 r3: ref)
: SteelT unit
(((ptr r1) `star` (ptr r2)) `star` (ptr r3))
(fun _ -> ((ptr r1) `star` (ptr r2)) `star` (ptr r3)) =
| if b
then
(write r1 0;
write r2 0)
else
(write r2 0;
write r1 0);
write r2 0 | false |
Steel.HigherReference.fst | Steel.HigherReference.ghost_alloc | val ghost_alloc (#a:Type) (#u:_) (x:erased a)
: SteelGhostT (ghost_ref a) u
emp
(fun r -> ghost_pts_to r full_perm x) | val ghost_alloc (#a:Type) (#u:_) (x:erased a)
: SteelGhostT (ghost_ref a) u
emp
(fun r -> ghost_pts_to r full_perm x) | let ghost_alloc x =
let r = ghost_alloc_aux (reveal x) in
hide r | {
"file_name": "lib/steel/Steel.HigherReference.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 8,
"end_line": 427,
"start_col": 0,
"start_line": 425
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.HigherReference
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open FStar.PCM
open Steel.PCMFrac
open FStar.Real
module RP = Steel.PCMReference
#set-options "--ide_id_info_off"
module Mem = Steel.Memory
let ref a = Mem.ref (fractional a) pcm_frac
let null #a = Mem.null #(fractional a) #pcm_frac
let is_null #a r = Mem.is_null #(fractional a) #pcm_frac r
let perm_ok p : prop = (p.v <=. one == true) /\ True
let pts_to_raw_sl (#a:Type) (r:ref a) (p:perm) (v:erased a) : slprop =
Mem.pts_to r (Some (Ghost.reveal v, p))
let pts_to_raw (#a:Type) (r:ref a) (p:perm) (v:erased a) : vprop =
to_vprop (Mem.pts_to r (Some (Ghost.reveal v, p)))
[@@__reduce__]
let pts_to' (#a:Type u#1) (r:ref a) (p:perm) (v:erased a) : vprop = pts_to_raw r p v `star` pure (perm_ok p)
let pts_to_sl #a r p v = hp_of (pts_to' r p v)
let abcd_acbd (a b c d:slprop)
: Lemma (Mem.(((a `star` b) `star` (c `star` d)) `equiv`
((a `star` c) `star` (b `star` d))))
= let open Steel.Memory in
calc (equiv) {
((a `star` b) `star` (c `star` d));
(equiv) { star_associative a b (c `star` d) }
((a `star` (b `star` (c `star` d))));
(equiv) { star_associative b c d;
star_congruence a (b `star` (c `star` d))
a ((b `star` c) `star` d) }
(a `star` ((b `star` c) `star` d));
(equiv) { star_commutative b c;
star_congruence (b `star` c) d (c `star` b) d;
star_congruence a ((b `star` c) `star` d)
a ((c `star` b) `star` d) }
(a `star` ((c `star` b) `star` d));
(equiv) { star_associative c b d;
star_congruence a ((c `star` b) `star` d)
a (c `star` (b `star` d)) }
(a `star` (c `star` (b `star` d)));
(equiv) { star_associative a c (b `star` d) }
((a `star` c) `star` (b `star` d));
}
let pts_to_ref_injective
(#a: Type u#1)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
= let open Steel.Memory in
abcd_acbd (hp_of (pts_to_raw r p0 v0))
(pure (perm_ok p0))
(hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p1));
Mem.affine_star (hp_of (pts_to_raw r p0 v0) `star` hp_of (pts_to_raw r p1 v1))
(pure (perm_ok p0) `star` pure (perm_ok p1)) m;
Mem.pts_to_compatible r (Some (Ghost.reveal v0, p0))
(Some (Ghost.reveal v1, p1))
m
let pts_to_not_null (#a:Type u#1)
(r:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl r p v) m)
(ensures r =!= null)
= Mem.affine_star (hp_of (pts_to_raw r p v)) (Mem.pure (perm_ok p)) m;
Mem.pts_to_not_null r (Some (Ghost.reveal v, p)) m
let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m))
(ensures (x == y))
=
Mem.pts_to_join r (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
let higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r =
extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1)
(fun m -> pts_to_ref_injective r p0 p1 v0 v1 m);
rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
let pts_to_framon (#a:Type) (r:ref a) (p:perm) : Lemma (is_frame_monotonic (pts_to_sl r p)) =
pts_to_witinv r p
let intro_pts_to (p:perm) #a #uses (#v:erased a) (r:ref a)
: SteelGhost unit uses
(pts_to_raw r p v)
(fun _ -> pts_to r p v)
(requires fun _ -> perm_ok p)
(ensures fun _ _ _ -> True)
= intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let pts_to_perm
#_ #_ #p #v r
= rewrite_slprop (pts_to r p v) (pts_to' r p v) (fun _ -> ());
elim_pure (perm_ok p);
intro_pure (perm_ok p);
rewrite_slprop (pts_to' r p v) (pts_to r p v) (fun _ -> ())
let alloc #a x =
let v = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
let r = RP.alloc v in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m ->
emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m
);
extract_info_raw (pts_to r full_perm x) (~ (is_null r))
(fun m -> pts_to_not_null r full_perm x m);
return r
let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let atomic_read (#opened:_) (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
= let v1 : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop (pts_to r p v) (RP.pts_to r v1 `star` pure (perm_ok p)) (fun _ -> ());
elim_pure (perm_ok p);
let v2 = RP.atomic_read r v1 in
rewrite_slprop (RP.pts_to r v1) (pts_to r p v)
(fun m ->
emp_unit (hp_of (pts_to_raw r p v));
pure_star_interp (hp_of (pts_to_raw r p v)) (perm_ok p) m);
assert (compatible pcm_frac v1 v2);
let Some (x, _) = v2 in
rewrite_slprop (pts_to r p v) (pts_to r p x) (fun _ -> ());
return x
let read_refine (#a:Type) (#p:perm) (q:a -> vprop) (r:ref a)
: SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v))
(fun v -> pts_to r p v `star` q v)
= let vs:erased a = witness_exists () in
rewrite_slprop (pts_to r p (Ghost.hide (Ghost.reveal vs))) (pts_to r p vs) (fun _ -> ());
let v = read r in
rewrite_slprop (q vs) (q v) (fun _ -> ());
return v
let write (#a:Type) (#v:erased a) (r:ref a) (x:a)
: SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let atomic_write #opened #a #v r x
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let v_new : fractional a = Some (x, full_perm) in
rewrite_slprop (pts_to r full_perm v) (RP.pts_to r v_old `star` pure (perm_ok full_perm)) (fun _ -> ());
elim_pure (perm_ok full_perm);
RP.atomic_write r v_old v_new;
rewrite_slprop (RP.pts_to r v_new) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m)
let free (#a:Type) (#v:erased a) (r:ref a)
: SteelT unit (pts_to r full_perm v) (fun _ -> emp)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
rewrite_slprop
(pts_to r full_perm v)
(RP.pts_to r v_old `star` pure (perm_ok full_perm))
(fun _ -> ());
elim_pure (perm_ok full_perm);
RP.free r v_old;
drop (RP.pts_to r (Mkpcm'?.one (Mkpcm?.p pcm_frac)))
let share_atomic_raw_gen #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a) (p1 p2: perm)
: SteelGhost unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r p1 v0 `star` pts_to_raw r p2 v0)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= rewrite_slprop
(pts_to_raw r p v0)
(RP.pts_to r _)
(fun _ -> ());
RP.split r (Some (Ghost.reveal v0, p)) (Some (Ghost.reveal v0, p1)) (Some (Ghost.reveal v0, p2));
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p1 v0)
(fun _ -> ());
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r p2 v0)
(fun _ -> ())
let share_atomic_raw #a #uses (#p:perm) (r:ref a{perm_ok p}) (v0:erased a)
: SteelGhostT unit uses
(pts_to_raw r p v0)
(fun _ -> pts_to_raw r (half_perm p) v0 `star` pts_to_raw r (half_perm p) v0)
= share_atomic_raw_gen r v0 (half_perm p) (half_perm p)
let share_gen (#a:Type) (#uses:_) (#p:perm) (#v:erased a) (r:ref a)
(p1 p2: perm)
: SteelGhost unit uses
(pts_to r p v)
(fun _ -> pts_to r p1 v `star` pts_to r p2 v)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
= let v_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v, p)) in
rewrite_slprop
(pts_to r p v)
(pts_to' r p v)
(fun _ -> ());
elim_pure (perm_ok p);
share_atomic_raw_gen r v p1 p2;
intro_pts_to p1 r;
intro_pts_to p2 r
let share (#a:Type) #uses (#p:perm) (#v:erased a) (r:ref a)
: SteelGhostT unit uses
(pts_to r p v)
(fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
= share_gen r (half_perm p) (half_perm p)
let gather_atomic_raw (#a:Type) (#uses:_) (#p0 #p1:perm) (r:ref a) (v0:erased a) (v1:erased a)
: SteelGhostT (_:unit{v0==v1 /\ perm_ok (sum_perm p0 p1)}) uses
(pts_to_raw r p0 v0 `star` pts_to_raw r p1 v1)
(fun _ -> pts_to_raw r (sum_perm p0 p1) v0)
=
rewrite_slprop
(pts_to_raw r p0 v0)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v0, p0))))
(fun _ -> ());
rewrite_slprop
(pts_to_raw r p1 v1)
(RP.pts_to r (Ghost.reveal (Some (Ghost.reveal v1, p1))))
(fun _ -> ());
let _ = RP.gather r (Some (Ghost.reveal v0, p0)) (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(RP.pts_to r _)
(pts_to_raw r (sum_perm p0 p1) v0)
(fun _ -> ())
let gather (#a:Type) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a)
= let v0_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v0, p0)) in
let v1_old : erased (fractional a) = Ghost.hide (Some (Ghost.reveal v1, p1)) in
rewrite_slprop
(pts_to r p0 v0)
(pts_to_raw r p0 v0 `star` pure (perm_ok p0))
(fun _ -> ());
rewrite_slprop
(pts_to r p1 v1)
(pts_to_raw r p1 v1 `star` pure (perm_ok p1))
(fun _ -> ());
elim_pure (perm_ok p0);
elim_pure (perm_ok p1);
let _ = gather_atomic_raw r v0 v1 in
intro_pts_to (sum_perm p0 p1) r
let cas_provides #t (r:ref t) (v:Ghost.erased t) (v_new:t) (b:bool) =
if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v
let equiv_ext_right (p q r:slprop)
: Lemma
(requires q `Mem.equiv` r)
(ensures Mem.((p `star` q) `equiv` (p `star` r)))
= let open Steel.Memory in
calc (equiv) {
p `star` q;
(equiv) { star_commutative p q }
q `star` p;
(equiv) { equiv_extensional_on_star q r p }
r `star` p;
(equiv) { star_commutative p r }
p `star` r;
}
let cas_action_helper (p q r s:slprop) (m:mem)
: Lemma
(requires interp Mem.(p `star` q `star` r `star` s) m)
(ensures interp Mem.(p `star` q `star` s) m)
= let open Steel.Memory in
calc (equiv) {
r `star` s;
(equiv) { star_commutative r s }
s `star` r;
};
calc (equiv) {
p `star` q `star` r `star` s;
(equiv) { Mem.star_associative (p `star` q) r s }
(p `star` q) `star` (r `star` s);
(equiv) { equiv_ext_right (p `star` q)
(r `star` s)
(s `star` r) }
(p `star` q) `star` (s `star` r);
(equiv) { star_associative (p `star` q) s r }
(p `star` q `star` s) `star` r;
};
assert (interp ((p `star` q `star` s) `star` r) m);
affine_star (p `star` q `star` s) r m
let cas_action (#t:Type) (eq: (x:t -> y:t -> b:bool{b <==> (x == y)}))
(#uses:inames)
(r:ref t)
(v:Ghost.erased t)
(v_old:t)
(v_new:t)
(fr:slprop)
: MstTot
(b:bool{b <==> (Ghost.reveal v == v_old)})
uses
(pts_to_sl r full_perm v)
(cas_provides r v v_new)
fr
(fun _ -> True)
(fun _ _ _ -> True)
= let m0 : full_mem = NMSTTotal.get () in
let fv = Ghost.hide (Some (Ghost.reveal v, full_perm)) in
let fv' = Some (v_new, full_perm) in
assert (interp Mem.(pts_to_sl r full_perm v `star` fr `star` locks_invariant uses m0) m0);
assert (interp Mem.(pts_to r fv `star` pure (perm_ok full_perm) `star` fr `star` locks_invariant uses m0) m0);
cas_action_helper (Mem.pts_to r fv)
(Mem.pure (perm_ok full_perm))
fr
(locks_invariant uses m0)
m0;
assert (interp Mem.((pts_to r fv `star` pure (perm_ok full_perm)) `star` locks_invariant uses m0) m0);
let fv_actual = Mem.frame (Mem.pure (perm_ok full_perm)) (sel_action uses r fv) fr in
assert (compatible pcm_frac fv fv_actual);
let Some (v', p) = fv_actual in
assert (v == Ghost.hide v');
assert (p == full_perm);
let b =
if eq v' v_old
then (Mem.frame (Mem.pure (perm_ok full_perm)) (upd_action uses r fv fv') fr; true)
else false
in
b
(*** GHOST REFERENCES ***)
let ghost_ref a = erased (ref a)
[@@__reduce__]
let ghost_pts_to_sl #a (r:ghost_ref a) (p:perm) (x:a) = pts_to_sl (reveal r) p x
let reveal_ghost_ref _ = ()
let reveal_ghost_pts_to_sl _ _ _ = ()
#push-options "--z3rlimit 20 --warn_error -271"
let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) =
let aux (x y : erased a) (m:mem)
: Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m))
(ensures (x == y))
[SMTPat ()]
=
Mem.pts_to_join (Ghost.reveal r) (Some (Ghost.reveal x, p)) (Some (Ghost.reveal y, p)) m
in
assert (forall x y m. interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m ==> x == y);
assert (is_witness_invariant (ghost_pts_to_sl r p))
#pop-options
let ghost_alloc_aux (#a:Type) (#u:_) (x:a)
: SteelGhostT (ref a) u
emp
(fun r -> pts_to r full_perm (Ghost.hide x))
= let v : fractional a = Some (x, full_perm) in
assert (FStar.PCM.composable pcm_frac v None);
assert (compatible pcm_frac v v);
rewrite_slprop emp (to_vprop Mem.emp) (fun _ -> reveal_emp());
let r : ref a = as_atomic_action_ghost (Steel.Memory.alloc_action u v) in
rewrite_slprop (RP.pts_to r v) (pts_to r full_perm x)
(fun m -> emp_unit (hp_of (pts_to_raw r full_perm x));
pure_star_interp (hp_of (pts_to_raw r full_perm x)) (perm_ok full_perm) m);
r | {
"checked_file": "/",
"dependencies": [
"Steel.PCMReference.fsti.checked",
"Steel.PCMFrac.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Real.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.PCM.fst.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.HigherReference.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.PCMReference",
"short_module": "RP"
},
{
"abbrev": false,
"full_module": "FStar.Real",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.PCMFrac",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.PCM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Ghost.erased a -> Steel.Effect.Atomic.SteelGhostT (Steel.HigherReference.ghost_ref a) | Steel.Effect.Atomic.SteelGhostT | [] | [] | [
"Steel.Memory.inames",
"FStar.Ghost.erased",
"FStar.Ghost.hide",
"Steel.HigherReference.ref",
"Steel.HigherReference.ghost_ref",
"Steel.HigherReference.ghost_alloc_aux",
"FStar.Ghost.reveal"
] | [] | false | true | false | false | false | let ghost_alloc x =
| let r = ghost_alloc_aux (reveal x) in
hide r | false |
DoublyLinkedListIface.fst | DoublyLinkedListIface.node | val node (a:Type0) : Type0 | val node (a:Type0) : Type0 | let node a = B.pointer (DLL.node a) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedListIface.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 48,
"start_col": 0,
"start_line": 48
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedListIface
/// This module consists of proofs / code for the iface that is
/// written in the actual fsti. Most of this code will never be user
/// facing, and will soon be merged into the DoublyLinkedList module,
/// as I work on moving stuff into DoublyLinkedList.fsti from the iface
/// fsti.
module DLL = DoublyLinkedList
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module G = FStar.Ghost
module L = FStar.List.Pure
module B = LowStar.Buffer
open LowStar.BufferOps
/// Convenience operators
unfold let (@) (a:B.pointer 't) (h0:HS.mem) = B.get h0 a 0
unfold let (^@) (a:B.pointer_or_null 't{a =!= B.null}) (h0:HS.mem) = B.get h0 a 0
/// Abstract types defined by this library
///
/// Note: Somehow confusingly, a node in the iface is a pointer to a
/// real node, and a dll in the iface is a pointer to a real
/// dll. Fortunately though, most users of the library will never even
/// be looking inside the implementation, and thus hopefully it won't
/// be confusing. | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"DoublyLinkedList.fst.checked"
],
"interface_file": true,
"source_file": "DoublyLinkedListIface.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Pure",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "DoublyLinkedList",
"short_module": "DLL"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type0 -> Type0 | Prims.Tot | [
"total"
] | [] | [
"LowStar.Buffer.pointer",
"DoublyLinkedList.node"
] | [] | false | false | false | true | true | let node a =
| B.pointer (DLL.node a) | false |
DoublyLinkedListIface.fst | DoublyLinkedListIface.dll | val dll (a:Type0) : Type0 | val dll (a:Type0) : Type0 | let dll a = B.pointer (DLL.dll a) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedListIface.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 49,
"start_col": 0,
"start_line": 49
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedListIface
/// This module consists of proofs / code for the iface that is
/// written in the actual fsti. Most of this code will never be user
/// facing, and will soon be merged into the DoublyLinkedList module,
/// as I work on moving stuff into DoublyLinkedList.fsti from the iface
/// fsti.
module DLL = DoublyLinkedList
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module G = FStar.Ghost
module L = FStar.List.Pure
module B = LowStar.Buffer
open LowStar.BufferOps
/// Convenience operators
unfold let (@) (a:B.pointer 't) (h0:HS.mem) = B.get h0 a 0
unfold let (^@) (a:B.pointer_or_null 't{a =!= B.null}) (h0:HS.mem) = B.get h0 a 0
/// Abstract types defined by this library
///
/// Note: Somehow confusingly, a node in the iface is a pointer to a
/// real node, and a dll in the iface is a pointer to a real
/// dll. Fortunately though, most users of the library will never even
/// be looking inside the implementation, and thus hopefully it won't
/// be confusing. | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"DoublyLinkedList.fst.checked"
],
"interface_file": true,
"source_file": "DoublyLinkedListIface.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Pure",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "DoublyLinkedList",
"short_module": "DLL"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type0 -> Type0 | Prims.Tot | [
"total"
] | [] | [
"LowStar.Buffer.pointer",
"DoublyLinkedList.dll"
] | [] | false | false | false | true | true | let dll a =
| B.pointer (DLL.dll a) | false |
DoublyLinkedListIface.fst | DoublyLinkedListIface.dll_valid | val dll_valid (h:HS.mem) (d:dll 'a) : prop | val dll_valid (h:HS.mem) (d:dll 'a) : prop | let dll_valid h d =
B.live h d /\
DLL.dll_valid h (d@h) /\
B.loc_buffer d `B.loc_disjoint` DLL.dll_fp0 (d@h) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedListIface.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 58,
"start_col": 0,
"start_line": 55
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedListIface
/// This module consists of proofs / code for the iface that is
/// written in the actual fsti. Most of this code will never be user
/// facing, and will soon be merged into the DoublyLinkedList module,
/// as I work on moving stuff into DoublyLinkedList.fsti from the iface
/// fsti.
module DLL = DoublyLinkedList
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module G = FStar.Ghost
module L = FStar.List.Pure
module B = LowStar.Buffer
open LowStar.BufferOps
/// Convenience operators
unfold let (@) (a:B.pointer 't) (h0:HS.mem) = B.get h0 a 0
unfold let (^@) (a:B.pointer_or_null 't{a =!= B.null}) (h0:HS.mem) = B.get h0 a 0
/// Abstract types defined by this library
///
/// Note: Somehow confusingly, a node in the iface is a pointer to a
/// real node, and a dll in the iface is a pointer to a real
/// dll. Fortunately though, most users of the library will never even
/// be looking inside the implementation, and thus hopefully it won't
/// be confusing.
let node a = B.pointer (DLL.node a)
let dll a = B.pointer (DLL.dll a)
/// Abstract Validity Predicates
let node_valid h n = True /\ B.live h n // XXX: why do I need the True here? | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"DoublyLinkedList.fst.checked"
],
"interface_file": true,
"source_file": "DoublyLinkedListIface.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Pure",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "DoublyLinkedList",
"short_module": "DLL"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> d: DoublyLinkedListIface.dll 'a -> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"DoublyLinkedListIface.dll",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"DoublyLinkedList.dll",
"LowStar.Buffer.trivial_preorder",
"DoublyLinkedList.dll_valid",
"DoublyLinkedListIface.op_At",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_buffer",
"DoublyLinkedList.dll_fp0",
"Prims.prop"
] | [] | false | false | false | true | true | let dll_valid h d =
| B.live h d /\ DLL.dll_valid h (d @ h) /\ (B.loc_buffer d) `B.loc_disjoint` (DLL.dll_fp0 (d @ h)) | false |
DoublyLinkedListIface.fst | DoublyLinkedListIface.node_valid | val node_valid (h:HS.mem) (n:node 'a) : prop | val node_valid (h:HS.mem) (n:node 'a) : prop | let node_valid h n = True /\ B.live h n | {
"file_name": "examples/doublylinkedlist/DoublyLinkedListIface.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 39,
"end_line": 53,
"start_col": 0,
"start_line": 53
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedListIface
/// This module consists of proofs / code for the iface that is
/// written in the actual fsti. Most of this code will never be user
/// facing, and will soon be merged into the DoublyLinkedList module,
/// as I work on moving stuff into DoublyLinkedList.fsti from the iface
/// fsti.
module DLL = DoublyLinkedList
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module G = FStar.Ghost
module L = FStar.List.Pure
module B = LowStar.Buffer
open LowStar.BufferOps
/// Convenience operators
unfold let (@) (a:B.pointer 't) (h0:HS.mem) = B.get h0 a 0
unfold let (^@) (a:B.pointer_or_null 't{a =!= B.null}) (h0:HS.mem) = B.get h0 a 0
/// Abstract types defined by this library
///
/// Note: Somehow confusingly, a node in the iface is a pointer to a
/// real node, and a dll in the iface is a pointer to a real
/// dll. Fortunately though, most users of the library will never even
/// be looking inside the implementation, and thus hopefully it won't
/// be confusing.
let node a = B.pointer (DLL.node a)
let dll a = B.pointer (DLL.dll a)
/// Abstract Validity Predicates | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"DoublyLinkedList.fst.checked"
],
"interface_file": true,
"source_file": "DoublyLinkedListIface.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Pure",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "DoublyLinkedList",
"short_module": "DLL"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> n: DoublyLinkedListIface.node 'a -> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"DoublyLinkedListIface.node",
"Prims.l_and",
"Prims.l_True",
"LowStar.Monotonic.Buffer.live",
"DoublyLinkedList.node",
"LowStar.Buffer.trivial_preorder",
"Prims.prop"
] | [] | false | false | false | true | true | let node_valid h n =
| True /\ B.live h n | false |
DoublyLinkedListIface.fst | DoublyLinkedListIface.fp_node | val fp_node (n:node 'a) : GTot B.loc | val fp_node (n:node 'a) : GTot B.loc | let fp_node n = B.loc_buffer n | {
"file_name": "examples/doublylinkedlist/DoublyLinkedListIface.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 62,
"start_col": 0,
"start_line": 62
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedListIface
/// This module consists of proofs / code for the iface that is
/// written in the actual fsti. Most of this code will never be user
/// facing, and will soon be merged into the DoublyLinkedList module,
/// as I work on moving stuff into DoublyLinkedList.fsti from the iface
/// fsti.
module DLL = DoublyLinkedList
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module G = FStar.Ghost
module L = FStar.List.Pure
module B = LowStar.Buffer
open LowStar.BufferOps
/// Convenience operators
unfold let (@) (a:B.pointer 't) (h0:HS.mem) = B.get h0 a 0
unfold let (^@) (a:B.pointer_or_null 't{a =!= B.null}) (h0:HS.mem) = B.get h0 a 0
/// Abstract types defined by this library
///
/// Note: Somehow confusingly, a node in the iface is a pointer to a
/// real node, and a dll in the iface is a pointer to a real
/// dll. Fortunately though, most users of the library will never even
/// be looking inside the implementation, and thus hopefully it won't
/// be confusing.
let node a = B.pointer (DLL.node a)
let dll a = B.pointer (DLL.dll a)
/// Abstract Validity Predicates
let node_valid h n = True /\ B.live h n // XXX: why do I need the True here?
let dll_valid h d =
B.live h d /\
DLL.dll_valid h (d@h) /\
B.loc_buffer d `B.loc_disjoint` DLL.dll_fp0 (d@h)
/// Abstract node and list footprints | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"DoublyLinkedList.fst.checked"
],
"interface_file": true,
"source_file": "DoublyLinkedListIface.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Pure",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "DoublyLinkedList",
"short_module": "DLL"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: DoublyLinkedListIface.node 'a -> Prims.GTot LowStar.Monotonic.Buffer.loc | Prims.GTot | [
"sometrivial"
] | [] | [
"DoublyLinkedListIface.node",
"LowStar.Monotonic.Buffer.loc_buffer",
"DoublyLinkedList.node",
"LowStar.Buffer.trivial_preorder",
"LowStar.Monotonic.Buffer.loc"
] | [] | false | false | false | false | false | let fp_node n =
| B.loc_buffer n | false |
DoublyLinkedListIface.fst | DoublyLinkedListIface.fp_dll | val fp_dll (h:HS.mem) (d:dll 'a) : GTot B.loc | val fp_dll (h:HS.mem) (d:dll 'a) : GTot B.loc | let fp_dll h d =
B.loc_union (B.loc_buffer d) (DLL.dll_fp0 (d@h)) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedListIface.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 50,
"end_line": 65,
"start_col": 0,
"start_line": 64
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedListIface
/// This module consists of proofs / code for the iface that is
/// written in the actual fsti. Most of this code will never be user
/// facing, and will soon be merged into the DoublyLinkedList module,
/// as I work on moving stuff into DoublyLinkedList.fsti from the iface
/// fsti.
module DLL = DoublyLinkedList
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module G = FStar.Ghost
module L = FStar.List.Pure
module B = LowStar.Buffer
open LowStar.BufferOps
/// Convenience operators
unfold let (@) (a:B.pointer 't) (h0:HS.mem) = B.get h0 a 0
unfold let (^@) (a:B.pointer_or_null 't{a =!= B.null}) (h0:HS.mem) = B.get h0 a 0
/// Abstract types defined by this library
///
/// Note: Somehow confusingly, a node in the iface is a pointer to a
/// real node, and a dll in the iface is a pointer to a real
/// dll. Fortunately though, most users of the library will never even
/// be looking inside the implementation, and thus hopefully it won't
/// be confusing.
let node a = B.pointer (DLL.node a)
let dll a = B.pointer (DLL.dll a)
/// Abstract Validity Predicates
let node_valid h n = True /\ B.live h n // XXX: why do I need the True here?
let dll_valid h d =
B.live h d /\
DLL.dll_valid h (d@h) /\
B.loc_buffer d `B.loc_disjoint` DLL.dll_fp0 (d@h)
/// Abstract node and list footprints
let fp_node n = B.loc_buffer n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"DoublyLinkedList.fst.checked"
],
"interface_file": true,
"source_file": "DoublyLinkedListIface.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Pure",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "DoublyLinkedList",
"short_module": "DLL"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> d: DoublyLinkedListIface.dll 'a
-> Prims.GTot LowStar.Monotonic.Buffer.loc | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"DoublyLinkedListIface.dll",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc_buffer",
"DoublyLinkedList.dll",
"LowStar.Buffer.trivial_preorder",
"DoublyLinkedList.dll_fp0",
"DoublyLinkedListIface.op_At",
"LowStar.Monotonic.Buffer.loc"
] | [] | false | false | false | false | false | let fp_dll h d =
| B.loc_union (B.loc_buffer d) (DLL.dll_fp0 (d @ h)) | false |
DoublyLinkedListIface.fst | DoublyLinkedListIface.g_node_val | val g_node_val (h:HS.mem) (n:node 'a) : GTot 'a | val g_node_val (h:HS.mem) (n:node 'a) : GTot 'a | let g_node_val h n =
(n@h).DLL.p | {
"file_name": "examples/doublylinkedlist/DoublyLinkedListIface.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 13,
"end_line": 70,
"start_col": 0,
"start_line": 69
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedListIface
/// This module consists of proofs / code for the iface that is
/// written in the actual fsti. Most of this code will never be user
/// facing, and will soon be merged into the DoublyLinkedList module,
/// as I work on moving stuff into DoublyLinkedList.fsti from the iface
/// fsti.
module DLL = DoublyLinkedList
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module G = FStar.Ghost
module L = FStar.List.Pure
module B = LowStar.Buffer
open LowStar.BufferOps
/// Convenience operators
unfold let (@) (a:B.pointer 't) (h0:HS.mem) = B.get h0 a 0
unfold let (^@) (a:B.pointer_or_null 't{a =!= B.null}) (h0:HS.mem) = B.get h0 a 0
/// Abstract types defined by this library
///
/// Note: Somehow confusingly, a node in the iface is a pointer to a
/// real node, and a dll in the iface is a pointer to a real
/// dll. Fortunately though, most users of the library will never even
/// be looking inside the implementation, and thus hopefully it won't
/// be confusing.
let node a = B.pointer (DLL.node a)
let dll a = B.pointer (DLL.dll a)
/// Abstract Validity Predicates
let node_valid h n = True /\ B.live h n // XXX: why do I need the True here?
let dll_valid h d =
B.live h d /\
DLL.dll_valid h (d@h) /\
B.loc_buffer d `B.loc_disjoint` DLL.dll_fp0 (d@h)
/// Abstract node and list footprints
let fp_node n = B.loc_buffer n
let fp_dll h d =
B.loc_union (B.loc_buffer d) (DLL.dll_fp0 (d@h))
/// Getters and setters for [node]s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"DoublyLinkedList.fst.checked"
],
"interface_file": true,
"source_file": "DoublyLinkedListIface.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Pure",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "DoublyLinkedList",
"short_module": "DLL"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> n: DoublyLinkedListIface.node 'a -> Prims.GTot 'a | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"DoublyLinkedListIface.node",
"DoublyLinkedList.__proj__Mknode__item__p",
"DoublyLinkedListIface.op_At",
"DoublyLinkedList.node"
] | [] | false | false | false | false | false | let g_node_val h n =
| (n @ h).DLL.p | false |
DoublyLinkedListIface.fst | DoublyLinkedListIface.unchanged_node_connections | val unchanged_node_connections (h0 h1:HS.mem) (n:node 'a) : GTot prop | val unchanged_node_connections (h0 h1:HS.mem) (n:node 'a) : GTot prop | let unchanged_node_connections h0 h1 n =
(n@h0).DLL.flink == (n@h1).DLL.flink /\
(n@h0).DLL.blink == (n@h1).DLL.blink | {
"file_name": "examples/doublylinkedlist/DoublyLinkedListIface.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 83,
"start_col": 0,
"start_line": 81
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedListIface
/// This module consists of proofs / code for the iface that is
/// written in the actual fsti. Most of this code will never be user
/// facing, and will soon be merged into the DoublyLinkedList module,
/// as I work on moving stuff into DoublyLinkedList.fsti from the iface
/// fsti.
module DLL = DoublyLinkedList
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module G = FStar.Ghost
module L = FStar.List.Pure
module B = LowStar.Buffer
open LowStar.BufferOps
/// Convenience operators
unfold let (@) (a:B.pointer 't) (h0:HS.mem) = B.get h0 a 0
unfold let (^@) (a:B.pointer_or_null 't{a =!= B.null}) (h0:HS.mem) = B.get h0 a 0
/// Abstract types defined by this library
///
/// Note: Somehow confusingly, a node in the iface is a pointer to a
/// real node, and a dll in the iface is a pointer to a real
/// dll. Fortunately though, most users of the library will never even
/// be looking inside the implementation, and thus hopefully it won't
/// be confusing.
let node a = B.pointer (DLL.node a)
let dll a = B.pointer (DLL.dll a)
/// Abstract Validity Predicates
let node_valid h n = True /\ B.live h n // XXX: why do I need the True here?
let dll_valid h d =
B.live h d /\
DLL.dll_valid h (d@h) /\
B.loc_buffer d `B.loc_disjoint` DLL.dll_fp0 (d@h)
/// Abstract node and list footprints
let fp_node n = B.loc_buffer n
let fp_dll h d =
B.loc_union (B.loc_buffer d) (DLL.dll_fp0 (d@h))
/// Getters and setters for [node]s
let g_node_val h n =
(n@h).DLL.p
let node_val n =
(!*n).DLL.p
let node_of v =
B.alloca (DLL.empty_node v) 1ul
/// Abstract Predicate to help "recall" that updating the payload
/// leaves connections unchanged | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"DoublyLinkedList.fst.checked"
],
"interface_file": true,
"source_file": "DoublyLinkedListIface.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Pure",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "DoublyLinkedList",
"short_module": "DLL"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem ->
n: DoublyLinkedListIface.node 'a
-> Prims.GTot Prims.prop | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"DoublyLinkedListIface.node",
"Prims.l_and",
"Prims.eq2",
"LowStar.Buffer.pointer_or_null",
"DoublyLinkedList.node",
"DoublyLinkedList.__proj__Mknode__item__flink",
"DoublyLinkedListIface.op_At",
"DoublyLinkedList.__proj__Mknode__item__blink",
"Prims.prop"
] | [] | false | false | false | false | true | let unchanged_node_connections h0 h1 n =
| (n @ h0).DLL.flink == (n @ h1).DLL.flink /\ (n @ h0).DLL.blink == (n @ h1).DLL.blink | false |
DoublyLinkedListIface.fst | DoublyLinkedListIface.as_list | val as_list (h:HS.mem) (d:dll 'a) : GTot (list (node 'a)) | val as_list (h:HS.mem) (d:dll 'a) : GTot (list (node 'a)) | let as_list h d =
(d@h).DLL.nodes | {
"file_name": "examples/doublylinkedlist/DoublyLinkedListIface.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 106,
"start_col": 0,
"start_line": 105
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedListIface
/// This module consists of proofs / code for the iface that is
/// written in the actual fsti. Most of this code will never be user
/// facing, and will soon be merged into the DoublyLinkedList module,
/// as I work on moving stuff into DoublyLinkedList.fsti from the iface
/// fsti.
module DLL = DoublyLinkedList
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module G = FStar.Ghost
module L = FStar.List.Pure
module B = LowStar.Buffer
open LowStar.BufferOps
/// Convenience operators
unfold let (@) (a:B.pointer 't) (h0:HS.mem) = B.get h0 a 0
unfold let (^@) (a:B.pointer_or_null 't{a =!= B.null}) (h0:HS.mem) = B.get h0 a 0
/// Abstract types defined by this library
///
/// Note: Somehow confusingly, a node in the iface is a pointer to a
/// real node, and a dll in the iface is a pointer to a real
/// dll. Fortunately though, most users of the library will never even
/// be looking inside the implementation, and thus hopefully it won't
/// be confusing.
let node a = B.pointer (DLL.node a)
let dll a = B.pointer (DLL.dll a)
/// Abstract Validity Predicates
let node_valid h n = True /\ B.live h n // XXX: why do I need the True here?
let dll_valid h d =
B.live h d /\
DLL.dll_valid h (d@h) /\
B.loc_buffer d `B.loc_disjoint` DLL.dll_fp0 (d@h)
/// Abstract node and list footprints
let fp_node n = B.loc_buffer n
let fp_dll h d =
B.loc_union (B.loc_buffer d) (DLL.dll_fp0 (d@h))
/// Getters and setters for [node]s
let g_node_val h n =
(n@h).DLL.p
let node_val n =
(!*n).DLL.p
let node_of v =
B.alloca (DLL.empty_node v) 1ul
/// Abstract Predicate to help "recall" that updating the payload
/// leaves connections unchanged
let unchanged_node_connections h0 h1 n =
(n@h0).DLL.flink == (n@h1).DLL.flink /\
(n@h0).DLL.blink == (n@h1).DLL.blink
/// Be able to modify the payload of a node easily, without affecting
/// membership
let node_update n v =
n *= { !*n with DLL.p = v }
/// Abstract Predicate to help "recall" that [g_node_val] remains
/// unchanged for nodes, across multiple [mem]s
let unchanged_node_val (h0 h1:HS.mem) (n:node 'a) : GTot prop =
(B.live h0 n ==>
(g_node_val h0 n == g_node_val h1 n /\ B.live h1 n))
let rec unchanged_node_vals (h0 h1:HS.mem) (ns:list (node 'a)) : GTot prop =
match ns with
| [] -> True
| n :: ns' -> unchanged_node_val h0 h1 n /\ unchanged_node_vals h0 h1 ns'
/// Viewing ghostly state of a list | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"DoublyLinkedList.fst.checked"
],
"interface_file": true,
"source_file": "DoublyLinkedListIface.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Pure",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "DoublyLinkedList",
"short_module": "DLL"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> d: DoublyLinkedListIface.dll 'a
-> Prims.GTot (Prims.list (DoublyLinkedListIface.node 'a)) | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"DoublyLinkedListIface.dll",
"FStar.Ghost.reveal",
"DoublyLinkedList.nodelist",
"DoublyLinkedList.__proj__Mkdll__item__nodes",
"DoublyLinkedListIface.op_At",
"DoublyLinkedList.dll",
"Prims.list",
"DoublyLinkedListIface.node"
] | [] | false | false | false | false | false | let as_list h d =
| (d @ h).DLL.nodes | false |
DoublyLinkedListIface.fst | DoublyLinkedListIface.unchanged_node_val | val unchanged_node_val (h0 h1: HS.mem) (n: node 'a) : GTot prop | val unchanged_node_val (h0 h1: HS.mem) (n: node 'a) : GTot prop | let unchanged_node_val (h0 h1:HS.mem) (n:node 'a) : GTot prop =
(B.live h0 n ==>
(g_node_val h0 n == g_node_val h1 n /\ B.live h1 n)) | {
"file_name": "examples/doublylinkedlist/DoublyLinkedListIface.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 55,
"end_line": 96,
"start_col": 0,
"start_line": 94
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedListIface
/// This module consists of proofs / code for the iface that is
/// written in the actual fsti. Most of this code will never be user
/// facing, and will soon be merged into the DoublyLinkedList module,
/// as I work on moving stuff into DoublyLinkedList.fsti from the iface
/// fsti.
module DLL = DoublyLinkedList
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module G = FStar.Ghost
module L = FStar.List.Pure
module B = LowStar.Buffer
open LowStar.BufferOps
/// Convenience operators
unfold let (@) (a:B.pointer 't) (h0:HS.mem) = B.get h0 a 0
unfold let (^@) (a:B.pointer_or_null 't{a =!= B.null}) (h0:HS.mem) = B.get h0 a 0
/// Abstract types defined by this library
///
/// Note: Somehow confusingly, a node in the iface is a pointer to a
/// real node, and a dll in the iface is a pointer to a real
/// dll. Fortunately though, most users of the library will never even
/// be looking inside the implementation, and thus hopefully it won't
/// be confusing.
let node a = B.pointer (DLL.node a)
let dll a = B.pointer (DLL.dll a)
/// Abstract Validity Predicates
let node_valid h n = True /\ B.live h n // XXX: why do I need the True here?
let dll_valid h d =
B.live h d /\
DLL.dll_valid h (d@h) /\
B.loc_buffer d `B.loc_disjoint` DLL.dll_fp0 (d@h)
/// Abstract node and list footprints
let fp_node n = B.loc_buffer n
let fp_dll h d =
B.loc_union (B.loc_buffer d) (DLL.dll_fp0 (d@h))
/// Getters and setters for [node]s
let g_node_val h n =
(n@h).DLL.p
let node_val n =
(!*n).DLL.p
let node_of v =
B.alloca (DLL.empty_node v) 1ul
/// Abstract Predicate to help "recall" that updating the payload
/// leaves connections unchanged
let unchanged_node_connections h0 h1 n =
(n@h0).DLL.flink == (n@h1).DLL.flink /\
(n@h0).DLL.blink == (n@h1).DLL.blink
/// Be able to modify the payload of a node easily, without affecting
/// membership
let node_update n v =
n *= { !*n with DLL.p = v }
/// Abstract Predicate to help "recall" that [g_node_val] remains
/// unchanged for nodes, across multiple [mem]s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"DoublyLinkedList.fst.checked"
],
"interface_file": true,
"source_file": "DoublyLinkedListIface.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.List.Pure",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "DoublyLinkedList",
"short_module": "DLL"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem ->
n: DoublyLinkedListIface.node 'a
-> Prims.GTot Prims.prop | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"DoublyLinkedListIface.node",
"Prims.l_imp",
"LowStar.Monotonic.Buffer.live",
"DoublyLinkedList.node",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"DoublyLinkedListIface.g_node_val",
"Prims.prop"
] | [] | false | false | false | false | true | let unchanged_node_val (h0 h1: HS.mem) (n: node 'a) : GTot prop =
| (B.live h0 n ==> (g_node_val h0 n == g_node_val h1 n /\ B.live h1 n)) | false |
DoublyLinkedListIface.fst | DoublyLinkedListIface.node_of | val node_of (v:'a) :
HST.StackInline (node 'a)
(requires (fun h0 -> True))
(ensures (fun h0 n h1 ->
B.modifies B.loc_none h0 h1 /\
B.fresh_loc (fp_node n) h0 h1 /\
node_valid h1 n /\
v == g_node_val h1 n)) | val node_of (v:'a) :
HST.StackInline (node 'a)
(requires (fun h0 -> True))
(ensures (fun h0 n h1 ->
B.modifies B.loc_none h0 h1 /\
B.fresh_loc (fp_node n) h0 h1 /\
node_valid h1 n /\
v == g_node_val h1 n)) | let node_of v =
B.alloca (DLL.empty_node v) 1ul | {
"file_name": "examples/doublylinkedlist/DoublyLinkedListIface.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 76,
"start_col": 0,
"start_line": 75
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module DoublyLinkedListIface
/// This module consists of proofs / code for the iface that is
/// written in the actual fsti. Most of this code will never be user
/// facing, and will soon be merged into the DoublyLinkedList module,
/// as I work on moving stuff into DoublyLinkedList.fsti from the iface
/// fsti.
module DLL = DoublyLinkedList
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module G = FStar.Ghost
module L = FStar.List.Pure
module B = LowStar.Buffer
open LowStar.BufferOps
/// Convenience operators
unfold let (@) (a:B.pointer 't) (h0:HS.mem) = B.get h0 a 0
unfold let (^@) (a:B.pointer_or_null 't{a =!= B.null}) (h0:HS.mem) = B.get h0 a 0
/// Abstract types defined by this library
///
/// Note: Somehow confusingly, a node in the iface is a pointer to a
/// real node, and a dll in the iface is a pointer to a real
/// dll. Fortunately though, most users of the library will never even
/// be looking inside the implementation, and thus hopefully it won't
/// be confusing.
let node a = B.pointer (DLL.node a)
let dll a = B.pointer (DLL.dll a)
/// Abstract Validity Predicates
let node_valid h n = True /\ B.live h n // XXX: why do I need the True here?
let dll_valid h d =
B.live h d /\
DLL.dll_valid h (d@h) /\
B.loc_buffer d `B.loc_disjoint` DLL.dll_fp0 (d@h)
/// Abstract node and list footprints
let fp_node n = B.loc_buffer n
let fp_dll h d =
B.loc_union (B.loc_buffer d) (DLL.dll_fp0 (d@h))
/// Getters and setters for [node]s
let g_node_val h n =
(n@h).DLL.p
let node_val n =
(!*n).DLL.p | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Pure.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"DoublyLinkedList.fst.checked"
],
"interface_file": true,
"source_file": "DoublyLinkedListIface.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Pure",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "DoublyLinkedList",
"short_module": "DLL"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | v: 'a -> FStar.HyperStack.ST.StackInline (DoublyLinkedListIface.node 'a) | FStar.HyperStack.ST.StackInline | [] | [] | [
"LowStar.Buffer.alloca",
"DoublyLinkedList.node",
"DoublyLinkedList.empty_node",
"FStar.UInt32.__uint_to_t",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.UInt32.v",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"DoublyLinkedListIface.node"
] | [] | false | true | false | false | false | let node_of v =
| B.alloca (DLL.empty_node v) 1ul | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.