file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
listlengths 0
2
| mutual_with
listlengths 0
11
| ideal_premises
listlengths 0
236
| proof_features
listlengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vale.Math.Bits.fst | Vale.Math.Bits.lemma_i2b_mul | val lemma_i2b_mul (#n:pos) (a b:uint_t n) : Lemma
(b_i2b #n (mul_mod #n a b) == b_mul #n (b_i2b a) b) | val lemma_i2b_mul (#n:pos) (a b:uint_t n) : Lemma
(b_i2b #n (mul_mod #n a b) == b_mul #n (b_i2b a) b) | let lemma_i2b_mul #n a b =
int2bv_mul #n #a #b #(bvmul #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (mul_mod #n a b) == b_mul #n (b_i2b a) b) | {
"file_name": "vale/code/lib/math/Vale.Math.Bits.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 65,
"end_line": 44,
"start_col": 0,
"start_line": 42
} | module Vale.Math.Bits
open FStar.Mul
let lemma_pow2_le m n = FStar.Math.Lemmas.pow2_le_compat n m
let lemma_i2b_eq #n a b =
assert_norm (b_i2b a == b_i2b b ==> int2bv a == int2bv b);
int2bv_lemma_2 #n a b
let lemma_i2b_uext #n m a =
Vale.Lib.Bv_s.int2bv_uext #n #m a (uext #n #m a);
assert_norm (b_i2b (uext #n #m a) == b_uext #n #m (b_i2b #n a))
let lemma_i2b_and #n a b =
int2bv_logand #n #a #b #(bvand #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logand #n a b) == b_and #n (b_i2b a) (b_i2b b))
let lemma_i2b_or #n a b =
int2bv_logor #n #a #b #(bvor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logor #n a b) == b_or #n (b_i2b a) (b_i2b b))
let lemma_i2b_xor #n a b =
int2bv_logxor #n #a #b #(bvxor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logxor #n a b) == b_xor #n (b_i2b a) (b_i2b b))
let lemma_i2b_shl #n a b =
int2bv_shl #n #a #b #(bvshl #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_left #n a b) == b_shl #n (b_i2b a) b)
let lemma_i2b_shr #n a b =
int2bv_shr #n #a #b #(bvshr #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_right #n a b) == b_shr #n (b_i2b a) b)
let lemma_i2b_add #n a b =
int2bv_add #n #a #b #(bvadd #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (add_mod #n a b) == b_add #n (b_i2b a) (b_i2b b))
let lemma_i2b_sub #n a b =
int2bv_sub #n #a #b #(bvsub #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (sub_mod #n a b) == b_sub #n (b_i2b a) (b_i2b b)) | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Bv_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Bits.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n
-> FStar.Pervasives.Lemma
(ensures
Vale.Math.Bits.b_i2b (FStar.UInt.mul_mod a b) ==
Vale.Math.Bits.b_mul (Vale.Math.Bits.b_i2b a) b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"FStar.UInt.uint_t",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"FStar.BV.bv_t",
"Vale.Math.Bits.b_i2b",
"FStar.UInt.mul_mod",
"Vale.Math.Bits.b_mul",
"Prims.unit",
"FStar.BV.int2bv_mul",
"FStar.BV.bvmul",
"FStar.BV.int2bv"
] | [] | true | false | true | false | false | let lemma_i2b_mul #n a b =
| int2bv_mul #n #a #b #(bvmul #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (mul_mod #n a b) == b_mul #n (b_i2b a) b) | false |
Vale.Math.Bits.fst | Vale.Math.Bits.lemma_i2b_div | val lemma_i2b_div (#n:pos) (a:uint_t n) (b:uint_t n{b <> 0}) : Lemma
(b_i2b #n (udiv #n a b) == b_div #n (b_i2b a) b) | val lemma_i2b_div (#n:pos) (a:uint_t n) (b:uint_t n{b <> 0}) : Lemma
(b_i2b #n (udiv #n a b) == b_div #n (b_i2b a) b) | let lemma_i2b_div #n a b =
int2bv_div #n #a #b #(bvdiv #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (udiv #n a b) == b_div #n (b_i2b a) b) | {
"file_name": "vale/code/lib/math/Vale.Math.Bits.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 62,
"end_line": 48,
"start_col": 0,
"start_line": 46
} | module Vale.Math.Bits
open FStar.Mul
let lemma_pow2_le m n = FStar.Math.Lemmas.pow2_le_compat n m
let lemma_i2b_eq #n a b =
assert_norm (b_i2b a == b_i2b b ==> int2bv a == int2bv b);
int2bv_lemma_2 #n a b
let lemma_i2b_uext #n m a =
Vale.Lib.Bv_s.int2bv_uext #n #m a (uext #n #m a);
assert_norm (b_i2b (uext #n #m a) == b_uext #n #m (b_i2b #n a))
let lemma_i2b_and #n a b =
int2bv_logand #n #a #b #(bvand #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logand #n a b) == b_and #n (b_i2b a) (b_i2b b))
let lemma_i2b_or #n a b =
int2bv_logor #n #a #b #(bvor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logor #n a b) == b_or #n (b_i2b a) (b_i2b b))
let lemma_i2b_xor #n a b =
int2bv_logxor #n #a #b #(bvxor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logxor #n a b) == b_xor #n (b_i2b a) (b_i2b b))
let lemma_i2b_shl #n a b =
int2bv_shl #n #a #b #(bvshl #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_left #n a b) == b_shl #n (b_i2b a) b)
let lemma_i2b_shr #n a b =
int2bv_shr #n #a #b #(bvshr #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_right #n a b) == b_shr #n (b_i2b a) b)
let lemma_i2b_add #n a b =
int2bv_add #n #a #b #(bvadd #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (add_mod #n a b) == b_add #n (b_i2b a) (b_i2b b))
let lemma_i2b_sub #n a b =
int2bv_sub #n #a #b #(bvsub #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (sub_mod #n a b) == b_sub #n (b_i2b a) (b_i2b b))
let lemma_i2b_mul #n a b =
int2bv_mul #n #a #b #(bvmul #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (mul_mod #n a b) == b_mul #n (b_i2b a) b) | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Bv_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Bits.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n {b <> 0}
-> FStar.Pervasives.Lemma
(ensures
Vale.Math.Bits.b_i2b (FStar.UInt.udiv a b) == Vale.Math.Bits.b_div (Vale.Math.Bits.b_i2b a) b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"FStar.UInt.uint_t",
"Prims.b2t",
"Prims.op_disEquality",
"Prims.int",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"FStar.BV.bv_t",
"Vale.Math.Bits.b_i2b",
"FStar.UInt.udiv",
"Vale.Math.Bits.b_div",
"Prims.unit",
"FStar.BV.int2bv_div",
"FStar.BV.bvdiv",
"FStar.BV.int2bv"
] | [] | true | false | true | false | false | let lemma_i2b_div #n a b =
| int2bv_div #n #a #b #(bvdiv #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (udiv #n a b) == b_div #n (b_i2b a) b) | false |
Vale.Math.Bits.fst | Vale.Math.Bits.add_hide | val add_hide (#n:pos) (a b:uint_t n) : Pure (uint_t n)
(requires True)
(ensures fun x -> a + b < pow2 n ==> x == a + b) | val add_hide (#n:pos) (a b:uint_t n) : Pure (uint_t n)
(requires True)
(ensures fun x -> a + b < pow2 n ==> x == a + b) | let add_hide #n a b =
if a + b < pow2 n then FStar.Math.Lemmas.modulo_lemma (a + b) (pow2 n);
add_mod a b | {
"file_name": "vale/code/lib/math/Vale.Math.Bits.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 58,
"start_col": 0,
"start_line": 56
} | module Vale.Math.Bits
open FStar.Mul
let lemma_pow2_le m n = FStar.Math.Lemmas.pow2_le_compat n m
let lemma_i2b_eq #n a b =
assert_norm (b_i2b a == b_i2b b ==> int2bv a == int2bv b);
int2bv_lemma_2 #n a b
let lemma_i2b_uext #n m a =
Vale.Lib.Bv_s.int2bv_uext #n #m a (uext #n #m a);
assert_norm (b_i2b (uext #n #m a) == b_uext #n #m (b_i2b #n a))
let lemma_i2b_and #n a b =
int2bv_logand #n #a #b #(bvand #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logand #n a b) == b_and #n (b_i2b a) (b_i2b b))
let lemma_i2b_or #n a b =
int2bv_logor #n #a #b #(bvor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logor #n a b) == b_or #n (b_i2b a) (b_i2b b))
let lemma_i2b_xor #n a b =
int2bv_logxor #n #a #b #(bvxor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logxor #n a b) == b_xor #n (b_i2b a) (b_i2b b))
let lemma_i2b_shl #n a b =
int2bv_shl #n #a #b #(bvshl #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_left #n a b) == b_shl #n (b_i2b a) b)
let lemma_i2b_shr #n a b =
int2bv_shr #n #a #b #(bvshr #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_right #n a b) == b_shr #n (b_i2b a) b)
let lemma_i2b_add #n a b =
int2bv_add #n #a #b #(bvadd #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (add_mod #n a b) == b_add #n (b_i2b a) (b_i2b b))
let lemma_i2b_sub #n a b =
int2bv_sub #n #a #b #(bvsub #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (sub_mod #n a b) == b_sub #n (b_i2b a) (b_i2b b))
let lemma_i2b_mul #n a b =
int2bv_mul #n #a #b #(bvmul #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (mul_mod #n a b) == b_mul #n (b_i2b a) b)
let lemma_i2b_div #n a b =
int2bv_div #n #a #b #(bvdiv #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (udiv #n a b) == b_div #n (b_i2b a) b)
let lemma_i2b_mod #n a b =
int2bv_mod #n #a #b #(bvmod #n (int2bv #n a) b) ();
assert_norm (bvmod #n (int2bv a) b == b_mod #n (b_i2b a) b);
assert_norm (int2bv #n (mod #n a b) == b_i2b #n (mod #n a b));
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Bv_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Bits.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> Prims.Pure (FStar.UInt.uint_t n) | Prims.Pure | [] | [] | [
"Prims.pos",
"FStar.UInt.uint_t",
"FStar.UInt.add_mod",
"Prims.unit",
"Prims.op_LessThan",
"Prims.op_Addition",
"Prims.pow2",
"FStar.Math.Lemmas.modulo_lemma",
"Prims.bool"
] | [] | false | false | false | false | false | let add_hide #n a b =
| if a + b < pow2 n then FStar.Math.Lemmas.modulo_lemma (a + b) (pow2 n);
add_mod a b | false |
Vale.Math.Bits.fst | Vale.Math.Bits.lemma_i2b_equal | val lemma_i2b_equal (#n:pos) (x y:uint_t n) : Lemma
(requires lemmas_i2b_all ==> b_i2b x == b_i2b y)
(ensures x == y) | val lemma_i2b_equal (#n:pos) (x y:uint_t n) : Lemma
(requires lemmas_i2b_all ==> b_i2b x == b_i2b y)
(ensures x == y) | let lemma_i2b_equal #n x y =
lemma_i2b_all ();
lemma_i2b_eq x y | {
"file_name": "vale/code/lib/math/Vale.Math.Bits.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 89,
"start_col": 0,
"start_line": 87
} | module Vale.Math.Bits
open FStar.Mul
let lemma_pow2_le m n = FStar.Math.Lemmas.pow2_le_compat n m
let lemma_i2b_eq #n a b =
assert_norm (b_i2b a == b_i2b b ==> int2bv a == int2bv b);
int2bv_lemma_2 #n a b
let lemma_i2b_uext #n m a =
Vale.Lib.Bv_s.int2bv_uext #n #m a (uext #n #m a);
assert_norm (b_i2b (uext #n #m a) == b_uext #n #m (b_i2b #n a))
let lemma_i2b_and #n a b =
int2bv_logand #n #a #b #(bvand #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logand #n a b) == b_and #n (b_i2b a) (b_i2b b))
let lemma_i2b_or #n a b =
int2bv_logor #n #a #b #(bvor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logor #n a b) == b_or #n (b_i2b a) (b_i2b b))
let lemma_i2b_xor #n a b =
int2bv_logxor #n #a #b #(bvxor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logxor #n a b) == b_xor #n (b_i2b a) (b_i2b b))
let lemma_i2b_shl #n a b =
int2bv_shl #n #a #b #(bvshl #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_left #n a b) == b_shl #n (b_i2b a) b)
let lemma_i2b_shr #n a b =
int2bv_shr #n #a #b #(bvshr #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_right #n a b) == b_shr #n (b_i2b a) b)
let lemma_i2b_add #n a b =
int2bv_add #n #a #b #(bvadd #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (add_mod #n a b) == b_add #n (b_i2b a) (b_i2b b))
let lemma_i2b_sub #n a b =
int2bv_sub #n #a #b #(bvsub #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (sub_mod #n a b) == b_sub #n (b_i2b a) (b_i2b b))
let lemma_i2b_mul #n a b =
int2bv_mul #n #a #b #(bvmul #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (mul_mod #n a b) == b_mul #n (b_i2b a) b)
let lemma_i2b_div #n a b =
int2bv_div #n #a #b #(bvdiv #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (udiv #n a b) == b_div #n (b_i2b a) b)
let lemma_i2b_mod #n a b =
int2bv_mod #n #a #b #(bvmod #n (int2bv #n a) b) ();
assert_norm (bvmod #n (int2bv a) b == b_mod #n (b_i2b a) b);
assert_norm (int2bv #n (mod #n a b) == b_i2b #n (mod #n a b));
()
let add_hide #n a b =
if a + b < pow2 n then FStar.Math.Lemmas.modulo_lemma (a + b) (pow2 n);
add_mod a b
let sub_hide #n a b =
if 0 <= a - b then FStar.Math.Lemmas.modulo_lemma (a - b) (pow2 n);
sub_mod a b
let mul_hide #n a b =
FStar.Math.Lemmas.nat_times_nat_is_nat a b;
if a * b < pow2 n then FStar.Math.Lemmas.modulo_lemma (a * b) (pow2 n);
assert_norm (mul_mod a b == (a * b) % pow2 n);
mul_mod a b
let lemma_i2b_all () =
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_uext #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_and #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_or #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_xor #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_shl #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_shr #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_add #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_sub #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_mul #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_div #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_mod #n a b);
()
let lemma_i2b_with_all n p =
lemma_i2b_all () | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Bv_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Bits.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt.uint_t n -> y: FStar.UInt.uint_t n
-> FStar.Pervasives.Lemma
(requires Vale.Math.Bits.lemmas_i2b_all ==> Vale.Math.Bits.b_i2b x == Vale.Math.Bits.b_i2b y)
(ensures x == y) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"FStar.UInt.uint_t",
"Vale.Math.Bits.lemma_i2b_eq",
"Prims.unit",
"Vale.Math.Bits.lemma_i2b_all"
] | [] | true | false | true | false | false | let lemma_i2b_equal #n x y =
| lemma_i2b_all ();
lemma_i2b_eq x y | false |
Vale.Math.Bits.fst | Vale.Math.Bits.lemma_i2b_with_all | val lemma_i2b_with_all (n:pos) (p:Type0) : Lemma
(requires lemmas_i2b_all ==> p)
(ensures p) | val lemma_i2b_with_all (n:pos) (p:Type0) : Lemma
(requires lemmas_i2b_all ==> p)
(ensures p) | let lemma_i2b_with_all n p =
lemma_i2b_all () | {
"file_name": "vale/code/lib/math/Vale.Math.Bits.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 85,
"start_col": 0,
"start_line": 84
} | module Vale.Math.Bits
open FStar.Mul
let lemma_pow2_le m n = FStar.Math.Lemmas.pow2_le_compat n m
let lemma_i2b_eq #n a b =
assert_norm (b_i2b a == b_i2b b ==> int2bv a == int2bv b);
int2bv_lemma_2 #n a b
let lemma_i2b_uext #n m a =
Vale.Lib.Bv_s.int2bv_uext #n #m a (uext #n #m a);
assert_norm (b_i2b (uext #n #m a) == b_uext #n #m (b_i2b #n a))
let lemma_i2b_and #n a b =
int2bv_logand #n #a #b #(bvand #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logand #n a b) == b_and #n (b_i2b a) (b_i2b b))
let lemma_i2b_or #n a b =
int2bv_logor #n #a #b #(bvor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logor #n a b) == b_or #n (b_i2b a) (b_i2b b))
let lemma_i2b_xor #n a b =
int2bv_logxor #n #a #b #(bvxor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logxor #n a b) == b_xor #n (b_i2b a) (b_i2b b))
let lemma_i2b_shl #n a b =
int2bv_shl #n #a #b #(bvshl #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_left #n a b) == b_shl #n (b_i2b a) b)
let lemma_i2b_shr #n a b =
int2bv_shr #n #a #b #(bvshr #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_right #n a b) == b_shr #n (b_i2b a) b)
let lemma_i2b_add #n a b =
int2bv_add #n #a #b #(bvadd #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (add_mod #n a b) == b_add #n (b_i2b a) (b_i2b b))
let lemma_i2b_sub #n a b =
int2bv_sub #n #a #b #(bvsub #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (sub_mod #n a b) == b_sub #n (b_i2b a) (b_i2b b))
let lemma_i2b_mul #n a b =
int2bv_mul #n #a #b #(bvmul #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (mul_mod #n a b) == b_mul #n (b_i2b a) b)
let lemma_i2b_div #n a b =
int2bv_div #n #a #b #(bvdiv #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (udiv #n a b) == b_div #n (b_i2b a) b)
let lemma_i2b_mod #n a b =
int2bv_mod #n #a #b #(bvmod #n (int2bv #n a) b) ();
assert_norm (bvmod #n (int2bv a) b == b_mod #n (b_i2b a) b);
assert_norm (int2bv #n (mod #n a b) == b_i2b #n (mod #n a b));
()
let add_hide #n a b =
if a + b < pow2 n then FStar.Math.Lemmas.modulo_lemma (a + b) (pow2 n);
add_mod a b
let sub_hide #n a b =
if 0 <= a - b then FStar.Math.Lemmas.modulo_lemma (a - b) (pow2 n);
sub_mod a b
let mul_hide #n a b =
FStar.Math.Lemmas.nat_times_nat_is_nat a b;
if a * b < pow2 n then FStar.Math.Lemmas.modulo_lemma (a * b) (pow2 n);
assert_norm (mul_mod a b == (a * b) % pow2 n);
mul_mod a b
let lemma_i2b_all () =
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_uext #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_and #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_or #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_xor #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_shl #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_shr #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_add #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_sub #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_mul #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_div #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_mod #n a b);
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Bv_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Bits.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.pos -> p: Type0
-> FStar.Pervasives.Lemma (requires Vale.Math.Bits.lemmas_i2b_all ==> p) (ensures p) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Vale.Math.Bits.lemma_i2b_all",
"Prims.unit"
] | [] | true | false | true | false | false | let lemma_i2b_with_all n p =
| lemma_i2b_all () | false |
Vale.Math.Bits.fst | Vale.Math.Bits.lemma_to_is_bv8 | val lemma_to_is_bv8 (a:uint_t 32) : Lemma
(requires a < 0x100)
(ensures is_bv8 (b_i2b a)) | val lemma_to_is_bv8 (a:uint_t 32) : Lemma
(requires a < 0x100)
(ensures is_bv8 (b_i2b a)) | let lemma_to_is_bv8 a =
int2bv_lemma_ult_1 a 0x100;
lemma_to_is_bv8_bv (int2bv a);
assert_norm (b_i2b a == int2bv a) | {
"file_name": "vale/code/lib/math/Vale.Math.Bits.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 35,
"end_line": 115,
"start_col": 0,
"start_line": 112
} | module Vale.Math.Bits
open FStar.Mul
let lemma_pow2_le m n = FStar.Math.Lemmas.pow2_le_compat n m
let lemma_i2b_eq #n a b =
assert_norm (b_i2b a == b_i2b b ==> int2bv a == int2bv b);
int2bv_lemma_2 #n a b
let lemma_i2b_uext #n m a =
Vale.Lib.Bv_s.int2bv_uext #n #m a (uext #n #m a);
assert_norm (b_i2b (uext #n #m a) == b_uext #n #m (b_i2b #n a))
let lemma_i2b_and #n a b =
int2bv_logand #n #a #b #(bvand #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logand #n a b) == b_and #n (b_i2b a) (b_i2b b))
let lemma_i2b_or #n a b =
int2bv_logor #n #a #b #(bvor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logor #n a b) == b_or #n (b_i2b a) (b_i2b b))
let lemma_i2b_xor #n a b =
int2bv_logxor #n #a #b #(bvxor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logxor #n a b) == b_xor #n (b_i2b a) (b_i2b b))
let lemma_i2b_shl #n a b =
int2bv_shl #n #a #b #(bvshl #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_left #n a b) == b_shl #n (b_i2b a) b)
let lemma_i2b_shr #n a b =
int2bv_shr #n #a #b #(bvshr #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_right #n a b) == b_shr #n (b_i2b a) b)
let lemma_i2b_add #n a b =
int2bv_add #n #a #b #(bvadd #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (add_mod #n a b) == b_add #n (b_i2b a) (b_i2b b))
let lemma_i2b_sub #n a b =
int2bv_sub #n #a #b #(bvsub #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (sub_mod #n a b) == b_sub #n (b_i2b a) (b_i2b b))
let lemma_i2b_mul #n a b =
int2bv_mul #n #a #b #(bvmul #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (mul_mod #n a b) == b_mul #n (b_i2b a) b)
let lemma_i2b_div #n a b =
int2bv_div #n #a #b #(bvdiv #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (udiv #n a b) == b_div #n (b_i2b a) b)
let lemma_i2b_mod #n a b =
int2bv_mod #n #a #b #(bvmod #n (int2bv #n a) b) ();
assert_norm (bvmod #n (int2bv a) b == b_mod #n (b_i2b a) b);
assert_norm (int2bv #n (mod #n a b) == b_i2b #n (mod #n a b));
()
let add_hide #n a b =
if a + b < pow2 n then FStar.Math.Lemmas.modulo_lemma (a + b) (pow2 n);
add_mod a b
let sub_hide #n a b =
if 0 <= a - b then FStar.Math.Lemmas.modulo_lemma (a - b) (pow2 n);
sub_mod a b
let mul_hide #n a b =
FStar.Math.Lemmas.nat_times_nat_is_nat a b;
if a * b < pow2 n then FStar.Math.Lemmas.modulo_lemma (a * b) (pow2 n);
assert_norm (mul_mod a b == (a * b) % pow2 n);
mul_mod a b
let lemma_i2b_all () =
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_uext #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_and #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_or #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_xor #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_shl #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_shr #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_add #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_sub #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_mul #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_div #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_mod #n a b);
()
let lemma_i2b_with_all n p =
lemma_i2b_all ()
let lemma_i2b_equal #n x y =
lemma_i2b_all ();
lemma_i2b_eq x y
#reset-options "--initial_fuel 0 --max_fuel 0"
let lemma_bveq #n a b =
let ia = bv2int a in
let ib = bv2int b in
int2bv_logxor #n #ia #ib #(bvxor a b) ();
int2bv_logxor #n #ia #ia #(bvxor a a) ();
assert (int2bv #n (logxor #n ia ib) == int2bv #n (logxor #n ia ia));
assert (bv2int (int2bv #n (logxor #n ia ib)) == logxor #n ia ib);
assert (bv2int (int2bv #n (logxor #n ia ia)) == logxor #n ia ia);
assert (logxor #n ia ib == logxor #n ia ia);
logxor_self ia;
logxor_neq_nonzero ia ib;
()
let lemma_to_is_bv8_bv (a:bv_t 32) : Lemma
(requires bvult a (int2bv 0x100))
(ensures is_bv8 a)
=
lemma_bveq a (bvand a (int2bv 0xff));
assert_norm (is_bv8 a) | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Bv_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Bits.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.UInt.uint_t 32
-> FStar.Pervasives.Lemma (requires a < 0x100)
(ensures Vale.Math.Bits.is_bv8 (Vale.Math.Bits.b_i2b a)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.UInt.uint_t",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"FStar.BV.bv_t",
"Vale.Math.Bits.b_i2b",
"FStar.BV.int2bv",
"Prims.unit",
"Vale.Math.Bits.lemma_to_is_bv8_bv",
"FStar.BV.int2bv_lemma_ult_1"
] | [] | true | false | true | false | false | let lemma_to_is_bv8 a =
| int2bv_lemma_ult_1 a 0x100;
lemma_to_is_bv8_bv (int2bv a);
assert_norm (b_i2b a == int2bv a) | false |
Vale.Math.Bits.fst | Vale.Math.Bits.lemma_to_is_bv8_bv | val lemma_to_is_bv8_bv (a: bv_t 32) : Lemma (requires bvult a (int2bv 0x100)) (ensures is_bv8 a) | val lemma_to_is_bv8_bv (a: bv_t 32) : Lemma (requires bvult a (int2bv 0x100)) (ensures is_bv8 a) | let lemma_to_is_bv8_bv (a:bv_t 32) : Lemma
(requires bvult a (int2bv 0x100))
(ensures is_bv8 a)
=
lemma_bveq a (bvand a (int2bv 0xff));
assert_norm (is_bv8 a) | {
"file_name": "vale/code/lib/math/Vale.Math.Bits.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 24,
"end_line": 110,
"start_col": 0,
"start_line": 105
} | module Vale.Math.Bits
open FStar.Mul
let lemma_pow2_le m n = FStar.Math.Lemmas.pow2_le_compat n m
let lemma_i2b_eq #n a b =
assert_norm (b_i2b a == b_i2b b ==> int2bv a == int2bv b);
int2bv_lemma_2 #n a b
let lemma_i2b_uext #n m a =
Vale.Lib.Bv_s.int2bv_uext #n #m a (uext #n #m a);
assert_norm (b_i2b (uext #n #m a) == b_uext #n #m (b_i2b #n a))
let lemma_i2b_and #n a b =
int2bv_logand #n #a #b #(bvand #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logand #n a b) == b_and #n (b_i2b a) (b_i2b b))
let lemma_i2b_or #n a b =
int2bv_logor #n #a #b #(bvor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logor #n a b) == b_or #n (b_i2b a) (b_i2b b))
let lemma_i2b_xor #n a b =
int2bv_logxor #n #a #b #(bvxor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logxor #n a b) == b_xor #n (b_i2b a) (b_i2b b))
let lemma_i2b_shl #n a b =
int2bv_shl #n #a #b #(bvshl #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_left #n a b) == b_shl #n (b_i2b a) b)
let lemma_i2b_shr #n a b =
int2bv_shr #n #a #b #(bvshr #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_right #n a b) == b_shr #n (b_i2b a) b)
let lemma_i2b_add #n a b =
int2bv_add #n #a #b #(bvadd #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (add_mod #n a b) == b_add #n (b_i2b a) (b_i2b b))
let lemma_i2b_sub #n a b =
int2bv_sub #n #a #b #(bvsub #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (sub_mod #n a b) == b_sub #n (b_i2b a) (b_i2b b))
let lemma_i2b_mul #n a b =
int2bv_mul #n #a #b #(bvmul #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (mul_mod #n a b) == b_mul #n (b_i2b a) b)
let lemma_i2b_div #n a b =
int2bv_div #n #a #b #(bvdiv #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (udiv #n a b) == b_div #n (b_i2b a) b)
let lemma_i2b_mod #n a b =
int2bv_mod #n #a #b #(bvmod #n (int2bv #n a) b) ();
assert_norm (bvmod #n (int2bv a) b == b_mod #n (b_i2b a) b);
assert_norm (int2bv #n (mod #n a b) == b_i2b #n (mod #n a b));
()
let add_hide #n a b =
if a + b < pow2 n then FStar.Math.Lemmas.modulo_lemma (a + b) (pow2 n);
add_mod a b
let sub_hide #n a b =
if 0 <= a - b then FStar.Math.Lemmas.modulo_lemma (a - b) (pow2 n);
sub_mod a b
let mul_hide #n a b =
FStar.Math.Lemmas.nat_times_nat_is_nat a b;
if a * b < pow2 n then FStar.Math.Lemmas.modulo_lemma (a * b) (pow2 n);
assert_norm (mul_mod a b == (a * b) % pow2 n);
mul_mod a b
let lemma_i2b_all () =
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_uext #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_and #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_or #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_xor #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_shl #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_shr #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_add #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_sub #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_mul #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_div #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_mod #n a b);
()
let lemma_i2b_with_all n p =
lemma_i2b_all ()
let lemma_i2b_equal #n x y =
lemma_i2b_all ();
lemma_i2b_eq x y
#reset-options "--initial_fuel 0 --max_fuel 0"
let lemma_bveq #n a b =
let ia = bv2int a in
let ib = bv2int b in
int2bv_logxor #n #ia #ib #(bvxor a b) ();
int2bv_logxor #n #ia #ia #(bvxor a a) ();
assert (int2bv #n (logxor #n ia ib) == int2bv #n (logxor #n ia ia));
assert (bv2int (int2bv #n (logxor #n ia ib)) == logxor #n ia ib);
assert (bv2int (int2bv #n (logxor #n ia ia)) == logxor #n ia ia);
assert (logxor #n ia ib == logxor #n ia ia);
logxor_self ia;
logxor_neq_nonzero ia ib;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Bv_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Bits.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.BV.bv_t 32
-> FStar.Pervasives.Lemma (requires FStar.BV.bvult a (FStar.BV.int2bv 0x100))
(ensures Vale.Math.Bits.is_bv8 a) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.BV.bv_t",
"FStar.Pervasives.assert_norm",
"Vale.Math.Bits.is_bv8",
"Prims.unit",
"Vale.Math.Bits.lemma_bveq",
"FStar.BV.bvand",
"FStar.BV.int2bv",
"Prims.b2t",
"FStar.BV.bvult",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_to_is_bv8_bv (a: bv_t 32) : Lemma (requires bvult a (int2bv 0x100)) (ensures is_bv8 a) =
| lemma_bveq a (bvand a (int2bv 0xff));
assert_norm (is_bv8 a) | false |
Pulse.Readback.fst | Pulse.Readback.readback_comp | val readback_comp (t:R.term)
: option (c:comp{ elab_comp c == t}) | val readback_comp (t:R.term)
: option (c:comp{ elab_comp c == t}) | let readback_comp (t:R.term)
: option (c:comp { elab_comp c == t }) =
let ropt = try_readback_st_comp t readback_ty in
match ropt with
| Some c ->
// debug_log (fun _ -> T.print (Printf.sprintf "readback_comp: %s as\n%s\n" (T.term_to_string t) (P.comp_to_string c)));
ropt
| _ ->
let? t' = readback_ty t in
Some (C_Tot t' <: c:comp{ elab_comp c == t }) | {
"file_name": "lib/steel/pulse/Pulse.Readback.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 49,
"end_line": 268,
"start_col": 0,
"start_line": 258
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Readback
module R = FStar.Reflection.V2
open Pulse.Syntax.Base
open Pulse.Reflection.Util
module RU = Pulse.RuntimeUtils
module T = FStar.Tactics
module P = Pulse.Syntax.Printer
let debug_log (f: unit -> T.Tac unit) : T.Tac unit = if RU.debug_at_level_no_module "readback" then f()
let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x
let readback_observability (t:R.term)
: option (obs:observability { elab_observability obs == t })
= let open R in
match inspect_ln t with
| R.Tv_FVar fv ->
let fv_lid = inspect_fv fv in
if fv_lid = observable_lid
then Some Observable
else if fv_lid = unobservable_lid
then Some Unobservable
else if fv_lid = neutral_lid
then Some Neutral
else None
| _ -> None
#push-options "--z3rlimit_factor 20"
// TODO: FIXME: may be mark as opaque_to_smt
let try_readback_st_comp
(t:R.term)
(readback_ty:(t':R.term ->
option (ty:term { elab_term ty == t' })))
: option (c:comp{elab_comp c == t}) =
let open R in
let hd, args = collect_app_ln t in
match inspect_ln hd with
| Tv_UInst fv [u] ->
let fv_lid = inspect_fv fv in
if fv_lid = stt_lid
then match args with
| [res; pre; post] ->
(match inspect_ln (fst post) with
| Tv_Abs b body ->
let { qual=aq; attrs=attrs; sort=sort } =
inspect_binder b
in
assume (fv == stt_fv);
assume (aq == Q_Explicit /\
attrs == [] /\
sort == fst res /\
snd res == Q_Explicit /\
snd pre == Q_Explicit /\
snd post == Q_Explicit);
assume (t == mk_stt_comp u (fst res) (fst pre) (mk_abs (fst res) R.Q_Explicit body));
let? res' = readback_ty (fst res) in
let? pre' = readback_ty (fst pre) in
let? post' = readback_ty body in
let c = C_ST {u; res=res'; pre=pre';post=post'} in
Some (c <: c:Pulse.Syntax.Base.comp{ elab_comp c == t })
| _ -> None)
| _ -> None
else if fv_lid = stt_atomic_lid
then match args with
| [res; obs; opened; pre; post] ->
(match inspect_ln (fst post) with
| Tv_Abs b body ->
let { qual=aq; attrs=attrs }
= inspect_binder b
in
let? res' = readback_ty (fst res) in
let? obs' = readback_observability (fst obs) in
let? opened' = readback_ty (fst opened) in
let? pre' = readback_ty (fst pre) in
let? post' = readback_ty body in
assume (t == mk_stt_atomic_comp (fst obs) u (fst res) (fst opened) (fst pre) (mk_abs (fst res) R.Q_Explicit body));
let c = C_STAtomic opened' obs' ({u; res=res'; pre=pre';post=post'}) in
Some (c <: c:Pulse.Syntax.Base.comp { elab_comp c == t })
| _ -> None)
| _ -> None
else if fv_lid = stt_ghost_lid
then match args with
| [res; pre; post] ->
(match inspect_ln (fst post) with
| Tv_Abs b body ->
let { qual=aq; attrs=attrs }
= inspect_binder b
in
let? res' = readback_ty (fst res) in
let? pre' = readback_ty (fst pre) in
let? post' = readback_ty body in
assume (t == mk_stt_ghost_comp u (fst res) (fst pre) (mk_abs (fst res) R.Q_Explicit body));
let c = C_STGhost ({u; res=res'; pre=pre';post=post'}) in
Some (c <: c:Pulse.Syntax.Base.comp { elab_comp c == t })
| _ -> None)
| _ -> None
else None
| _ -> None
#pop-options
let readback_qual = function
| R.Q_Implicit -> Some Implicit
| _ -> None
// WARNING WARNING WARNING: THIS DEFINITION MAKES THE CONTEXT INCONSISTENT
// #push-options "--admit_smt_queries true"
// let collect_app_refined (t:R.term) : res:(R.term & list R.argv){fst res << t /\ (forall a. L.memP a (snd res) ==> a << t)} =
// R.collect_app_ln t
// #pop-options
// let readback_ty_ascribed (t:R.term { let t = R.inspect_ln t in
// R.Tv_AscribedT? t || R.Tv_AscribedC? t })
// : option (ty:term { elab_term ty == t }) =
// match R.inspect_ln t with
// //
// // The following is dropping the ascription, which is not ideal
// // However, if we don't, then ascriptions start to come in the way of
// // R.term_eq used to decide equality of tm_fstar terms,
// // which then results in framing failures
// //
// // At least in the examples it came up, the ascription was a redundant
// // ascription on F* Tm_Match
// // I tried an F* patch that did not add the ascription, if it was already
// // ascribed, but that failed a couple of proofs in HACL* : (
// //
// | R.Tv_AscribedT t _ _ _
// | R.Tv_AscribedC t _ _ _ -> Some (tm_fstar t (R.range_of_term t))
// #pop-options
let rec readback_ty (t:R.term)
: option (ty:term { elab_term ty == t }) =
let open R in
let open Pulse.Syntax.Base in
let w (res:term') = with_range res (RU.range_of_term t) in
let return (res:term' { elab_term (w res) == t})
: option (ty:term { elab_term ty == t})
= Some (w res)
in
match inspect_ln t with
| Tv_FVar fv ->
let fv_lid = inspect_fv fv in
if fv_lid = vprop_lid
then return Tm_VProp
else if fv_lid = emp_lid
then return Tm_Emp
else if fv_lid = inames_lid
then return Tm_Inames
else if fv_lid = emp_inames_lid
then return Tm_EmpInames
else return (Tm_FStar t)
| Tv_App hd (a, q) ->
admit(); //this case doesn't work because it is using collect_app_ln, etc.
let aux () =
match q with
| R.Q_Meta _ -> None
| _ -> return (Tm_FStar t)
in
let head, args = collect_app_ln t in
begin
match inspect_ln head, args with
| Tv_FVar fv, [a1; a2] ->
if inspect_fv fv = star_lid
then (
let t1 : R.term = fst a1 in
let t2 : R.term = fst a2 in
assume (t1 << t);
assume (t2 << t);
let? t1 = readback_ty t1 in
let? t2 = readback_ty t2 in
return (Tm_Star t1 t2)
)
else aux ()
| Tv_UInst fv [u], [a1; a2] ->
if inspect_fv fv = exists_lid
|| inspect_fv fv = forall_lid
then (
let t1 : R.term = fst a1 in
let t2 : R.term = fst a2 in
let? ty = readback_ty t1 in
let? (ppname, range, p) =
match inspect_ln t2 with
| Tv_Abs b body ->
let? p = readback_ty body in
let bview = inspect_binder b in
Some (bview.ppname, RU.binder_range b, p) <: option (ppname_t & range & term)
| _ -> None in // TODO: FIXME: provide error from this function?
let b = mk_binder_ppname ty (mk_ppname ppname range) in
if inspect_fv fv = exists_lid
then return (Tm_ExistsSL u b p)
else return (Tm_ForallSL u b p)
)
else aux ()
| Tv_FVar fv, [a] ->
if inspect_fv fv = pure_lid
then (
let t1 : R.term = fst a in
let? t1 = readback_ty t1 in
return (Tm_Pure t1)
)
else if inspect_fv fv = inv_lid
then (
let t1 : R.term = fst a in
let? t1 = readback_ty t1 in
return (Tm_Inv t1)
)
else aux ()
| _ -> aux ()
end
| Tv_Refine _ _
| Tv_Arrow _ _
| Tv_Type _
| Tv_Const _
| Tv_Let _ _ _ _ _
| Tv_Var _
| Tv_BVar _
| Tv_UInst _ _
| Tv_Match _ _ _
| Tv_Abs _ _ ->
return (Tm_FStar t)
| Tv_AscribedT t _ _ _
| Tv_AscribedC t _ _ _ ->
//this case doesn't work because it is unascribing
admit();
readback_ty t
| Tv_Uvar _ _ -> None // TODO: FIXME: T.fail "readback_ty: unexpected Tv_Uvar"
| Tv_Unknown ->
return Tm_Unknown
| Tv_Unsupp -> None | {
"checked_file": "/",
"dependencies": [
"Pulse.Syntax.Printer.fsti.checked",
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Readback.fst"
} | [
{
"abbrev": true,
"full_module": "Pulse.Syntax.Printer",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "FStar.Tactics",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term
-> FStar.Pervasives.Native.option (c:
Pulse.Syntax.Base.comp{Pulse.Elaborate.Pure.elab_comp c == t}) | Prims.Tot | [
"total"
] | [] | [
"FStar.Stubs.Reflection.Types.term",
"Pulse.Syntax.Base.comp",
"Prims.eq2",
"Pulse.Elaborate.Pure.elab_comp",
"FStar.Pervasives.Native.option",
"Pulse.Readback.op_let_Question",
"Pulse.Syntax.Base.term",
"Pulse.Elaborate.Pure.elab_term",
"Pulse.Readback.readback_ty",
"FStar.Pervasives.Native.Some",
"Pulse.Syntax.Base.C_Tot",
"Pulse.Readback.try_readback_st_comp"
] | [] | false | false | false | false | false | let readback_comp (t: R.term) : option (c: comp{elab_comp c == t}) =
| let ropt = try_readback_st_comp t readback_ty in
match ropt with
| Some c -> ropt
| _ ->
let? t' = readback_ty t in
Some (C_Tot t' <: c: comp{elab_comp c == t}) | false |
Vale.Math.Bits.fst | Vale.Math.Bits.lemma_i2b_all | val lemma_i2b_all (_:unit) : Lemma lemmas_i2b_all | val lemma_i2b_all (_:unit) : Lemma lemmas_i2b_all | let lemma_i2b_all () =
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_uext #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_and #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_or #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_xor #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_shl #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_shr #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_add #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_sub #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_mul #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_div #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_mod #n a b);
() | {
"file_name": "vale/code/lib/math/Vale.Math.Bits.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 82,
"start_col": 0,
"start_line": 70
} | module Vale.Math.Bits
open FStar.Mul
let lemma_pow2_le m n = FStar.Math.Lemmas.pow2_le_compat n m
let lemma_i2b_eq #n a b =
assert_norm (b_i2b a == b_i2b b ==> int2bv a == int2bv b);
int2bv_lemma_2 #n a b
let lemma_i2b_uext #n m a =
Vale.Lib.Bv_s.int2bv_uext #n #m a (uext #n #m a);
assert_norm (b_i2b (uext #n #m a) == b_uext #n #m (b_i2b #n a))
let lemma_i2b_and #n a b =
int2bv_logand #n #a #b #(bvand #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logand #n a b) == b_and #n (b_i2b a) (b_i2b b))
let lemma_i2b_or #n a b =
int2bv_logor #n #a #b #(bvor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logor #n a b) == b_or #n (b_i2b a) (b_i2b b))
let lemma_i2b_xor #n a b =
int2bv_logxor #n #a #b #(bvxor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logxor #n a b) == b_xor #n (b_i2b a) (b_i2b b))
let lemma_i2b_shl #n a b =
int2bv_shl #n #a #b #(bvshl #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_left #n a b) == b_shl #n (b_i2b a) b)
let lemma_i2b_shr #n a b =
int2bv_shr #n #a #b #(bvshr #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_right #n a b) == b_shr #n (b_i2b a) b)
let lemma_i2b_add #n a b =
int2bv_add #n #a #b #(bvadd #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (add_mod #n a b) == b_add #n (b_i2b a) (b_i2b b))
let lemma_i2b_sub #n a b =
int2bv_sub #n #a #b #(bvsub #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (sub_mod #n a b) == b_sub #n (b_i2b a) (b_i2b b))
let lemma_i2b_mul #n a b =
int2bv_mul #n #a #b #(bvmul #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (mul_mod #n a b) == b_mul #n (b_i2b a) b)
let lemma_i2b_div #n a b =
int2bv_div #n #a #b #(bvdiv #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (udiv #n a b) == b_div #n (b_i2b a) b)
let lemma_i2b_mod #n a b =
int2bv_mod #n #a #b #(bvmod #n (int2bv #n a) b) ();
assert_norm (bvmod #n (int2bv a) b == b_mod #n (b_i2b a) b);
assert_norm (int2bv #n (mod #n a b) == b_i2b #n (mod #n a b));
()
let add_hide #n a b =
if a + b < pow2 n then FStar.Math.Lemmas.modulo_lemma (a + b) (pow2 n);
add_mod a b
let sub_hide #n a b =
if 0 <= a - b then FStar.Math.Lemmas.modulo_lemma (a - b) (pow2 n);
sub_mod a b
let mul_hide #n a b =
FStar.Math.Lemmas.nat_times_nat_is_nat a b;
if a * b < pow2 n then FStar.Math.Lemmas.modulo_lemma (a * b) (pow2 n);
assert_norm (mul_mod a b == (a * b) % pow2 n);
mul_mod a b | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Bv_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Bits.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.Math.Bits.lemmas_i2b_all) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"FStar.Classical.forall_intro_3",
"Prims.pos",
"FStar.UInt.uint_t",
"Prims.b2t",
"Prims.op_disEquality",
"Prims.int",
"Prims.eq2",
"FStar.BV.bv_t",
"Vale.Math.Bits.b_i2b",
"FStar.UInt.mod",
"Vale.Math.Bits.b_mod",
"Vale.Math.Bits.lemma_i2b_mod",
"FStar.UInt.udiv",
"Vale.Math.Bits.b_div",
"Vale.Math.Bits.lemma_i2b_div",
"FStar.UInt.mul_mod",
"Vale.Math.Bits.b_mul",
"Vale.Math.Bits.lemma_i2b_mul",
"FStar.UInt.sub_mod",
"Vale.Math.Bits.b_sub",
"Vale.Math.Bits.lemma_i2b_sub",
"FStar.UInt.add_mod",
"Vale.Math.Bits.b_add",
"Vale.Math.Bits.lemma_i2b_add",
"FStar.UInt.shift_right",
"Vale.Math.Bits.b_shr",
"Vale.Math.Bits.lemma_i2b_shr",
"FStar.UInt.shift_left",
"Vale.Math.Bits.b_shl",
"Vale.Math.Bits.lemma_i2b_shl",
"FStar.UInt.logxor",
"Vale.Math.Bits.b_xor",
"Vale.Math.Bits.lemma_i2b_xor",
"FStar.UInt.logor",
"Vale.Math.Bits.b_or",
"Vale.Math.Bits.lemma_i2b_or",
"FStar.UInt.logand",
"Vale.Math.Bits.b_and",
"Vale.Math.Bits.lemma_i2b_and",
"Prims.op_Addition",
"Vale.Math.Bits.uext",
"Vale.Math.Bits.b_uext",
"Vale.Math.Bits.lemma_i2b_uext"
] | [] | false | false | true | false | false | let lemma_i2b_all () =
| FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_uext #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_and #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_or #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_xor #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_shl #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_shr #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_add #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_sub #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_mul #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_div #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_mod #n a b);
() | false |
Vale.Math.Bits.fst | Vale.Math.Bits.lemma_bveq | val lemma_bveq (#n:pos) (a b:bv_t n) : Lemma
(requires bveq #n a b)
(ensures a == b) | val lemma_bveq (#n:pos) (a b:bv_t n) : Lemma
(requires bveq #n a b)
(ensures a == b) | let lemma_bveq #n a b =
let ia = bv2int a in
let ib = bv2int b in
int2bv_logxor #n #ia #ib #(bvxor a b) ();
int2bv_logxor #n #ia #ia #(bvxor a a) ();
assert (int2bv #n (logxor #n ia ib) == int2bv #n (logxor #n ia ia));
assert (bv2int (int2bv #n (logxor #n ia ib)) == logxor #n ia ib);
assert (bv2int (int2bv #n (logxor #n ia ia)) == logxor #n ia ia);
assert (logxor #n ia ib == logxor #n ia ia);
logxor_self ia;
logxor_neq_nonzero ia ib;
() | {
"file_name": "vale/code/lib/math/Vale.Math.Bits.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 103,
"start_col": 0,
"start_line": 92
} | module Vale.Math.Bits
open FStar.Mul
let lemma_pow2_le m n = FStar.Math.Lemmas.pow2_le_compat n m
let lemma_i2b_eq #n a b =
assert_norm (b_i2b a == b_i2b b ==> int2bv a == int2bv b);
int2bv_lemma_2 #n a b
let lemma_i2b_uext #n m a =
Vale.Lib.Bv_s.int2bv_uext #n #m a (uext #n #m a);
assert_norm (b_i2b (uext #n #m a) == b_uext #n #m (b_i2b #n a))
let lemma_i2b_and #n a b =
int2bv_logand #n #a #b #(bvand #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logand #n a b) == b_and #n (b_i2b a) (b_i2b b))
let lemma_i2b_or #n a b =
int2bv_logor #n #a #b #(bvor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logor #n a b) == b_or #n (b_i2b a) (b_i2b b))
let lemma_i2b_xor #n a b =
int2bv_logxor #n #a #b #(bvxor #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (logxor #n a b) == b_xor #n (b_i2b a) (b_i2b b))
let lemma_i2b_shl #n a b =
int2bv_shl #n #a #b #(bvshl #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_left #n a b) == b_shl #n (b_i2b a) b)
let lemma_i2b_shr #n a b =
int2bv_shr #n #a #b #(bvshr #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (shift_right #n a b) == b_shr #n (b_i2b a) b)
let lemma_i2b_add #n a b =
int2bv_add #n #a #b #(bvadd #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (add_mod #n a b) == b_add #n (b_i2b a) (b_i2b b))
let lemma_i2b_sub #n a b =
int2bv_sub #n #a #b #(bvsub #n (int2bv #n a) (int2bv #n b)) ();
assert_norm (b_i2b #n (sub_mod #n a b) == b_sub #n (b_i2b a) (b_i2b b))
let lemma_i2b_mul #n a b =
int2bv_mul #n #a #b #(bvmul #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (mul_mod #n a b) == b_mul #n (b_i2b a) b)
let lemma_i2b_div #n a b =
int2bv_div #n #a #b #(bvdiv #n (int2bv #n a) b) ();
assert_norm (b_i2b #n (udiv #n a b) == b_div #n (b_i2b a) b)
let lemma_i2b_mod #n a b =
int2bv_mod #n #a #b #(bvmod #n (int2bv #n a) b) ();
assert_norm (bvmod #n (int2bv a) b == b_mod #n (b_i2b a) b);
assert_norm (int2bv #n (mod #n a b) == b_i2b #n (mod #n a b));
()
let add_hide #n a b =
if a + b < pow2 n then FStar.Math.Lemmas.modulo_lemma (a + b) (pow2 n);
add_mod a b
let sub_hide #n a b =
if 0 <= a - b then FStar.Math.Lemmas.modulo_lemma (a - b) (pow2 n);
sub_mod a b
let mul_hide #n a b =
FStar.Math.Lemmas.nat_times_nat_is_nat a b;
if a * b < pow2 n then FStar.Math.Lemmas.modulo_lemma (a * b) (pow2 n);
assert_norm (mul_mod a b == (a * b) % pow2 n);
mul_mod a b
let lemma_i2b_all () =
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_uext #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_and #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_or #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_xor #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_shl #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_shr #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_add #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_sub #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_mul #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_div #n a b);
FStar.Classical.forall_intro_3 (fun n a b -> lemma_i2b_mod #n a b);
()
let lemma_i2b_with_all n p =
lemma_i2b_all ()
let lemma_i2b_equal #n x y =
lemma_i2b_all ();
lemma_i2b_eq x y | {
"checked_file": "/",
"dependencies": [
"Vale.Lib.Bv_s.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Bits.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: FStar.BV.bv_t n -> b: FStar.BV.bv_t n
-> FStar.Pervasives.Lemma (requires Vale.Math.Bits.bveq a b) (ensures a == b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"FStar.BV.bv_t",
"Prims.unit",
"FStar.UInt.logxor_neq_nonzero",
"FStar.UInt.logxor_self",
"Prims._assert",
"Prims.eq2",
"FStar.UInt.uint_t",
"FStar.UInt.logxor",
"FStar.BV.bv2int",
"FStar.BV.int2bv",
"FStar.BV.int2bv_logxor",
"FStar.BV.bvxor"
] | [] | true | false | true | false | false | let lemma_bveq #n a b =
| let ia = bv2int a in
let ib = bv2int b in
int2bv_logxor #n #ia #ib #(bvxor a b) ();
int2bv_logxor #n #ia #ia #(bvxor a a) ();
assert (int2bv #n (logxor #n ia ib) == int2bv #n (logxor #n ia ia));
assert (bv2int (int2bv #n (logxor #n ia ib)) == logxor #n ia ib);
assert (bv2int (int2bv #n (logxor #n ia ia)) == logxor #n ia ia);
assert (logxor #n ia ib == logxor #n ia ia);
logxor_self ia;
logxor_neq_nonzero ia ib;
() | false |
Pulse.Readback.fst | Pulse.Readback.readback_observability | val readback_observability (t: R.term) : option (obs: observability{elab_observability obs == t}) | val readback_observability (t: R.term) : option (obs: observability{elab_observability obs == t}) | let readback_observability (t:R.term)
: option (obs:observability { elab_observability obs == t })
= let open R in
match inspect_ln t with
| R.Tv_FVar fv ->
let fv_lid = inspect_fv fv in
if fv_lid = observable_lid
then Some Observable
else if fv_lid = unobservable_lid
then Some Unobservable
else if fv_lid = neutral_lid
then Some Neutral
else None
| _ -> None | {
"file_name": "lib/steel/pulse/Pulse.Readback.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 13,
"end_line": 44,
"start_col": 0,
"start_line": 31
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Readback
module R = FStar.Reflection.V2
open Pulse.Syntax.Base
open Pulse.Reflection.Util
module RU = Pulse.RuntimeUtils
module T = FStar.Tactics
module P = Pulse.Syntax.Printer
let debug_log (f: unit -> T.Tac unit) : T.Tac unit = if RU.debug_at_level_no_module "readback" then f()
let (let?) (f:option 'a) (g:'a -> option 'b) : option 'b =
match f with
| None -> None
| Some x -> g x | {
"checked_file": "/",
"dependencies": [
"Pulse.Syntax.Printer.fsti.checked",
"Pulse.Syntax.Base.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Readback.fst"
} | [
{
"abbrev": true,
"full_module": "Pulse.Syntax.Printer",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "FStar.Tactics",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate.Pure",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Base",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term
-> FStar.Pervasives.Native.option (obs:
Pulse.Syntax.Base.observability{Pulse.Elaborate.Pure.elab_observability obs == t}) | Prims.Tot | [
"total"
] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.V2.Builtins.inspect_ln",
"FStar.Stubs.Reflection.Types.fv",
"Prims.op_Equality",
"Prims.list",
"Prims.string",
"Pulse.Reflection.Util.observable_lid",
"FStar.Pervasives.Native.Some",
"Pulse.Syntax.Base.observability",
"Prims.eq2",
"Pulse.Elaborate.Pure.elab_observability",
"Pulse.Syntax.Base.Observable",
"Prims.bool",
"Pulse.Reflection.Util.unobservable_lid",
"Pulse.Syntax.Base.Unobservable",
"Pulse.Reflection.Util.neutral_lid",
"Pulse.Syntax.Base.Neutral",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option",
"FStar.Stubs.Reflection.Types.name",
"FStar.Stubs.Reflection.V2.Builtins.inspect_fv",
"FStar.Stubs.Reflection.V2.Data.term_view"
] | [] | false | false | false | false | false | let readback_observability (t: R.term) : option (obs: observability{elab_observability obs == t}) =
| let open R in
match inspect_ln t with
| R.Tv_FVar fv ->
let fv_lid = inspect_fv fv in
if fv_lid = observable_lid
then Some Observable
else
if fv_lid = unobservable_lid
then Some Unobservable
else if fv_lid = neutral_lid then Some Neutral else None
| _ -> None | false |
Hacl.Impl.Curve25519.Lemmas.fst | Hacl.Impl.Curve25519.Lemmas.lemma_nat_from_uints64_le_4 | val lemma_nat_from_uints64_le_4: b:lseq uint64 4 -> Lemma
(nat_from_intseq_le b == v b.[0] + v b.[1] * pow2 64 +
v b.[2] * pow2 64 * pow2 64 + v b.[3] * pow2 64 * pow2 64 * pow2 64) | val lemma_nat_from_uints64_le_4: b:lseq uint64 4 -> Lemma
(nat_from_intseq_le b == v b.[0] + v b.[1] * pow2 64 +
v b.[2] * pow2 64 * pow2 64 + v b.[3] * pow2 64 * pow2 64 * pow2 64) | let lemma_nat_from_uints64_le_4 b =
let res = nat_from_intseq_le b in
nat_from_intseq_le_slice_lemma b 1;
nat_from_intseq_le_lemma0 (Seq.slice b 0 1);
assert (res == v b.[0] + pow2 64 * (nat_from_intseq_le (Seq.slice b 1 4)));
nat_from_intseq_le_slice_lemma #U64 #SEC #3 (Seq.slice b 1 4) 1;
nat_from_intseq_le_lemma0 (Seq.slice b 1 2);
assert (nat_from_intseq_le (Seq.slice b 1 4) == v b.[1] + pow2 64 * (nat_from_intseq_le (Seq.slice b 2 4)));
nat_from_intseq_le_slice_lemma #U64 #SEC #2 (Seq.slice b 2 4) 1;
nat_from_intseq_le_lemma0 (Seq.slice b 2 3);
assert (nat_from_intseq_le (Seq.slice b 2 4) == v b.[2] + pow2 64 * (nat_from_intseq_le (Seq.slice b 3 4)));
nat_from_intseq_le_lemma0 (Seq.slice b 3 4);
assert (res == v b.[0] + pow2 64 * (v b.[1] + pow2 64 * (v b.[2] + pow2 64 * v b.[3]))) | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 89,
"end_line": 29,
"start_col": 0,
"start_line": 14
} | module Hacl.Impl.Curve25519.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val lemma_nat_from_uints64_le_4: b:lseq uint64 4 -> Lemma
(nat_from_intseq_le b == v b.[0] + v b.[1] * pow2 64 +
v b.[2] * pow2 64 * pow2 64 + v b.[3] * pow2 64 * pow2 64 * pow2 64) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Sequence.lseq Lib.IntTypes.uint64 4
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_le b ==
Lib.IntTypes.v b.[ 0 ] + Lib.IntTypes.v b.[ 1 ] * Prims.pow2 64 +
(Lib.IntTypes.v b.[ 2 ] * Prims.pow2 64) * Prims.pow2 64 +
((Lib.IntTypes.v b.[ 3 ] * Prims.pow2 64) * Prims.pow2 64) * Prims.pow2 64) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.Sequence.lseq",
"Lib.IntTypes.uint64",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.Sequence.op_String_Access",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.unit",
"Lib.ByteSequence.nat_from_intseq_le_lemma0",
"FStar.Seq.Base.slice",
"Lib.ByteSequence.nat_from_intseq_le",
"Lib.ByteSequence.nat_from_intseq_le_slice_lemma",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Multiply",
"Lib.Sequence.length",
"Lib.IntTypes.int_t"
] | [] | true | false | true | false | false | let lemma_nat_from_uints64_le_4 b =
| let res = nat_from_intseq_le b in
nat_from_intseq_le_slice_lemma b 1;
nat_from_intseq_le_lemma0 (Seq.slice b 0 1);
assert (res == v b.[ 0 ] + pow2 64 * (nat_from_intseq_le (Seq.slice b 1 4)));
nat_from_intseq_le_slice_lemma #U64 #SEC #3 (Seq.slice b 1 4) 1;
nat_from_intseq_le_lemma0 (Seq.slice b 1 2);
assert (nat_from_intseq_le (Seq.slice b 1 4) ==
v b.[ 1 ] + pow2 64 * (nat_from_intseq_le (Seq.slice b 2 4)));
nat_from_intseq_le_slice_lemma #U64 #SEC #2 (Seq.slice b 2 4) 1;
nat_from_intseq_le_lemma0 (Seq.slice b 2 3);
assert (nat_from_intseq_le (Seq.slice b 2 4) ==
v b.[ 2 ] + pow2 64 * (nat_from_intseq_le (Seq.slice b 3 4)));
nat_from_intseq_le_lemma0 (Seq.slice b 3 4);
assert (res == v b.[ 0 ] + pow2 64 * (v b.[ 1 ] + pow2 64 * (v b.[ 2 ] + pow2 64 * v b.[ 3 ]))) | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.serialize32_flbytes | val serialize32_flbytes (sz: nat{sz < 4294967296}) : Tot (serializer32 (serialize_flbytes sz)) | val serialize32_flbytes (sz: nat{sz < 4294967296}) : Tot (serializer32 (serialize_flbytes sz)) | let serialize32_flbytes
(sz: nat { sz < 4294967296 } )
: Tot (serializer32 (serialize_flbytes sz))
= fun (input: B32.lbytes sz) ->
B32.hide_reveal input;
(input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } )) | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 88,
"end_line": 43,
"start_col": 0,
"start_line": 38
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32
inline_for_extraction
let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_flbytes
(sz: nat)
(sz' : U32.t { U32.v sz' == sz } )
: Tot (
lt_pow2_32 sz;
parser32 (parse_flbytes sz)
)
= lt_pow2_32 sz;
make_total_constant_size_parser32
sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | sz: Prims.nat{sz < 4294967296}
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.Bytes.serialize_flbytes sz) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Bytes.lbytes",
"LowParse.SLow.Base.bytes32",
"LowParse.SLow.Base.serializer32_correct",
"LowParse.Spec.Base.total_constant_size_parser_kind",
"LowParse.Spec.Bytes.parse_flbytes",
"LowParse.Spec.Bytes.serialize_flbytes",
"Prims.unit",
"FStar.Bytes.hide_reveal",
"LowParse.SLow.Base.serializer32"
] | [] | false | false | false | false | false | let serialize32_flbytes (sz: nat{sz < 4294967296}) : Tot (serializer32 (serialize_flbytes sz)) =
| fun (input: B32.lbytes sz) ->
B32.hide_reveal input;
(input <: (res: bytes32{serializer32_correct (serialize_flbytes sz) input res})) | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.serialize32_all_bytes | val serialize32_all_bytes:serializer32 serialize_all_bytes | val serialize32_all_bytes:serializer32 serialize_all_bytes | let serialize32_all_bytes
: serializer32 serialize_all_bytes
= fun (input: B32.bytes) ->
(input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } )) | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 83,
"end_line": 56,
"start_col": 0,
"start_line": 53
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32
inline_for_extraction
let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_flbytes
(sz: nat)
(sz' : U32.t { U32.v sz' == sz } )
: Tot (
lt_pow2_32 sz;
parser32 (parse_flbytes sz)
)
= lt_pow2_32 sz;
make_total_constant_size_parser32
sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz)
inline_for_extraction
let serialize32_flbytes
(sz: nat { sz < 4294967296 } )
: Tot (serializer32 (serialize_flbytes sz))
= fun (input: B32.lbytes sz) ->
B32.hide_reveal input;
(input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } ))
inline_for_extraction
let parse32_all_bytes
: parser32 parse_all_bytes
= fun (input: B32.bytes) ->
let res = Some (input, B32.len input) in
(res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } )) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | LowParse.SLow.Base.serializer32 LowParse.Spec.Bytes.serialize_all_bytes | Prims.Tot | [
"total"
] | [] | [
"FStar.Bytes.bytes",
"LowParse.SLow.Base.bytes32",
"LowParse.SLow.Base.serializer32_correct",
"LowParse.Spec.Bytes.parse_all_bytes_kind",
"LowParse.Spec.Bytes.parse_all_bytes",
"LowParse.Spec.Bytes.serialize_all_bytes"
] | [] | false | false | false | true | false | let serialize32_all_bytes:serializer32 serialize_all_bytes =
| fun (input: B32.bytes) ->
(input <: (res: bytes32{serializer32_correct serialize_all_bytes input res})) | false |
Pulse.Typing.Printer.fst | Pulse.Typing.Printer.print_st_typing | val print_st_typing (#g #t #c: _) (d: st_typing g t c) : T.Tac string | val print_st_typing (#g #t #c: _) (d: st_typing g t c) : T.Tac string | let rec print_st_typing #g #t #c (d:st_typing g t c)
: T.Tac string
= match d with
| T_Abs g x q b u body c tt body_typing ->
Printf.sprintf "(T_Abs ... %s)" (print_st_typing body_typing)
| T_STApp _ _ _ _ _ _ _ _ ->
"T_STApp"
| T_Return _ _ _ _ _ _ _ _ _ _ _ ->
"T_Return"
| T_Lift _ _ _ _ d _ ->
Printf.sprintf "(T_Lift %s)" (print_st_typing d)
| T_Bind g e1 e2 c1 c2 b x c d1 _ d2 _ ->
Printf.sprintf "(T_Bind %s %s)" (print_st_typing d1) (print_st_typing d2)
| T_Frame g e c frame _ body ->
Printf.sprintf "(T_Frame %s %s)" (Pulse.Syntax.Printer.term_to_string frame) (print_st_typing body)
| T_If _ _ _ _ _ _ _ _ _ _ ->
"T_If"
| T_Match _ _ _ _ _ _ _ _ _ _ _ ->
"T_Match"
| T_Equiv g e c c' d eq ->
Printf.sprintf "(T_Equiv %s)"
(print_st_typing d)
// Printf.sprintf "(T_Equiv \n\t{%s}\n\t{%s}\n\t %s)"
// (Pulse.Syntax.Printer.comp_to_string c)
// (Pulse.Syntax.Printer.comp_to_string c')
// (print_st_typing d)
| T_IntroPure _ _ _ _ ->
"T_IntroPure"
| T_Rewrite _ _ _ _ _ ->
"T_Rewrite"
| _ -> "<UNK>" | {
"file_name": "lib/steel/pulse/Pulse.Typing.Printer.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 18,
"end_line": 65,
"start_col": 0,
"start_line": 24
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Typing.Printer
module T = FStar.Tactics
open Pulse.Syntax.Printer
open Pulse.Typing | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Printer.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Typing.Printer.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax.Printer",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | d: Pulse.Typing.st_typing g t c -> FStar.Tactics.Effect.Tac Prims.string | FStar.Tactics.Effect.Tac | [] | [] | [
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.st_term",
"Pulse.Syntax.Base.comp",
"Pulse.Typing.st_typing",
"Pulse.Syntax.Base.var",
"Prims.b2t",
"FStar.Pervasives.Native.uu___is_None",
"Pulse.Syntax.Base.typ",
"Pulse.Typing.Env.lookup",
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.qualifier",
"Pulse.Syntax.Base.binder",
"Pulse.Syntax.Base.universe",
"Prims.l_not",
"FStar.Set.mem",
"Pulse.Syntax.Naming.freevars_st",
"Pulse.Typing.tot_typing",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty",
"Pulse.Syntax.Pure.tm_type",
"Pulse.Typing.Env.push_binding",
"Pulse.Syntax.Base.ppname_default",
"Pulse.Syntax.Naming.open_st_term_nv",
"FStar.Pervasives.Native.Mktuple2",
"Pulse.Syntax.Base.ppname",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ppname",
"FStar.Printf.sprintf",
"Prims.string",
"Pulse.Typing.Printer.print_st_typing",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.comp_st",
"Pulse.Syntax.Pure.tm_arrow",
"Pulse.Syntax.Base.as_binder",
"Pulse.Syntax.Base.ctag",
"Prims.bool",
"Prims.l_and",
"Pulse.Syntax.Naming.freevars",
"Pulse.Typing.universe_of",
"Pulse.Typing.typing",
"Pulse.Typing.eff_of_ctag",
"Pulse.Syntax.Naming.open_term",
"Pulse.Syntax.Base.tm_vprop",
"Pulse.Typing.lift_comp",
"Prims.eq2",
"Pulse.Syntax.Base.comp_res",
"Pulse.Syntax.Base.comp_u",
"Pulse.Typing.bind_comp",
"Pulse.Syntax.Printer.term_to_string",
"FStar.Set.union",
"Pulse.Typing.tm_bool",
"Pulse.Typing.mk_eq2",
"Pulse.Syntax.Pure.u0",
"Pulse.Typing.tm_true",
"Pulse.Typing.tm_false",
"Pulse.Typing.my_erased",
"Pulse.Typing.comp_typing_u",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"Pulse.Syntax.Base.pattern",
"Pulse.Typing.brs_typing",
"Pulse.Typing.pats_complete",
"FStar.List.Tot.Base.map",
"FStar.Stubs.Reflection.V2.Data.pattern",
"Pulse.Elaborate.Pure.elab_pat",
"Pulse.Typing.st_equiv",
"Pulse.Typing.tm_prop",
"Pulse.Typing.prop_validity",
"Pulse.Syntax.Base.vprop",
"Pulse.Typing.vprop_equiv"
] | [
"recursion"
] | false | true | false | false | false | let rec print_st_typing #g #t #c (d: st_typing g t c) : T.Tac string =
| match d with
| T_Abs g x q b u body c tt body_typing ->
Printf.sprintf "(T_Abs ... %s)" (print_st_typing body_typing)
| T_STApp _ _ _ _ _ _ _ _ -> "T_STApp"
| T_Return _ _ _ _ _ _ _ _ _ _ _ -> "T_Return"
| T_Lift _ _ _ _ d _ -> Printf.sprintf "(T_Lift %s)" (print_st_typing d)
| T_Bind g e1 e2 c1 c2 b x c d1 _ d2 _ ->
Printf.sprintf "(T_Bind %s %s)" (print_st_typing d1) (print_st_typing d2)
| T_Frame g e c frame _ body ->
Printf.sprintf "(T_Frame %s %s)"
(Pulse.Syntax.Printer.term_to_string frame)
(print_st_typing body)
| T_If _ _ _ _ _ _ _ _ _ _ -> "T_If"
| T_Match _ _ _ _ _ _ _ _ _ _ _ -> "T_Match"
| T_Equiv g e c c' d eq -> Printf.sprintf "(T_Equiv %s)" (print_st_typing d)
| T_IntroPure _ _ _ _ -> "T_IntroPure"
| T_Rewrite _ _ _ _ _ -> "T_Rewrite"
| _ -> "<UNK>" | false |
Vale.AES.PPC64LE.GF128_Init.fsti | Vale.AES.PPC64LE.GF128_Init.va_ens_Keyhash_init | val va_ens_Keyhash_init
(va_b0: va_code)
(va_s0: va_state)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
(va_sM: va_state)
(va_fM: va_fuel)
: prop | val va_ens_Keyhash_init
(va_b0: va_code)
(va_s0: va_state)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
(va_sM: va_state)
(va_fM: va_fuel)
: prop | let va_ens_Keyhash_init (va_b0:va_code) (va_s0:va_state) (alg:algorithm) (key:(seq nat32))
(roundkeys_b:buffer128) (hkeys_b:buffer128) (va_sM:va_state) (va_fM:va_fuel) : prop =
(va_req_Keyhash_init va_b0 va_s0 alg key roundkeys_b hkeys_b /\ va_ensure_total va_b0 va_s0 va_sM
va_fM /\ va_get_ok va_sM /\ Vale.PPC64LE.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0)
(va_get_mem va_sM) /\ Vale.AES.OptPublic_BE.hkeys_reqs_pub
(Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128 (va_get_mem va_sM) hkeys_b))
(Vale.AES.AES_BE_s.aes_encrypt_word alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0
0 0 0)) /\ va_state_eq va_sM (va_update_vec 6 va_sM (va_update_vec 5 va_sM (va_update_vec 4
va_sM (va_update_vec 3 va_sM (va_update_vec 2 va_sM (va_update_vec 1 va_sM (va_update_vec 0
va_sM (va_update_reg 10 va_sM (va_update_mem_layout va_sM (va_update_mem_heaplet 1 va_sM
(va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))))) | {
"file_name": "obj/Vale.AES.PPC64LE.GF128_Init.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 63,
"end_line": 57,
"start_col": 0,
"start_line": 47
} | module Vale.AES.PPC64LE.GF128_Init
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open FStar.Seq
open Vale.Arch.Types
open Vale.Arch.HeapImpl
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.Math.Poly2.Lemmas
open Vale.AES.GF128_s
open Vale.AES.GF128
open Vale.AES.GHash_BE
open Vale.AES.AES_BE_s
open Vale.AES.AES256_helpers_BE
open Vale.AES.PPC64LE.AES
open Vale.PPC64LE.Machine_s
open Vale.PPC64LE.Memory
open Vale.PPC64LE.State
open Vale.PPC64LE.Decls
open Vale.PPC64LE.InsBasic
open Vale.PPC64LE.InsMem
open Vale.PPC64LE.InsVector
open Vale.PPC64LE.QuickCode
open Vale.PPC64LE.QuickCodes
open Vale.AES.PPC64LE.PolyOps
open Vale.AES.PPC64LE.GF128_Mul
open Vale.AES.OptPublic_BE
//-- Keyhash_init
val va_code_Keyhash_init : alg:algorithm -> Tot va_code
val va_codegen_success_Keyhash_init : alg:algorithm -> Tot va_pbool
let va_req_Keyhash_init (va_b0:va_code) (va_s0:va_state) (alg:algorithm) (key:(seq nat32))
(roundkeys_b:buffer128) (hkeys_b:buffer128) : prop =
(va_require_total va_b0 (va_code_Keyhash_init alg) va_s0 /\ va_get_ok va_s0 /\
Vale.PPC64LE.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (alg =
AES_128 \/ alg = AES_256) /\ Vale.PPC64LE.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\
Vale.AES.AES_BE_s.is_aes_key_word alg key /\ Vale.Arch.Types.reverse_bytes_quad32_seq
(Vale.PPC64LE.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b) ==
Vale.AES.AES_BE_s.key_to_round_keys_word alg key /\ Vale.PPC64LE.Decls.validSrcAddrs128
(va_get_mem va_s0) (va_get_reg 4 va_s0) roundkeys_b (Vale.AES.AES_common_s.nr alg + 1)
(va_get_mem_layout va_s0) Secret /\ Vale.PPC64LE.Decls.validDstAddrs128 (va_get_mem va_s0) | {
"checked_file": "/",
"dependencies": [
"Vale.PPC64LE.State.fsti.checked",
"Vale.PPC64LE.QuickCodes.fsti.checked",
"Vale.PPC64LE.QuickCode.fst.checked",
"Vale.PPC64LE.Memory.fsti.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"Vale.PPC64LE.InsVector.fsti.checked",
"Vale.PPC64LE.InsMem.fsti.checked",
"Vale.PPC64LE.InsBasic.fsti.checked",
"Vale.PPC64LE.Decls.fsti.checked",
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"Vale.AES.PPC64LE.PolyOps.fsti.checked",
"Vale.AES.PPC64LE.GF128_Mul.fsti.checked",
"Vale.AES.PPC64LE.AES.fsti.checked",
"Vale.AES.OptPublic_BE.fsti.checked",
"Vale.AES.GHash_BE.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.AES_common_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"Vale.AES.AES256_helpers_BE.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.PPC64LE.GF128_Init.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE.GF128_Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE.PolyOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES256_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
va_b0: Vale.PPC64LE.Decls.va_code ->
va_s0: Vale.PPC64LE.Decls.va_state ->
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.PPC64LE.Memory.nat32 ->
roundkeys_b: Vale.PPC64LE.Memory.buffer128 ->
hkeys_b: Vale.PPC64LE.Memory.buffer128 ->
va_sM: Vale.PPC64LE.Decls.va_state ->
va_fM: Vale.PPC64LE.Decls.va_fuel
-> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"Vale.PPC64LE.Decls.va_code",
"Vale.PPC64LE.Decls.va_state",
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.PPC64LE.Memory.nat32",
"Vale.PPC64LE.Memory.buffer128",
"Vale.PPC64LE.Decls.va_fuel",
"Prims.l_and",
"Vale.AES.PPC64LE.GF128_Init.va_req_Keyhash_init",
"Vale.PPC64LE.Decls.va_ensure_total",
"Prims.b2t",
"Vale.PPC64LE.Decls.va_get_ok",
"Vale.PPC64LE.Decls.modifies_buffer128",
"Vale.PPC64LE.Decls.va_get_mem",
"Vale.AES.OptPublic_BE.hkeys_reqs_pub",
"Vale.Arch.Types.reverse_bytes_quad32_seq",
"Vale.PPC64LE.Decls.s128",
"Vale.AES.AES_BE_s.aes_encrypt_word",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Vale.PPC64LE.Decls.va_state_eq",
"Vale.PPC64LE.Decls.va_update_vec",
"Vale.PPC64LE.Decls.va_update_reg",
"Vale.PPC64LE.Decls.va_update_mem_layout",
"Vale.PPC64LE.Decls.va_update_mem_heaplet",
"Vale.PPC64LE.Decls.va_update_ok",
"Vale.PPC64LE.Decls.va_update_mem",
"Prims.prop"
] | [] | false | false | false | true | true | let va_ens_Keyhash_init
(va_b0: va_code)
(va_s0: va_state)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
(va_sM: va_state)
(va_fM: va_fuel)
: prop =
| (va_req_Keyhash_init va_b0 va_s0 alg key roundkeys_b hkeys_b /\
va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
Vale.PPC64LE.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\
Vale.AES.OptPublic_BE.hkeys_reqs_pub (Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128
(va_get_mem va_sM)
hkeys_b))
(Vale.AES.AES_BE_s.aes_encrypt_word alg
key
(Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0)) /\
va_state_eq va_sM
(va_update_vec 6
va_sM
(va_update_vec 5
va_sM
(va_update_vec 4
va_sM
(va_update_vec 3
va_sM
(va_update_vec 2
va_sM
(va_update_vec 1
va_sM
(va_update_vec 0
va_sM
(va_update_reg 10
va_sM
(va_update_mem_layout va_sM
(va_update_mem_heaplet 1
va_sM
(va_update_ok va_sM (va_update_mem va_sM va_s0))))))))))
))) | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.parse32_flbytes_gen | val parse32_flbytes_gen (sz: nat{sz < 4294967296}) (x: B32.lbytes sz)
: Tot (y: B32.lbytes sz {y == parse_flbytes_gen sz (B32.reveal x)}) | val parse32_flbytes_gen (sz: nat{sz < 4294967296}) (x: B32.lbytes sz)
: Tot (y: B32.lbytes sz {y == parse_flbytes_gen sz (B32.reveal x)}) | let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 3,
"end_line": 16,
"start_col": 0,
"start_line": 11
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | sz: Prims.nat{sz < 4294967296} -> x: FStar.Bytes.lbytes sz
-> y: FStar.Bytes.lbytes sz {y == LowParse.Spec.Bytes.parse_flbytes_gen sz (FStar.Bytes.reveal x)} | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Bytes.lbytes",
"Prims.unit",
"FStar.Bytes.hide_reveal",
"Prims.eq2",
"LowParse.Spec.Bytes.parse_flbytes_gen",
"FStar.Bytes.reveal"
] | [] | false | false | false | false | false | let parse32_flbytes_gen (sz: nat{sz < 4294967296}) (x: B32.lbytes sz)
: Tot (y: B32.lbytes sz {y == parse_flbytes_gen sz (B32.reveal x)}) =
| B32.hide_reveal x;
x | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.parse32_bounded_vlbytes | val parse32_bounded_vlbytes
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
: Tot (parser32 (parse_bounded_vlbytes min max)) | val parse32_bounded_vlbytes
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
: Tot (parser32 (parse_bounded_vlbytes min max)) | let parse32_bounded_vlbytes
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
: Tot (parser32 (parse_bounded_vlbytes min max))
= parse32_bounded_vlbytes' min min32 max max32 (log256' max) | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 60,
"end_line": 80,
"start_col": 0,
"start_line": 74
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32
inline_for_extraction
let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_flbytes
(sz: nat)
(sz' : U32.t { U32.v sz' == sz } )
: Tot (
lt_pow2_32 sz;
parser32 (parse_flbytes sz)
)
= lt_pow2_32 sz;
make_total_constant_size_parser32
sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz)
inline_for_extraction
let serialize32_flbytes
(sz: nat { sz < 4294967296 } )
: Tot (serializer32 (serialize_flbytes sz))
= fun (input: B32.lbytes sz) ->
B32.hide_reveal input;
(input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } ))
inline_for_extraction
let parse32_all_bytes
: parser32 parse_all_bytes
= fun (input: B32.bytes) ->
let res = Some (input, B32.len input) in
(res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } ))
inline_for_extraction
let serialize32_all_bytes
: serializer32 serialize_all_bytes
= fun (input: B32.bytes) ->
(input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } ))
inline_for_extraction
let parse32_bounded_vlbytes'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (parser32 (parse_bounded_vlbytes' min max l))
= parse32_synth
_
(synth_bounded_vlbytes min max)
(fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes)
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max}
-> LowParse.SLow.Base.parser32 (LowParse.Spec.Bytes.parse_bounded_vlbytes min max) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.SLow.Bytes.parse32_bounded_vlbytes'",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.SLow.Base.parser32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.Bytes.parse_all_bytes_kind",
"LowParse.Spec.Bytes.parse_bounded_vlbytes_t",
"LowParse.Spec.Bytes.parse_bounded_vlbytes"
] | [] | false | false | false | false | false | let parse32_bounded_vlbytes
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
: Tot (parser32 (parse_bounded_vlbytes min max)) =
| parse32_bounded_vlbytes' min min32 max max32 (log256' max) | false |
Vale.AES.PPC64LE.GF128_Init.fsti | Vale.AES.PPC64LE.GF128_Init.va_req_Keyhash_init | val va_req_Keyhash_init
(va_b0: va_code)
(va_s0: va_state)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
: prop | val va_req_Keyhash_init
(va_b0: va_code)
(va_s0: va_state)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
: prop | let va_req_Keyhash_init (va_b0:va_code) (va_s0:va_state) (alg:algorithm) (key:(seq nat32))
(roundkeys_b:buffer128) (hkeys_b:buffer128) : prop =
(va_require_total va_b0 (va_code_Keyhash_init alg) va_s0 /\ va_get_ok va_s0 /\
Vale.PPC64LE.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (alg =
AES_128 \/ alg = AES_256) /\ Vale.PPC64LE.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\
Vale.AES.AES_BE_s.is_aes_key_word alg key /\ Vale.Arch.Types.reverse_bytes_quad32_seq
(Vale.PPC64LE.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b) ==
Vale.AES.AES_BE_s.key_to_round_keys_word alg key /\ Vale.PPC64LE.Decls.validSrcAddrs128
(va_get_mem va_s0) (va_get_reg 4 va_s0) roundkeys_b (Vale.AES.AES_common_s.nr alg + 1)
(va_get_mem_layout va_s0) Secret /\ Vale.PPC64LE.Decls.validDstAddrs128 (va_get_mem va_s0)
(va_get_reg 3 va_s0) hkeys_b 3 (va_get_mem_layout va_s0) Secret) | {
"file_name": "obj/Vale.AES.PPC64LE.GF128_Init.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 68,
"end_line": 46,
"start_col": 0,
"start_line": 36
} | module Vale.AES.PPC64LE.GF128_Init
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open FStar.Seq
open Vale.Arch.Types
open Vale.Arch.HeapImpl
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.Math.Poly2.Lemmas
open Vale.AES.GF128_s
open Vale.AES.GF128
open Vale.AES.GHash_BE
open Vale.AES.AES_BE_s
open Vale.AES.AES256_helpers_BE
open Vale.AES.PPC64LE.AES
open Vale.PPC64LE.Machine_s
open Vale.PPC64LE.Memory
open Vale.PPC64LE.State
open Vale.PPC64LE.Decls
open Vale.PPC64LE.InsBasic
open Vale.PPC64LE.InsMem
open Vale.PPC64LE.InsVector
open Vale.PPC64LE.QuickCode
open Vale.PPC64LE.QuickCodes
open Vale.AES.PPC64LE.PolyOps
open Vale.AES.PPC64LE.GF128_Mul
open Vale.AES.OptPublic_BE
//-- Keyhash_init
val va_code_Keyhash_init : alg:algorithm -> Tot va_code | {
"checked_file": "/",
"dependencies": [
"Vale.PPC64LE.State.fsti.checked",
"Vale.PPC64LE.QuickCodes.fsti.checked",
"Vale.PPC64LE.QuickCode.fst.checked",
"Vale.PPC64LE.Memory.fsti.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"Vale.PPC64LE.InsVector.fsti.checked",
"Vale.PPC64LE.InsMem.fsti.checked",
"Vale.PPC64LE.InsBasic.fsti.checked",
"Vale.PPC64LE.Decls.fsti.checked",
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"Vale.AES.PPC64LE.PolyOps.fsti.checked",
"Vale.AES.PPC64LE.GF128_Mul.fsti.checked",
"Vale.AES.PPC64LE.AES.fsti.checked",
"Vale.AES.OptPublic_BE.fsti.checked",
"Vale.AES.GHash_BE.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.AES_common_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"Vale.AES.AES256_helpers_BE.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.PPC64LE.GF128_Init.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE.GF128_Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE.PolyOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES256_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
va_b0: Vale.PPC64LE.Decls.va_code ->
va_s0: Vale.PPC64LE.Decls.va_state ->
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.PPC64LE.Memory.nat32 ->
roundkeys_b: Vale.PPC64LE.Memory.buffer128 ->
hkeys_b: Vale.PPC64LE.Memory.buffer128
-> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"Vale.PPC64LE.Decls.va_code",
"Vale.PPC64LE.Decls.va_state",
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.PPC64LE.Memory.nat32",
"Vale.PPC64LE.Memory.buffer128",
"Prims.l_and",
"Vale.PPC64LE.Decls.va_require_total",
"Vale.AES.PPC64LE.GF128_Init.va_code_Keyhash_init",
"Prims.b2t",
"Vale.PPC64LE.Decls.va_get_ok",
"Vale.PPC64LE.Memory.is_initial_heap",
"Vale.PPC64LE.Decls.va_get_mem_layout",
"Vale.PPC64LE.Decls.va_get_mem",
"Prims.l_or",
"Prims.op_Equality",
"Vale.AES.AES_common_s.AES_128",
"Vale.AES.AES_common_s.AES_256",
"Vale.PPC64LE.Decls.buffers_disjoint128",
"Vale.AES.AES_BE_s.is_aes_key_word",
"Prims.eq2",
"Vale.Def.Types_s.quad32",
"Vale.Arch.Types.reverse_bytes_quad32_seq",
"Vale.PPC64LE.Decls.buffer128_as_seq",
"Vale.AES.AES_BE_s.key_to_round_keys_word",
"Vale.PPC64LE.Decls.validSrcAddrs128",
"Vale.PPC64LE.Decls.va_get_reg",
"Prims.op_Addition",
"Vale.AES.AES_common_s.nr",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.PPC64LE.Decls.validDstAddrs128",
"Prims.prop"
] | [] | false | false | false | true | true | let va_req_Keyhash_init
(va_b0: va_code)
(va_s0: va_state)
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
: prop =
| (va_require_total va_b0 (va_code_Keyhash_init alg) va_s0 /\ va_get_ok va_s0 /\
Vale.PPC64LE.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\
(alg = AES_128 \/ alg = AES_256) /\ Vale.PPC64LE.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\
Vale.AES.AES_BE_s.is_aes_key_word alg key /\
Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.buffer128_as_seq (va_get_mem va_s0)
roundkeys_b) ==
Vale.AES.AES_BE_s.key_to_round_keys_word alg key /\
Vale.PPC64LE.Decls.validSrcAddrs128 (va_get_mem va_s0)
(va_get_reg 4 va_s0)
roundkeys_b
(Vale.AES.AES_common_s.nr alg + 1)
(va_get_mem_layout va_s0)
Secret /\
Vale.PPC64LE.Decls.validDstAddrs128 (va_get_mem va_s0)
(va_get_reg 3 va_s0)
hkeys_b
3
(va_get_mem_layout va_s0)
Secret) | false |
Vale.AES.PPC64LE.GF128_Init.fsti | Vale.AES.PPC64LE.GF128_Init.va_quick_Keyhash_init | val va_quick_Keyhash_init (alg: algorithm) (key: (seq nat32)) (roundkeys_b hkeys_b: buffer128)
: (va_quickCode unit (va_code_Keyhash_init alg)) | val va_quick_Keyhash_init (alg: algorithm) (key: (seq nat32)) (roundkeys_b hkeys_b: buffer128)
: (va_quickCode unit (va_code_Keyhash_init alg)) | let va_quick_Keyhash_init (alg:algorithm) (key:(seq nat32)) (roundkeys_b:buffer128)
(hkeys_b:buffer128) : (va_quickCode unit (va_code_Keyhash_init alg)) =
(va_QProc (va_code_Keyhash_init alg) ([va_Mod_vec 6; va_Mod_vec 5; va_Mod_vec 4; va_Mod_vec 3;
va_Mod_vec 2; va_Mod_vec 1; va_Mod_vec 0; va_Mod_reg 10; va_Mod_mem_layout; va_Mod_mem_heaplet
1; va_Mod_mem]) (va_wp_Keyhash_init alg key roundkeys_b hkeys_b) (va_wpProof_Keyhash_init alg
key roundkeys_b hkeys_b)) | {
"file_name": "obj/Vale.AES.PPC64LE.GF128_Init.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 116,
"start_col": 0,
"start_line": 111
} | module Vale.AES.PPC64LE.GF128_Init
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open FStar.Seq
open Vale.Arch.Types
open Vale.Arch.HeapImpl
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.Math.Poly2.Lemmas
open Vale.AES.GF128_s
open Vale.AES.GF128
open Vale.AES.GHash_BE
open Vale.AES.AES_BE_s
open Vale.AES.AES256_helpers_BE
open Vale.AES.PPC64LE.AES
open Vale.PPC64LE.Machine_s
open Vale.PPC64LE.Memory
open Vale.PPC64LE.State
open Vale.PPC64LE.Decls
open Vale.PPC64LE.InsBasic
open Vale.PPC64LE.InsMem
open Vale.PPC64LE.InsVector
open Vale.PPC64LE.QuickCode
open Vale.PPC64LE.QuickCodes
open Vale.AES.PPC64LE.PolyOps
open Vale.AES.PPC64LE.GF128_Mul
open Vale.AES.OptPublic_BE
//-- Keyhash_init
val va_code_Keyhash_init : alg:algorithm -> Tot va_code
val va_codegen_success_Keyhash_init : alg:algorithm -> Tot va_pbool
let va_req_Keyhash_init (va_b0:va_code) (va_s0:va_state) (alg:algorithm) (key:(seq nat32))
(roundkeys_b:buffer128) (hkeys_b:buffer128) : prop =
(va_require_total va_b0 (va_code_Keyhash_init alg) va_s0 /\ va_get_ok va_s0 /\
Vale.PPC64LE.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (alg =
AES_128 \/ alg = AES_256) /\ Vale.PPC64LE.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\
Vale.AES.AES_BE_s.is_aes_key_word alg key /\ Vale.Arch.Types.reverse_bytes_quad32_seq
(Vale.PPC64LE.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b) ==
Vale.AES.AES_BE_s.key_to_round_keys_word alg key /\ Vale.PPC64LE.Decls.validSrcAddrs128
(va_get_mem va_s0) (va_get_reg 4 va_s0) roundkeys_b (Vale.AES.AES_common_s.nr alg + 1)
(va_get_mem_layout va_s0) Secret /\ Vale.PPC64LE.Decls.validDstAddrs128 (va_get_mem va_s0)
(va_get_reg 3 va_s0) hkeys_b 3 (va_get_mem_layout va_s0) Secret)
let va_ens_Keyhash_init (va_b0:va_code) (va_s0:va_state) (alg:algorithm) (key:(seq nat32))
(roundkeys_b:buffer128) (hkeys_b:buffer128) (va_sM:va_state) (va_fM:va_fuel) : prop =
(va_req_Keyhash_init va_b0 va_s0 alg key roundkeys_b hkeys_b /\ va_ensure_total va_b0 va_s0 va_sM
va_fM /\ va_get_ok va_sM /\ Vale.PPC64LE.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0)
(va_get_mem va_sM) /\ Vale.AES.OptPublic_BE.hkeys_reqs_pub
(Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128 (va_get_mem va_sM) hkeys_b))
(Vale.AES.AES_BE_s.aes_encrypt_word alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0
0 0 0)) /\ va_state_eq va_sM (va_update_vec 6 va_sM (va_update_vec 5 va_sM (va_update_vec 4
va_sM (va_update_vec 3 va_sM (va_update_vec 2 va_sM (va_update_vec 1 va_sM (va_update_vec 0
va_sM (va_update_reg 10 va_sM (va_update_mem_layout va_sM (va_update_mem_heaplet 1 va_sM
(va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))
val va_lemma_Keyhash_init : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) ->
roundkeys_b:buffer128 -> hkeys_b:buffer128
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Keyhash_init alg) va_s0 /\ va_get_ok va_s0 /\
Vale.PPC64LE.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (alg =
AES_128 \/ alg = AES_256) /\ Vale.PPC64LE.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\
Vale.AES.AES_BE_s.is_aes_key_word alg key /\ Vale.Arch.Types.reverse_bytes_quad32_seq
(Vale.PPC64LE.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b) ==
Vale.AES.AES_BE_s.key_to_round_keys_word alg key /\ Vale.PPC64LE.Decls.validSrcAddrs128
(va_get_mem va_s0) (va_get_reg 4 va_s0) roundkeys_b (Vale.AES.AES_common_s.nr alg + 1)
(va_get_mem_layout va_s0) Secret /\ Vale.PPC64LE.Decls.validDstAddrs128 (va_get_mem va_s0)
(va_get_reg 3 va_s0) hkeys_b 3 (va_get_mem_layout va_s0) Secret))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
Vale.PPC64LE.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\
Vale.AES.OptPublic_BE.hkeys_reqs_pub (Vale.Arch.Types.reverse_bytes_quad32_seq
(Vale.PPC64LE.Decls.s128 (va_get_mem va_sM) hkeys_b)) (Vale.AES.AES_BE_s.aes_encrypt_word alg
key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0)) /\ va_state_eq va_sM
(va_update_vec 6 va_sM (va_update_vec 5 va_sM (va_update_vec 4 va_sM (va_update_vec 3 va_sM
(va_update_vec 2 va_sM (va_update_vec 1 va_sM (va_update_vec 0 va_sM (va_update_reg 10 va_sM
(va_update_mem_layout va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem
va_sM va_s0))))))))))))))
[@ va_qattr]
let va_wp_Keyhash_init (alg:algorithm) (key:(seq nat32)) (roundkeys_b:buffer128)
(hkeys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ Vale.PPC64LE.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem
va_s0) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.PPC64LE.Decls.buffers_disjoint128
roundkeys_b hkeys_b /\ Vale.AES.AES_BE_s.is_aes_key_word alg key /\
Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.buffer128_as_seq (va_get_mem
va_s0) roundkeys_b) == Vale.AES.AES_BE_s.key_to_round_keys_word alg key /\
Vale.PPC64LE.Decls.validSrcAddrs128 (va_get_mem va_s0) (va_get_reg 4 va_s0) roundkeys_b
(Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\
Vale.PPC64LE.Decls.validDstAddrs128 (va_get_mem va_s0) (va_get_reg 3 va_s0) hkeys_b 3
(va_get_mem_layout va_s0) Secret /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap)
(va_x_memLayout:vale_heap_layout) (va_x_r10:nat64) (va_x_v0:quad32) (va_x_v1:quad32)
(va_x_v2:quad32) (va_x_v3:quad32) (va_x_v4:quad32) (va_x_v5:quad32) (va_x_v6:quad32) . let
va_sM = va_upd_vec 6 va_x_v6 (va_upd_vec 5 va_x_v5 (va_upd_vec 4 va_x_v4 (va_upd_vec 3 va_x_v3
(va_upd_vec 2 va_x_v2 (va_upd_vec 1 va_x_v1 (va_upd_vec 0 va_x_v0 (va_upd_reg 10 va_x_r10
(va_upd_mem_layout va_x_memLayout (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem
va_s0)))))))))) in va_get_ok va_sM /\ Vale.PPC64LE.Decls.modifies_buffer128 hkeys_b (va_get_mem
va_s0) (va_get_mem va_sM) /\ Vale.AES.OptPublic_BE.hkeys_reqs_pub
(Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128 (va_get_mem va_sM) hkeys_b))
(Vale.AES.AES_BE_s.aes_encrypt_word alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0
0 0 0)) ==> va_k va_sM (())))
val va_wpProof_Keyhash_init : alg:algorithm -> key:(seq nat32) -> roundkeys_b:buffer128 ->
hkeys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0)
-> Ghost (va_state & va_fuel & unit)
(requires (va_t_require va_s0 /\ va_wp_Keyhash_init alg key roundkeys_b hkeys_b va_s0 va_k))
(ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Keyhash_init alg) ([va_Mod_vec 6;
va_Mod_vec 5; va_Mod_vec 4; va_Mod_vec 3; va_Mod_vec 2; va_Mod_vec 1; va_Mod_vec 0; va_Mod_reg
10; va_Mod_mem_layout; va_Mod_mem_heaplet 1; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) | {
"checked_file": "/",
"dependencies": [
"Vale.PPC64LE.State.fsti.checked",
"Vale.PPC64LE.QuickCodes.fsti.checked",
"Vale.PPC64LE.QuickCode.fst.checked",
"Vale.PPC64LE.Memory.fsti.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"Vale.PPC64LE.InsVector.fsti.checked",
"Vale.PPC64LE.InsMem.fsti.checked",
"Vale.PPC64LE.InsBasic.fsti.checked",
"Vale.PPC64LE.Decls.fsti.checked",
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"Vale.AES.PPC64LE.PolyOps.fsti.checked",
"Vale.AES.PPC64LE.GF128_Mul.fsti.checked",
"Vale.AES.PPC64LE.AES.fsti.checked",
"Vale.AES.OptPublic_BE.fsti.checked",
"Vale.AES.GHash_BE.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.AES_common_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"Vale.AES.AES256_helpers_BE.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.PPC64LE.GF128_Init.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE.GF128_Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE.PolyOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES256_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.PPC64LE.Memory.nat32 ->
roundkeys_b: Vale.PPC64LE.Memory.buffer128 ->
hkeys_b: Vale.PPC64LE.Memory.buffer128
-> Vale.PPC64LE.QuickCode.va_quickCode Prims.unit
(Vale.AES.PPC64LE.GF128_Init.va_code_Keyhash_init alg) | Prims.Tot | [
"total"
] | [] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.PPC64LE.Memory.nat32",
"Vale.PPC64LE.Memory.buffer128",
"Vale.PPC64LE.QuickCode.va_QProc",
"Prims.unit",
"Vale.AES.PPC64LE.GF128_Init.va_code_Keyhash_init",
"Prims.Cons",
"Vale.PPC64LE.QuickCode.mod_t",
"Vale.PPC64LE.QuickCode.va_Mod_vec",
"Vale.PPC64LE.QuickCode.va_Mod_reg",
"Vale.PPC64LE.QuickCode.va_Mod_mem_layout",
"Vale.PPC64LE.QuickCode.va_Mod_mem_heaplet",
"Vale.PPC64LE.QuickCode.va_Mod_mem",
"Prims.Nil",
"Vale.AES.PPC64LE.GF128_Init.va_wp_Keyhash_init",
"Vale.AES.PPC64LE.GF128_Init.va_wpProof_Keyhash_init",
"Vale.PPC64LE.QuickCode.va_quickCode"
] | [] | false | false | false | false | false | let va_quick_Keyhash_init (alg: algorithm) (key: (seq nat32)) (roundkeys_b hkeys_b: buffer128)
: (va_quickCode unit (va_code_Keyhash_init alg)) =
| (va_QProc (va_code_Keyhash_init alg)
([
va_Mod_vec 6; va_Mod_vec 5; va_Mod_vec 4; va_Mod_vec 3; va_Mod_vec 2; va_Mod_vec 1;
va_Mod_vec 0; va_Mod_reg 10; va_Mod_mem_layout; va_Mod_mem_heaplet 1; va_Mod_mem
])
(va_wp_Keyhash_init alg key roundkeys_b hkeys_b)
(va_wpProof_Keyhash_init alg key roundkeys_b hkeys_b)) | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.parse32_bounded_vlbytes' | val parse32_bounded_vlbytes'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
: Tot (parser32 (parse_bounded_vlbytes' min max l)) | val parse32_bounded_vlbytes'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
: Tot (parser32 (parse_bounded_vlbytes' min max l)) | let parse32_bounded_vlbytes'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (parser32 (parse_bounded_vlbytes' min max l))
= parse32_synth
_
(synth_bounded_vlbytes min max)
(fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes)
() | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 6,
"end_line": 71,
"start_col": 0,
"start_line": 59
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32
inline_for_extraction
let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_flbytes
(sz: nat)
(sz' : U32.t { U32.v sz' == sz } )
: Tot (
lt_pow2_32 sz;
parser32 (parse_flbytes sz)
)
= lt_pow2_32 sz;
make_total_constant_size_parser32
sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz)
inline_for_extraction
let serialize32_flbytes
(sz: nat { sz < 4294967296 } )
: Tot (serializer32 (serialize_flbytes sz))
= fun (input: B32.lbytes sz) ->
B32.hide_reveal input;
(input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } ))
inline_for_extraction
let parse32_all_bytes
: parser32 parse_all_bytes
= fun (input: B32.bytes) ->
let res = Some (input, B32.len input) in
(res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } ))
inline_for_extraction
let serialize32_all_bytes
: serializer32 serialize_all_bytes
= fun (input: B32.bytes) ->
(input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } )) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4}
-> LowParse.SLow.Base.parser32 (LowParse.Spec.Bytes.parse_bounded_vlbytes' min max l) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.SLow.Combinators.parse32_synth",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.Bytes.parse_all_bytes_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"FStar.Bytes.bytes",
"LowParse.Spec.Bytes.parse_all_bytes",
"LowParse.Spec.Bytes.serialize_all_bytes",
"LowParse.Spec.Bytes.parse_bounded_vlbytes_t",
"LowParse.Spec.VLData.parse_bounded_vldata_strong'",
"LowParse.Spec.Bytes.synth_bounded_vlbytes",
"LowParse.SLow.VLData.parse32_bounded_vldata_strong'",
"LowParse.SLow.Bytes.parse32_all_bytes",
"LowParse.SLow.Base.parser32",
"LowParse.Spec.Bytes.parse_bounded_vlbytes'"
] | [] | false | false | false | false | false | let parse32_bounded_vlbytes'
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(max32: U32.t{U32.v max32 == max})
(l: nat{l >= log256' max /\ l <= 4})
: Tot (parser32 (parse_bounded_vlbytes' min max l)) =
| parse32_synth _
(synth_bounded_vlbytes min max)
(fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) ->
(x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes)
() | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.parse32_flbytes | val parse32_flbytes (sz: nat) (sz': U32.t{U32.v sz' == sz})
: Tot
(lt_pow2_32 sz;
parser32 (parse_flbytes sz)) | val parse32_flbytes (sz: nat) (sz': U32.t{U32.v sz' == sz})
: Tot
(lt_pow2_32 sz;
parser32 (parse_flbytes sz)) | let parse32_flbytes
(sz: nat)
(sz' : U32.t { U32.v sz' == sz } )
: Tot (
lt_pow2_32 sz;
parser32 (parse_flbytes sz)
)
= lt_pow2_32 sz;
make_total_constant_size_parser32
sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz) | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 28,
"end_line": 35,
"start_col": 0,
"start_line": 21
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32
inline_for_extraction
let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x
#set-options "--z3rlimit 32" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | sz: Prims.nat -> sz': FStar.UInt32.t{FStar.UInt32.v sz' == sz}
-> (LowParse.Spec.Bytes.lt_pow2_32 sz;
LowParse.SLow.Base.parser32 (LowParse.Spec.Bytes.parse_flbytes sz)) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"LowParse.SLow.Combinators.make_total_constant_size_parser32",
"FStar.Bytes.lbytes",
"LowParse.Spec.Bytes.parse_flbytes_gen",
"LowParse.SLow.Bytes.parse32_flbytes_gen",
"Prims.unit",
"LowParse.Spec.Bytes.lt_pow2_32",
"LowParse.SLow.Base.parser32",
"LowParse.Spec.Base.total_constant_size_parser_kind",
"LowParse.Spec.Bytes.parse_flbytes"
] | [] | false | false | false | false | false | let parse32_flbytes (sz: nat) (sz': U32.t{U32.v sz' == sz})
: Tot
(lt_pow2_32 sz;
parser32 (parse_flbytes sz)) =
| lt_pow2_32 sz;
make_total_constant_size_parser32 sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz) | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.parse32_all_bytes | val parse32_all_bytes:parser32 parse_all_bytes | val parse32_all_bytes:parser32 parse_all_bytes | let parse32_all_bytes
: parser32 parse_all_bytes
= fun (input: B32.bytes) ->
let res = Some (input, B32.len input) in
(res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } )) | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 92,
"end_line": 50,
"start_col": 0,
"start_line": 46
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32
inline_for_extraction
let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_flbytes
(sz: nat)
(sz' : U32.t { U32.v sz' == sz } )
: Tot (
lt_pow2_32 sz;
parser32 (parse_flbytes sz)
)
= lt_pow2_32 sz;
make_total_constant_size_parser32
sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz)
inline_for_extraction
let serialize32_flbytes
(sz: nat { sz < 4294967296 } )
: Tot (serializer32 (serialize_flbytes sz))
= fun (input: B32.lbytes sz) ->
B32.hide_reveal input;
(input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } )) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | LowParse.SLow.Base.parser32 LowParse.Spec.Bytes.parse_all_bytes | Prims.Tot | [
"total"
] | [] | [
"FStar.Bytes.bytes",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.SLow.Base.bytes32",
"FStar.UInt32.t",
"LowParse.SLow.Base.parser32_correct",
"LowParse.Spec.Bytes.parse_all_bytes_kind",
"LowParse.Spec.Bytes.parse_all_bytes",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Bytes.len"
] | [] | false | false | false | true | false | let parse32_all_bytes:parser32 parse_all_bytes =
| fun (input: B32.bytes) ->
let res = Some (input, B32.len input) in
(res <: (res: option (bytes32 * U32.t) {parser32_correct parse_all_bytes input res})) | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.size32_bounded_vlgenbytes | val size32_bounded_vlgenbytes
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk)
(sk32:
size32 sk
{ kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\
Some?.v kk.parser_kind_high + max < 4294967296 })
: Tot (size32 (serialize_bounded_vlgenbytes min max sk)) | val size32_bounded_vlgenbytes
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk)
(sk32:
size32 sk
{ kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\
Some?.v kk.parser_kind_high + max < 4294967296 })
: Tot (size32 (serialize_bounded_vlgenbytes min max sk)) | let size32_bounded_vlgenbytes
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk)
(sk32: size32 sk {kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\ Some?.v kk.parser_kind_high + max < 4294967296 })
: Tot (size32 (serialize_bounded_vlgenbytes min max sk))
= size32_synth
(parse_bounded_vlgen min max pk serialize_all_bytes)
(fun x -> (x <: parse_bounded_vlbytes_t min max))
(serialize_bounded_vlgen min max sk serialize_all_bytes)
(size32_bounded_vlgen min max sk32 size32_all_bytes)
(fun x -> x)
(fun x -> x)
() | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 6,
"end_line": 224,
"start_col": 0,
"start_line": 209
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32
inline_for_extraction
let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_flbytes
(sz: nat)
(sz' : U32.t { U32.v sz' == sz } )
: Tot (
lt_pow2_32 sz;
parser32 (parse_flbytes sz)
)
= lt_pow2_32 sz;
make_total_constant_size_parser32
sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz)
inline_for_extraction
let serialize32_flbytes
(sz: nat { sz < 4294967296 } )
: Tot (serializer32 (serialize_flbytes sz))
= fun (input: B32.lbytes sz) ->
B32.hide_reveal input;
(input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } ))
inline_for_extraction
let parse32_all_bytes
: parser32 parse_all_bytes
= fun (input: B32.bytes) ->
let res = Some (input, B32.len input) in
(res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } ))
inline_for_extraction
let serialize32_all_bytes
: serializer32 serialize_all_bytes
= fun (input: B32.bytes) ->
(input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } ))
inline_for_extraction
let parse32_bounded_vlbytes'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (parser32 (parse_bounded_vlbytes' min max l))
= parse32_synth
_
(synth_bounded_vlbytes min max)
(fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes)
()
inline_for_extraction
let parse32_bounded_vlbytes
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
: Tot (parser32 (parse_bounded_vlbytes min max))
= parse32_bounded_vlbytes' min min32 max max32 (log256' max)
inline_for_extraction
let serialize32_bounded_vlbytes_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes_aux min max l))
=
serialize32_bounded_vldata_strong'
min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
serialize32_all_bytes
inline_for_extraction
let serialize32_bounded_vlbytes'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes' min max l))
= serialize32_synth
(parse_bounded_vlbytes_aux min max l)
(synth_bounded_vlbytes min max)
(serialize_bounded_vlbytes_aux min max l)
(serialize32_bounded_vlbytes_aux min max l)
(fun (x: parse_bounded_vlbytes_t min max) ->
(x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes)
)
(fun x -> x)
()
inline_for_extraction
let serialize32_bounded_vlbytes
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
: Tot (serializer32 (serialize_bounded_vlbytes min max))
= serialize32_bounded_vlbytes' min max (log256' max)
inline_for_extraction
let size32_all_bytes
: size32 serialize_all_bytes
= fun (input: B32.bytes) ->
let res = B32.len input in
(res <: (res: U32.t { size32_postcond serialize_all_bytes input res } ))
inline_for_extraction
let size32_bounded_vlbytes_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (size32 (serialize_bounded_vlbytes_aux min max l))
=
size32_bounded_vldata_strong'
min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
size32_all_bytes
(U32.uint_to_t l)
inline_for_extraction
let size32_bounded_vlbytes'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (size32 (serialize_bounded_vlbytes' min max l))
=
size32_synth
(parse_bounded_vlbytes_aux min max l)
(synth_bounded_vlbytes min max)
(serialize_bounded_vlbytes_aux min max l)
(size32_bounded_vlbytes_aux min max l)
(fun (x: parse_bounded_vlbytes_t min max) ->
(x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes)
)
(fun x -> x)
()
inline_for_extraction
let size32_bounded_vlbytes
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
: Tot (size32 (serialize_bounded_vlbytes min max))
= size32_bounded_vlbytes' min max (log256' max)
inline_for_extraction
let parse32_bounded_vlgenbytes
(min: nat)
(min32: U32.t { U32.v min32 == min })
(max: nat{ min <= max /\ max > 0 })
(max32: U32.t { U32.v max32 == max })
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(pk32: parser32 pk)
: Tot (parser32 (parse_bounded_vlgenbytes min max pk))
= parse32_synth
(parse_bounded_vlgen min max pk serialize_all_bytes)
(fun x -> (x <: parse_bounded_vlbytes_t min max))
(fun x -> (x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vlgen min min32 max max32 pk32 serialize_all_bytes parse32_all_bytes)
()
inline_for_extraction
let serialize32_bounded_vlgenbytes
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk)
(sk32: serializer32 sk {kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\ Some?.v kk.parser_kind_high + max < 4294967296 })
: Tot (serializer32 (serialize_bounded_vlgenbytes min max sk))
= serialize32_synth
(parse_bounded_vlgen min max pk serialize_all_bytes)
(fun x -> (x <: parse_bounded_vlbytes_t min max))
(serialize_bounded_vlgen min max sk serialize_all_bytes)
(serialize32_bounded_vlgen min max sk32 serialize32_all_bytes)
(fun x -> x)
(fun x -> x)
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
sk32:
LowParse.SLow.Base.size32 sk
{ Mkparser_kind'?.parser_kind_subkind kk ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong /\
Some? (Mkparser_kind'?.parser_kind_high kk) /\
Some?.v (Mkparser_kind'?.parser_kind_high kk) + max < 4294967296 }
-> LowParse.SLow.Base.size32 (LowParse.Spec.Bytes.serialize_bounded_vlgenbytes min max sk) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.size32",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"FStar.Pervasives.Native.uu___is_Some",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_high",
"Prims.op_Addition",
"FStar.Pervasives.Native.__proj__Some__item__v",
"LowParse.SLow.Combinators.size32_synth",
"LowParse.Spec.VLGen.parse_bounded_vlgen_kind",
"LowParse.Spec.Bytes.parse_all_bytes_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"FStar.Bytes.bytes",
"LowParse.Spec.Bytes.parse_all_bytes",
"LowParse.Spec.Bytes.serialize_all_bytes",
"LowParse.Spec.Bytes.parse_bounded_vlbytes_t",
"LowParse.Spec.VLGen.parse_bounded_vlgen",
"LowParse.Spec.VLGen.serialize_bounded_vlgen",
"LowParse.SLow.VLGen.size32_bounded_vlgen",
"LowParse.SLow.Bytes.size32_all_bytes",
"LowParse.Spec.Bytes.parse_bounded_vlgenbytes",
"LowParse.Spec.Bytes.serialize_bounded_vlgenbytes"
] | [] | false | false | false | false | false | let size32_bounded_vlgenbytes
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk)
(sk32:
size32 sk
{ kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\
Some?.v kk.parser_kind_high + max < 4294967296 })
: Tot (size32 (serialize_bounded_vlgenbytes min max sk)) =
| size32_synth (parse_bounded_vlgen min max pk serialize_all_bytes)
(fun x -> (x <: parse_bounded_vlbytes_t min max))
(serialize_bounded_vlgen min max sk serialize_all_bytes)
(size32_bounded_vlgen min max sk32 size32_all_bytes)
(fun x -> x)
(fun x -> x)
() | false |
Vale.AES.PPC64LE.GF128_Init.fsti | Vale.AES.PPC64LE.GF128_Init.va_wp_Keyhash_init | val va_wp_Keyhash_init
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0 | val va_wp_Keyhash_init
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0 | let va_wp_Keyhash_init (alg:algorithm) (key:(seq nat32)) (roundkeys_b:buffer128)
(hkeys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ Vale.PPC64LE.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem
va_s0) /\ (alg = AES_128 \/ alg = AES_256) /\ Vale.PPC64LE.Decls.buffers_disjoint128
roundkeys_b hkeys_b /\ Vale.AES.AES_BE_s.is_aes_key_word alg key /\
Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.buffer128_as_seq (va_get_mem
va_s0) roundkeys_b) == Vale.AES.AES_BE_s.key_to_round_keys_word alg key /\
Vale.PPC64LE.Decls.validSrcAddrs128 (va_get_mem va_s0) (va_get_reg 4 va_s0) roundkeys_b
(Vale.AES.AES_common_s.nr alg + 1) (va_get_mem_layout va_s0) Secret /\
Vale.PPC64LE.Decls.validDstAddrs128 (va_get_mem va_s0) (va_get_reg 3 va_s0) hkeys_b 3
(va_get_mem_layout va_s0) Secret /\ (forall (va_x_mem:vale_heap) (va_x_heap1:vale_heap)
(va_x_memLayout:vale_heap_layout) (va_x_r10:nat64) (va_x_v0:quad32) (va_x_v1:quad32)
(va_x_v2:quad32) (va_x_v3:quad32) (va_x_v4:quad32) (va_x_v5:quad32) (va_x_v6:quad32) . let
va_sM = va_upd_vec 6 va_x_v6 (va_upd_vec 5 va_x_v5 (va_upd_vec 4 va_x_v4 (va_upd_vec 3 va_x_v3
(va_upd_vec 2 va_x_v2 (va_upd_vec 1 va_x_v1 (va_upd_vec 0 va_x_v0 (va_upd_reg 10 va_x_r10
(va_upd_mem_layout va_x_memLayout (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_mem va_x_mem
va_s0)))))))))) in va_get_ok va_sM /\ Vale.PPC64LE.Decls.modifies_buffer128 hkeys_b (va_get_mem
va_s0) (va_get_mem va_sM) /\ Vale.AES.OptPublic_BE.hkeys_reqs_pub
(Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128 (va_get_mem va_sM) hkeys_b))
(Vale.AES.AES_BE_s.aes_encrypt_word alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0
0 0 0)) ==> va_k va_sM (()))) | {
"file_name": "obj/Vale.AES.PPC64LE.GF128_Init.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 33,
"end_line": 101,
"start_col": 0,
"start_line": 81
} | module Vale.AES.PPC64LE.GF128_Init
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open FStar.Seq
open Vale.Arch.Types
open Vale.Arch.HeapImpl
open Vale.Math.Poly2_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2.Bits
open Vale.Math.Poly2.Lemmas
open Vale.AES.GF128_s
open Vale.AES.GF128
open Vale.AES.GHash_BE
open Vale.AES.AES_BE_s
open Vale.AES.AES256_helpers_BE
open Vale.AES.PPC64LE.AES
open Vale.PPC64LE.Machine_s
open Vale.PPC64LE.Memory
open Vale.PPC64LE.State
open Vale.PPC64LE.Decls
open Vale.PPC64LE.InsBasic
open Vale.PPC64LE.InsMem
open Vale.PPC64LE.InsVector
open Vale.PPC64LE.QuickCode
open Vale.PPC64LE.QuickCodes
open Vale.AES.PPC64LE.PolyOps
open Vale.AES.PPC64LE.GF128_Mul
open Vale.AES.OptPublic_BE
//-- Keyhash_init
val va_code_Keyhash_init : alg:algorithm -> Tot va_code
val va_codegen_success_Keyhash_init : alg:algorithm -> Tot va_pbool
let va_req_Keyhash_init (va_b0:va_code) (va_s0:va_state) (alg:algorithm) (key:(seq nat32))
(roundkeys_b:buffer128) (hkeys_b:buffer128) : prop =
(va_require_total va_b0 (va_code_Keyhash_init alg) va_s0 /\ va_get_ok va_s0 /\
Vale.PPC64LE.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (alg =
AES_128 \/ alg = AES_256) /\ Vale.PPC64LE.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\
Vale.AES.AES_BE_s.is_aes_key_word alg key /\ Vale.Arch.Types.reverse_bytes_quad32_seq
(Vale.PPC64LE.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b) ==
Vale.AES.AES_BE_s.key_to_round_keys_word alg key /\ Vale.PPC64LE.Decls.validSrcAddrs128
(va_get_mem va_s0) (va_get_reg 4 va_s0) roundkeys_b (Vale.AES.AES_common_s.nr alg + 1)
(va_get_mem_layout va_s0) Secret /\ Vale.PPC64LE.Decls.validDstAddrs128 (va_get_mem va_s0)
(va_get_reg 3 va_s0) hkeys_b 3 (va_get_mem_layout va_s0) Secret)
let va_ens_Keyhash_init (va_b0:va_code) (va_s0:va_state) (alg:algorithm) (key:(seq nat32))
(roundkeys_b:buffer128) (hkeys_b:buffer128) (va_sM:va_state) (va_fM:va_fuel) : prop =
(va_req_Keyhash_init va_b0 va_s0 alg key roundkeys_b hkeys_b /\ va_ensure_total va_b0 va_s0 va_sM
va_fM /\ va_get_ok va_sM /\ Vale.PPC64LE.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0)
(va_get_mem va_sM) /\ Vale.AES.OptPublic_BE.hkeys_reqs_pub
(Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128 (va_get_mem va_sM) hkeys_b))
(Vale.AES.AES_BE_s.aes_encrypt_word alg key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0
0 0 0)) /\ va_state_eq va_sM (va_update_vec 6 va_sM (va_update_vec 5 va_sM (va_update_vec 4
va_sM (va_update_vec 3 va_sM (va_update_vec 2 va_sM (va_update_vec 1 va_sM (va_update_vec 0
va_sM (va_update_reg 10 va_sM (va_update_mem_layout va_sM (va_update_mem_heaplet 1 va_sM
(va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))
val va_lemma_Keyhash_init : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) ->
roundkeys_b:buffer128 -> hkeys_b:buffer128
-> Ghost (va_state & va_fuel)
(requires (va_require_total va_b0 (va_code_Keyhash_init alg) va_s0 /\ va_get_ok va_s0 /\
Vale.PPC64LE.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\ (alg =
AES_128 \/ alg = AES_256) /\ Vale.PPC64LE.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\
Vale.AES.AES_BE_s.is_aes_key_word alg key /\ Vale.Arch.Types.reverse_bytes_quad32_seq
(Vale.PPC64LE.Decls.buffer128_as_seq (va_get_mem va_s0) roundkeys_b) ==
Vale.AES.AES_BE_s.key_to_round_keys_word alg key /\ Vale.PPC64LE.Decls.validSrcAddrs128
(va_get_mem va_s0) (va_get_reg 4 va_s0) roundkeys_b (Vale.AES.AES_common_s.nr alg + 1)
(va_get_mem_layout va_s0) Secret /\ Vale.PPC64LE.Decls.validDstAddrs128 (va_get_mem va_s0)
(va_get_reg 3 va_s0) hkeys_b 3 (va_get_mem_layout va_s0) Secret))
(ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\
Vale.PPC64LE.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\
Vale.AES.OptPublic_BE.hkeys_reqs_pub (Vale.Arch.Types.reverse_bytes_quad32_seq
(Vale.PPC64LE.Decls.s128 (va_get_mem va_sM) hkeys_b)) (Vale.AES.AES_BE_s.aes_encrypt_word alg
key (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0)) /\ va_state_eq va_sM
(va_update_vec 6 va_sM (va_update_vec 5 va_sM (va_update_vec 4 va_sM (va_update_vec 3 va_sM
(va_update_vec 2 va_sM (va_update_vec 1 va_sM (va_update_vec 0 va_sM (va_update_reg 10 va_sM
(va_update_mem_layout va_sM (va_update_mem_heaplet 1 va_sM (va_update_ok va_sM (va_update_mem
va_sM va_s0)))))))))))))) | {
"checked_file": "/",
"dependencies": [
"Vale.PPC64LE.State.fsti.checked",
"Vale.PPC64LE.QuickCodes.fsti.checked",
"Vale.PPC64LE.QuickCode.fst.checked",
"Vale.PPC64LE.Memory.fsti.checked",
"Vale.PPC64LE.Machine_s.fst.checked",
"Vale.PPC64LE.InsVector.fsti.checked",
"Vale.PPC64LE.InsMem.fsti.checked",
"Vale.PPC64LE.InsBasic.fsti.checked",
"Vale.PPC64LE.Decls.fsti.checked",
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.Bits.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.Arch.HeapImpl.fsti.checked",
"Vale.AES.PPC64LE.PolyOps.fsti.checked",
"Vale.AES.PPC64LE.GF128_Mul.fsti.checked",
"Vale.AES.PPC64LE.AES.fsti.checked",
"Vale.AES.OptPublic_BE.fsti.checked",
"Vale.AES.GHash_BE.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"Vale.AES.GF128.fsti.checked",
"Vale.AES.AES_common_s.fst.checked",
"Vale.AES.AES_BE_s.fst.checked",
"Vale.AES.AES256_helpers_BE.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.AES.PPC64LE.GF128_Init.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.OptPublic_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE.GF128_Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE.PolyOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.QuickCodes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.QuickCode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.InsVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.InsMem",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.InsBasic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.State",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.PPC64LE.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES256_helpers_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.AES_BE_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GHash_BE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.HeapImpl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.PPC64LE",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
alg: Vale.AES.AES_common_s.algorithm ->
key: FStar.Seq.Base.seq Vale.PPC64LE.Memory.nat32 ->
roundkeys_b: Vale.PPC64LE.Memory.buffer128 ->
hkeys_b: Vale.PPC64LE.Memory.buffer128 ->
va_s0: Vale.PPC64LE.Decls.va_state ->
va_k: (_: Vale.PPC64LE.Decls.va_state -> _: Prims.unit -> Type0)
-> Type0 | Prims.Tot | [
"total"
] | [] | [
"Vale.AES.AES_common_s.algorithm",
"FStar.Seq.Base.seq",
"Vale.PPC64LE.Memory.nat32",
"Vale.PPC64LE.Memory.buffer128",
"Vale.PPC64LE.Decls.va_state",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Vale.PPC64LE.Decls.va_get_ok",
"Vale.PPC64LE.Memory.is_initial_heap",
"Vale.PPC64LE.Decls.va_get_mem_layout",
"Vale.PPC64LE.Decls.va_get_mem",
"Prims.l_or",
"Prims.op_Equality",
"Vale.AES.AES_common_s.AES_128",
"Vale.AES.AES_common_s.AES_256",
"Vale.PPC64LE.Decls.buffers_disjoint128",
"Vale.AES.AES_BE_s.is_aes_key_word",
"Prims.eq2",
"Vale.Def.Types_s.quad32",
"Vale.Arch.Types.reverse_bytes_quad32_seq",
"Vale.PPC64LE.Decls.buffer128_as_seq",
"Vale.AES.AES_BE_s.key_to_round_keys_word",
"Vale.PPC64LE.Decls.validSrcAddrs128",
"Vale.PPC64LE.Decls.va_get_reg",
"Prims.op_Addition",
"Vale.AES.AES_common_s.nr",
"Vale.Arch.HeapTypes_s.Secret",
"Vale.PPC64LE.Decls.validDstAddrs128",
"Prims.l_Forall",
"Vale.PPC64LE.InsBasic.vale_heap",
"Vale.Arch.HeapImpl.vale_heap_layout",
"Vale.PPC64LE.Memory.nat64",
"Vale.PPC64LE.Memory.quad32",
"Prims.l_imp",
"Vale.PPC64LE.Decls.modifies_buffer128",
"Vale.AES.OptPublic_BE.hkeys_reqs_pub",
"Vale.PPC64LE.Decls.s128",
"Vale.AES.AES_BE_s.aes_encrypt_word",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Vale.PPC64LE.Machine_s.state",
"Vale.PPC64LE.Decls.va_upd_vec",
"Vale.PPC64LE.Decls.va_upd_reg",
"Vale.PPC64LE.Decls.va_upd_mem_layout",
"Vale.PPC64LE.Decls.va_upd_mem_heaplet",
"Vale.PPC64LE.Decls.va_upd_mem"
] | [] | false | false | false | true | true | let va_wp_Keyhash_init
(alg: algorithm)
(key: (seq nat32))
(roundkeys_b hkeys_b: buffer128)
(va_s0: va_state)
(va_k: (va_state -> unit -> Type0))
: Type0 =
| (va_get_ok va_s0 /\ Vale.PPC64LE.Memory.is_initial_heap (va_get_mem_layout va_s0) (va_get_mem va_s0) /\
(alg = AES_128 \/ alg = AES_256) /\ Vale.PPC64LE.Decls.buffers_disjoint128 roundkeys_b hkeys_b /\
Vale.AES.AES_BE_s.is_aes_key_word alg key /\
Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.buffer128_as_seq (va_get_mem va_s0)
roundkeys_b) ==
Vale.AES.AES_BE_s.key_to_round_keys_word alg key /\
Vale.PPC64LE.Decls.validSrcAddrs128 (va_get_mem va_s0)
(va_get_reg 4 va_s0)
roundkeys_b
(Vale.AES.AES_common_s.nr alg + 1)
(va_get_mem_layout va_s0)
Secret /\
Vale.PPC64LE.Decls.validDstAddrs128 (va_get_mem va_s0)
(va_get_reg 3 va_s0)
hkeys_b
3
(va_get_mem_layout va_s0)
Secret /\
(forall (va_x_mem: vale_heap) (va_x_heap1: vale_heap) (va_x_memLayout: vale_heap_layout)
(va_x_r10: nat64) (va_x_v0: quad32) (va_x_v1: quad32) (va_x_v2: quad32) (va_x_v3: quad32)
(va_x_v4: quad32) (va_x_v5: quad32) (va_x_v6: quad32).
let va_sM =
va_upd_vec 6
va_x_v6
(va_upd_vec 5
va_x_v5
(va_upd_vec 4
va_x_v4
(va_upd_vec 3
va_x_v3
(va_upd_vec 2
va_x_v2
(va_upd_vec 1
va_x_v1
(va_upd_vec 0
va_x_v0
(va_upd_reg 10
va_x_r10
(va_upd_mem_layout va_x_memLayout
(va_upd_mem_heaplet 1
va_x_heap1
(va_upd_mem va_x_mem va_s0))))))))))
in
va_get_ok va_sM /\
Vale.PPC64LE.Decls.modifies_buffer128 hkeys_b (va_get_mem va_s0) (va_get_mem va_sM) /\
Vale.AES.OptPublic_BE.hkeys_reqs_pub (Vale.Arch.Types.reverse_bytes_quad32_seq (Vale.PPC64LE.Decls.s128
(va_get_mem va_sM)
hkeys_b))
(Vale.AES.AES_BE_s.aes_encrypt_word alg
key
(Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0)) ==>
va_k va_sM (()))) | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.serialize32_bounded_vlbytes_aux | val serialize32_bounded_vlbytes_aux
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
: Tot (serializer32 (serialize_bounded_vlbytes_aux min max l)) | val serialize32_bounded_vlbytes_aux
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
: Tot (serializer32 (serialize_bounded_vlbytes_aux min max l)) | let serialize32_bounded_vlbytes_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes_aux min max l))
=
serialize32_bounded_vldata_strong'
min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
serialize32_all_bytes | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 25,
"end_line": 97,
"start_col": 0,
"start_line": 83
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32
inline_for_extraction
let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_flbytes
(sz: nat)
(sz' : U32.t { U32.v sz' == sz } )
: Tot (
lt_pow2_32 sz;
parser32 (parse_flbytes sz)
)
= lt_pow2_32 sz;
make_total_constant_size_parser32
sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz)
inline_for_extraction
let serialize32_flbytes
(sz: nat { sz < 4294967296 } )
: Tot (serializer32 (serialize_flbytes sz))
= fun (input: B32.lbytes sz) ->
B32.hide_reveal input;
(input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } ))
inline_for_extraction
let parse32_all_bytes
: parser32 parse_all_bytes
= fun (input: B32.bytes) ->
let res = Some (input, B32.len input) in
(res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } ))
inline_for_extraction
let serialize32_all_bytes
: serializer32 serialize_all_bytes
= fun (input: B32.bytes) ->
(input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } ))
inline_for_extraction
let parse32_bounded_vlbytes'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (parser32 (parse_bounded_vlbytes' min max l))
= parse32_synth
_
(synth_bounded_vlbytes min max)
(fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes)
()
inline_for_extraction
let parse32_bounded_vlbytes
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
: Tot (parser32 (parse_bounded_vlbytes min max))
= parse32_bounded_vlbytes' min min32 max max32 (log256' max) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4}
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.Bytes.serialize_bounded_vlbytes_aux min max l) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"Prims.op_GreaterThanOrEqual",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.SLow.VLData.serialize32_bounded_vldata_strong'",
"LowParse.Spec.Bytes.parse_all_bytes_kind",
"FStar.Bytes.bytes",
"LowParse.Spec.Bytes.parse_all_bytes",
"LowParse.Spec.Bytes.serialize_all_bytes",
"LowParse.SLow.Bytes.serialize32_all_bytes",
"LowParse.SLow.Base.serializer32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.Bytes.parse_bounded_vlbytes_aux",
"LowParse.Spec.Bytes.serialize_bounded_vlbytes_aux"
] | [] | false | false | false | false | false | let serialize32_bounded_vlbytes_aux
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
: Tot (serializer32 (serialize_bounded_vlbytes_aux min max l)) =
| serialize32_bounded_vldata_strong' min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
serialize32_all_bytes | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.size32_bounded_vlbytes | val size32_bounded_vlbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292})
: Tot (size32 (serialize_bounded_vlbytes min max)) | val size32_bounded_vlbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292})
: Tot (size32 (serialize_bounded_vlbytes min max)) | let size32_bounded_vlbytes
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
: Tot (size32 (serialize_bounded_vlbytes min max))
= size32_bounded_vlbytes' min max (log256' max) | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 47,
"end_line": 171,
"start_col": 0,
"start_line": 167
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32
inline_for_extraction
let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_flbytes
(sz: nat)
(sz' : U32.t { U32.v sz' == sz } )
: Tot (
lt_pow2_32 sz;
parser32 (parse_flbytes sz)
)
= lt_pow2_32 sz;
make_total_constant_size_parser32
sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz)
inline_for_extraction
let serialize32_flbytes
(sz: nat { sz < 4294967296 } )
: Tot (serializer32 (serialize_flbytes sz))
= fun (input: B32.lbytes sz) ->
B32.hide_reveal input;
(input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } ))
inline_for_extraction
let parse32_all_bytes
: parser32 parse_all_bytes
= fun (input: B32.bytes) ->
let res = Some (input, B32.len input) in
(res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } ))
inline_for_extraction
let serialize32_all_bytes
: serializer32 serialize_all_bytes
= fun (input: B32.bytes) ->
(input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } ))
inline_for_extraction
let parse32_bounded_vlbytes'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (parser32 (parse_bounded_vlbytes' min max l))
= parse32_synth
_
(synth_bounded_vlbytes min max)
(fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes)
()
inline_for_extraction
let parse32_bounded_vlbytes
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
: Tot (parser32 (parse_bounded_vlbytes min max))
= parse32_bounded_vlbytes' min min32 max max32 (log256' max)
inline_for_extraction
let serialize32_bounded_vlbytes_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes_aux min max l))
=
serialize32_bounded_vldata_strong'
min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
serialize32_all_bytes
inline_for_extraction
let serialize32_bounded_vlbytes'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes' min max l))
= serialize32_synth
(parse_bounded_vlbytes_aux min max l)
(synth_bounded_vlbytes min max)
(serialize_bounded_vlbytes_aux min max l)
(serialize32_bounded_vlbytes_aux min max l)
(fun (x: parse_bounded_vlbytes_t min max) ->
(x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes)
)
(fun x -> x)
()
inline_for_extraction
let serialize32_bounded_vlbytes
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
: Tot (serializer32 (serialize_bounded_vlbytes min max))
= serialize32_bounded_vlbytes' min max (log256' max)
inline_for_extraction
let size32_all_bytes
: size32 serialize_all_bytes
= fun (input: B32.bytes) ->
let res = B32.len input in
(res <: (res: U32.t { size32_postcond serialize_all_bytes input res } ))
inline_for_extraction
let size32_bounded_vlbytes_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (size32 (serialize_bounded_vlbytes_aux min max l))
=
size32_bounded_vldata_strong'
min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
size32_all_bytes
(U32.uint_to_t l)
inline_for_extraction
let size32_bounded_vlbytes'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (size32 (serialize_bounded_vlbytes' min max l))
=
size32_synth
(parse_bounded_vlbytes_aux min max l)
(synth_bounded_vlbytes min max)
(serialize_bounded_vlbytes_aux min max l)
(size32_bounded_vlbytes_aux min max l)
(fun (x: parse_bounded_vlbytes_t min max) ->
(x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes)
)
(fun x -> x)
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | min: Prims.nat -> max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292}
-> LowParse.SLow.Base.size32 (LowParse.Spec.Bytes.serialize_bounded_vlbytes min max) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.SLow.Bytes.size32_bounded_vlbytes'",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.SLow.Base.size32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.Bytes.parse_all_bytes_kind",
"LowParse.Spec.Bytes.parse_bounded_vlbytes_t",
"LowParse.Spec.Bytes.parse_bounded_vlbytes",
"LowParse.Spec.Bytes.serialize_bounded_vlbytes"
] | [] | false | false | false | false | false | let size32_bounded_vlbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292})
: Tot (size32 (serialize_bounded_vlbytes min max)) =
| size32_bounded_vlbytes' min max (log256' max) | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.serialize32_bounded_vlgenbytes | val serialize32_bounded_vlgenbytes
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk)
(sk32:
serializer32 sk
{ kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\
Some?.v kk.parser_kind_high + max < 4294967296 })
: Tot (serializer32 (serialize_bounded_vlgenbytes min max sk)) | val serialize32_bounded_vlgenbytes
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk)
(sk32:
serializer32 sk
{ kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\
Some?.v kk.parser_kind_high + max < 4294967296 })
: Tot (serializer32 (serialize_bounded_vlgenbytes min max sk)) | let serialize32_bounded_vlgenbytes
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk)
(sk32: serializer32 sk {kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\ Some?.v kk.parser_kind_high + max < 4294967296 })
: Tot (serializer32 (serialize_bounded_vlgenbytes min max sk))
= serialize32_synth
(parse_bounded_vlgen min max pk serialize_all_bytes)
(fun x -> (x <: parse_bounded_vlbytes_t min max))
(serialize_bounded_vlgen min max sk serialize_all_bytes)
(serialize32_bounded_vlgen min max sk32 serialize32_all_bytes)
(fun x -> x)
(fun x -> x)
() | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 6,
"end_line": 206,
"start_col": 0,
"start_line": 191
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32
inline_for_extraction
let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_flbytes
(sz: nat)
(sz' : U32.t { U32.v sz' == sz } )
: Tot (
lt_pow2_32 sz;
parser32 (parse_flbytes sz)
)
= lt_pow2_32 sz;
make_total_constant_size_parser32
sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz)
inline_for_extraction
let serialize32_flbytes
(sz: nat { sz < 4294967296 } )
: Tot (serializer32 (serialize_flbytes sz))
= fun (input: B32.lbytes sz) ->
B32.hide_reveal input;
(input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } ))
inline_for_extraction
let parse32_all_bytes
: parser32 parse_all_bytes
= fun (input: B32.bytes) ->
let res = Some (input, B32.len input) in
(res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } ))
inline_for_extraction
let serialize32_all_bytes
: serializer32 serialize_all_bytes
= fun (input: B32.bytes) ->
(input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } ))
inline_for_extraction
let parse32_bounded_vlbytes'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (parser32 (parse_bounded_vlbytes' min max l))
= parse32_synth
_
(synth_bounded_vlbytes min max)
(fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes)
()
inline_for_extraction
let parse32_bounded_vlbytes
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
: Tot (parser32 (parse_bounded_vlbytes min max))
= parse32_bounded_vlbytes' min min32 max max32 (log256' max)
inline_for_extraction
let serialize32_bounded_vlbytes_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes_aux min max l))
=
serialize32_bounded_vldata_strong'
min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
serialize32_all_bytes
inline_for_extraction
let serialize32_bounded_vlbytes'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes' min max l))
= serialize32_synth
(parse_bounded_vlbytes_aux min max l)
(synth_bounded_vlbytes min max)
(serialize_bounded_vlbytes_aux min max l)
(serialize32_bounded_vlbytes_aux min max l)
(fun (x: parse_bounded_vlbytes_t min max) ->
(x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes)
)
(fun x -> x)
()
inline_for_extraction
let serialize32_bounded_vlbytes
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
: Tot (serializer32 (serialize_bounded_vlbytes min max))
= serialize32_bounded_vlbytes' min max (log256' max)
inline_for_extraction
let size32_all_bytes
: size32 serialize_all_bytes
= fun (input: B32.bytes) ->
let res = B32.len input in
(res <: (res: U32.t { size32_postcond serialize_all_bytes input res } ))
inline_for_extraction
let size32_bounded_vlbytes_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (size32 (serialize_bounded_vlbytes_aux min max l))
=
size32_bounded_vldata_strong'
min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
size32_all_bytes
(U32.uint_to_t l)
inline_for_extraction
let size32_bounded_vlbytes'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (size32 (serialize_bounded_vlbytes' min max l))
=
size32_synth
(parse_bounded_vlbytes_aux min max l)
(synth_bounded_vlbytes min max)
(serialize_bounded_vlbytes_aux min max l)
(size32_bounded_vlbytes_aux min max l)
(fun (x: parse_bounded_vlbytes_t min max) ->
(x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes)
)
(fun x -> x)
()
inline_for_extraction
let size32_bounded_vlbytes
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
: Tot (size32 (serialize_bounded_vlbytes min max))
= size32_bounded_vlbytes' min max (log256' max)
inline_for_extraction
let parse32_bounded_vlgenbytes
(min: nat)
(min32: U32.t { U32.v min32 == min })
(max: nat{ min <= max /\ max > 0 })
(max32: U32.t { U32.v max32 == max })
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(pk32: parser32 pk)
: Tot (parser32 (parse_bounded_vlgenbytes min max pk))
= parse32_synth
(parse_bounded_vlgen min max pk serialize_all_bytes)
(fun x -> (x <: parse_bounded_vlbytes_t min max))
(fun x -> (x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vlgen min min32 max max32 pk32 serialize_all_bytes parse32_all_bytes)
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
sk32:
LowParse.SLow.Base.serializer32 sk
{ Mkparser_kind'?.parser_kind_subkind kk ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong /\
Some? (Mkparser_kind'?.parser_kind_high kk) /\
Some?.v (Mkparser_kind'?.parser_kind_high kk) + max < 4294967296 }
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.Bytes.serialize_bounded_vlgenbytes min max sk) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.Spec.Base.serializer",
"LowParse.SLow.Base.serializer32",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"FStar.Pervasives.Native.uu___is_Some",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_high",
"Prims.op_Addition",
"FStar.Pervasives.Native.__proj__Some__item__v",
"LowParse.SLow.Combinators.serialize32_synth",
"LowParse.Spec.VLGen.parse_bounded_vlgen_kind",
"LowParse.Spec.Bytes.parse_all_bytes_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"FStar.Bytes.bytes",
"LowParse.Spec.Bytes.parse_all_bytes",
"LowParse.Spec.Bytes.serialize_all_bytes",
"LowParse.Spec.Bytes.parse_bounded_vlbytes_t",
"LowParse.Spec.VLGen.parse_bounded_vlgen",
"LowParse.Spec.VLGen.serialize_bounded_vlgen",
"LowParse.SLow.VLGen.serialize32_bounded_vlgen",
"LowParse.SLow.Bytes.serialize32_all_bytes",
"LowParse.Spec.Bytes.parse_bounded_vlgenbytes",
"LowParse.Spec.Bytes.serialize_bounded_vlgenbytes"
] | [] | false | false | false | false | false | let serialize32_bounded_vlgenbytes
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk)
(sk32:
serializer32 sk
{ kk.parser_kind_subkind == Some ParserStrong /\ Some? kk.parser_kind_high /\
Some?.v kk.parser_kind_high + max < 4294967296 })
: Tot (serializer32 (serialize_bounded_vlgenbytes min max sk)) =
| serialize32_synth (parse_bounded_vlgen min max pk serialize_all_bytes)
(fun x -> (x <: parse_bounded_vlbytes_t min max))
(serialize_bounded_vlgen min max sk serialize_all_bytes)
(serialize32_bounded_vlgen min max sk32 serialize32_all_bytes)
(fun x -> x)
(fun x -> x)
() | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.serialize32_bounded_vlbytes | val serialize32_bounded_vlbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292})
: Tot (serializer32 (serialize_bounded_vlbytes min max)) | val serialize32_bounded_vlbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292})
: Tot (serializer32 (serialize_bounded_vlbytes min max)) | let serialize32_bounded_vlbytes
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
: Tot (serializer32 (serialize_bounded_vlbytes min max))
= serialize32_bounded_vlbytes' min max (log256' max) | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 52,
"end_line": 121,
"start_col": 0,
"start_line": 117
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32
inline_for_extraction
let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_flbytes
(sz: nat)
(sz' : U32.t { U32.v sz' == sz } )
: Tot (
lt_pow2_32 sz;
parser32 (parse_flbytes sz)
)
= lt_pow2_32 sz;
make_total_constant_size_parser32
sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz)
inline_for_extraction
let serialize32_flbytes
(sz: nat { sz < 4294967296 } )
: Tot (serializer32 (serialize_flbytes sz))
= fun (input: B32.lbytes sz) ->
B32.hide_reveal input;
(input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } ))
inline_for_extraction
let parse32_all_bytes
: parser32 parse_all_bytes
= fun (input: B32.bytes) ->
let res = Some (input, B32.len input) in
(res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } ))
inline_for_extraction
let serialize32_all_bytes
: serializer32 serialize_all_bytes
= fun (input: B32.bytes) ->
(input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } ))
inline_for_extraction
let parse32_bounded_vlbytes'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (parser32 (parse_bounded_vlbytes' min max l))
= parse32_synth
_
(synth_bounded_vlbytes min max)
(fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes)
()
inline_for_extraction
let parse32_bounded_vlbytes
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
: Tot (parser32 (parse_bounded_vlbytes min max))
= parse32_bounded_vlbytes' min min32 max max32 (log256' max)
inline_for_extraction
let serialize32_bounded_vlbytes_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes_aux min max l))
=
serialize32_bounded_vldata_strong'
min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
serialize32_all_bytes
inline_for_extraction
let serialize32_bounded_vlbytes'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes' min max l))
= serialize32_synth
(parse_bounded_vlbytes_aux min max l)
(synth_bounded_vlbytes min max)
(serialize_bounded_vlbytes_aux min max l)
(serialize32_bounded_vlbytes_aux min max l)
(fun (x: parse_bounded_vlbytes_t min max) ->
(x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes)
)
(fun x -> x)
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | min: Prims.nat -> max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292}
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.Bytes.serialize_bounded_vlbytes min max) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.SLow.Bytes.serialize32_bounded_vlbytes'",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.SLow.Base.serializer32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.Bytes.parse_all_bytes_kind",
"LowParse.Spec.Bytes.parse_bounded_vlbytes_t",
"LowParse.Spec.Bytes.parse_bounded_vlbytes",
"LowParse.Spec.Bytes.serialize_bounded_vlbytes"
] | [] | false | false | false | false | false | let serialize32_bounded_vlbytes (min: nat) (max: nat{min <= max /\ max > 0 /\ max < 4294967292})
: Tot (serializer32 (serialize_bounded_vlbytes min max)) =
| serialize32_bounded_vlbytes' min max (log256' max) | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.size32_all_bytes | val size32_all_bytes:size32 serialize_all_bytes | val size32_all_bytes:size32 serialize_all_bytes | let size32_all_bytes
: size32 serialize_all_bytes
= fun (input: B32.bytes) ->
let res = B32.len input in
(res <: (res: U32.t { size32_postcond serialize_all_bytes input res } )) | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 74,
"end_line": 128,
"start_col": 0,
"start_line": 124
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32
inline_for_extraction
let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_flbytes
(sz: nat)
(sz' : U32.t { U32.v sz' == sz } )
: Tot (
lt_pow2_32 sz;
parser32 (parse_flbytes sz)
)
= lt_pow2_32 sz;
make_total_constant_size_parser32
sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz)
inline_for_extraction
let serialize32_flbytes
(sz: nat { sz < 4294967296 } )
: Tot (serializer32 (serialize_flbytes sz))
= fun (input: B32.lbytes sz) ->
B32.hide_reveal input;
(input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } ))
inline_for_extraction
let parse32_all_bytes
: parser32 parse_all_bytes
= fun (input: B32.bytes) ->
let res = Some (input, B32.len input) in
(res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } ))
inline_for_extraction
let serialize32_all_bytes
: serializer32 serialize_all_bytes
= fun (input: B32.bytes) ->
(input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } ))
inline_for_extraction
let parse32_bounded_vlbytes'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (parser32 (parse_bounded_vlbytes' min max l))
= parse32_synth
_
(synth_bounded_vlbytes min max)
(fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes)
()
inline_for_extraction
let parse32_bounded_vlbytes
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
: Tot (parser32 (parse_bounded_vlbytes min max))
= parse32_bounded_vlbytes' min min32 max max32 (log256' max)
inline_for_extraction
let serialize32_bounded_vlbytes_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes_aux min max l))
=
serialize32_bounded_vldata_strong'
min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
serialize32_all_bytes
inline_for_extraction
let serialize32_bounded_vlbytes'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes' min max l))
= serialize32_synth
(parse_bounded_vlbytes_aux min max l)
(synth_bounded_vlbytes min max)
(serialize_bounded_vlbytes_aux min max l)
(serialize32_bounded_vlbytes_aux min max l)
(fun (x: parse_bounded_vlbytes_t min max) ->
(x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes)
)
(fun x -> x)
()
inline_for_extraction
let serialize32_bounded_vlbytes
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
: Tot (serializer32 (serialize_bounded_vlbytes min max))
= serialize32_bounded_vlbytes' min max (log256' max) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | LowParse.SLow.Base.size32 LowParse.Spec.Bytes.serialize_all_bytes | Prims.Tot | [
"total"
] | [] | [
"FStar.Bytes.bytes",
"FStar.UInt32.t",
"LowParse.SLow.Base.size32_postcond",
"LowParse.Spec.Bytes.parse_all_bytes_kind",
"LowParse.Spec.Bytes.parse_all_bytes",
"LowParse.Spec.Bytes.serialize_all_bytes",
"FStar.Bytes.len"
] | [] | false | false | false | true | false | let size32_all_bytes:size32 serialize_all_bytes =
| fun (input: B32.bytes) ->
let res = B32.len input in
(res <: (res: U32.t{size32_postcond serialize_all_bytes input res})) | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.size32_bounded_vlbytes' | val size32_bounded_vlbytes'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
: Tot (size32 (serialize_bounded_vlbytes' min max l)) | val size32_bounded_vlbytes'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
: Tot (size32 (serialize_bounded_vlbytes' min max l)) | let size32_bounded_vlbytes'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (size32 (serialize_bounded_vlbytes' min max l))
=
size32_synth
(parse_bounded_vlbytes_aux min max l)
(synth_bounded_vlbytes min max)
(serialize_bounded_vlbytes_aux min max l)
(size32_bounded_vlbytes_aux min max l)
(fun (x: parse_bounded_vlbytes_t min max) ->
(x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes)
)
(fun x -> x)
() | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 6,
"end_line": 164,
"start_col": 0,
"start_line": 149
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32
inline_for_extraction
let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_flbytes
(sz: nat)
(sz' : U32.t { U32.v sz' == sz } )
: Tot (
lt_pow2_32 sz;
parser32 (parse_flbytes sz)
)
= lt_pow2_32 sz;
make_total_constant_size_parser32
sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz)
inline_for_extraction
let serialize32_flbytes
(sz: nat { sz < 4294967296 } )
: Tot (serializer32 (serialize_flbytes sz))
= fun (input: B32.lbytes sz) ->
B32.hide_reveal input;
(input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } ))
inline_for_extraction
let parse32_all_bytes
: parser32 parse_all_bytes
= fun (input: B32.bytes) ->
let res = Some (input, B32.len input) in
(res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } ))
inline_for_extraction
let serialize32_all_bytes
: serializer32 serialize_all_bytes
= fun (input: B32.bytes) ->
(input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } ))
inline_for_extraction
let parse32_bounded_vlbytes'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (parser32 (parse_bounded_vlbytes' min max l))
= parse32_synth
_
(synth_bounded_vlbytes min max)
(fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes)
()
inline_for_extraction
let parse32_bounded_vlbytes
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
: Tot (parser32 (parse_bounded_vlbytes min max))
= parse32_bounded_vlbytes' min min32 max max32 (log256' max)
inline_for_extraction
let serialize32_bounded_vlbytes_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes_aux min max l))
=
serialize32_bounded_vldata_strong'
min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
serialize32_all_bytes
inline_for_extraction
let serialize32_bounded_vlbytes'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes' min max l))
= serialize32_synth
(parse_bounded_vlbytes_aux min max l)
(synth_bounded_vlbytes min max)
(serialize_bounded_vlbytes_aux min max l)
(serialize32_bounded_vlbytes_aux min max l)
(fun (x: parse_bounded_vlbytes_t min max) ->
(x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes)
)
(fun x -> x)
()
inline_for_extraction
let serialize32_bounded_vlbytes
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
: Tot (serializer32 (serialize_bounded_vlbytes min max))
= serialize32_bounded_vlbytes' min max (log256' max)
inline_for_extraction
let size32_all_bytes
: size32 serialize_all_bytes
= fun (input: B32.bytes) ->
let res = B32.len input in
(res <: (res: U32.t { size32_postcond serialize_all_bytes input res } ))
inline_for_extraction
let size32_bounded_vlbytes_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (size32 (serialize_bounded_vlbytes_aux min max l))
=
size32_bounded_vldata_strong'
min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
size32_all_bytes
(U32.uint_to_t l) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4}
-> LowParse.SLow.Base.size32 (LowParse.Spec.Bytes.serialize_bounded_vlbytes' min max l) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"Prims.op_GreaterThanOrEqual",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.SLow.Combinators.size32_synth",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.Bytes.parse_all_bytes_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"FStar.Bytes.bytes",
"LowParse.Spec.Bytes.parse_all_bytes",
"LowParse.Spec.Bytes.serialize_all_bytes",
"LowParse.Spec.Bytes.parse_bounded_vlbytes_t",
"LowParse.Spec.Bytes.parse_bounded_vlbytes_aux",
"LowParse.Spec.Bytes.synth_bounded_vlbytes",
"LowParse.Spec.Bytes.serialize_bounded_vlbytes_aux",
"LowParse.SLow.Bytes.size32_bounded_vlbytes_aux",
"Prims.eq2",
"LowParse.SLow.Base.size32",
"LowParse.Spec.Bytes.parse_bounded_vlbytes'",
"LowParse.Spec.Bytes.serialize_bounded_vlbytes'"
] | [] | false | false | false | false | false | let size32_bounded_vlbytes'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
: Tot (size32 (serialize_bounded_vlbytes' min max l)) =
| size32_synth (parse_bounded_vlbytes_aux min max l)
(synth_bounded_vlbytes min max)
(serialize_bounded_vlbytes_aux min max l)
(size32_bounded_vlbytes_aux min max l)
(fun (x: parse_bounded_vlbytes_t min max) ->
(x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes))
(fun x -> x)
() | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.parse32_bounded_vlgenbytes | val parse32_bounded_vlgenbytes
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0})
(max32: U32.t{U32.v max32 == max})
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(pk32: parser32 pk)
: Tot (parser32 (parse_bounded_vlgenbytes min max pk)) | val parse32_bounded_vlgenbytes
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0})
(max32: U32.t{U32.v max32 == max})
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(pk32: parser32 pk)
: Tot (parser32 (parse_bounded_vlgenbytes min max pk)) | let parse32_bounded_vlgenbytes
(min: nat)
(min32: U32.t { U32.v min32 == min })
(max: nat{ min <= max /\ max > 0 })
(max32: U32.t { U32.v max32 == max })
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(pk32: parser32 pk)
: Tot (parser32 (parse_bounded_vlgenbytes min max pk))
= parse32_synth
(parse_bounded_vlgen min max pk serialize_all_bytes)
(fun x -> (x <: parse_bounded_vlbytes_t min max))
(fun x -> (x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vlgen min min32 max max32 pk32 serialize_all_bytes parse32_all_bytes)
() | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 6,
"end_line": 188,
"start_col": 0,
"start_line": 174
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32
inline_for_extraction
let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_flbytes
(sz: nat)
(sz' : U32.t { U32.v sz' == sz } )
: Tot (
lt_pow2_32 sz;
parser32 (parse_flbytes sz)
)
= lt_pow2_32 sz;
make_total_constant_size_parser32
sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz)
inline_for_extraction
let serialize32_flbytes
(sz: nat { sz < 4294967296 } )
: Tot (serializer32 (serialize_flbytes sz))
= fun (input: B32.lbytes sz) ->
B32.hide_reveal input;
(input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } ))
inline_for_extraction
let parse32_all_bytes
: parser32 parse_all_bytes
= fun (input: B32.bytes) ->
let res = Some (input, B32.len input) in
(res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } ))
inline_for_extraction
let serialize32_all_bytes
: serializer32 serialize_all_bytes
= fun (input: B32.bytes) ->
(input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } ))
inline_for_extraction
let parse32_bounded_vlbytes'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (parser32 (parse_bounded_vlbytes' min max l))
= parse32_synth
_
(synth_bounded_vlbytes min max)
(fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes)
()
inline_for_extraction
let parse32_bounded_vlbytes
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
: Tot (parser32 (parse_bounded_vlbytes min max))
= parse32_bounded_vlbytes' min min32 max max32 (log256' max)
inline_for_extraction
let serialize32_bounded_vlbytes_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes_aux min max l))
=
serialize32_bounded_vldata_strong'
min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
serialize32_all_bytes
inline_for_extraction
let serialize32_bounded_vlbytes'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes' min max l))
= serialize32_synth
(parse_bounded_vlbytes_aux min max l)
(synth_bounded_vlbytes min max)
(serialize_bounded_vlbytes_aux min max l)
(serialize32_bounded_vlbytes_aux min max l)
(fun (x: parse_bounded_vlbytes_t min max) ->
(x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes)
)
(fun x -> x)
()
inline_for_extraction
let serialize32_bounded_vlbytes
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
: Tot (serializer32 (serialize_bounded_vlbytes min max))
= serialize32_bounded_vlbytes' min max (log256' max)
inline_for_extraction
let size32_all_bytes
: size32 serialize_all_bytes
= fun (input: B32.bytes) ->
let res = B32.len input in
(res <: (res: U32.t { size32_postcond serialize_all_bytes input res } ))
inline_for_extraction
let size32_bounded_vlbytes_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (size32 (serialize_bounded_vlbytes_aux min max l))
=
size32_bounded_vldata_strong'
min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
size32_all_bytes
(U32.uint_to_t l)
inline_for_extraction
let size32_bounded_vlbytes'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (size32 (serialize_bounded_vlbytes' min max l))
=
size32_synth
(parse_bounded_vlbytes_aux min max l)
(synth_bounded_vlbytes min max)
(serialize_bounded_vlbytes_aux min max l)
(size32_bounded_vlbytes_aux min max l)
(fun (x: parse_bounded_vlbytes_t min max) ->
(x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes)
)
(fun x -> x)
()
inline_for_extraction
let size32_bounded_vlbytes
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
: Tot (size32 (serialize_bounded_vlbytes min max))
= size32_bounded_vlbytes' min max (log256' max) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
min32: FStar.UInt32.t{FStar.UInt32.v min32 == min} ->
max: Prims.nat{min <= max /\ max > 0} ->
max32: FStar.UInt32.t{FStar.UInt32.v max32 == max} ->
pk32: LowParse.SLow.Base.parser32 pk
-> LowParse.SLow.Base.parser32 (LowParse.Spec.Bytes.parse_bounded_vlgenbytes min max pk) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.UInt32.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"FStar.UInt.size",
"FStar.UInt32.n",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.SLow.Base.parser32",
"LowParse.SLow.Combinators.parse32_synth",
"LowParse.Spec.VLGen.parse_bounded_vlgen_kind",
"LowParse.Spec.Bytes.parse_all_bytes_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"FStar.Bytes.bytes",
"LowParse.Spec.Bytes.parse_all_bytes",
"LowParse.Spec.Bytes.serialize_all_bytes",
"LowParse.Spec.Bytes.parse_bounded_vlbytes_t",
"LowParse.Spec.VLGen.parse_bounded_vlgen",
"LowParse.SLow.VLGen.parse32_bounded_vlgen",
"LowParse.SLow.Bytes.parse32_all_bytes",
"LowParse.Spec.Bytes.parse_bounded_vlgenbytes"
] | [] | false | false | false | false | false | let parse32_bounded_vlgenbytes
(min: nat)
(min32: U32.t{U32.v min32 == min})
(max: nat{min <= max /\ max > 0})
(max32: U32.t{U32.v max32 == max})
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(pk32: parser32 pk)
: Tot (parser32 (parse_bounded_vlgenbytes min max pk)) =
| parse32_synth (parse_bounded_vlgen min max pk serialize_all_bytes)
(fun x -> (x <: parse_bounded_vlbytes_t min max))
(fun x -> (x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vlgen min min32 max max32 pk32 serialize_all_bytes parse32_all_bytes)
() | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.serialize32_bounded_vlbytes' | val serialize32_bounded_vlbytes'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
: Tot (serializer32 (serialize_bounded_vlbytes' min max l)) | val serialize32_bounded_vlbytes'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
: Tot (serializer32 (serialize_bounded_vlbytes' min max l)) | let serialize32_bounded_vlbytes'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes' min max l))
= serialize32_synth
(parse_bounded_vlbytes_aux min max l)
(synth_bounded_vlbytes min max)
(serialize_bounded_vlbytes_aux min max l)
(serialize32_bounded_vlbytes_aux min max l)
(fun (x: parse_bounded_vlbytes_t min max) ->
(x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes)
)
(fun x -> x)
() | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 6,
"end_line": 114,
"start_col": 0,
"start_line": 100
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32
inline_for_extraction
let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_flbytes
(sz: nat)
(sz' : U32.t { U32.v sz' == sz } )
: Tot (
lt_pow2_32 sz;
parser32 (parse_flbytes sz)
)
= lt_pow2_32 sz;
make_total_constant_size_parser32
sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz)
inline_for_extraction
let serialize32_flbytes
(sz: nat { sz < 4294967296 } )
: Tot (serializer32 (serialize_flbytes sz))
= fun (input: B32.lbytes sz) ->
B32.hide_reveal input;
(input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } ))
inline_for_extraction
let parse32_all_bytes
: parser32 parse_all_bytes
= fun (input: B32.bytes) ->
let res = Some (input, B32.len input) in
(res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } ))
inline_for_extraction
let serialize32_all_bytes
: serializer32 serialize_all_bytes
= fun (input: B32.bytes) ->
(input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } ))
inline_for_extraction
let parse32_bounded_vlbytes'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (parser32 (parse_bounded_vlbytes' min max l))
= parse32_synth
_
(synth_bounded_vlbytes min max)
(fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes)
()
inline_for_extraction
let parse32_bounded_vlbytes
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
: Tot (parser32 (parse_bounded_vlbytes min max))
= parse32_bounded_vlbytes' min min32 max max32 (log256' max)
inline_for_extraction
let serialize32_bounded_vlbytes_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes_aux min max l))
=
serialize32_bounded_vldata_strong'
min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
serialize32_all_bytes | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4}
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.Bytes.serialize_bounded_vlbytes' min max l) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"Prims.op_GreaterThanOrEqual",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.SLow.Combinators.serialize32_synth",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.Bytes.parse_all_bytes_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"FStar.Bytes.bytes",
"LowParse.Spec.Bytes.parse_all_bytes",
"LowParse.Spec.Bytes.serialize_all_bytes",
"LowParse.Spec.Bytes.parse_bounded_vlbytes_t",
"LowParse.Spec.Bytes.parse_bounded_vlbytes_aux",
"LowParse.Spec.Bytes.synth_bounded_vlbytes",
"LowParse.Spec.Bytes.serialize_bounded_vlbytes_aux",
"LowParse.SLow.Bytes.serialize32_bounded_vlbytes_aux",
"Prims.eq2",
"LowParse.SLow.Base.serializer32",
"LowParse.Spec.Bytes.parse_bounded_vlbytes'",
"LowParse.Spec.Bytes.serialize_bounded_vlbytes'"
] | [] | false | false | false | false | false | let serialize32_bounded_vlbytes'
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
: Tot (serializer32 (serialize_bounded_vlbytes' min max l)) =
| serialize32_synth (parse_bounded_vlbytes_aux min max l)
(synth_bounded_vlbytes min max)
(serialize_bounded_vlbytes_aux min max l)
(serialize32_bounded_vlbytes_aux min max l)
(fun (x: parse_bounded_vlbytes_t min max) ->
(x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes))
(fun x -> x)
() | false |
LowParse.SLow.Bytes.fst | LowParse.SLow.Bytes.size32_bounded_vlbytes_aux | val size32_bounded_vlbytes_aux
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
: Tot (size32 (serialize_bounded_vlbytes_aux min max l)) | val size32_bounded_vlbytes_aux
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
: Tot (size32 (serialize_bounded_vlbytes_aux min max l)) | let size32_bounded_vlbytes_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (size32 (serialize_bounded_vlbytes_aux min max l))
=
size32_bounded_vldata_strong'
min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
size32_all_bytes
(U32.uint_to_t l) | {
"file_name": "src/lowparse/LowParse.SLow.Bytes.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 21,
"end_line": 146,
"start_col": 0,
"start_line": 131
} | module LowParse.SLow.Bytes
include LowParse.Spec.Bytes
include LowParse.SLow.VLData
include LowParse.SLow.VLGen
module B32 = FStar.Bytes
module Seq = FStar.Seq
module U32 = FStar.UInt32
inline_for_extraction
let parse32_flbytes_gen
(sz: nat { sz < 4294967296 } )
(x: B32.lbytes sz)
: Tot (y: B32.lbytes sz { y == parse_flbytes_gen sz (B32.reveal x) } )
= B32.hide_reveal x;
x
#set-options "--z3rlimit 32"
inline_for_extraction
let parse32_flbytes
(sz: nat)
(sz' : U32.t { U32.v sz' == sz } )
: Tot (
lt_pow2_32 sz;
parser32 (parse_flbytes sz)
)
= lt_pow2_32 sz;
make_total_constant_size_parser32
sz
sz'
#(B32.lbytes sz)
(parse_flbytes_gen sz)
()
(parse32_flbytes_gen sz)
inline_for_extraction
let serialize32_flbytes
(sz: nat { sz < 4294967296 } )
: Tot (serializer32 (serialize_flbytes sz))
= fun (input: B32.lbytes sz) ->
B32.hide_reveal input;
(input <: (res: bytes32 { serializer32_correct (serialize_flbytes sz) input res } ))
inline_for_extraction
let parse32_all_bytes
: parser32 parse_all_bytes
= fun (input: B32.bytes) ->
let res = Some (input, B32.len input) in
(res <: (res: option (bytes32 * U32.t) { parser32_correct parse_all_bytes input res } ))
inline_for_extraction
let serialize32_all_bytes
: serializer32 serialize_all_bytes
= fun (input: B32.bytes) ->
(input <: (res: bytes32 { serializer32_correct serialize_all_bytes input res } ))
inline_for_extraction
let parse32_bounded_vlbytes'
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (parser32 (parse_bounded_vlbytes' min max l))
= parse32_synth
_
(synth_bounded_vlbytes min max)
(fun (x: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes) -> (x <: parse_bounded_vlbytes_t min max))
(parse32_bounded_vldata_strong' min min32 max max32 l serialize_all_bytes parse32_all_bytes)
()
inline_for_extraction
let parse32_bounded_vlbytes
(min: nat)
(min32: U32.t { U32.v min32 == min } )
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(max32: U32.t { U32.v max32 == max } )
: Tot (parser32 (parse_bounded_vlbytes min max))
= parse32_bounded_vlbytes' min min32 max max32 (log256' max)
inline_for_extraction
let serialize32_bounded_vlbytes_aux
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes_aux min max l))
=
serialize32_bounded_vldata_strong'
min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
serialize32_all_bytes
inline_for_extraction
let serialize32_bounded_vlbytes'
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
(l: nat { l >= log256' max /\ l <= 4 } )
: Tot (serializer32 (serialize_bounded_vlbytes' min max l))
= serialize32_synth
(parse_bounded_vlbytes_aux min max l)
(synth_bounded_vlbytes min max)
(serialize_bounded_vlbytes_aux min max l)
(serialize32_bounded_vlbytes_aux min max l)
(fun (x: parse_bounded_vlbytes_t min max) ->
(x <: parse_bounded_vldata_strong_t min max #_ #_ #parse_all_bytes serialize_all_bytes)
)
(fun x -> x)
()
inline_for_extraction
let serialize32_bounded_vlbytes
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967292 } ) // max MUST BE less than 2^32 - 4
: Tot (serializer32 (serialize_bounded_vlbytes min max))
= serialize32_bounded_vlbytes' min max (log256' max)
inline_for_extraction
let size32_all_bytes
: size32 serialize_all_bytes
= fun (input: B32.bytes) ->
let res = B32.len input in
(res <: (res: U32.t { size32_postcond serialize_all_bytes input res } )) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Bytes.fst.checked",
"LowParse.SLow.VLGen.fst.checked",
"LowParse.SLow.VLData.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.Bytes.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "B32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow.VLData",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967292} ->
l: Prims.nat{l >= LowParse.Spec.BoundedInt.log256' max /\ l <= 4}
-> LowParse.SLow.Base.size32 (LowParse.Spec.Bytes.serialize_bounded_vlbytes_aux min max l) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"Prims.op_GreaterThanOrEqual",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.SLow.VLData.size32_bounded_vldata_strong'",
"LowParse.Spec.Bytes.parse_all_bytes_kind",
"FStar.Bytes.bytes",
"LowParse.Spec.Bytes.parse_all_bytes",
"LowParse.Spec.Bytes.serialize_all_bytes",
"LowParse.SLow.Bytes.size32_all_bytes",
"FStar.UInt32.uint_to_t",
"LowParse.SLow.Base.size32",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_t",
"LowParse.Spec.Bytes.parse_bounded_vlbytes_aux",
"LowParse.Spec.Bytes.serialize_bounded_vlbytes_aux"
] | [] | false | false | false | false | false | let size32_bounded_vlbytes_aux
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967292})
(l: nat{l >= log256' max /\ l <= 4})
: Tot (size32 (serialize_bounded_vlbytes_aux min max l)) =
| size32_bounded_vldata_strong' min
max
l
#_
#_
#parse_all_bytes
#serialize_all_bytes
size32_all_bytes
(U32.uint_to_t l) | false |
Hacl.Impl.Frodo.Encode.fst | Hacl.Impl.Frodo.Encode.dc | val dc:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b < v logq}
-> c:uint16
-> r:uint16{r == S.dc (v logq) (v b) c} | val dc:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b < v logq}
-> c:uint16
-> r:uint16{r == S.dc (v logq) (v b) c} | let dc logq b c =
let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in
res1 &. ((u16 1 <<. b) -. u16 1) | {
"file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 42,
"start_col": 0,
"start_line": 40
} | module Hacl.Impl.Frodo.Encode
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Hacl.Impl.Matrix
module ST = FStar.HyperStack.ST
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module S = Spec.Frodo.Encode
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract private
val ec:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= v logq}
-> k:uint16{v k < pow2 (v b)}
-> r:uint16{r == S.ec (v logq) (v b) k}
let ec logq b a =
a <<. (logq -. b)
inline_for_extraction noextract private
val dc:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b < v logq}
-> c:uint16
-> r:uint16{r == S.dc (v logq) (v b) c} | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Matrix.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Frodo.Encode.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.Encode",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} ->
b: Lib.IntTypes.size_t{0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b < Lib.IntTypes.v logq} ->
c: Lib.IntTypes.uint16
-> r: Lib.IntTypes.uint16{r == Spec.Frodo.Encode.dc (Lib.IntTypes.v logq) (Lib.IntTypes.v b) c} | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.uint16",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.U16",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Subtraction_Dot",
"Lib.IntTypes.op_Less_Less_Dot",
"Lib.IntTypes.u16",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Greater_Greater_Dot",
"Lib.IntTypes.op_Plus_Dot",
"Lib.IntTypes.size",
"Prims.eq2",
"Spec.Frodo.Encode.dc"
] | [] | false | false | false | false | false | let dc logq b c =
| let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in
res1 &. ((u16 1 <<. b) -. u16 1) | false |
Hacl.Impl.Frodo.Encode.fst | Hacl.Impl.Frodo.Encode.ec | val ec:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= v logq}
-> k:uint16{v k < pow2 (v b)}
-> r:uint16{r == S.ec (v logq) (v b) k} | val ec:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= v logq}
-> k:uint16{v k < pow2 (v b)}
-> r:uint16{r == S.ec (v logq) (v b) k} | let ec logq b a =
a <<. (logq -. b) | {
"file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 19,
"end_line": 30,
"start_col": 0,
"start_line": 29
} | module Hacl.Impl.Frodo.Encode
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Hacl.Impl.Matrix
module ST = FStar.HyperStack.ST
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module S = Spec.Frodo.Encode
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract private
val ec:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= v logq}
-> k:uint16{v k < pow2 (v b)}
-> r:uint16{r == S.ec (v logq) (v b) k} | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Matrix.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Frodo.Encode.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.Encode",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} ->
b: Lib.IntTypes.size_t{0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b <= Lib.IntTypes.v logq} ->
k: Lib.IntTypes.uint16{Lib.IntTypes.v k < Prims.pow2 (Lib.IntTypes.v b)}
-> r: Lib.IntTypes.uint16{r == Spec.Frodo.Encode.ec (Lib.IntTypes.v logq) (Lib.IntTypes.v b) k} | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.uint16",
"Lib.IntTypes.U16",
"Lib.IntTypes.SEC",
"Prims.pow2",
"Lib.IntTypes.op_Less_Less_Dot",
"Lib.IntTypes.op_Subtraction_Dot",
"Prims.eq2",
"Spec.Frodo.Encode.ec"
] | [] | false | false | false | false | false | let ec logq b a =
| a <<. (logq -. b) | false |
Hacl.Impl.Frodo.Encode.fst | Hacl.Impl.Frodo.Encode.ec1 | val ec1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> x:uint64
-> k:size_t{v k < 8}
-> res:uint16{res == S.ec1 (v logq) (v b) x (v k)} | val ec1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> x:uint64
-> k:size_t{v k < 8}
-> res:uint16{res == S.ec1 (v logq) (v b) x (v k)} | let ec1 logq b x k =
Spec.Frodo.Lemmas.modulo_pow2_u64 (x >>. (b *! k)) (v b);
let rk = (x >>. (b *! k)) &. ((u64 1 <<. b) -. u64 1) in
ec logq b (to_u16 rk) | {
"file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 23,
"end_line": 56,
"start_col": 0,
"start_line": 53
} | module Hacl.Impl.Frodo.Encode
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Hacl.Impl.Matrix
module ST = FStar.HyperStack.ST
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module S = Spec.Frodo.Encode
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract private
val ec:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= v logq}
-> k:uint16{v k < pow2 (v b)}
-> r:uint16{r == S.ec (v logq) (v b) k}
let ec logq b a =
a <<. (logq -. b)
inline_for_extraction noextract private
val dc:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b < v logq}
-> c:uint16
-> r:uint16{r == S.dc (v logq) (v b) c}
let dc logq b c =
let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in
res1 &. ((u16 1 <<. b) -. u16 1)
inline_for_extraction noextract private
val ec1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> x:uint64
-> k:size_t{v k < 8}
-> res:uint16{res == S.ec1 (v logq) (v b) x (v k)} | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Matrix.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Frodo.Encode.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.Encode",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} ->
b:
Lib.IntTypes.size_t
{0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b <= 8 /\ Lib.IntTypes.v b <= Lib.IntTypes.v logq} ->
x: Lib.IntTypes.uint64 ->
k: Lib.IntTypes.size_t{Lib.IntTypes.v k < 8}
-> res:
Lib.IntTypes.uint16
{res == Spec.Frodo.Encode.ec1 (Lib.IntTypes.v logq) (Lib.IntTypes.v b) x (Lib.IntTypes.v k)} | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.uint64",
"Hacl.Impl.Frodo.Encode.ec",
"Lib.IntTypes.to_u16",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.op_Greater_Greater_Dot",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.op_Subtraction_Dot",
"Lib.IntTypes.op_Less_Less_Dot",
"Lib.IntTypes.u64",
"Prims.unit",
"Spec.Frodo.Lemmas.modulo_pow2_u64",
"Lib.IntTypes.uint16",
"Prims.eq2",
"Spec.Frodo.Encode.ec1"
] | [] | false | false | false | false | false | let ec1 logq b x k =
| Spec.Frodo.Lemmas.modulo_pow2_u64 (x >>. (b *! k)) (v b);
let rk = (x >>. (b *! k)) &. ((u64 1 <<. b) -. u64 1) in
ec logq b (to_u16 rk) | false |
Enum.fst | Enum.bounded | val bounded : b: Enum.bound -> Type0 | let bounded (b:bound) = n:nat{bounded_by b n} | {
"file_name": "examples/typeclasses/Enum.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 30,
"start_col": 0,
"start_line": 30
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Enum
open FStar.Tactics.Typeclasses
open FStar.Tactics.V2
type bound = option nat
let bounded_by (b:bound) n =
match b with
| Some b -> b2t (n <= b)
| None -> True
let succ : bound -> bound = function | None -> None | Some b -> Some (b+1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Typeclasses.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Enum.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Typeclasses",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Enum.bound -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Enum.bound",
"Prims.nat",
"Enum.bounded_by"
] | [] | false | false | false | true | true | let bounded (b: bound) =
| n: nat{bounded_by b n} | false |
|
Hacl.Spec.Poly1305.Field32xN.Lemmas.fst | Hacl.Spec.Poly1305.Field32xN.Lemmas.fmul_r4_normalize5_lemma | val fmul_r4_normalize5_lemma:
acc:felem5 4
-> r:felem5 4
-> r_5:felem5 4
-> r4:felem5 4 ->
Lemma
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r4 (2, 2, 2, 2, 2) /\
r_5 == precomp_r5 r /\
feval5 r4 == Vec.compute_r4 (feval5 r).[0])
(ensures
(let out = fmul_r4_normalize5 acc r r_5 r4 in
felem_fits5 out (2, 1, 1, 1, 1) /\
(feval5 out).[0] == Vec.normalize_4 (feval5 r).[0] (feval5 acc)))
[SMTPat (fmul_r4_normalize5 acc r r_5 r4)] | val fmul_r4_normalize5_lemma:
acc:felem5 4
-> r:felem5 4
-> r_5:felem5 4
-> r4:felem5 4 ->
Lemma
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r4 (2, 2, 2, 2, 2) /\
r_5 == precomp_r5 r /\
feval5 r4 == Vec.compute_r4 (feval5 r).[0])
(ensures
(let out = fmul_r4_normalize5 acc r r_5 r4 in
felem_fits5 out (2, 1, 1, 1, 1) /\
(feval5 out).[0] == Vec.normalize_4 (feval5 r).[0] (feval5 acc)))
[SMTPat (fmul_r4_normalize5 acc r r_5 r4)] | let fmul_r4_normalize5_lemma acc fr fr_5 fr4 =
let fr2 = fmul_r5 #4 fr fr fr_5 in
let fr3 = fmul_r5 #4 fr2 fr fr_5 in
let out = fmul_r4_normalize50 acc fr fr2 fr3 fr4 in
let v2 = fmul_r4_normalize51 out in
let res = carry_full_felem5 v2 in
carry_full_felem5_lemma v2 | {
"file_name": "code/poly1305/Hacl.Spec.Poly1305.Field32xN.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 620,
"start_col": 0,
"start_line": 614
} | module Hacl.Spec.Poly1305.Field32xN.Lemmas
open Lib.IntTypes
open Lib.IntVector
open Lib.Sequence
open FStar.Mul
open Hacl.Spec.Poly1305.Field32xN
open Hacl.Poly1305.Field32xN.Lemmas0
open Hacl.Poly1305.Field32xN.Lemmas1
open Hacl.Poly1305.Field32xN.Lemmas2
module Vec = Hacl.Spec.Poly1305.Vec
#set-options "--z3rlimit 100 --max_fuel 0 --initial_ifuel 1 --max_ifuel 1 --using_facts_from '* -FStar.Seq'"
val lemma_feval_is_fas_nat_i:
#w:lanes
-> f:felem5 w{felem_less5 f (pow2 128)}
-> i:size_nat{i < w} ->
Lemma ((feval5 f).[i] == (fas_nat5 f).[i])
let lemma_feval_is_fas_nat_i #w f i =
assert_norm (pow2 128 < Vec.prime);
assert ((feval5 f).[i] == (as_nat5 (transpose f).[i]) % Vec.prime);
FStar.Math.Lemmas.modulo_lemma (as_nat5 (transpose f).[i]) Vec.prime
val lemma_feval_is_fas_nat:
#w:lanes
-> f:felem5 w{felem_less5 f (pow2 128)} ->
Lemma (forall (i:nat). i < w ==> (fas_nat5 f).[i] == (feval5 f).[i])
let lemma_feval_is_fas_nat #w f =
FStar.Classical.forall_intro (lemma_feval_is_fas_nat_i #w f)
val precomp_r5_fits_lemma:
#w:lanes
-> r:felem5 w{felem_fits5 r (1, 1, 1, 1, 1)} ->
Lemma (felem_fits5 (precomp_r5 #w r) (5, 5, 5, 5, 5))
[SMTPat (precomp_r5 #w r)]
let precomp_r5_fits_lemma #w r =
FStar.Classical.forall_intro (precomp_r5_as_tup64 #w r)
val precomp_r5_fits_lemma2:
#w:lanes
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)} ->
Lemma (felem_fits5 (precomp_r5 #w r) (10, 10, 10, 10, 10))
[SMTPat (precomp_r5 #w r)]
let precomp_r5_fits_lemma2 #w r =
FStar.Classical.forall_intro (precomp_r5_as_tup64 #w r)
val precomp_r5_zeros: w:lanes -> Lemma
(let r = (zero w, zero w, zero w, zero w, zero w) in
precomp_r5 r == (zero w, zero w, zero w, zero w, zero w))
let precomp_r5_zeros w =
let r = (zero w, zero w, zero w, zero w, zero w) in
let (r0, r1, r2, r3, r4) = precomp_r5 r in
let aux (i:nat{i < w}) : Lemma ((vec_v (vec_smul_mod (zero w) (u64 5))).[i] == u64 0) = () in
Classical.forall_intro aux;
eq_intro (vec_v (vec_smul_mod (zero w) (u64 5))) (vec_v (zero w));
vecv_extensionality (vec_smul_mod (zero w) (u64 5)) (zero w)
val fadd5_fits_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (2,2,2,2,2)}
-> f2:felem5 w{felem_fits5 f2 (1,1,1,1,1)} ->
Lemma (felem_fits5 (fadd5 f1 f2) (3,3,3,3,3))
[SMTPat (fadd5 f1 f2)]
let fadd5_fits_lemma #w f1 f2 =
let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o = fadd5 f1 f2 in
vec_add_mod_lemma f10 f20;
vec_add_mod_lemma f11 f21;
vec_add_mod_lemma f12 f22;
vec_add_mod_lemma f13 f23;
vec_add_mod_lemma f14 f24
val fadd5_eval_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (2,2,2,2,2)}
-> f2:felem5 w{felem_fits5 f2 (1,1,1,1,1)} ->
Lemma (feval5 (fadd5 f1 f2) == map2 Vec.pfadd (feval5 f1) (feval5 f2))
[SMTPat (fadd5 f1 f2)]
let fadd5_eval_lemma #w f1 f2 =
let o = fadd5 f1 f2 in
FStar.Classical.forall_intro (fadd5_eval_lemma_i f1 f2);
eq_intro (feval5 o) (map2 Vec.pfadd (feval5 f1) (feval5 f2))
val mul_felem5_fits_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10)} ->
Lemma (felem_wide_fits5 (mul_felem5 #w f1 r r5) (126, 102, 78, 54, 30))
[SMTPat (mul_felem5 #w f1 r r5)]
let mul_felem5_fits_lemma #w f1 r r5 =
let (r0, r1, r2, r3, r4) = r in
let (f10, f11, f12, f13, f14) = f1 in
let (r50, r51, r52, r53, r54) = r5 in
let (a0,a1,a2,a3,a4) = smul_felem5 #w f10 (r0,r1,r2,r3,r4) in
smul_felem5_fits_lemma #w #3 #(2,2,2,2,2) f10 (r0,r1,r2,r3,r4);
let (a10,a11,a12,a13,a14) = smul_add_felem5 #w f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4) in
smul_add_felem5_fits_lemma #w #3 #(10,2,2,2,2) #(6,6,6,6,6) f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4);
let (a20,a21,a22,a23,a24) = smul_add_felem5 #w f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14) in
smul_add_felem5_fits_lemma #w #3 #(10,10,2,2,2) #(36,12,12,12,12) f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14);
let (a30,a31,a32,a33,a34) = smul_add_felem5 #w f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24) in
smul_add_felem5_fits_lemma #w #3 #(10,10,10,2,2) #(66,42,18,18,18) f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24);
let (a40,a41,a42,a43,a44) = smul_add_felem5 #w f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34) in
smul_add_felem5_fits_lemma #w #3 #(10,10,10,10,2) #(96,72,48,24,24) f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34)
val mul_felem5_eval_lemma_i:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10) /\ r5 == precomp_r5 r}
-> i:nat{i < w} ->
Lemma ((feval5 (mul_felem5 #w f1 r r5)).[i] == (feval5 f1).[i] `Vec.pfmul` (feval5 r).[i])
let mul_felem5_eval_lemma_i #w f1 r r5 i =
let (r0, r1, r2, r3, r4) = r in
let (f10, f11, f12, f13, f14) = f1 in
let (r50, r51, r52, r53, r54) = r5 in
let (a0,a1,a2,a3,a4) = smul_felem5 #w f10 (r0,r1,r2,r3,r4) in
smul_felem5_eval_lemma #w #3 #(2,2,2,2,2) f10 (r0,r1,r2,r3,r4);
smul_felem5_fits_lemma #w #3 #(2,2,2,2,2) f10 (r0,r1,r2,r3,r4);
assert ((fas_nat5 (a0,a1,a2,a3,a4)).[i] == (uint64xN_v f10).[i] * (fas_nat5 (r0,r1,r2,r3,r4)).[i]);
let (a10,a11,a12,a13,a14) = smul_add_felem5 #w f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4) in
smul_add_felem5_eval_lemma #w #3 #(10,2,2,2,2) #(6,6,6,6,6) f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4);
smul_add_felem5_fits_lemma #w #3 #(10,2,2,2,2) #(6,6,6,6,6) f11 (r54,r0,r1,r2,r3) (a0,a1,a2,a3,a4);
assert ((fas_nat5 (a10,a11,a12,a13,a14)).[i] == (fas_nat5 (a0,a1,a2,a3,a4)).[i] + (uint64xN_v f11).[i] * (fas_nat5 (r54,r0,r1,r2,r3)).[i]);
let (a20,a21,a22,a23,a24) = smul_add_felem5 #w f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14) in
smul_add_felem5_eval_lemma #w #3 #(10,10,2,2,2) #(36,12,12,12,12) f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14);
smul_add_felem5_fits_lemma #w #3 #(10,10,2,2,2) #(36,12,12,12,12) f12 (r53,r54,r0,r1,r2) (a10,a11,a12,a13,a14);
assert ((fas_nat5 (a20,a21,a22,a23,a24)).[i] == (fas_nat5 (a10,a11,a12,a13,a14)).[i] + (uint64xN_v f12).[i] * (fas_nat5 (r53,r54,r0,r1,r2)).[i]);
let (a30,a31,a32,a33,a34) = smul_add_felem5 #w f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24) in
smul_add_felem5_eval_lemma #w #3 #(10,10,10,2,2) #(66,42,18,18,18) f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24);
smul_add_felem5_fits_lemma #w #3 #(10,10,10,2,2) #(66,42,18,18,18) f13 (r52,r53,r54,r0,r1) (a20,a21,a22,a23,a24);
assert ((fas_nat5 (a30,a31,a32,a33,a34)).[i] == (fas_nat5 (a20,a21,a22,a23,a24)).[i] + (uint64xN_v f13).[i] * (fas_nat5 (r52,r53,r54,r0,r1)).[i]);
let (a40,a41,a42,a43,a44) = smul_add_felem5 #w f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34) in
smul_add_felem5_eval_lemma #w #3 #(10,10,10,10,2) #(96,72,48,24,24) f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34);
smul_add_felem5_fits_lemma #w #3 #(10,10,10,10,2) #(96,72,48,24,24) f14 (r51,r52,r53,r54,r0) (a30,a31,a32,a33,a34);
assert ((fas_nat5 (a40,a41,a42,a43,a44)).[i] == (fas_nat5 (a30,a31,a32,a33,a34)).[i] + (uint64xN_v f14).[i] * (fas_nat5 (r51,r52,r53,r54,r0)).[i]);
assert ((fas_nat5 (a40,a41,a42,a43,a44)).[i] ==
(uint64xN_v f10).[i] * (fas_nat5 (r0,r1,r2,r3,r4)).[i] +
(uint64xN_v f11).[i] * (fas_nat5 (r54,r0,r1,r2,r3)).[i] +
(uint64xN_v f12).[i] * (fas_nat5 (r53,r54,r0,r1,r2)).[i] +
(uint64xN_v f13).[i] * (fas_nat5 (r52,r53,r54,r0,r1)).[i] +
(uint64xN_v f14).[i] * (fas_nat5 (r51,r52,r53,r54,r0)).[i]);
mul_felem5_eval_as_tup64 #w f1 r r5 i;
mul_felem5_lemma (as_tup64_i f1 i) (as_tup64_i r i)
val mul_felem5_eval_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10) /\ r5 == precomp_r5 r} ->
Lemma (feval5 (mul_felem5 #w f1 r r5) == map2 (Vec.pfmul) (feval5 f1) (feval5 r))
[SMTPat (mul_felem5 #w f1 r r5)]
let mul_felem5_eval_lemma #w f1 r r5 =
let tmp = map2 (Vec.pfmul) (feval5 f1) (feval5 r) in
FStar.Classical.forall_intro (mul_felem5_eval_lemma_i #w f1 r r5);
eq_intro (feval5 (mul_felem5 #w f1 r r5)) tmp
val fmul_r5_fits_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10)} ->
Lemma (felem_fits5 (fmul_r5 #w f1 r r5) (1, 2, 1, 1, 2))
[SMTPat (fmul_r5 #w f1 r r5)]
let fmul_r5_fits_lemma #w f1 r r5 =
let tmp = mul_felem5 f1 r r5 in
mul_felem5_fits_lemma #w f1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_fits_lemma #w tmp
val fmul_r5_eval_lemma:
#w:lanes
-> f1:felem5 w{felem_fits5 f1 (3, 3, 3, 3, 3)}
-> r:felem5 w{felem_fits5 r (2, 2, 2, 2, 2)}
-> r5:felem5 w{felem_fits5 r5 (10, 10, 10, 10, 10) /\ r5 == precomp_r5 r} ->
Lemma (feval5 (fmul_r5 #w f1 r r5) == map2 (Vec.pfmul) (feval5 f1) (feval5 r))
[SMTPat (fmul_r5 #w f1 r r5)]
let fmul_r5_eval_lemma #w f1 r r5 =
let tmp = mul_felem5 f1 r r5 in
mul_felem5_eval_lemma #w f1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_eval_lemma #w tmp
val fadd_mul_r5_fits_lemma:
#w:lanes
-> acc:felem5 w{felem_fits5 acc (2, 2, 2, 2, 2)}
-> f1:felem5 w{felem_fits5 f1 (1, 1, 1, 1, 1)}
-> r:felem5 w{felem_fits5 r (1, 1, 1, 1, 1)}
-> r5:felem5 w{felem_fits5 r5 (5, 5, 5, 5, 5)} ->
Lemma (felem_fits5 (fadd_mul_r5 acc f1 r r5) (1, 2, 1, 1, 2))
[SMTPat (fadd_mul_r5 acc f1 r r5)]
let fadd_mul_r5_fits_lemma #w acc f1 r r5 =
let acc1 = fadd5 acc f1 in
fadd5_fits_lemma #w acc f1;
let tmp = mul_felem5 acc1 r r5 in
mul_felem5_fits_lemma #w acc1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_fits_lemma #w tmp
val fadd_mul_r5_eval_lemma:
#w:lanes
-> acc:felem5 w{felem_fits5 acc (2, 2, 2, 2, 2)}
-> f1:felem5 w{felem_fits5 f1 (1, 1, 1, 1, 1)}
-> r:felem5 w{felem_fits5 r (1, 1, 1, 1, 1)}
-> r5:felem5 w{felem_fits5 r5 (5, 5, 5, 5, 5) /\ r5 == precomp_r5 r} ->
Lemma (feval5 (fadd_mul_r5 acc f1 r r5) ==
map2 (Vec.pfmul) (map2 (Vec.pfadd) (feval5 acc) (feval5 f1)) (feval5 r))
[SMTPat (fadd_mul_r5 acc f1 r r5)]
let fadd_mul_r5_eval_lemma #w acc f1 r r5 =
let acc1 = fadd5 acc f1 in
fadd5_eval_lemma #w acc f1;
let tmp = mul_felem5 acc1 r r5 in
mul_felem5_eval_lemma #w acc1 r r5;
let res = carry_wide_felem5 tmp in
carry_wide_felem5_eval_lemma #w tmp
val reduce_felem5_eval_lemma:
#w:lanes
-> f:felem5 w{felem_fits5 f (2, 2, 2, 2, 2)} ->
Lemma
(felem_fits5 (reduce_felem5 f) (1, 1, 1, 1, 1) /\
(feval5 f).[0] == (fas_nat5 (reduce_felem5 f)).[0])
[SMTPat (reduce_felem5 f)]
let reduce_felem5_eval_lemma #w f =
carry_full_felem5_eval_lemma f;
carry_full_felem5_fits_lemma f;
let f = carry_full_felem5 f in
carry_reduce_felem5_lemma #w f;
subtract_p5_felem5_lemma #w (carry_full_felem5 f)
val fmul_r2_normalize50:
acc:felem5 2
-> r:felem5 2
-> r2:felem5 2 ->
Pure (felem5 2)
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r2 (2, 2, 2, 2, 2) /\
feval5 r2 == Vec.compute_r2 (feval5 r).[0])
(ensures fun a ->
let fr21 = create2 (feval5 r2).[0] (feval5 r).[0] in
feval5 a == Vec.fmul (feval5 acc) fr21 /\
felem_fits5 a (1, 2, 1, 1, 2))
let fmul_r2_normalize50 (a0, a1, a2, a3, a4) (r0, r1, r2, r3, r4) (r20, r21, r22, r23, r24) =
let r210 = vec_interleave_low r20 r0 in
vec_interleave_low_lemma2 r20 r0;
let r211 = vec_interleave_low r21 r1 in
vec_interleave_low_lemma2 r21 r1;
let r212 = vec_interleave_low r22 r2 in
vec_interleave_low_lemma2 r22 r2;
let r213 = vec_interleave_low r23 r3 in
vec_interleave_low_lemma2 r23 r3;
let r214 = vec_interleave_low r24 r4 in
vec_interleave_low_lemma2 r24 r4;
let acc = (a0, a1, a2, a3, a4) in
let fr = (r0, r1, r2, r3, r4) in
let fr2 = (r20, r21, r22, r23, r24) in
assert ((feval5 fr2).[0] == Vec.pfmul ((feval5 fr).[0]) ((feval5 fr).[0]));
let fr21 = (r210, r211, r212, r213, r214) in
eq_intro (feval5 fr21) (create2 (feval5 fr2).[0] (feval5 fr).[0]);
assert (feval5 fr21 == create2 (feval5 fr2).[0] (feval5 fr).[0]);
assert (felem_fits5 fr21 (2, 2, 2, 2, 2));
let fr215 = precomp_r5 #2 fr21 in
let a = fmul_r5 #2 acc fr21 fr215 in
fmul_r5_eval_lemma acc fr21 fr215;
fmul_r5_fits_lemma acc fr21 fr215;
assert (feval5 a == Vec.fmul (feval5 acc) (feval5 fr21));
assert (felem_fits5 a (1, 2, 1, 1, 2));
a
#push-options "--z3rlimit 150"
val fmul_r2_normalize51:
a:felem5 2
-> fa1:felem5 2 ->
Pure (felem5 2)
(requires
felem_fits5 a (1, 2, 1, 1, 2) /\
felem_fits5 fa1 (1, 2, 1, 1, 2) /\
feval5 fa1 == create2 (feval5 a).[1] (feval5 a).[1])
(ensures fun out ->
(feval5 out).[0] == Vec.pfadd (feval5 a).[0] (feval5 a).[1] /\
felem_fits5 out (2, 4, 2, 2, 4))
let fmul_r2_normalize51 a fa1 =
let (a0, a1, a2, a3, a4) = a in
let (a10, a11, a12, a13, a14) = fa1 in
let o0 = vec_add_mod a0 a10 in
let o1 = vec_add_mod a1 a11 in
let o2 = vec_add_mod a2 a12 in
let o3 = vec_add_mod a3 a13 in
let o4 = vec_add_mod a4 a14 in
let out = (o0, o1, o2, o3, o4) in
let (a0, a1, a2, a3, a4) = as_tup64_i a 0 in
let (a10, a11, a12, a13, a14) = as_tup64_i fa1 0 in
let (o0, o1, o2, o3, o4) = as_tup64_i out 0 in
FStar.Math.Lemmas.modulo_lemma (v a0 + v a10) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a1 + v a11) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a2 + v a12) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a3 + v a13) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v a4 + v a14) (pow2 64);
assert (felem_fits5 out (2, 4, 2, 2, 4));
calc (==) {
((feval5 a).[0] + (feval5 a).[1]) % Vec.prime;
(==) { }
(as_nat5 (a0, a1, a2, a3, a4) % Vec.prime + as_nat5 (a10, a11, a12, a13, a14) % Vec.prime) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (a0, a1, a2, a3, a4)) (as_nat5 (a10, a11, a12, a13, a14)) Vec.prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
(as_nat5 (a0, a1, a2, a3, a4) % Vec.prime) (as_nat5 (a10, a11, a12, a13, a14)) Vec.prime }
(as_nat5 (a0, a1, a2, a3, a4) + as_nat5 (a10, a11, a12, a13, a14)) % Vec.prime;
(==) { }
(feval5 out).[0];
};
out
#pop-options
val fmul_r2_normalize5_lemma:
acc:felem5 2
-> r:felem5 2
-> r2:felem5 2 ->
Lemma
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r2 (2, 2, 2, 2, 2) /\
feval5 r2 == Vec.compute_r2 (feval5 r).[0])
(ensures
(let out = fmul_r2_normalize5 acc r r2 in
felem_fits5 out (2, 1, 1, 1, 1) /\
(feval5 out).[0] == Vec.normalize_2 (feval5 r).[0] (feval5 acc)))
[SMTPat (fmul_r2_normalize5 acc r r2)]
let fmul_r2_normalize5_lemma acc r r2 =
let a = fmul_r2_normalize50 acc r r2 in
let (a0, a1, a2, a3, a4) = a in
let a10 = vec_interleave_high a0 a0 in
vec_interleave_high_lemma2 a0 a0;
let a11 = vec_interleave_high a1 a1 in
vec_interleave_high_lemma2 a1 a1;
let a12 = vec_interleave_high a2 a2 in
vec_interleave_high_lemma2 a2 a2;
let a13 = vec_interleave_high a3 a3 in
vec_interleave_high_lemma2 a3 a3;
let a14 = vec_interleave_high a4 a4 in
vec_interleave_high_lemma2 a4 a4;
let fa1 = (a10, a11, a12, a13, a14) in
eq_intro (feval5 fa1) (create2 (feval5 a).[1] (feval5 a).[1]);
assert (feval5 fa1 == create2 (feval5 a).[1] (feval5 a).[1]);
assert (felem_fits5 fa1 (1, 2, 1, 1, 2));
let out = fmul_r2_normalize51 a fa1 in
assert ((feval5 out).[0] == Vec.pfadd (feval5 a).[0] (feval5 a).[1]);
let res = carry_full_felem5 out in
carry_full_felem5_lemma out
val fmul_r4_normalize50:
acc:felem5 4
-> r:felem5 4
-> r2:felem5 4
-> r3:felem5 4
-> r4:felem5 4 ->
Pure (felem5 4)
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r2 (2, 2, 2, 2, 2) /\
felem_fits5 r3 (2, 2, 2, 2, 2) /\
felem_fits5 r4 (2, 2, 2, 2, 2) /\
feval5 r2 == Vec.fmul (feval5 r) (feval5 r) /\
feval5 r3 == Vec.fmul (feval5 r2) (feval5 r) /\
feval5 r4 == Vec.compute_r4 (feval5 r).[0])
(ensures fun out ->
let fr4321 = create4 (feval5 r4).[0] (feval5 r3).[0] (feval5 r2).[0] (feval5 r).[0] in
feval5 out == Vec.fmul (feval5 acc) fr4321 /\
felem_fits5 out (1, 2, 1, 1, 2))
let fmul_r4_normalize50 acc fr fr2 fr3 fr4 =
let (r10, r11, r12, r13, r14) = fr in
let (r20, r21, r22, r23, r24) = fr2 in
let (r30, r31, r32, r33, r34) = fr3 in
let (r40, r41, r42, r43, r44) = fr4 in
let (a0, a1, a2, a3, a4) = acc in
let v12120 = vec_interleave_low r20 r10 in
vec_interleave_low_lemma_uint64_4 r20 r10;
let v34340 = vec_interleave_low r40 r30 in
vec_interleave_low_lemma_uint64_4 r40 r30;
let r12340 = vec_interleave_low_n 2 v34340 v12120 in
vec_interleave_low_n_lemma_uint64_4_2 v34340 v12120;
let v12121 = vec_interleave_low r21 r11 in
vec_interleave_low_lemma_uint64_4 r21 r11;
let v34341 = vec_interleave_low r41 r31 in
vec_interleave_low_lemma_uint64_4 r41 r31;
let r12341 = vec_interleave_low_n 2 v34341 v12121 in
vec_interleave_low_n_lemma_uint64_4_2 v34341 v12121;
let v12122 = vec_interleave_low r22 r12 in
vec_interleave_low_lemma_uint64_4 r22 r12;
let v34342 = vec_interleave_low r42 r32 in
vec_interleave_low_lemma_uint64_4 r42 r32;
let r12342 = vec_interleave_low_n 2 v34342 v12122 in
vec_interleave_low_n_lemma_uint64_4_2 v34342 v12122;
let v12123 = vec_interleave_low r23 r13 in
vec_interleave_low_lemma_uint64_4 r23 r13;
let v34343 = vec_interleave_low r43 r33 in
vec_interleave_low_lemma_uint64_4 r43 r33;
let r12343 = vec_interleave_low_n 2 v34343 v12123 in
vec_interleave_low_n_lemma_uint64_4_2 v34343 v12123;
let v12124 = vec_interleave_low r24 r14 in
vec_interleave_low_lemma_uint64_4 r24 r14;
let v34344 = vec_interleave_low r44 r34 in
vec_interleave_low_lemma_uint64_4 r44 r34;
let r12344 = vec_interleave_low_n 2 v34344 v12124 in
vec_interleave_low_n_lemma_uint64_4_2 v34344 v12124;
let fr1234 = (r12340, r12341, r12342, r12343, r12344) in
eq_intro (feval5 fr1234) (create4 (feval5 fr4).[0] (feval5 fr3).[0] (feval5 fr2).[0] (feval5 fr).[0]);
let fr12345 = precomp_r5 #4 fr1234 in
let out = fmul_r5 #4 acc fr1234 fr12345 in
fmul_r5_eval_lemma acc fr1234 fr12345;
fmul_r5_fits_lemma acc fr1234 fr12345;
out
val lemma_fmul_r4_normalize51:
#m:scale32{m <= 2}
-> o:uint64xN 4{felem_fits1 o m} ->
Lemma
(let v00 = vec_interleave_high_n 2 o o in
let v10 = vec_add_mod o v00 in
let v10h = vec_interleave_high v10 v10 in
let v20 = vec_add_mod v10 v10h in
felem_fits1 v20 (4 * m) /\
(uint64xN_v v20).[0] == (uint64xN_v o).[0] + (uint64xN_v o).[1] + (uint64xN_v o).[2] + (uint64xN_v o).[3])
let lemma_fmul_r4_normalize51 #m o =
let v00 = vec_interleave_high_n 2 o o in
vec_interleave_high_n_lemma_uint64_4_2 o o;
let (o0, o1, o2, o3) = ((vec_v o).[0], (vec_v o).[1], (vec_v o).[2], (vec_v o).[3]) in
assert (vec_v v00 == create4 o2 o3 o2 o3);
let v10 = vec_add_mod o v00 in
FStar.Math.Lemmas.modulo_lemma (v o0 + v o2) (pow2 64);
FStar.Math.Lemmas.modulo_lemma (v o1 + v o3) (pow2 64);
assert (v (vec_v v10).[0] == v o0 + v o2);
assert (v (vec_v v10).[1] == v o1 + v o3);
let v10h = vec_interleave_high v10 v10 in
vec_interleave_high_lemma_uint64_4 v10 v10;
assert (v (vec_v v10h).[0] == v (vec_v v10).[1]);
let v20 = vec_add_mod v10 v10h in
FStar.Math.Lemmas.modulo_lemma (v o0 + v o2 + v o1 + v o3) (pow2 64)
val lemma_fmul_r4_normalize51_expand:
v2:felem5 4
-> out:felem5 4 ->
Lemma
(requires
(let (v20, v21, v22, v23, v24) = v2 in
let (o0, o1, o2, o3, o4) = out in
(uint64xN_v v20).[0] == (uint64xN_v o0).[0] + (uint64xN_v o0).[1] + (uint64xN_v o0).[2] + (uint64xN_v o0).[3] /\
(uint64xN_v v21).[0] == (uint64xN_v o1).[0] + (uint64xN_v o1).[1] + (uint64xN_v o1).[2] + (uint64xN_v o1).[3] /\
(uint64xN_v v22).[0] == (uint64xN_v o2).[0] + (uint64xN_v o2).[1] + (uint64xN_v o2).[2] + (uint64xN_v o2).[3] /\
(uint64xN_v v23).[0] == (uint64xN_v o3).[0] + (uint64xN_v o3).[1] + (uint64xN_v o3).[2] + (uint64xN_v o3).[3] /\
(uint64xN_v v24).[0] == (uint64xN_v o4).[0] + (uint64xN_v o4).[1] + (uint64xN_v o4).[2] + (uint64xN_v o4).[3]))
(ensures
(let (v20, v21, v22, v23, v24) = v2 in
let (o0, o1, o2, o3, o4) = out in
(feval5 v2).[0] == Vec.pfadd (Vec.pfadd (Vec.pfadd (feval5 out).[0] (feval5 out).[1]) (feval5 out).[2]) (feval5 out).[3]))
let lemma_fmul_r4_normalize51_expand v2 out =
let (v20, v21, v22, v23, v24) = as_tup64_i v2 0 in
let (o0, o1, o2, o3, o4) = out in
calc (==) {
as_nat5 (v20, v21, v22, v23, v24) % Vec.prime;
(==) { }
(as_nat5 (as_tup64_i out 0) + as_nat5 (as_tup64_i out 1) + as_nat5 (as_tup64_i out 2) + as_nat5 (as_tup64_i out 3)) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (as_tup64_i out 0) + as_nat5 (as_tup64_i out 1))
(as_nat5 (as_tup64_i out 2) + as_nat5 (as_tup64_i out 3)) Vec.prime }
((as_nat5 (as_tup64_i out 0) + as_nat5 (as_tup64_i out 1)) % Vec.prime + as_nat5 (as_tup64_i out 2) + as_nat5 (as_tup64_i out 3)) % Vec.prime;
(==) { FStar.Math.Lemmas.modulo_distributivity (as_nat5 (as_tup64_i out 0)) (as_nat5 (as_tup64_i out 1)) Vec.prime }
(((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + as_nat5 (as_tup64_i out 2) + as_nat5 (as_tup64_i out 3)) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_l (((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + as_nat5 (as_tup64_i out 2))
(as_nat5 (as_tup64_i out 3)) Vec.prime }
((((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + as_nat5 (as_tup64_i out 2)) % Vec.prime + as_nat5 (as_tup64_i out 3)) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r (((feval5 out).[0] + (feval5 out).[1]) % Vec.prime) (as_nat5 (as_tup64_i out 2)) Vec.prime }
((((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + (feval5 out).[2]) % Vec.prime + as_nat5 (as_tup64_i out 3)) % Vec.prime;
(==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r ((((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + (feval5 out).[2]) % Vec.prime)
(as_nat5 (as_tup64_i out 3)) Vec.prime }
((((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + (feval5 out).[2]) % Vec.prime + (feval5 out).[3]) % Vec.prime;
};
assert ((feval5 v2).[0] ==
((((feval5 out).[0] + (feval5 out).[1]) % Vec.prime + (feval5 out).[2]) % Vec.prime + (feval5 out).[3]) % Vec.prime)
val fmul_r4_normalize51: a:felem5 4 ->
Pure (felem5 4)
(requires felem_fits5 a (1, 2, 1, 1, 2))
(ensures fun res ->
felem_fits5 res (4, 8, 4, 4, 8) /\
(feval5 res).[0] == Vec.pfadd (Vec.pfadd (Vec.pfadd (feval5 a).[0] (feval5 a).[1]) (feval5 a).[2]) (feval5 a).[3])
let fmul_r4_normalize51 fa =
let (o0, o1, o2, o3, o4) = fa in
let v00 = vec_interleave_high_n 2 o0 o0 in
let v10 = vec_add_mod o0 v00 in
let v10h = vec_interleave_high v10 v10 in
let v20 = vec_add_mod v10 v10h in
lemma_fmul_r4_normalize51 #1 o0;
let v01 = vec_interleave_high_n 2 o1 o1 in
let v11 = vec_add_mod o1 v01 in
let v11h = vec_interleave_high v11 v11 in
let v21 = vec_add_mod v11 v11h in
lemma_fmul_r4_normalize51 #2 o1;
let v02 = vec_interleave_high_n 2 o2 o2 in
let v12 = vec_add_mod o2 v02 in
let v12h = vec_interleave_high v12 v12 in
let v22 = vec_add_mod v12 v12h in
lemma_fmul_r4_normalize51 #1 o2;
let v03 = vec_interleave_high_n 2 o3 o3 in
let v13 = vec_add_mod o3 v03 in
let v13h = vec_interleave_high v13 v13 in
let v23 = vec_add_mod v13 v13h in
lemma_fmul_r4_normalize51 #1 o3;
let v04 = vec_interleave_high_n 2 o4 o4 in
let v14 = vec_add_mod o4 v04 in
let v14h = vec_interleave_high v14 v14 in
let v24 = vec_add_mod v14 v14h in
lemma_fmul_r4_normalize51 #2 o4;
let res = (v20, v21, v22, v23, v24) in
lemma_fmul_r4_normalize51_expand res fa;
res
val fmul_r4_normalize5_lemma:
acc:felem5 4
-> r:felem5 4
-> r_5:felem5 4
-> r4:felem5 4 ->
Lemma
(requires
felem_fits5 acc (3, 3, 3, 3, 3) /\
felem_fits5 r (1, 1, 1, 1, 1) /\
felem_fits5 r4 (2, 2, 2, 2, 2) /\
r_5 == precomp_r5 r /\
feval5 r4 == Vec.compute_r4 (feval5 r).[0])
(ensures
(let out = fmul_r4_normalize5 acc r r_5 r4 in
felem_fits5 out (2, 1, 1, 1, 1) /\
(feval5 out).[0] == Vec.normalize_4 (feval5 r).[0] (feval5 acc)))
[SMTPat (fmul_r4_normalize5 acc r r_5 r4)]
#restart-solver | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntVector.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Poly1305.Vec.fst.checked",
"Hacl.Spec.Poly1305.Field32xN.fst.checked",
"Hacl.Poly1305.Field32xN.Lemmas2.fst.checked",
"Hacl.Poly1305.Field32xN.Lemmas1.fst.checked",
"Hacl.Poly1305.Field32xN.Lemmas0.fst.checked",
"Hacl.Impl.Poly1305.Lemmas.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Poly1305.Field32xN.Lemmas.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Poly1305.Vec",
"short_module": "Vec"
},
{
"abbrev": false,
"full_module": "Hacl.Poly1305.Field32xN.Lemmas2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Poly1305.Field32xN.Lemmas1",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Poly1305.Field32xN.Lemmas0",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntVector",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Poly1305.Field32xN",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 500,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
acc: Hacl.Spec.Poly1305.Field32xN.felem5 4 ->
r: Hacl.Spec.Poly1305.Field32xN.felem5 4 ->
r_5: Hacl.Spec.Poly1305.Field32xN.felem5 4 ->
r4: Hacl.Spec.Poly1305.Field32xN.felem5 4
-> FStar.Pervasives.Lemma
(requires
Hacl.Spec.Poly1305.Field32xN.felem_fits5 acc (3, 3, 3, 3, 3) /\
Hacl.Spec.Poly1305.Field32xN.felem_fits5 r (1, 1, 1, 1, 1) /\
Hacl.Spec.Poly1305.Field32xN.felem_fits5 r4 (2, 2, 2, 2, 2) /\
r_5 == Hacl.Spec.Poly1305.Field32xN.precomp_r5 r /\
Hacl.Spec.Poly1305.Field32xN.feval5 r4 ==
Hacl.Spec.Poly1305.Vec.compute_r4 (Hacl.Spec.Poly1305.Field32xN.feval5 r).[ 0 ])
(ensures
(let out = Hacl.Spec.Poly1305.Field32xN.fmul_r4_normalize5 acc r r_5 r4 in
Hacl.Spec.Poly1305.Field32xN.felem_fits5 out (2, 1, 1, 1, 1) /\
(Hacl.Spec.Poly1305.Field32xN.feval5 out).[ 0 ] ==
Hacl.Spec.Poly1305.Vec.normalize_4 (Hacl.Spec.Poly1305.Field32xN.feval5 r).[ 0 ]
(Hacl.Spec.Poly1305.Field32xN.feval5 acc)))
[SMTPat (Hacl.Spec.Poly1305.Field32xN.fmul_r4_normalize5 acc r r_5 r4)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Poly1305.Field32xN.felem5",
"Hacl.Poly1305.Field32xN.Lemmas1.carry_full_felem5_lemma",
"Hacl.Spec.Poly1305.Field32xN.carry_full_felem5",
"Hacl.Spec.Poly1305.Field32xN.Lemmas.fmul_r4_normalize51",
"Hacl.Spec.Poly1305.Field32xN.Lemmas.fmul_r4_normalize50",
"Hacl.Spec.Poly1305.Field32xN.fmul_r5",
"Prims.unit"
] | [] | true | false | true | false | false | let fmul_r4_normalize5_lemma acc fr fr_5 fr4 =
| let fr2 = fmul_r5 #4 fr fr fr_5 in
let fr3 = fmul_r5 #4 fr2 fr fr_5 in
let out = fmul_r4_normalize50 acc fr fr2 fr3 fr4 in
let v2 = fmul_r4_normalize51 out in
let res = carry_full_felem5 v2 in
carry_full_felem5_lemma v2 | false |
Hacl.K256.PrecompTable.fst | Hacl.K256.PrecompTable.precomp_basepoint_table_lemma_w5 | val precomp_basepoint_table_lemma_w5: unit ->
Lemma (forall (i:nat{i < 32}). precomp_table_acc_inv g_aff 32 precomp_basepoint_table_lseq_w5 i) | val precomp_basepoint_table_lemma_w5: unit ->
Lemma (forall (i:nat{i < 32}). precomp_table_acc_inv g_aff 32 precomp_basepoint_table_lseq_w5 i) | let precomp_basepoint_table_lemma_w5 () =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table S.g 31);
SPT.precomp_base_table_lemma mk_k256_precomp_base_table S.g 32 precomp_basepoint_table_lseq_w5 | {
"file_name": "code/k256/Hacl.K256.PrecompTable.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 96,
"end_line": 291,
"start_col": 0,
"start_line": 289
} | module Hacl.K256.PrecompTable
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module SPT = Hacl.Spec.PrecompBaseTable
module SPT256 = Hacl.Spec.PrecompBaseTable256
module SPTK = Hacl.Spec.K256.PrecompTable
module S = Spec.K256
module SL = Spec.K256.Lemmas
open Hacl.Impl.K256.Point
include Hacl.Impl.K256.Group
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let proj_point_to_list p =
SPTK.proj_point_to_list_lemma p;
SPTK.proj_point_to_list p
let lemma_refl x =
SPTK.proj_point_to_list_lemma x
//-----------------
inline_for_extraction noextract
let proj_g_pow2_64 : S.proj_point =
[@inline_let]
let rX : S.felem = 0x46ec0aa60b0b98c37b29371784676ad967b7beb1a941ddb6fbbff95b44cb788b in
[@inline_let]
let rY : S.felem = 0x6b946755bbc6b677576579c990a1ccf14a710545251a1428fabbf02f40268e63 in
[@inline_let]
let rZ : S.felem = 0x3c114b2ac17c199ec9eba9f7cc64dc459ca2e53f5bbead2b4e618b318ffcc00e in
(rX, rY, rZ)
val lemma_proj_g_pow2_64_eval : unit ->
Lemma (SE.exp_pow2 S.mk_k256_concrete_ops S.g 64 == proj_g_pow2_64)
let lemma_proj_g_pow2_64_eval () =
SPT256.exp_pow2_rec_is_exp_pow2 S.mk_k256_concrete_ops S.g 64;
let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops S.g 64) in
normalize_term_spec (SPT256.exp_pow2_rec S.mk_k256_concrete_ops S.g 64);
let rX : S.felem = 0x46ec0aa60b0b98c37b29371784676ad967b7beb1a941ddb6fbbff95b44cb788b in
let rY : S.felem = 0x6b946755bbc6b677576579c990a1ccf14a710545251a1428fabbf02f40268e63 in
let rZ : S.felem = 0x3c114b2ac17c199ec9eba9f7cc64dc459ca2e53f5bbead2b4e618b318ffcc00e in
assert_norm (qX == rX /\ qY == rY /\ qZ == rZ)
inline_for_extraction noextract
let proj_g_pow2_128 : S.proj_point =
[@inline_let]
let rX : S.felem = 0x98299efbc8e459915404ae015b48cac3b929e0158665f3c7fa5489fbd25c4297 in
[@inline_let]
let rY : S.felem = 0xf1e5cbc9579e7d11a31681e947c2959ae0298a006d1c06ab1ad93d6716ea50cc in
[@inline_let]
let rZ : S.felem = 0x5c53ffe15001674a2eacb60c9327a8b0ddbd93a0fa6d90309de6cc124133938b in
(rX, rY, rZ)
val lemma_proj_g_pow2_128_eval : unit ->
Lemma (SE.exp_pow2 S.mk_k256_concrete_ops proj_g_pow2_64 64 == proj_g_pow2_128)
let lemma_proj_g_pow2_128_eval () =
SPT256.exp_pow2_rec_is_exp_pow2 S.mk_k256_concrete_ops proj_g_pow2_64 64;
let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_64 64) in
normalize_term_spec (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_64 64);
let rX : S.felem = 0x98299efbc8e459915404ae015b48cac3b929e0158665f3c7fa5489fbd25c4297 in
let rY : S.felem = 0xf1e5cbc9579e7d11a31681e947c2959ae0298a006d1c06ab1ad93d6716ea50cc in
let rZ : S.felem = 0x5c53ffe15001674a2eacb60c9327a8b0ddbd93a0fa6d90309de6cc124133938b in
assert_norm (qX == rX /\ qY == rY /\ qZ == rZ)
inline_for_extraction noextract
let proj_g_pow2_192 : S.proj_point =
[@inline_let]
let rX : S.felem = 0xbd382b67d20492b1480ca58a6d7d617ba413a9bc7c2f1cff51301ef960fb245c in
[@inline_let]
let rY : S.felem = 0x0b232afcf692673aa714357c524c07867a64ea3b9dfab53f0e74622159e86b0d in
[@inline_let]
let rZ : S.felem = 0x028a1380449aede5df8219420b458d464a6a4773ac91e8305237878cef1cffa6 in
(rX, rY, rZ)
val lemma_proj_g_pow2_192_eval : unit ->
Lemma (SE.exp_pow2 S.mk_k256_concrete_ops proj_g_pow2_128 64 == proj_g_pow2_192)
let lemma_proj_g_pow2_192_eval () =
SPT256.exp_pow2_rec_is_exp_pow2 S.mk_k256_concrete_ops proj_g_pow2_128 64;
let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_128 64) in
normalize_term_spec (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_128 64);
let rX : S.felem = 0xbd382b67d20492b1480ca58a6d7d617ba413a9bc7c2f1cff51301ef960fb245c in
let rY : S.felem = 0x0b232afcf692673aa714357c524c07867a64ea3b9dfab53f0e74622159e86b0d in
let rZ : S.felem = 0x028a1380449aede5df8219420b458d464a6a4773ac91e8305237878cef1cffa6 in
assert_norm (qX == rX /\ qY == rY /\ qZ == rZ)
// let proj_g_pow2_64 : S.proj_point =
// normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops S.g 64)
// let proj_g_pow2_128 : S.proj_point =
// normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_64 64)
// let proj_g_pow2_192 : S.proj_point =
// normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_128 64)
inline_for_extraction noextract
let proj_g_pow2_64_list : SPTK.point_list =
normalize_term (SPTK.proj_point_to_list proj_g_pow2_64)
inline_for_extraction noextract
let proj_g_pow2_128_list : SPTK.point_list =
normalize_term (SPTK.proj_point_to_list proj_g_pow2_128)
inline_for_extraction noextract
let proj_g_pow2_192_list : SPTK.point_list =
normalize_term (SPTK.proj_point_to_list proj_g_pow2_192)
let proj_g_pow2_64_lseq : LSeq.lseq uint64 15 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64);
Seq.seq_of_list proj_g_pow2_64_list
let proj_g_pow2_128_lseq : LSeq.lseq uint64 15 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128);
Seq.seq_of_list proj_g_pow2_128_list
let proj_g_pow2_192_lseq : LSeq.lseq uint64 15 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192);
Seq.seq_of_list proj_g_pow2_192_list
val proj_g_pow2_64_lemma: unit ->
Lemma (S.to_aff_point proj_g_pow2_64 == pow_point (pow2 64) g_aff)
let proj_g_pow2_64_lemma () =
lemma_proj_g_pow2_64_eval ();
SPT256.a_pow2_64_lemma S.mk_k256_concrete_ops S.g
val proj_g_pow2_128_lemma: unit ->
Lemma (S.to_aff_point proj_g_pow2_128 == pow_point (pow2 128) g_aff)
let proj_g_pow2_128_lemma () =
lemma_proj_g_pow2_128_eval ();
lemma_proj_g_pow2_64_eval ();
SPT256.a_pow2_128_lemma S.mk_k256_concrete_ops S.g
val proj_g_pow2_192_lemma: unit ->
Lemma (S.to_aff_point proj_g_pow2_192 == pow_point (pow2 192) g_aff)
let proj_g_pow2_192_lemma () =
lemma_proj_g_pow2_192_eval ();
lemma_proj_g_pow2_128_eval ();
lemma_proj_g_pow2_64_eval ();
SPT256.a_pow2_192_lemma S.mk_k256_concrete_ops S.g
let proj_g_pow2_64_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64);
proj_g_pow2_64_lemma ();
SPTK.proj_point_to_list_lemma proj_g_pow2_64
let proj_g_pow2_128_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128);
proj_g_pow2_128_lemma ();
SPTK.proj_point_to_list_lemma proj_g_pow2_128
let proj_g_pow2_192_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192);
proj_g_pow2_192_lemma ();
SPTK.proj_point_to_list_lemma proj_g_pow2_192
let mk_proj_g_pow2_64 () =
createL proj_g_pow2_64_list
let mk_proj_g_pow2_128 () =
createL proj_g_pow2_128_list
let mk_proj_g_pow2_192 () =
createL proj_g_pow2_192_list
//----------------
/// window size = 4; precomputed table = [[0]G, [1]G, ..., [15]G]
inline_for_extraction noextract
let precomp_basepoint_table_list_w4: x:list uint64{FStar.List.Tot.length x = 240} =
normalize_term (SPT.precomp_base_table_list mk_k256_precomp_base_table S.g 15)
let precomp_basepoint_table_lseq_w4 : LSeq.lseq uint64 240 =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table S.g 15);
Seq.seq_of_list precomp_basepoint_table_list_w4
let precomp_basepoint_table_lemma_w4 () =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table S.g 15);
SPT.precomp_base_table_lemma mk_k256_precomp_base_table S.g 16 precomp_basepoint_table_lseq_w4
let precomp_basepoint_table_w4:
x:glbuffer uint64 240ul{witnessed x precomp_basepoint_table_lseq_w4 /\ recallable x} =
createL_global precomp_basepoint_table_list_w4
/// window size = 4; precomputed table = [[0]([pow2 64]G), [1]([pow2 64]G), ..., [15]([pow2 64]G)]
inline_for_extraction noextract
let precomp_g_pow2_64_table_list_w4: x:list uint64{FStar.List.Tot.length x = 240} =
normalize_term (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_64 15)
let precomp_g_pow2_64_table_lseq_w4 : LSeq.lseq uint64 240 =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_64 15);
Seq.seq_of_list precomp_g_pow2_64_table_list_w4
let precomp_g_pow2_64_table_lemma_w4 () =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_64 15);
SPT.precomp_base_table_lemma mk_k256_precomp_base_table
proj_g_pow2_64 16 precomp_g_pow2_64_table_lseq_w4;
proj_g_pow2_64_lemma ()
let precomp_g_pow2_64_table_w4:
x:glbuffer uint64 240ul{witnessed x precomp_g_pow2_64_table_lseq_w4 /\ recallable x} =
createL_global precomp_g_pow2_64_table_list_w4
/// window size = 4; precomputed table = [[0]([pow2 128]G), [1]([pow2 128]G),...,[15]([pow2 128]G)]
inline_for_extraction noextract
let precomp_g_pow2_128_table_list_w4: x:list uint64{FStar.List.Tot.length x = 240} =
normalize_term (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_128 15)
let precomp_g_pow2_128_table_lseq_w4 : LSeq.lseq uint64 240 =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_128 15);
Seq.seq_of_list precomp_g_pow2_128_table_list_w4
let precomp_g_pow2_128_table_lemma_w4 () =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_128 15);
SPT.precomp_base_table_lemma mk_k256_precomp_base_table
proj_g_pow2_128 16 precomp_g_pow2_64_table_lseq_w4;
proj_g_pow2_128_lemma ()
let precomp_g_pow2_128_table_w4:
x:glbuffer uint64 240ul{witnessed x precomp_g_pow2_128_table_lseq_w4 /\ recallable x} =
createL_global precomp_g_pow2_128_table_list_w4
/// window size = 4; precomputed table = [[0]([pow2 192]G), [1]([pow2 192]G),...,[15]([pow2 192]G)]
inline_for_extraction noextract
let precomp_g_pow2_192_table_list_w4: x:list uint64{FStar.List.Tot.length x = 240} =
normalize_term (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_192 15)
let precomp_g_pow2_192_table_lseq_w4 : LSeq.lseq uint64 240 =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_192 15);
Seq.seq_of_list precomp_g_pow2_192_table_list_w4
let precomp_g_pow2_192_table_lemma_w4 () =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_192 15);
SPT.precomp_base_table_lemma mk_k256_precomp_base_table
proj_g_pow2_192 16 precomp_g_pow2_64_table_lseq_w4;
proj_g_pow2_192_lemma ()
let precomp_g_pow2_192_table_w4:
x:glbuffer uint64 240ul{witnessed x precomp_g_pow2_192_table_lseq_w4 /\ recallable x} =
createL_global precomp_g_pow2_192_table_list_w4
/// window size = 5; precomputed table = [[0]G, [1]G, ..., [31]G]
inline_for_extraction noextract
let precomp_basepoint_table_list_w5: x:list uint64{FStar.List.Tot.length x = 480} =
normalize_term (SPT.precomp_base_table_list mk_k256_precomp_base_table S.g 31)
let precomp_basepoint_table_lseq_w5 : LSeq.lseq uint64 480 =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table S.g 31);
Seq.seq_of_list precomp_basepoint_table_list_w5 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.Lemmas.fsti.checked",
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.PrecompBaseTable256.fsti.checked",
"Hacl.Spec.PrecompBaseTable.fsti.checked",
"Hacl.Spec.K256.PrecompTable.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"Hacl.Impl.K256.Group.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.K256.PrecompTable.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256.Lemmas",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.PrecompTable",
"short_module": "SPTK"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable256",
"short_module": "SPT256"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Group",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable",
"short_module": "SPT"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation.Definitions",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
forall (i: Prims.nat{i < 32}).
Hacl.K256.PrecompTable.precomp_table_acc_inv Hacl.K256.PrecompTable.g_aff
32
Hacl.K256.PrecompTable.precomp_basepoint_table_lseq_w5
i) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Hacl.Spec.PrecompBaseTable.precomp_base_table_lemma",
"Spec.K256.PointOps.proj_point",
"Lib.IntTypes.U64",
"FStar.UInt32.uint_to_t",
"Hacl.K256.PrecompTable.mk_k256_precomp_base_table",
"Spec.K256.PointOps.g",
"Hacl.K256.PrecompTable.precomp_basepoint_table_lseq_w5",
"FStar.Pervasives.normalize_term_spec",
"Prims.list",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.List.Tot.Base.length",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Spec.PrecompBaseTable.precomp_base_table_list"
] | [] | true | false | true | false | false | let precomp_basepoint_table_lemma_w5 () =
| normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table S.g 31);
SPT.precomp_base_table_lemma mk_k256_precomp_base_table S.g 32 precomp_basepoint_table_lseq_w5 | false |
Enum.fst | Enum.bounded_by | val bounded_by : b: Enum.bound -> n: Prims.int -> Prims.logical | let bounded_by (b:bound) n =
match b with
| Some b -> b2t (n <= b)
| None -> True | {
"file_name": "examples/typeclasses/Enum.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 16,
"end_line": 26,
"start_col": 0,
"start_line": 23
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Enum
open FStar.Tactics.Typeclasses
open FStar.Tactics.V2
type bound = option nat | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Typeclasses.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Enum.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Typeclasses",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Enum.bound -> n: Prims.int -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Enum.bound",
"Prims.int",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.l_True",
"Prims.logical"
] | [] | false | false | false | true | true | let bounded_by (b: bound) n =
| match b with
| Some b -> b2t (n <= b)
| None -> True | false |
|
Hacl.Impl.Frodo.Encode.fst | Hacl.Impl.Frodo.Encode.frodo_key_encode2 | val frodo_key_encode2:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> i:size_t{v i < v n}
-> x:uint64
-> res:matrix_t n n
-> Stack unit
(requires fun h ->
live h a /\ live h res /\ disjoint a res)
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_matrix h1 res ==
Loops.repeati 8 (S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i)) (as_matrix h0 res)) | val frodo_key_encode2:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> i:size_t{v i < v n}
-> x:uint64
-> res:matrix_t n n
-> Stack unit
(requires fun h ->
live h a /\ live h res /\ disjoint a res)
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_matrix h1 res ==
Loops.repeati 8 (S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i)) (as_matrix h0 res)) | let frodo_key_encode2 logq b n a i x res =
[@ inline_let]
let spec h0 = S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i) in
let h0 = ST.get () in
loop1 h0 (size 8) res spec
(fun k ->
Loops.unfold_repeati 8 (spec h0) (as_seq h0 res) (v k);
mset res i k (ec1 logq b x k)
) | {
"file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 108,
"start_col": 0,
"start_line": 100
} | module Hacl.Impl.Frodo.Encode
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Hacl.Impl.Matrix
module ST = FStar.HyperStack.ST
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module S = Spec.Frodo.Encode
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract private
val ec:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= v logq}
-> k:uint16{v k < pow2 (v b)}
-> r:uint16{r == S.ec (v logq) (v b) k}
let ec logq b a =
a <<. (logq -. b)
inline_for_extraction noextract private
val dc:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b < v logq}
-> c:uint16
-> r:uint16{r == S.dc (v logq) (v b) c}
let dc logq b c =
let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in
res1 &. ((u16 1 <<. b) -. u16 1)
inline_for_extraction noextract private
val ec1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> x:uint64
-> k:size_t{v k < 8}
-> res:uint16{res == S.ec1 (v logq) (v b) x (v k)}
let ec1 logq b x k =
Spec.Frodo.Lemmas.modulo_pow2_u64 (x >>. (b *! k)) (v b);
let rk = (x >>. (b *! k)) &. ((u64 1 <<. b) -. u64 1) in
ec logq b (to_u16 rk)
inline_for_extraction noextract private
val frodo_key_encode1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> i:size_t{v i < v n}
-> Stack uint64
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i))
let frodo_key_encode1 logq b n a i =
let h0 = ST.get() in
push_frame();
let v8 = create (size 8) (u8 0) in
let chunk = sub a (i *! b) b in
let h1 = ST.get() in
assert (as_seq h1 chunk == LSeq.sub (as_seq h0 a) (v (i *! b)) (v b));
update_sub v8 (size 0) b chunk;
let x = uint_from_bytes_le #U64 v8 in
pop_frame();
x
inline_for_extraction noextract private
val frodo_key_encode2:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> i:size_t{v i < v n}
-> x:uint64
-> res:matrix_t n n
-> Stack unit
(requires fun h ->
live h a /\ live h res /\ disjoint a res)
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_matrix h1 res ==
Loops.repeati 8 (S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i)) (as_matrix h0 res)) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Matrix.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Frodo.Encode.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.Encode",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} ->
b:
Lib.IntTypes.size_t
{0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b <= 8 /\ Lib.IntTypes.v b <= Lib.IntTypes.v logq} ->
n: Lib.IntTypes.size_t{Lib.IntTypes.v n == 8} ->
a: Hacl.Impl.Matrix.lbytes (n *! n *! b /. Lib.IntTypes.size 8) ->
i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n} ->
x: Lib.IntTypes.uint64 ->
res: Hacl.Impl.Matrix.matrix_t n n
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"Prims.int",
"Hacl.Impl.Matrix.lbytes",
"Lib.IntTypes.op_Slash_Dot",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.size",
"Lib.IntTypes.uint64",
"Hacl.Impl.Matrix.matrix_t",
"Lib.Buffer.loop1",
"Hacl.Impl.Matrix.elem",
"Hacl.Impl.Matrix.mset",
"Hacl.Impl.Frodo.Encode.ec1",
"Prims.unit",
"Lib.LoopCombinators.unfold_repeati",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U16",
"Lib.IntTypes.SEC",
"Prims.op_Multiply",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Prims.nat",
"Prims.op_Subtraction",
"Prims.pow2",
"Spec.Frodo.Encode.frodo_key_encode0",
"Lib.IntTypes.uint8"
] | [] | false | true | false | false | false | let frodo_key_encode2 logq b n a i x res =
| [@@ inline_let ]let spec h0 = S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i) in
let h0 = ST.get () in
loop1 h0
(size 8)
res
spec
(fun k ->
Loops.unfold_repeati 8 (spec h0) (as_seq h0 res) (v k);
mset res i k (ec1 logq b x k)) | false |
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.pbn_mont_ctx_u32 | val pbn_mont_ctx_u32 : Type0 | let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 48,
"end_line": 57,
"start_col": 0,
"start_line": 57
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"LowStar.Buffer.pointer",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx_u32"
] | [] | false | false | false | true | true | let pbn_mont_ctx_u32 =
| B.pointer bn_mont_ctx_u32 | false |
|
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.bn_mont_ctx | val bn_mont_ctx : t: Hacl.Bignum.Definitions.limb_t -> Type0 | let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 57,
"end_line": 48,
"start_col": 0,
"start_line": 48
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx'",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll"
] | [] | false | false | false | true | true | let bn_mont_ctx (t: limb_t) =
| bn_mont_ctx' t (lb t) (ll t) | false |
|
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.bn_mont_ctx_u64 | val bn_mont_ctx_u64 : Type0 | let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 56,
"end_line": 51,
"start_col": 0,
"start_line": 51
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.MontArithmetic.bn_mont_ctx'",
"Lib.IntTypes.U64",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll"
] | [] | false | false | false | true | true | let bn_mont_ctx_u64 =
| bn_mont_ctx' U64 (lb U64) (ll U64) | false |
|
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.bn_mont_ctx_u32 | val bn_mont_ctx_u32 : Type0 | let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 56,
"end_line": 50,
"start_col": 0,
"start_line": 50
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.MontArithmetic.bn_mont_ctx'",
"Lib.IntTypes.U32",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll"
] | [] | false | false | false | true | true | let bn_mont_ctx_u32 =
| bn_mont_ctx' U32 (lb U32) (ll U32) | false |
|
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.pbn_mont_ctx_u64 | val pbn_mont_ctx_u64 : Type0 | let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 48,
"end_line": 59,
"start_col": 0,
"start_line": 59
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"LowStar.Buffer.pointer",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx_u64"
] | [] | false | false | false | true | true | let pbn_mont_ctx_u64 =
| B.pointer bn_mont_ctx_u64 | false |
|
Enum.fst | Enum.enum_opt | [@@ FStar.Tactics.Typeclasses.tcinstance]
val enum_opt (i: enum 'a) : enum (option 'a) | [@@ FStar.Tactics.Typeclasses.tcinstance]
val enum_opt (i: enum 'a) : enum (option 'a) | instance enum_opt (i:enum 'a): enum (option 'a) =
{ max = succ i.max;
toInt = (function | None -> 0 | Some x -> 1 + i.toInt x);
fromInt = (function | 0 -> None | x -> Some (i.fromInt (x-1)));
inv1 = (function | None -> () | Some x -> i.inv1 x);
inv2 = (function | 0 -> () | x -> i.inv2 (x-1));
} | {
"file_name": "examples/typeclasses/Enum.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 54,
"start_col": 0,
"start_line": 48
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Enum
open FStar.Tactics.Typeclasses
open FStar.Tactics.V2
type bound = option nat
let bounded_by (b:bound) n =
match b with
| Some b -> b2t (n <= b)
| None -> True
let succ : bound -> bound = function | None -> None | Some b -> Some (b+1)
let bounded (b:bound) = n:nat{bounded_by b n}
class enum a = {
max : bound;
toInt : a -> bounded max;
fromInt : bounded max -> a;
inv1 : x:a -> Lemma (fromInt (toInt x) == x);
inv2 : i:(bounded max) -> Lemma (toInt (fromInt i) == i);
}
instance enum_nat : enum nat =
{ max = None;
toInt = id;
fromInt = id;
inv1 = easy;
inv2 = easy;
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Typeclasses.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Enum.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Typeclasses",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Enum.enum 'a -> Enum.enum (FStar.Pervasives.Native.option 'a) | Prims.Tot | [
"total"
] | [] | [
"Enum.enum",
"Enum.Mkenum",
"FStar.Pervasives.Native.option",
"Enum.succ",
"Enum.__proj__Mkenum__item__max",
"Prims.op_Addition",
"Enum.__proj__Mkenum__item__toInt",
"Enum.bounded",
"FStar.Pervasives.Native.None",
"Prims.int",
"FStar.Pervasives.Native.Some",
"Enum.__proj__Mkenum__item__fromInt",
"Prims.op_Subtraction",
"Enum.__proj__Mkenum__item__inv1",
"Prims.unit",
"Enum.__proj__Mkenum__item__inv2"
] | [] | false | false | false | true | false | [@@ FStar.Tactics.Typeclasses.tcinstance]
let enum_opt (i: enum 'a) : enum (option 'a) =
| {
max = succ i.max;
toInt
=
(function
| None -> 0
| Some x -> 1 + i.toInt x);
fromInt
=
(function
| 0 -> None
| x -> Some (i.fromInt (x - 1)));
inv1
=
(function
| None -> ()
| Some x -> i.inv1 x);
inv2
=
(function
| 0 -> ()
| x -> i.inv2 (x - 1))
} | false |
Enum.fst | Enum.succ | val succ: bound -> bound | val succ: bound -> bound | let succ : bound -> bound = function | None -> None | Some b -> Some (b+1) | {
"file_name": "examples/typeclasses/Enum.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 74,
"end_line": 28,
"start_col": 0,
"start_line": 28
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Enum
open FStar.Tactics.Typeclasses
open FStar.Tactics.V2
type bound = option nat
let bounded_by (b:bound) n =
match b with
| Some b -> b2t (n <= b)
| None -> True | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Typeclasses.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Enum.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Typeclasses",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Enum.bound -> Enum.bound | Prims.Tot | [
"total"
] | [] | [
"Enum.bound",
"FStar.Pervasives.Native.None",
"Prims.nat",
"FStar.Pervasives.Native.Some",
"Prims.op_Addition"
] | [] | false | false | false | true | false | let succ: bound -> bound =
| function
| None -> None
| Some b -> Some (b + 1) | false |
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.pbn_mont_ctx | val pbn_mont_ctx : t: Hacl.Bignum.Definitions.limb_t -> Type0 | let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 55,
"end_line": 54,
"start_col": 0,
"start_line": 54
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"LowStar.Buffer.pointer",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx"
] | [] | false | false | false | true | true | let pbn_mont_ctx (t: limb_t) =
| B.pointer (bn_mont_ctx t) | false |
|
Enum.fst | Enum.enum_nat | [@@ FStar.Tactics.Typeclasses.tcinstance]
val enum_nat:enum nat | [@@ FStar.Tactics.Typeclasses.tcinstance]
val enum_nat:enum nat | instance enum_nat : enum nat =
{ max = None;
toInt = id;
fromInt = id;
inv1 = easy;
inv2 = easy;
} | {
"file_name": "examples/typeclasses/Enum.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 46,
"start_col": 0,
"start_line": 40
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Enum
open FStar.Tactics.Typeclasses
open FStar.Tactics.V2
type bound = option nat
let bounded_by (b:bound) n =
match b with
| Some b -> b2t (n <= b)
| None -> True
let succ : bound -> bound = function | None -> None | Some b -> Some (b+1)
let bounded (b:bound) = n:nat{bounded_by b n}
class enum a = {
max : bound;
toInt : a -> bounded max;
fromInt : bounded max -> a;
inv1 : x:a -> Lemma (fromInt (toInt x) == x);
inv2 : i:(bounded max) -> Lemma (toInt (fromInt i) == i);
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Tactics.Typeclasses.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Enum.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Typeclasses",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Enum.enum Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Enum.Mkenum",
"Prims.nat",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.id",
"Enum.bounded",
"FStar.Tactics.V2.Logic.easy",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Tactics.V2.Logic.lemma_from_squash"
] | [] | false | false | false | true | false | [@@ FStar.Tactics.Typeclasses.tcinstance]
let enum_nat:enum nat =
| { max = None; toInt = id; fromInt = id; inv1 = easy; inv2 = easy } | false |
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.as_pctx | val as_pctx (#t: limb_t) (h: mem) (k: pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) | val as_pctx (#t: limb_t) (h: mem) (k: pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) | let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
as_ctx h (B.deref h k) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 24,
"end_line": 105,
"start_col": 0,
"start_line": 104
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n
inline_for_extraction noextract
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2
inline_for_extraction noextract
let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.freeable k /\ freeable_s h (B.deref h k)
inline_for_extraction noextract
let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2))
inline_for_extraction noextract
let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t
-> Prims.GTot (Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx t) | Prims.GTot | [
"sometrivial"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx",
"Hacl.Bignum.MontArithmetic.as_ctx",
"LowStar.Monotonic.Buffer.deref",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"LowStar.Buffer.trivial_preorder",
"Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx"
] | [] | false | false | false | false | false | let as_pctx (#t: limb_t) (h: mem) (k: pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
| as_ctx h (B.deref h k) | false |
Hacl.Impl.Frodo.Encode.fst | Hacl.Impl.Frodo.Encode.frodo_key_encode | val frodo_key_encode:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> res:matrix_t n n
-> Stack unit
(requires fun h ->
live h a /\ live h res /\ disjoint a res /\
as_seq h res == Spec.Matrix.create (v n) (v n))
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_matrix h1 res == S.frodo_key_encode (v logq) (v b) (v n) (as_seq h0 a)) | val frodo_key_encode:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> res:matrix_t n n
-> Stack unit
(requires fun h ->
live h a /\ live h res /\ disjoint a res /\
as_seq h res == Spec.Matrix.create (v n) (v n))
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_matrix h1 res == S.frodo_key_encode (v logq) (v b) (v n) (as_seq h0 a)) | let frodo_key_encode logq b n a res =
let h0 = ST.get () in
[@ inline_let]
let spec h0 = S.frodo_key_encode2 (v logq) (v b) (v n) (as_seq h0 a) in
loop1 h0 n res spec
(fun i ->
Loops.unfold_repeati (v n) (spec h0) (as_seq h0 res) (v i);
let x = frodo_key_encode1 logq b n a i in
frodo_key_encode2 logq b n a i x res
) | {
"file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 134,
"start_col": 0,
"start_line": 125
} | module Hacl.Impl.Frodo.Encode
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Hacl.Impl.Matrix
module ST = FStar.HyperStack.ST
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module S = Spec.Frodo.Encode
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract private
val ec:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= v logq}
-> k:uint16{v k < pow2 (v b)}
-> r:uint16{r == S.ec (v logq) (v b) k}
let ec logq b a =
a <<. (logq -. b)
inline_for_extraction noextract private
val dc:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b < v logq}
-> c:uint16
-> r:uint16{r == S.dc (v logq) (v b) c}
let dc logq b c =
let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in
res1 &. ((u16 1 <<. b) -. u16 1)
inline_for_extraction noextract private
val ec1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> x:uint64
-> k:size_t{v k < 8}
-> res:uint16{res == S.ec1 (v logq) (v b) x (v k)}
let ec1 logq b x k =
Spec.Frodo.Lemmas.modulo_pow2_u64 (x >>. (b *! k)) (v b);
let rk = (x >>. (b *! k)) &. ((u64 1 <<. b) -. u64 1) in
ec logq b (to_u16 rk)
inline_for_extraction noextract private
val frodo_key_encode1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> i:size_t{v i < v n}
-> Stack uint64
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i))
let frodo_key_encode1 logq b n a i =
let h0 = ST.get() in
push_frame();
let v8 = create (size 8) (u8 0) in
let chunk = sub a (i *! b) b in
let h1 = ST.get() in
assert (as_seq h1 chunk == LSeq.sub (as_seq h0 a) (v (i *! b)) (v b));
update_sub v8 (size 0) b chunk;
let x = uint_from_bytes_le #U64 v8 in
pop_frame();
x
inline_for_extraction noextract private
val frodo_key_encode2:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> i:size_t{v i < v n}
-> x:uint64
-> res:matrix_t n n
-> Stack unit
(requires fun h ->
live h a /\ live h res /\ disjoint a res)
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_matrix h1 res ==
Loops.repeati 8 (S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i)) (as_matrix h0 res))
let frodo_key_encode2 logq b n a i x res =
[@ inline_let]
let spec h0 = S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i) in
let h0 = ST.get () in
loop1 h0 (size 8) res spec
(fun k ->
Loops.unfold_repeati 8 (spec h0) (as_seq h0 res) (v k);
mset res i k (ec1 logq b x k)
)
val frodo_key_encode:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> res:matrix_t n n
-> Stack unit
(requires fun h ->
live h a /\ live h res /\ disjoint a res /\
as_seq h res == Spec.Matrix.create (v n) (v n))
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_matrix h1 res == S.frodo_key_encode (v logq) (v b) (v n) (as_seq h0 a)) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Matrix.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Frodo.Encode.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.Encode",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} ->
b:
Lib.IntTypes.size_t
{0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b <= 8 /\ Lib.IntTypes.v b <= Lib.IntTypes.v logq} ->
n: Lib.IntTypes.size_t{Lib.IntTypes.v n == 8} ->
a: Hacl.Impl.Matrix.lbytes (n *! n *! b /. Lib.IntTypes.size 8) ->
res: Hacl.Impl.Matrix.matrix_t n n
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"Prims.int",
"Hacl.Impl.Matrix.lbytes",
"Lib.IntTypes.op_Slash_Dot",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.size",
"Hacl.Impl.Matrix.matrix_t",
"Lib.Buffer.loop1",
"Hacl.Impl.Matrix.elem",
"Hacl.Impl.Frodo.Encode.frodo_key_encode2",
"Prims.unit",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Impl.Frodo.Encode.frodo_key_encode1",
"Lib.IntTypes.uint64",
"Lib.LoopCombinators.unfold_repeati",
"Lib.Sequence.lseq",
"Lib.IntTypes.U16",
"Prims.op_Multiply",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"FStar.Monotonic.HyperStack.mem",
"Prims.nat",
"Prims.op_Subtraction",
"Prims.pow2",
"Spec.Frodo.Encode.frodo_key_encode2",
"Lib.IntTypes.uint8",
"FStar.HyperStack.ST.get"
] | [] | false | true | false | false | false | let frodo_key_encode logq b n a res =
| let h0 = ST.get () in
[@@ inline_let ]let spec h0 = S.frodo_key_encode2 (v logq) (v b) (v n) (as_seq h0 a) in
loop1 h0
n
res
spec
(fun i ->
Loops.unfold_repeati (v n) (spec h0) (as_seq h0 res) (v i);
let x = frodo_key_encode1 logq b n a i in
frodo_key_encode2 logq b n a i x res) | false |
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.freeable | val freeable : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t -> Prims.logical | let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.freeable k /\ freeable_s h (B.deref h k) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 44,
"end_line": 91,
"start_col": 0,
"start_line": 90
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n
inline_for_extraction noextract
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx",
"Prims.l_and",
"LowStar.Monotonic.Buffer.freeable",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"LowStar.Buffer.trivial_preorder",
"Hacl.Bignum.MontArithmetic.freeable_s",
"LowStar.Monotonic.Buffer.deref",
"Prims.logical"
] | [] | false | false | false | false | true | let freeable (#t: limb_t) (h: mem) (k: pbn_mont_ctx t) =
| B.freeable k /\ freeable_s h (B.deref h k) | false |
|
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv | val pbn_mont_ctx_inv : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t -> Prims.logical | let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.live h k /\
B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\
bn_mont_ctx_inv h (B.deref h k) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 33,
"end_line": 111,
"start_col": 0,
"start_line": 108
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n
inline_for_extraction noextract
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2
inline_for_extraction noextract
let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.freeable k /\ freeable_s h (B.deref h k)
inline_for_extraction noextract
let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2))
inline_for_extraction noextract
let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k)))
inline_for_extraction noextract
let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
as_ctx h (B.deref h k) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"LowStar.Buffer.trivial_preorder",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_addr_of_buffer",
"Hacl.Bignum.MontArithmetic.footprint_s",
"LowStar.Monotonic.Buffer.deref",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx_inv",
"Prims.logical"
] | [] | false | false | false | false | true | let pbn_mont_ctx_inv (#t: limb_t) (h: mem) (k: pbn_mont_ctx t) =
| B.live h k /\ B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\
bn_mont_ctx_inv h (B.deref h k) | false |
|
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.footprint | val footprint : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t
-> Prims.GTot LowStar.Monotonic.Buffer.loc | let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 68,
"end_line": 101,
"start_col": 0,
"start_line": 100
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n
inline_for_extraction noextract
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2
inline_for_extraction noextract
let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.freeable k /\ freeable_s h (B.deref h k)
inline_for_extraction noextract
let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t
-> Prims.GTot LowStar.Monotonic.Buffer.loc | Prims.GTot | [
"sometrivial"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc_addr_of_buffer",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"LowStar.Buffer.trivial_preorder",
"Hacl.Bignum.MontArithmetic.footprint_s",
"LowStar.Monotonic.Buffer.deref",
"LowStar.Monotonic.Buffer.loc"
] | [] | false | false | false | false | false | let footprint (#t: limb_t) (h: mem) (k: pbn_mont_ctx t) =
| let open B in loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k)) | false |
|
Hacl.Impl.Frodo.Encode.fst | Hacl.Impl.Frodo.Encode.frodo_key_encode1 | val frodo_key_encode1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> i:size_t{v i < v n}
-> Stack uint64
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i)) | val frodo_key_encode1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> i:size_t{v i < v n}
-> Stack uint64
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i)) | let frodo_key_encode1 logq b n a i =
let h0 = ST.get() in
push_frame();
let v8 = create (size 8) (u8 0) in
let chunk = sub a (i *! b) b in
let h1 = ST.get() in
assert (as_seq h1 chunk == LSeq.sub (as_seq h0 a) (v (i *! b)) (v b));
update_sub v8 (size 0) b chunk;
let x = uint_from_bytes_le #U64 v8 in
pop_frame();
x | {
"file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 81,
"start_col": 0,
"start_line": 71
} | module Hacl.Impl.Frodo.Encode
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Hacl.Impl.Matrix
module ST = FStar.HyperStack.ST
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module S = Spec.Frodo.Encode
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract private
val ec:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= v logq}
-> k:uint16{v k < pow2 (v b)}
-> r:uint16{r == S.ec (v logq) (v b) k}
let ec logq b a =
a <<. (logq -. b)
inline_for_extraction noextract private
val dc:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b < v logq}
-> c:uint16
-> r:uint16{r == S.dc (v logq) (v b) c}
let dc logq b c =
let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in
res1 &. ((u16 1 <<. b) -. u16 1)
inline_for_extraction noextract private
val ec1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> x:uint64
-> k:size_t{v k < 8}
-> res:uint16{res == S.ec1 (v logq) (v b) x (v k)}
let ec1 logq b x k =
Spec.Frodo.Lemmas.modulo_pow2_u64 (x >>. (b *! k)) (v b);
let rk = (x >>. (b *! k)) &. ((u64 1 <<. b) -. u64 1) in
ec logq b (to_u16 rk)
inline_for_extraction noextract private
val frodo_key_encode1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> i:size_t{v i < v n}
-> Stack uint64
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i)) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Matrix.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Frodo.Encode.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.Encode",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} ->
b:
Lib.IntTypes.size_t
{0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b <= 8 /\ Lib.IntTypes.v b <= Lib.IntTypes.v logq} ->
n: Lib.IntTypes.size_t{Lib.IntTypes.v n == 8} ->
a: Hacl.Impl.Matrix.lbytes (n *! n *! b /. Lib.IntTypes.size 8) ->
i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n}
-> FStar.HyperStack.ST.Stack Lib.IntTypes.uint64 | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"Prims.int",
"Hacl.Impl.Matrix.lbytes",
"Lib.IntTypes.op_Slash_Dot",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.size",
"Lib.IntTypes.uint64",
"Prims.unit",
"FStar.HyperStack.ST.pop_frame",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.ByteBuffer.uint_from_bytes_le",
"Lib.IntTypes.uint_t",
"Lib.Buffer.update_sub",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint8",
"Prims._assert",
"Lib.Sequence.lseq",
"Lib.Buffer.as_seq",
"Lib.Sequence.sub",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.U8",
"Lib.Buffer.sub",
"Lib.IntTypes.mk_int",
"Lib.Buffer.create",
"Lib.IntTypes.u8",
"Lib.Buffer.lbuffer",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let frodo_key_encode1 logq b n a i =
| let h0 = ST.get () in
push_frame ();
let v8 = create (size 8) (u8 0) in
let chunk = sub a (i *! b) b in
let h1 = ST.get () in
assert (as_seq h1 chunk == LSeq.sub (as_seq h0 a) (v (i *! b)) (v b));
update_sub v8 (size 0) b chunk;
let x = uint_from_bytes_le #U64 v8 in
pop_frame ();
x | false |
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.bn_field_free_st | val bn_field_free_st : t: Hacl.Bignum.Definitions.limb_t -> Type0 | let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t ->
ST unit
(requires fun h ->
freeable h k /\
pbn_mont_ctx_inv h k)
(ensures fun h0 _ h1 ->
B.(modifies (footprint h0 k) h0 h1)) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 173,
"start_col": 0,
"start_line": 167
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n
inline_for_extraction noextract
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2
inline_for_extraction noextract
let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.freeable k /\ freeable_s h (B.deref h k)
inline_for_extraction noextract
let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2))
inline_for_extraction noextract
let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k)))
inline_for_extraction noextract
let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
as_ctx h (B.deref h k)
inline_for_extraction noextract
let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.live h k /\
B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\
bn_mont_ctx_inv h (B.deref h k)
inline_for_extraction noextract
let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t ->
Stack (BN.meta_len t)
(requires fun h -> pbn_mont_ctx_inv h k)
(ensures fun h0 r h1 -> h0 == h1 /\
r == (B.deref h0 k).len /\
v r == S.bn_field_get_len (as_pctx h0 k))
inline_for_extraction noextract
val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t
inline_for_extraction noextract
let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len ->
Stack bool
(requires fun h -> live h n)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_field_check_modulus (as_seq h0 n))
inline_for_extraction noextract
val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_init_st (t:limb_t) (len:BN.meta_len t) =
r:HS.rid
-> n:lbignum t len ->
ST (pbn_mont_ctx t)
(requires fun h ->
S.bn_mont_ctx_pre (as_seq h n) /\
live h n /\ ST.is_eternal_region r)
(ensures fun h0 res h1 ->
B.(modifies loc_none h0 h1) /\
B.(fresh_loc (footprint h1 res) h0 h1) /\
B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\
freeable h1 res /\
(B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\
S.bn_mont_ctx_inv (as_pctx h1 res) /\
as_pctx h1 res == S.bn_field_init (as_seq h0 n))
inline_for_extraction noextract
val bn_field_init:
#t:limb_t
-> len:BN.meta_len t
-> precomp_r2:BM.bn_precomp_r2_mod_n_st t len ->
bn_field_init_st t len | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Hacl.Bignum.MontArithmetic.freeable",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv",
"LowStar.Monotonic.Buffer.modifies",
"Hacl.Bignum.MontArithmetic.footprint"
] | [] | false | false | false | true | true | let bn_field_free_st (t: limb_t) =
| k: pbn_mont_ctx t
-> ST unit
(requires fun h -> freeable h k /\ pbn_mont_ctx_inv h k)
(ensures fun h0 _ h1 -> let open B in modifies (footprint h0 k) h0 h1) | false |
|
Hacl.K256.PrecompTable.fst | Hacl.K256.PrecompTable.precomp_basepoint_table_w4 | val precomp_basepoint_table_w4:
x:glbuffer uint64 240ul{witnessed x precomp_basepoint_table_lseq_w4 /\ recallable x} | val precomp_basepoint_table_w4:
x:glbuffer uint64 240ul{witnessed x precomp_basepoint_table_lseq_w4 /\ recallable x} | let precomp_basepoint_table_w4:
x:glbuffer uint64 240ul{witnessed x precomp_basepoint_table_lseq_w4 /\ recallable x} =
createL_global precomp_basepoint_table_list_w4 | {
"file_name": "code/k256/Hacl.K256.PrecompTable.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 48,
"end_line": 213,
"start_col": 0,
"start_line": 211
} | module Hacl.K256.PrecompTable
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module SPT = Hacl.Spec.PrecompBaseTable
module SPT256 = Hacl.Spec.PrecompBaseTable256
module SPTK = Hacl.Spec.K256.PrecompTable
module S = Spec.K256
module SL = Spec.K256.Lemmas
open Hacl.Impl.K256.Point
include Hacl.Impl.K256.Group
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let proj_point_to_list p =
SPTK.proj_point_to_list_lemma p;
SPTK.proj_point_to_list p
let lemma_refl x =
SPTK.proj_point_to_list_lemma x
//-----------------
inline_for_extraction noextract
let proj_g_pow2_64 : S.proj_point =
[@inline_let]
let rX : S.felem = 0x46ec0aa60b0b98c37b29371784676ad967b7beb1a941ddb6fbbff95b44cb788b in
[@inline_let]
let rY : S.felem = 0x6b946755bbc6b677576579c990a1ccf14a710545251a1428fabbf02f40268e63 in
[@inline_let]
let rZ : S.felem = 0x3c114b2ac17c199ec9eba9f7cc64dc459ca2e53f5bbead2b4e618b318ffcc00e in
(rX, rY, rZ)
val lemma_proj_g_pow2_64_eval : unit ->
Lemma (SE.exp_pow2 S.mk_k256_concrete_ops S.g 64 == proj_g_pow2_64)
let lemma_proj_g_pow2_64_eval () =
SPT256.exp_pow2_rec_is_exp_pow2 S.mk_k256_concrete_ops S.g 64;
let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops S.g 64) in
normalize_term_spec (SPT256.exp_pow2_rec S.mk_k256_concrete_ops S.g 64);
let rX : S.felem = 0x46ec0aa60b0b98c37b29371784676ad967b7beb1a941ddb6fbbff95b44cb788b in
let rY : S.felem = 0x6b946755bbc6b677576579c990a1ccf14a710545251a1428fabbf02f40268e63 in
let rZ : S.felem = 0x3c114b2ac17c199ec9eba9f7cc64dc459ca2e53f5bbead2b4e618b318ffcc00e in
assert_norm (qX == rX /\ qY == rY /\ qZ == rZ)
inline_for_extraction noextract
let proj_g_pow2_128 : S.proj_point =
[@inline_let]
let rX : S.felem = 0x98299efbc8e459915404ae015b48cac3b929e0158665f3c7fa5489fbd25c4297 in
[@inline_let]
let rY : S.felem = 0xf1e5cbc9579e7d11a31681e947c2959ae0298a006d1c06ab1ad93d6716ea50cc in
[@inline_let]
let rZ : S.felem = 0x5c53ffe15001674a2eacb60c9327a8b0ddbd93a0fa6d90309de6cc124133938b in
(rX, rY, rZ)
val lemma_proj_g_pow2_128_eval : unit ->
Lemma (SE.exp_pow2 S.mk_k256_concrete_ops proj_g_pow2_64 64 == proj_g_pow2_128)
let lemma_proj_g_pow2_128_eval () =
SPT256.exp_pow2_rec_is_exp_pow2 S.mk_k256_concrete_ops proj_g_pow2_64 64;
let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_64 64) in
normalize_term_spec (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_64 64);
let rX : S.felem = 0x98299efbc8e459915404ae015b48cac3b929e0158665f3c7fa5489fbd25c4297 in
let rY : S.felem = 0xf1e5cbc9579e7d11a31681e947c2959ae0298a006d1c06ab1ad93d6716ea50cc in
let rZ : S.felem = 0x5c53ffe15001674a2eacb60c9327a8b0ddbd93a0fa6d90309de6cc124133938b in
assert_norm (qX == rX /\ qY == rY /\ qZ == rZ)
inline_for_extraction noextract
let proj_g_pow2_192 : S.proj_point =
[@inline_let]
let rX : S.felem = 0xbd382b67d20492b1480ca58a6d7d617ba413a9bc7c2f1cff51301ef960fb245c in
[@inline_let]
let rY : S.felem = 0x0b232afcf692673aa714357c524c07867a64ea3b9dfab53f0e74622159e86b0d in
[@inline_let]
let rZ : S.felem = 0x028a1380449aede5df8219420b458d464a6a4773ac91e8305237878cef1cffa6 in
(rX, rY, rZ)
val lemma_proj_g_pow2_192_eval : unit ->
Lemma (SE.exp_pow2 S.mk_k256_concrete_ops proj_g_pow2_128 64 == proj_g_pow2_192)
let lemma_proj_g_pow2_192_eval () =
SPT256.exp_pow2_rec_is_exp_pow2 S.mk_k256_concrete_ops proj_g_pow2_128 64;
let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_128 64) in
normalize_term_spec (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_128 64);
let rX : S.felem = 0xbd382b67d20492b1480ca58a6d7d617ba413a9bc7c2f1cff51301ef960fb245c in
let rY : S.felem = 0x0b232afcf692673aa714357c524c07867a64ea3b9dfab53f0e74622159e86b0d in
let rZ : S.felem = 0x028a1380449aede5df8219420b458d464a6a4773ac91e8305237878cef1cffa6 in
assert_norm (qX == rX /\ qY == rY /\ qZ == rZ)
// let proj_g_pow2_64 : S.proj_point =
// normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops S.g 64)
// let proj_g_pow2_128 : S.proj_point =
// normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_64 64)
// let proj_g_pow2_192 : S.proj_point =
// normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_128 64)
inline_for_extraction noextract
let proj_g_pow2_64_list : SPTK.point_list =
normalize_term (SPTK.proj_point_to_list proj_g_pow2_64)
inline_for_extraction noextract
let proj_g_pow2_128_list : SPTK.point_list =
normalize_term (SPTK.proj_point_to_list proj_g_pow2_128)
inline_for_extraction noextract
let proj_g_pow2_192_list : SPTK.point_list =
normalize_term (SPTK.proj_point_to_list proj_g_pow2_192)
let proj_g_pow2_64_lseq : LSeq.lseq uint64 15 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64);
Seq.seq_of_list proj_g_pow2_64_list
let proj_g_pow2_128_lseq : LSeq.lseq uint64 15 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128);
Seq.seq_of_list proj_g_pow2_128_list
let proj_g_pow2_192_lseq : LSeq.lseq uint64 15 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192);
Seq.seq_of_list proj_g_pow2_192_list
val proj_g_pow2_64_lemma: unit ->
Lemma (S.to_aff_point proj_g_pow2_64 == pow_point (pow2 64) g_aff)
let proj_g_pow2_64_lemma () =
lemma_proj_g_pow2_64_eval ();
SPT256.a_pow2_64_lemma S.mk_k256_concrete_ops S.g
val proj_g_pow2_128_lemma: unit ->
Lemma (S.to_aff_point proj_g_pow2_128 == pow_point (pow2 128) g_aff)
let proj_g_pow2_128_lemma () =
lemma_proj_g_pow2_128_eval ();
lemma_proj_g_pow2_64_eval ();
SPT256.a_pow2_128_lemma S.mk_k256_concrete_ops S.g
val proj_g_pow2_192_lemma: unit ->
Lemma (S.to_aff_point proj_g_pow2_192 == pow_point (pow2 192) g_aff)
let proj_g_pow2_192_lemma () =
lemma_proj_g_pow2_192_eval ();
lemma_proj_g_pow2_128_eval ();
lemma_proj_g_pow2_64_eval ();
SPT256.a_pow2_192_lemma S.mk_k256_concrete_ops S.g
let proj_g_pow2_64_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64);
proj_g_pow2_64_lemma ();
SPTK.proj_point_to_list_lemma proj_g_pow2_64
let proj_g_pow2_128_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128);
proj_g_pow2_128_lemma ();
SPTK.proj_point_to_list_lemma proj_g_pow2_128
let proj_g_pow2_192_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192);
proj_g_pow2_192_lemma ();
SPTK.proj_point_to_list_lemma proj_g_pow2_192
let mk_proj_g_pow2_64 () =
createL proj_g_pow2_64_list
let mk_proj_g_pow2_128 () =
createL proj_g_pow2_128_list
let mk_proj_g_pow2_192 () =
createL proj_g_pow2_192_list
//----------------
/// window size = 4; precomputed table = [[0]G, [1]G, ..., [15]G]
inline_for_extraction noextract
let precomp_basepoint_table_list_w4: x:list uint64{FStar.List.Tot.length x = 240} =
normalize_term (SPT.precomp_base_table_list mk_k256_precomp_base_table S.g 15)
let precomp_basepoint_table_lseq_w4 : LSeq.lseq uint64 240 =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table S.g 15);
Seq.seq_of_list precomp_basepoint_table_list_w4
let precomp_basepoint_table_lemma_w4 () =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table S.g 15);
SPT.precomp_base_table_lemma mk_k256_precomp_base_table S.g 16 precomp_basepoint_table_lseq_w4 | {
"checked_file": "/",
"dependencies": [
"Spec.K256.Lemmas.fsti.checked",
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.PrecompBaseTable256.fsti.checked",
"Hacl.Spec.PrecompBaseTable.fsti.checked",
"Hacl.Spec.K256.PrecompTable.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"Hacl.Impl.K256.Group.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.K256.PrecompTable.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256.Lemmas",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.PrecompTable",
"short_module": "SPTK"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable256",
"short_module": "SPT256"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Group",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable",
"short_module": "SPT"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation.Definitions",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x:
Lib.Buffer.glbuffer Lib.IntTypes.uint64 240ul
{ Lib.Buffer.witnessed x Hacl.K256.PrecompTable.precomp_basepoint_table_lseq_w4 /\
Lib.Buffer.recallable x } | Prims.Tot | [
"total"
] | [] | [
"Lib.Buffer.createL_global",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.K256.PrecompTable.precomp_basepoint_table_list_w4",
"Lib.Buffer.glbuffer",
"Lib.IntTypes.size",
"FStar.Pervasives.normalize_term",
"Lib.IntTypes.size_nat",
"FStar.List.Tot.Base.length",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Prims.l_and",
"Lib.Buffer.witnessed",
"Hacl.K256.PrecompTable.precomp_basepoint_table_lseq_w4",
"Lib.Buffer.recallable",
"Lib.Buffer.CONST"
] | [] | false | false | false | false | false | let precomp_basepoint_table_w4:x:
glbuffer uint64 240ul {witnessed x precomp_basepoint_table_lseq_w4 /\ recallable x} =
| createL_global precomp_basepoint_table_list_w4 | false |
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.ll | val ll : t: Hacl.Bignum.Definitions.limb_t -> Type0 | let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64 | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 36,
"start_col": 0,
"start_line": 33
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Lib.IntTypes.uint32",
"Lib.IntTypes.uint64"
] | [] | false | false | false | true | true | let ll (t: limb_t) =
| match t with
| U32 -> uint32
| U64 -> uint64 | false |
|
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.bn_mont_ctx_inv | val bn_mont_ctx_inv : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.bn_mont_ctx t -> Prims.logical | let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 74,
"start_col": 0,
"start_line": 70
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.bn_mont_ctx t -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"Prims.l_and",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Hacl.Bignum.Definitions.limb",
"Lib.Buffer.disjoint",
"Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx_inv",
"Hacl.Bignum.MontArithmetic.as_ctx",
"Lib.Buffer.buffer_t",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__r2",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n",
"Prims.logical"
] | [] | false | false | false | false | true | let bn_mont_ctx_inv (#t: limb_t) (h: mem) (k: bn_mont_ctx t) =
| let n:buffer (limb t) = k.n in
let r2:buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\ S.bn_mont_ctx_inv (as_ctx h k) | false |
|
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.lb | val lb : t: Hacl.Bignum.Definitions.limb_t -> Type0 | let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64 | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 24,
"end_line": 30,
"start_col": 0,
"start_line": 27
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Lib.Buffer.buffer",
"Lib.IntTypes.uint32",
"Lib.IntTypes.uint64"
] | [] | false | false | false | true | true | let lb (t: limb_t) =
| match t with
| U32 -> buffer uint32
| U64 -> buffer uint64 | false |
|
Hacl.Impl.Frodo.Encode.fst | Hacl.Impl.Frodo.Encode.frodo_key_decode | val frodo_key_decode:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq}
-> n:size_t{v n == 8}
-> a:matrix_t n n
-> res:lbytes (n *! n *! b /. size 8)
-> Stack unit
(requires fun h ->
live h a /\ live h res /\ disjoint a res /\
as_seq h res == LSeq.create (v n * v n * v b / 8) (u8 0))
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_seq h1 res == S.frodo_key_decode (v logq) (v b) (v n) (as_matrix h0 a)) | val frodo_key_decode:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq}
-> n:size_t{v n == 8}
-> a:matrix_t n n
-> res:lbytes (n *! n *! b /. size 8)
-> Stack unit
(requires fun h ->
live h a /\ live h res /\ disjoint a res /\
as_seq h res == LSeq.create (v n * v n * v b / 8) (u8 0))
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_seq h1 res == S.frodo_key_decode (v logq) (v b) (v n) (as_matrix h0 a)) | let frodo_key_decode logq b n a res =
[@ inline_let]
let spec h0 = S.frodo_key_decode2 (v logq) (v b) (v n) (as_seq h0 a) in
let h0 = ST.get() in
loop1 h0 n res spec
(fun i ->
Loops.unfold_repeati (v n) (spec h0) (as_seq h0 res) (v i);
let templong = frodo_key_decode2 logq b n a i in
frodo_key_decode1 logq b n i templong res
) | {
"file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 217,
"start_col": 0,
"start_line": 208
} | module Hacl.Impl.Frodo.Encode
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Hacl.Impl.Matrix
module ST = FStar.HyperStack.ST
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module S = Spec.Frodo.Encode
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract private
val ec:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= v logq}
-> k:uint16{v k < pow2 (v b)}
-> r:uint16{r == S.ec (v logq) (v b) k}
let ec logq b a =
a <<. (logq -. b)
inline_for_extraction noextract private
val dc:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b < v logq}
-> c:uint16
-> r:uint16{r == S.dc (v logq) (v b) c}
let dc logq b c =
let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in
res1 &. ((u16 1 <<. b) -. u16 1)
inline_for_extraction noextract private
val ec1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> x:uint64
-> k:size_t{v k < 8}
-> res:uint16{res == S.ec1 (v logq) (v b) x (v k)}
let ec1 logq b x k =
Spec.Frodo.Lemmas.modulo_pow2_u64 (x >>. (b *! k)) (v b);
let rk = (x >>. (b *! k)) &. ((u64 1 <<. b) -. u64 1) in
ec logq b (to_u16 rk)
inline_for_extraction noextract private
val frodo_key_encode1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> i:size_t{v i < v n}
-> Stack uint64
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i))
let frodo_key_encode1 logq b n a i =
let h0 = ST.get() in
push_frame();
let v8 = create (size 8) (u8 0) in
let chunk = sub a (i *! b) b in
let h1 = ST.get() in
assert (as_seq h1 chunk == LSeq.sub (as_seq h0 a) (v (i *! b)) (v b));
update_sub v8 (size 0) b chunk;
let x = uint_from_bytes_le #U64 v8 in
pop_frame();
x
inline_for_extraction noextract private
val frodo_key_encode2:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> i:size_t{v i < v n}
-> x:uint64
-> res:matrix_t n n
-> Stack unit
(requires fun h ->
live h a /\ live h res /\ disjoint a res)
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_matrix h1 res ==
Loops.repeati 8 (S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i)) (as_matrix h0 res))
let frodo_key_encode2 logq b n a i x res =
[@ inline_let]
let spec h0 = S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i) in
let h0 = ST.get () in
loop1 h0 (size 8) res spec
(fun k ->
Loops.unfold_repeati 8 (spec h0) (as_seq h0 res) (v k);
mset res i k (ec1 logq b x k)
)
val frodo_key_encode:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> res:matrix_t n n
-> Stack unit
(requires fun h ->
live h a /\ live h res /\ disjoint a res /\
as_seq h res == Spec.Matrix.create (v n) (v n))
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_matrix h1 res == S.frodo_key_encode (v logq) (v b) (v n) (as_seq h0 a))
[@"c_inline"]
let frodo_key_encode logq b n a res =
let h0 = ST.get () in
[@ inline_let]
let spec h0 = S.frodo_key_encode2 (v logq) (v b) (v n) (as_seq h0 a) in
loop1 h0 n res spec
(fun i ->
Loops.unfold_repeati (v n) (spec h0) (as_seq h0 res) (v i);
let x = frodo_key_encode1 logq b n a i in
frodo_key_encode2 logq b n a i x res
)
inline_for_extraction noextract private
val frodo_key_decode1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq}
-> n:size_t{v n == 8}
-> i:size_t{v i < v n}
-> templong:uint64
-> res:lbytes (n *! n *! b /. size 8)
-> Stack unit
(requires fun h -> live h res)
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_seq h1 res == S.frodo_key_decode1 (v logq) (v b) (v n) (v i) templong (as_seq h0 res))
let frodo_key_decode1 logq b n i templong res =
push_frame();
let v8 = create (size 8) (u8 0) in
uint_to_bytes_le v8 templong;
let tmp = sub v8 (size 0) b in
update_sub res (i *! b) b tmp;
pop_frame()
inline_for_extraction noextract private
val frodo_key_decode2:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq}
-> n:size_t{v n == 8}
-> a:matrix_t n n
-> i:size_t{v i < v n}
-> Stack uint64
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == Loops.repeat_gen 8 S.decode_templong_t
(S.frodo_key_decode0 (v logq) (v b) (v n) (as_matrix h0 a) (v i)) (u64 0))
let frodo_key_decode2 logq b n a i =
push_frame();
let templong = create (size 1) (u64 0) in
[@ inline_let]
let refl h i : GTot uint64 = bget h templong 0 in
[@ inline_let]
let footprint i = loc templong in
[@ inline_let]
let spec h0 = S.frodo_key_decode0 (v logq) (v b) (v n) (as_matrix h0 a) (v i) in
let h0 = ST.get () in
assert (bget h0 templong 0 == u64 0);
loop h0 (size 8) S.decode_templong_t refl footprint spec
(fun k ->
Loops.unfold_repeat_gen 8 S.decode_templong_t (spec h0) (refl h0 0) (v k);
let aik = mget a i k in
templong.(size 0) <- templong.(size 0) |. (to_u64 (dc logq b aik) <<. (b *! k))
);
let templong = templong.(size 0) in
pop_frame();
templong
val frodo_key_decode:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq}
-> n:size_t{v n == 8}
-> a:matrix_t n n
-> res:lbytes (n *! n *! b /. size 8)
-> Stack unit
(requires fun h ->
live h a /\ live h res /\ disjoint a res /\
as_seq h res == LSeq.create (v n * v n * v b / 8) (u8 0))
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_seq h1 res == S.frodo_key_decode (v logq) (v b) (v n) (as_matrix h0 a)) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Matrix.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Frodo.Encode.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.Encode",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} ->
b:
Lib.IntTypes.size_t
{0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b <= 8 /\ Lib.IntTypes.v b < Lib.IntTypes.v logq} ->
n: Lib.IntTypes.size_t{Lib.IntTypes.v n == 8} ->
a: Hacl.Impl.Matrix.matrix_t n n ->
res: Hacl.Impl.Matrix.lbytes (n *! n *! b /. Lib.IntTypes.size 8)
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"Prims.int",
"Hacl.Impl.Matrix.matrix_t",
"Hacl.Impl.Matrix.lbytes",
"Lib.IntTypes.op_Slash_Dot",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.size",
"Lib.Buffer.loop1",
"Lib.IntTypes.uint8",
"Hacl.Impl.Frodo.Encode.frodo_key_decode1",
"Prims.unit",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Impl.Frodo.Encode.frodo_key_decode2",
"Lib.IntTypes.uint64",
"Lib.LoopCombinators.unfold_repeati",
"Lib.Sequence.lseq",
"Lib.IntTypes.U8",
"Prims.op_Division",
"Prims.op_Multiply",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Prims.nat",
"Prims.op_Subtraction",
"Prims.pow2",
"Spec.Frodo.Encode.frodo_key_decode2",
"Hacl.Impl.Matrix.elem"
] | [] | false | true | false | false | false | let frodo_key_decode logq b n a res =
| [@@ inline_let ]let spec h0 = S.frodo_key_decode2 (v logq) (v b) (v n) (as_seq h0 a) in
let h0 = ST.get () in
loop1 h0
n
res
spec
(fun i ->
Loops.unfold_repeati (v n) (spec h0) (as_seq h0 res) (v i);
let templong = frodo_key_decode2 logq b n a i in
frodo_key_decode1 logq b n i templong res) | false |
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.from_mont | val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat | val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat | let from_mont pbits rLen n mu aM =
mont_reduction pbits rLen n mu aM | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 35,
"end_line": 225,
"start_col": 0,
"start_line": 224
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a)
let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end
val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n)
let eea_pow2_odd a n =
let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == n * k / pow2 a * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k)
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
let mont_preconditions_d pbits rLen n =
let d, k = eea_pow2_odd (pbits * rLen) n in
calc (==) {
pow2 (pbits * rLen) * d % n;
(==) { }
(1 + k * n) % n;
(==) { Math.Lemmas.modulo_addition_lemma 1 n k }
1 % n;
(==) { Math.Lemmas.small_mod 1 n }
1;
};
assert (pow2 (pbits * rLen) * d % n == 1)
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma
(requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures (1 + n * mu) % pow2 pbits == 0)
let mont_preconditions_n0 pbits n mu =
calc (==) {
(1 + n * mu) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) }
(1 + n * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) }
(1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) }
(1 + n % pow2 pbits * mu) % pow2 pbits;
(==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) }
0;
};
assert ((1 + n * mu) % pow2 pbits == 0)
val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma
(requires
n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = eea_pow2_odd (pbits * rLen) n in
r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0))
let mont_preconditions pbits rLen n mu =
mont_preconditions_d pbits rLen n;
mont_preconditions_n0 pbits n mu
/// High-level specification of Montgomery arithmetic
val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat
let mont_reduction_f pbits rLen n mu i c =
let c_i = c / pow2 (pbits * i) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
let res = c + n * q_i * pow2 (pbits * i) in
res
val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction_loop_div_r pbits rLen n mu c =
let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in
let res = res / pow2 (pbits * rLen) in
res
val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction pbits rLen n mu c =
let res = mont_reduction_loop_div_r pbits rLen n mu c in
if res < n then res else res - n
val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
let to_mont pbits rLen n mu a =
let r2 = pow2 (2 * pbits * rLen) % n in
let c = a * r2 in
mont_reduction pbits rLen n mu c | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> aM: Prims.nat -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction"
] | [] | false | false | false | true | false | let from_mont pbits rLen n mu aM =
| mont_reduction pbits rLen n mu aM | false |
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.mont_sqr | val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat | val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat | let mont_sqr pbits rLen n mu a =
mont_mul pbits rLen n mu a a | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 30,
"end_line": 234,
"start_col": 0,
"start_line": 233
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a)
let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end
val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n)
let eea_pow2_odd a n =
let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == n * k / pow2 a * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k)
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
let mont_preconditions_d pbits rLen n =
let d, k = eea_pow2_odd (pbits * rLen) n in
calc (==) {
pow2 (pbits * rLen) * d % n;
(==) { }
(1 + k * n) % n;
(==) { Math.Lemmas.modulo_addition_lemma 1 n k }
1 % n;
(==) { Math.Lemmas.small_mod 1 n }
1;
};
assert (pow2 (pbits * rLen) * d % n == 1)
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma
(requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures (1 + n * mu) % pow2 pbits == 0)
let mont_preconditions_n0 pbits n mu =
calc (==) {
(1 + n * mu) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) }
(1 + n * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) }
(1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) }
(1 + n % pow2 pbits * mu) % pow2 pbits;
(==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) }
0;
};
assert ((1 + n * mu) % pow2 pbits == 0)
val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma
(requires
n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = eea_pow2_odd (pbits * rLen) n in
r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0))
let mont_preconditions pbits rLen n mu =
mont_preconditions_d pbits rLen n;
mont_preconditions_n0 pbits n mu
/// High-level specification of Montgomery arithmetic
val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat
let mont_reduction_f pbits rLen n mu i c =
let c_i = c / pow2 (pbits * i) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
let res = c + n * q_i * pow2 (pbits * i) in
res
val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction_loop_div_r pbits rLen n mu c =
let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in
let res = res / pow2 (pbits * rLen) in
res
val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction pbits rLen n mu c =
let res = mont_reduction_loop_div_r pbits rLen n mu c in
if res < n then res else res - n
val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
let to_mont pbits rLen n mu a =
let r2 = pow2 (2 * pbits * rLen) % n in
let c = a * r2 in
mont_reduction pbits rLen n mu c
val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat
let from_mont pbits rLen n mu aM =
mont_reduction pbits rLen n mu aM
val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat
let mont_mul pbits rLen n mu a b =
let c = a * b in
mont_reduction pbits rLen n mu c | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> a: Prims.nat -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_mul"
] | [] | false | false | false | true | false | let mont_sqr pbits rLen n mu a =
| mont_mul pbits rLen n mu a a | false |
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.bn_v_n | val bn_v_n : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t
-> Prims.GTot Prims.nat | let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 81,
"start_col": 0,
"start_line": 78
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.pbn_mont_ctx t
-> Prims.GTot Prims.nat | Prims.GTot | [
"sometrivial"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx",
"Hacl.Bignum.Definitions.bn_v",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"LowStar.Monotonic.Buffer.deref",
"LowStar.Buffer.trivial_preorder",
"Prims.nat"
] | [] | false | false | false | false | false | let bn_v_n (#t: limb_t) (h: mem) (k: pbn_mont_ctx t) =
| let k1 = B.deref h k in
let n:lbignum t k1.len = k1.n in
bn_v h n | false |
|
Hacl.Impl.P256.Verify.fst | Hacl.Impl.P256.Verify.lbytes | val lbytes : len: Lib.IntTypes.size_t -> Type0 | let lbytes len = lbuffer uint8 len | {
"file_name": "code/ecdsap256/Hacl.Impl.P256.Verify.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 26,
"start_col": 0,
"start_line": 26
} | module Hacl.Impl.P256.Verify
open FStar.Mul
open FStar.HyperStack.All
open FStar.HyperStack
module ST = FStar.HyperStack.ST
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.P256.Bignum
open Hacl.Impl.P256.Point
open Hacl.Impl.P256.Scalar
open Hacl.Impl.P256.PointMul
module BSeq = Lib.ByteSequence
module S = Spec.P256
module SL = Spec.P256.Lemmas
module SM = Hacl.Spec.P256.Montgomery
module QI = Hacl.Impl.P256.Qinv
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0" | {
"checked_file": "/",
"dependencies": [
"Spec.P256.Lemmas.fsti.checked",
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.P256.Montgomery.fsti.checked",
"Hacl.Impl.P256.Scalar.fsti.checked",
"Hacl.Impl.P256.Qinv.fsti.checked",
"Hacl.Impl.P256.PointMul.fsti.checked",
"Hacl.Impl.P256.Point.fsti.checked",
"Hacl.Impl.P256.Bignum.fsti.checked",
"Hacl.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.P256.Verify.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.P256.Qinv",
"short_module": "QI"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256.Lemmas",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.PointMul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Scalar",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Point",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Lib.IntTypes.size_t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_t",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8"
] | [] | false | false | false | true | true | let lbytes len =
| lbuffer uint8 len | false |
|
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.as_ctx | val as_ctx (#t: limb_t) (h: mem) (k: bn_mont_ctx t) : GTot (S.bn_mont_ctx t) | val as_ctx (#t: limb_t) (h: mem) (k: bn_mont_ctx t) : GTot (S.bn_mont_ctx t) | let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
} | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 67,
"start_col": 0,
"start_line": 62
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.bn_mont_ctx t
-> Prims.GTot (Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx t) | Prims.GTot | [
"sometrivial"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"Hacl.Spec.Bignum.MontArithmetic.Mkbn_mont_ctx",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Hacl.Bignum.Definitions.limb",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__mu",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__r2",
"Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx"
] | [] | false | false | false | false | false | let as_ctx (#t: limb_t) (h: mem) (k: bn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
| {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len)
} | false |
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.footprint_s | val footprint_s : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.bn_mont_ctx t
-> Prims.GTot LowStar.Monotonic.Buffer.loc | let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2)) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 62,
"end_line": 97,
"start_col": 0,
"start_line": 94
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n
inline_for_extraction noextract
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2
inline_for_extraction noextract
let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.freeable k /\ freeable_s h (B.deref h k) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.bn_mont_ctx t
-> Prims.GTot LowStar.Monotonic.Buffer.loc | Prims.GTot | [
"sometrivial"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"LowStar.Monotonic.Buffer.loc_union",
"LowStar.Monotonic.Buffer.loc_addr_of_buffer",
"Hacl.Bignum.Definitions.limb",
"LowStar.Buffer.trivial_preorder",
"Lib.Buffer.buffer_t",
"Lib.Buffer.MUT",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__r2",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n",
"LowStar.Monotonic.Buffer.loc"
] | [] | false | false | false | false | false | let footprint_s (#t: limb_t) (h: mem) (k: bn_mont_ctx t) =
| let n:buffer (limb t) = k.n in
let r2:buffer (limb t) = k.r2 in
let open B in loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2) | false |
|
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd_k_lemma_d | val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) | val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) | let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 28,
"start_col": 0,
"start_line": 21
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.pos -> n: Prims.pos -> k1: Prims.pos
-> FStar.Pervasives.Lemma (requires n * k1 % Prims.pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures
(let d = n * k1 / Prims.pow2 (a - 1) in
d % 2 ==
(match n * k1 % Prims.pow2 a < Prims.pow2 (a - 1) with
| true -> 0
| _ -> 1))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.unit",
"Prims._assert",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Subtraction",
"FStar.Math.Lemmas.small_division_lemma_2",
"Prims.bool",
"Prims.eq2",
"Prims.op_Division",
"FStar.Math.Lemmas.pow2_modulo_division_lemma_1"
] | [] | false | false | true | false | false | let eea_pow2_odd_k_lemma_d a n k1 =
| let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0
then
(Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
()) | false |
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.mont_reduction | val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat | val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat | let mont_reduction pbits rLen n mu c =
let res = mont_reduction_loop_div_r pbits rLen n mu c in
if res < n then res else res - n | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 215,
"start_col": 0,
"start_line": 213
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a)
let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end
val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n)
let eea_pow2_odd a n =
let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == n * k / pow2 a * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k)
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
let mont_preconditions_d pbits rLen n =
let d, k = eea_pow2_odd (pbits * rLen) n in
calc (==) {
pow2 (pbits * rLen) * d % n;
(==) { }
(1 + k * n) % n;
(==) { Math.Lemmas.modulo_addition_lemma 1 n k }
1 % n;
(==) { Math.Lemmas.small_mod 1 n }
1;
};
assert (pow2 (pbits * rLen) * d % n == 1)
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma
(requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures (1 + n * mu) % pow2 pbits == 0)
let mont_preconditions_n0 pbits n mu =
calc (==) {
(1 + n * mu) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) }
(1 + n * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) }
(1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) }
(1 + n % pow2 pbits * mu) % pow2 pbits;
(==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) }
0;
};
assert ((1 + n * mu) % pow2 pbits == 0)
val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma
(requires
n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = eea_pow2_odd (pbits * rLen) n in
r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0))
let mont_preconditions pbits rLen n mu =
mont_preconditions_d pbits rLen n;
mont_preconditions_n0 pbits n mu
/// High-level specification of Montgomery arithmetic
val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat
let mont_reduction_f pbits rLen n mu i c =
let c_i = c / pow2 (pbits * i) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
let res = c + n * q_i * pow2 (pbits * i) in
res
val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction_loop_div_r pbits rLen n mu c =
let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in
let res = res / pow2 (pbits * rLen) in
res | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> c: Prims.nat -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.nat",
"Prims.op_LessThan",
"Prims.bool",
"Prims.op_Subtraction",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r"
] | [] | false | false | false | true | false | let mont_reduction pbits rLen n mu c =
| let res = mont_reduction_loop_div_r pbits rLen n mu c in
if res < n then res else res - n | false |
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.to_mont | val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat | val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat | let to_mont pbits rLen n mu a =
let r2 = pow2 (2 * pbits * rLen) % n in
let c = a * r2 in
mont_reduction pbits rLen n mu c | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 221,
"start_col": 0,
"start_line": 218
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a)
let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end
val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n)
let eea_pow2_odd a n =
let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == n * k / pow2 a * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k)
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
let mont_preconditions_d pbits rLen n =
let d, k = eea_pow2_odd (pbits * rLen) n in
calc (==) {
pow2 (pbits * rLen) * d % n;
(==) { }
(1 + k * n) % n;
(==) { Math.Lemmas.modulo_addition_lemma 1 n k }
1 % n;
(==) { Math.Lemmas.small_mod 1 n }
1;
};
assert (pow2 (pbits * rLen) * d % n == 1)
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma
(requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures (1 + n * mu) % pow2 pbits == 0)
let mont_preconditions_n0 pbits n mu =
calc (==) {
(1 + n * mu) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) }
(1 + n * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) }
(1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) }
(1 + n % pow2 pbits * mu) % pow2 pbits;
(==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) }
0;
};
assert ((1 + n * mu) % pow2 pbits == 0)
val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma
(requires
n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = eea_pow2_odd (pbits * rLen) n in
r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0))
let mont_preconditions pbits rLen n mu =
mont_preconditions_d pbits rLen n;
mont_preconditions_n0 pbits n mu
/// High-level specification of Montgomery arithmetic
val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat
let mont_reduction_f pbits rLen n mu i c =
let c_i = c / pow2 (pbits * i) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
let res = c + n * q_i * pow2 (pbits * i) in
res
val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction_loop_div_r pbits rLen n mu c =
let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in
let res = res / pow2 (pbits * rLen) in
res
val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction pbits rLen n mu c =
let res = mont_reduction_loop_div_r pbits rLen n mu c in
if res < n then res else res - n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> a: Prims.nat -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.op_Modulus",
"Prims.pow2"
] | [] | false | false | false | true | false | let to_mont pbits rLen n mu a =
| let r2 = pow2 ((2 * pbits) * rLen) % n in
let c = a * r2 in
mont_reduction pbits rLen n mu c | false |
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.bn_to_field_st | val bn_to_field_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | let bn_to_field_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> a:lbignum t len
-> aM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
live h a /\ live h aM /\ disjoint a aM /\
B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\
bn_v h1 aM < bn_v_n h0 k /\
as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 63,
"end_line": 195,
"start_col": 0,
"start_line": 181
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n
inline_for_extraction noextract
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2
inline_for_extraction noextract
let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.freeable k /\ freeable_s h (B.deref h k)
inline_for_extraction noextract
let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2))
inline_for_extraction noextract
let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k)))
inline_for_extraction noextract
let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
as_ctx h (B.deref h k)
inline_for_extraction noextract
let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.live h k /\
B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\
bn_mont_ctx_inv h (B.deref h k)
inline_for_extraction noextract
let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t ->
Stack (BN.meta_len t)
(requires fun h -> pbn_mont_ctx_inv h k)
(ensures fun h0 r h1 -> h0 == h1 /\
r == (B.deref h0 k).len /\
v r == S.bn_field_get_len (as_pctx h0 k))
inline_for_extraction noextract
val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t
inline_for_extraction noextract
let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len ->
Stack bool
(requires fun h -> live h n)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_field_check_modulus (as_seq h0 n))
inline_for_extraction noextract
val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_init_st (t:limb_t) (len:BN.meta_len t) =
r:HS.rid
-> n:lbignum t len ->
ST (pbn_mont_ctx t)
(requires fun h ->
S.bn_mont_ctx_pre (as_seq h n) /\
live h n /\ ST.is_eternal_region r)
(ensures fun h0 res h1 ->
B.(modifies loc_none h0 h1) /\
B.(fresh_loc (footprint h1 res) h0 h1) /\
B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\
freeable h1 res /\
(B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\
S.bn_mont_ctx_inv (as_pctx h1 res) /\
as_pctx h1 res == S.bn_field_init (as_seq h0 n))
inline_for_extraction noextract
val bn_field_init:
#t:limb_t
-> len:BN.meta_len t
-> precomp_r2:BM.bn_precomp_r2_mod_n_st t len ->
bn_field_init_st t len
inline_for_extraction noextract
let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t ->
ST unit
(requires fun h ->
freeable h k /\
pbn_mont_ctx_inv h k)
(ensures fun h0 _ h1 ->
B.(modifies (footprint h0 k) h0 h1))
inline_for_extraction noextract
val bn_field_free: #t:limb_t -> bn_field_free_st t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.meta_len",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx",
"Hacl.Bignum.Definitions.lbignum",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Prims.eq2",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll",
"LowStar.Monotonic.Buffer.deref",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"LowStar.Buffer.trivial_preorder",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Hacl.Bignum.Definitions.limb",
"Lib.Buffer.disjoint",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Hacl.Bignum.MontArithmetic.footprint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.buffer",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Bignum.Definitions.bn_v",
"Hacl.Bignum.MontArithmetic.bn_v_n",
"Lib.Sequence.seq",
"Prims.l_or",
"Prims.nat",
"FStar.Seq.Base.length",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Spec.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len",
"Hacl.Bignum.MontArithmetic.as_pctx",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n",
"Lib.Buffer.as_seq",
"Hacl.Spec.Bignum.MontArithmetic.bn_to_field"
] | [] | false | false | false | false | true | let bn_to_field_st (t: limb_t) (len: BN.meta_len t) =
| k: pbn_mont_ctx t -> a: lbignum t len -> aM: lbignum t len
-> Stack unit
(requires
fun h ->
(B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ live h a /\ live h aM /\ disjoint a aM /\
B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))))
(ensures
fun h0 _ h1 ->
modifies (loc aM) h0 h1 /\ bn_v h1 aM < bn_v_n h0 k /\
as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a)) | false |
|
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd_k_lemma_bound | val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a)) | val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a)) | let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1) | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 39,
"end_line": 107,
"start_col": 0,
"start_line": 103
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.pos -> n: Prims.pos -> k1: Prims.pos
-> FStar.Pervasives.Lemma
(requires n * k1 % Prims.pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < Prims.pow2 (a - 1))
(ensures
(let k =
(match n * k1 % Prims.pow2 a < Prims.pow2 (a - 1) with
| true -> k1
| _ -> k1 + Prims.pow2 (a - 1))
<:
Prims.int
in
k < Prims.pow2 a)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.op_LessThan",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Subtraction",
"FStar.Math.Lemmas.pow2_lt_compat",
"Prims.bool",
"FStar.Math.Lemmas.pow2_double_sum",
"Prims.unit"
] | [] | false | false | true | false | false | let eea_pow2_odd_k_lemma_bound a n k1 =
| if n * k1 % pow2 a < pow2 (a - 1)
then Math.Lemmas.pow2_lt_compat a (a - 1)
else Math.Lemmas.pow2_double_sum (a - 1) | false |
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.freeable_s | val freeable_s : h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.bn_mont_ctx t -> Prims.logical | let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2 | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 87,
"start_col": 0,
"start_line": 84
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: FStar.Monotonic.HyperStack.mem -> k: Hacl.Bignum.MontArithmetic.bn_mont_ctx t -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"Prims.l_and",
"LowStar.Monotonic.Buffer.freeable",
"Hacl.Bignum.Definitions.limb",
"LowStar.Buffer.trivial_preorder",
"Lib.Buffer.buffer_t",
"Lib.Buffer.MUT",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__r2",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__n",
"Prims.logical"
] | [] | false | false | false | false | true | let freeable_s (#t: limb_t) (h: mem) (k: bn_mont_ctx t) =
| let n:buffer (limb t) = k.n in
let r2:buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2 | false |
|
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.bn_field_sqr_st | val bn_field_sqr_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | let bn_field_sqr_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> cM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
bn_v h aM < bn_v_n h k /\
live h aM /\ live h cM /\ eq_or_disjoint aM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\
bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM)) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 65,
"end_line": 321,
"start_col": 0,
"start_line": 306
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n
inline_for_extraction noextract
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2
inline_for_extraction noextract
let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.freeable k /\ freeable_s h (B.deref h k)
inline_for_extraction noextract
let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2))
inline_for_extraction noextract
let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k)))
inline_for_extraction noextract
let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
as_ctx h (B.deref h k)
inline_for_extraction noextract
let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.live h k /\
B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\
bn_mont_ctx_inv h (B.deref h k)
inline_for_extraction noextract
let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t ->
Stack (BN.meta_len t)
(requires fun h -> pbn_mont_ctx_inv h k)
(ensures fun h0 r h1 -> h0 == h1 /\
r == (B.deref h0 k).len /\
v r == S.bn_field_get_len (as_pctx h0 k))
inline_for_extraction noextract
val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t
inline_for_extraction noextract
let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len ->
Stack bool
(requires fun h -> live h n)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_field_check_modulus (as_seq h0 n))
inline_for_extraction noextract
val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_init_st (t:limb_t) (len:BN.meta_len t) =
r:HS.rid
-> n:lbignum t len ->
ST (pbn_mont_ctx t)
(requires fun h ->
S.bn_mont_ctx_pre (as_seq h n) /\
live h n /\ ST.is_eternal_region r)
(ensures fun h0 res h1 ->
B.(modifies loc_none h0 h1) /\
B.(fresh_loc (footprint h1 res) h0 h1) /\
B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\
freeable h1 res /\
(B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\
S.bn_mont_ctx_inv (as_pctx h1 res) /\
as_pctx h1 res == S.bn_field_init (as_seq h0 n))
inline_for_extraction noextract
val bn_field_init:
#t:limb_t
-> len:BN.meta_len t
-> precomp_r2:BM.bn_precomp_r2_mod_n_st t len ->
bn_field_init_st t len
inline_for_extraction noextract
let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t ->
ST unit
(requires fun h ->
freeable h k /\
pbn_mont_ctx_inv h k)
(ensures fun h0 _ h1 ->
B.(modifies (footprint h0 k) h0 h1))
inline_for_extraction noextract
val bn_field_free: #t:limb_t -> bn_field_free_st t
inline_for_extraction noextract
let bn_to_field_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> a:lbignum t len
-> aM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
live h a /\ live h aM /\ disjoint a aM /\
B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\
bn_v h1 aM < bn_v_n h0 k /\
as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a))
inline_for_extraction noextract
val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_from_field_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> a:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\
live h a /\ live h aM /\ disjoint a aM /\
B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\
bn_v h1 a < bn_v_n h0 k /\
as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM))
inline_for_extraction noextract
val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_add_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> bM:lbignum t len
-> cM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
bn_v h aM < bn_v_n h k /\
bn_v h bM < bn_v_n h k /\
live h aM /\ live h bM /\ live h cM /\
eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\
bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
inline_for_extraction noextract
val bn_field_add: #t:limb_t -> km:BM.mont t -> bn_field_add_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_sub_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> bM:lbignum t len
-> cM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
bn_v h aM < bn_v_n h k /\
bn_v h bM < bn_v_n h k /\
live h aM /\ live h bM /\ live h cM /\
eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\
bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
inline_for_extraction noextract
val bn_field_sub: #t:limb_t -> km:BM.mont t -> bn_field_sub_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_mul_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> bM:lbignum t len
-> cM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
bn_v h aM < bn_v_n h k /\
bn_v h bM < bn_v_n h k /\
live h aM /\ live h bM /\ live h cM /\
eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\
bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
inline_for_extraction noextract
val bn_field_mul: #t:limb_t -> km:BM.mont t -> bn_field_mul_st t km.BM.bn.BN.len | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.meta_len",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx",
"Hacl.Bignum.Definitions.lbignum",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Prims.eq2",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll",
"LowStar.Monotonic.Buffer.deref",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"LowStar.Buffer.trivial_preorder",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Bignum.Definitions.bn_v",
"Hacl.Bignum.MontArithmetic.bn_v_n",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Hacl.Bignum.Definitions.limb",
"Lib.Buffer.eq_or_disjoint",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Hacl.Bignum.MontArithmetic.footprint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.buffer",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Lib.Sequence.seq",
"Prims.l_or",
"Prims.nat",
"FStar.Seq.Base.length",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Spec.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len",
"Hacl.Bignum.MontArithmetic.as_pctx",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n",
"Lib.Buffer.as_seq",
"Hacl.Spec.Bignum.MontArithmetic.bn_field_sqr"
] | [] | false | false | false | false | true | let bn_field_sqr_st (t: limb_t) (len: BN.meta_len t) =
| k: pbn_mont_ctx t -> aM: lbignum t len -> cM: lbignum t len
-> Stack unit
(requires
fun h ->
(B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h aM /\
live h cM /\ eq_or_disjoint aM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures
fun h0 _ h1 ->
modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM)) | false |
|
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.bn_field_add_st | val bn_field_add_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | let bn_field_add_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> bM:lbignum t len
-> cM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
bn_v h aM < bn_v_n h k /\
bn_v h bM < bn_v_n h k /\
live h aM /\ live h bM /\ live h cM /\
eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\
bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 80,
"end_line": 244,
"start_col": 0,
"start_line": 225
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n
inline_for_extraction noextract
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2
inline_for_extraction noextract
let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.freeable k /\ freeable_s h (B.deref h k)
inline_for_extraction noextract
let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2))
inline_for_extraction noextract
let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k)))
inline_for_extraction noextract
let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
as_ctx h (B.deref h k)
inline_for_extraction noextract
let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.live h k /\
B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\
bn_mont_ctx_inv h (B.deref h k)
inline_for_extraction noextract
let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t ->
Stack (BN.meta_len t)
(requires fun h -> pbn_mont_ctx_inv h k)
(ensures fun h0 r h1 -> h0 == h1 /\
r == (B.deref h0 k).len /\
v r == S.bn_field_get_len (as_pctx h0 k))
inline_for_extraction noextract
val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t
inline_for_extraction noextract
let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len ->
Stack bool
(requires fun h -> live h n)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_field_check_modulus (as_seq h0 n))
inline_for_extraction noextract
val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_init_st (t:limb_t) (len:BN.meta_len t) =
r:HS.rid
-> n:lbignum t len ->
ST (pbn_mont_ctx t)
(requires fun h ->
S.bn_mont_ctx_pre (as_seq h n) /\
live h n /\ ST.is_eternal_region r)
(ensures fun h0 res h1 ->
B.(modifies loc_none h0 h1) /\
B.(fresh_loc (footprint h1 res) h0 h1) /\
B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\
freeable h1 res /\
(B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\
S.bn_mont_ctx_inv (as_pctx h1 res) /\
as_pctx h1 res == S.bn_field_init (as_seq h0 n))
inline_for_extraction noextract
val bn_field_init:
#t:limb_t
-> len:BN.meta_len t
-> precomp_r2:BM.bn_precomp_r2_mod_n_st t len ->
bn_field_init_st t len
inline_for_extraction noextract
let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t ->
ST unit
(requires fun h ->
freeable h k /\
pbn_mont_ctx_inv h k)
(ensures fun h0 _ h1 ->
B.(modifies (footprint h0 k) h0 h1))
inline_for_extraction noextract
val bn_field_free: #t:limb_t -> bn_field_free_st t
inline_for_extraction noextract
let bn_to_field_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> a:lbignum t len
-> aM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
live h a /\ live h aM /\ disjoint a aM /\
B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\
bn_v h1 aM < bn_v_n h0 k /\
as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a))
inline_for_extraction noextract
val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_from_field_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> a:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\
live h a /\ live h aM /\ disjoint a aM /\
B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\
bn_v h1 a < bn_v_n h0 k /\
as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM))
inline_for_extraction noextract
val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.meta_len",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx",
"Hacl.Bignum.Definitions.lbignum",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Prims.eq2",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll",
"LowStar.Monotonic.Buffer.deref",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"LowStar.Buffer.trivial_preorder",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Bignum.Definitions.bn_v",
"Hacl.Bignum.MontArithmetic.bn_v_n",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Hacl.Bignum.Definitions.limb",
"Lib.Buffer.eq_or_disjoint",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Hacl.Bignum.MontArithmetic.footprint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.buffer",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Lib.Sequence.seq",
"Prims.l_or",
"Prims.nat",
"FStar.Seq.Base.length",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Spec.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len",
"Hacl.Bignum.MontArithmetic.as_pctx",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n",
"Lib.Buffer.as_seq",
"Hacl.Spec.Bignum.MontArithmetic.bn_field_add"
] | [] | false | false | false | false | true | let bn_field_add_st (t: limb_t) (len: BN.meta_len t) =
| k: pbn_mont_ctx t -> aM: lbignum t len -> bM: lbignum t len -> cM: lbignum t len
-> Stack unit
(requires
fun h ->
(B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\
bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\
eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures
fun h0 _ h1 ->
modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) | false |
|
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.mont_preconditions_n0 | val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma
(requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures (1 + n * mu) % pow2 pbits == 0) | val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma
(requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures (1 + n * mu) % pow2 pbits == 0) | let mont_preconditions_n0 pbits n mu =
calc (==) {
(1 + n * mu) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) }
(1 + n * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) }
(1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) }
(1 + n % pow2 pbits * mu) % pow2 pbits;
(==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) }
0;
};
assert ((1 + n * mu) % pow2 pbits == 0) | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 41,
"end_line": 181,
"start_col": 0,
"start_line": 169
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a)
let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end
val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n)
let eea_pow2_odd a n =
let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == n * k / pow2 a * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k)
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
let mont_preconditions_d pbits rLen n =
let d, k = eea_pow2_odd (pbits * rLen) n in
calc (==) {
pow2 (pbits * rLen) * d % n;
(==) { }
(1 + k * n) % n;
(==) { Math.Lemmas.modulo_addition_lemma 1 n k }
1 % n;
(==) { Math.Lemmas.small_mod 1 n }
1;
};
assert (pow2 (pbits * rLen) * d % n == 1)
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma
(requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures (1 + n * mu) % pow2 pbits == 0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pbits: Prims.pos -> n: Prims.pos{n > 1} -> mu: Prims.nat
-> FStar.Pervasives.Lemma (requires (1 + (n % Prims.pow2 pbits) * mu) % Prims.pow2 pbits == 0)
(ensures (1 + n * mu) % Prims.pow2 pbits == 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.nat",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mod_plus_distr_r",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l"
] | [] | false | false | true | false | false | let mont_preconditions_n0 pbits n mu =
| calc ( == ) {
(1 + n * mu) % pow2 pbits;
( == ) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) }
(1 + n * mu % pow2 pbits) % pow2 pbits;
( == ) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) }
(1 + (n % pow2 pbits) * mu % pow2 pbits) % pow2 pbits;
( == ) { Math.Lemmas.lemma_mod_plus_distr_r 1 ((n % pow2 pbits) * mu) (pow2 pbits) }
(1 + (n % pow2 pbits) * mu) % pow2 pbits;
( == ) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) }
0;
};
assert ((1 + n * mu) % pow2 pbits == 0) | false |
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.mont_one | val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat | val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat | let mont_one pbits rLen n mu =
let r2 = pow2 (2 * pbits * rLen) % n in
mont_reduction pbits rLen n mu r2 | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 35,
"end_line": 239,
"start_col": 0,
"start_line": 237
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a)
let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end
val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n)
let eea_pow2_odd a n =
let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == n * k / pow2 a * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k)
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
let mont_preconditions_d pbits rLen n =
let d, k = eea_pow2_odd (pbits * rLen) n in
calc (==) {
pow2 (pbits * rLen) * d % n;
(==) { }
(1 + k * n) % n;
(==) { Math.Lemmas.modulo_addition_lemma 1 n k }
1 % n;
(==) { Math.Lemmas.small_mod 1 n }
1;
};
assert (pow2 (pbits * rLen) * d % n == 1)
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma
(requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures (1 + n * mu) % pow2 pbits == 0)
let mont_preconditions_n0 pbits n mu =
calc (==) {
(1 + n * mu) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) }
(1 + n * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) }
(1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) }
(1 + n % pow2 pbits * mu) % pow2 pbits;
(==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) }
0;
};
assert ((1 + n * mu) % pow2 pbits == 0)
val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma
(requires
n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = eea_pow2_odd (pbits * rLen) n in
r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0))
let mont_preconditions pbits rLen n mu =
mont_preconditions_d pbits rLen n;
mont_preconditions_n0 pbits n mu
/// High-level specification of Montgomery arithmetic
val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat
let mont_reduction_f pbits rLen n mu i c =
let c_i = c / pow2 (pbits * i) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
let res = c + n * q_i * pow2 (pbits * i) in
res
val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction_loop_div_r pbits rLen n mu c =
let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in
let res = res / pow2 (pbits * rLen) in
res
val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction pbits rLen n mu c =
let res = mont_reduction_loop_div_r pbits rLen n mu c in
if res < n then res else res - n
val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
let to_mont pbits rLen n mu a =
let r2 = pow2 (2 * pbits * rLen) % n in
let c = a * r2 in
mont_reduction pbits rLen n mu c
val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat
let from_mont pbits rLen n mu aM =
mont_reduction pbits rLen n mu aM
val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat
let mont_mul pbits rLen n mu a b =
let c = a * b in
mont_reduction pbits rLen n mu c
val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
let mont_sqr pbits rLen n mu a =
mont_mul pbits rLen n mu a a | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction",
"Prims.int",
"Prims.op_Modulus",
"Prims.pow2",
"FStar.Mul.op_Star"
] | [] | false | false | false | true | false | let mont_one pbits rLen n mu =
| let r2 = pow2 ((2 * pbits) * rLen) % n in
mont_reduction pbits rLen n mu r2 | false |
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.bn_field_init_st | val bn_field_init_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | let bn_field_init_st (t:limb_t) (len:BN.meta_len t) =
r:HS.rid
-> n:lbignum t len ->
ST (pbn_mont_ctx t)
(requires fun h ->
S.bn_mont_ctx_pre (as_seq h n) /\
live h n /\ ST.is_eternal_region r)
(ensures fun h0 res h1 ->
B.(modifies loc_none h0 h1) /\
B.(fresh_loc (footprint h1 res) h0 h1) /\
B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\
freeable h1 res /\
(B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\
S.bn_mont_ctx_inv (as_pctx h1 res) /\
as_pctx h1 res == S.bn_field_init (as_seq h0 n)) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 52,
"end_line": 155,
"start_col": 0,
"start_line": 140
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n
inline_for_extraction noextract
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2
inline_for_extraction noextract
let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.freeable k /\ freeable_s h (B.deref h k)
inline_for_extraction noextract
let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2))
inline_for_extraction noextract
let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k)))
inline_for_extraction noextract
let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
as_ctx h (B.deref h k)
inline_for_extraction noextract
let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.live h k /\
B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\
bn_mont_ctx_inv h (B.deref h k)
inline_for_extraction noextract
let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t ->
Stack (BN.meta_len t)
(requires fun h -> pbn_mont_ctx_inv h k)
(ensures fun h0 r h1 -> h0 == h1 /\
r == (B.deref h0 k).len /\
v r == S.bn_field_get_len (as_pctx h0 k))
inline_for_extraction noextract
val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t
inline_for_extraction noextract
let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len ->
Stack bool
(requires fun h -> live h n)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_field_check_modulus (as_seq h0 n))
inline_for_extraction noextract
val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.meta_len",
"FStar.Monotonic.HyperHeap.rid",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx_pre",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Hacl.Bignum.Definitions.limb",
"Lib.Buffer.live",
"FStar.HyperStack.ST.is_eternal_region",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_none",
"LowStar.Monotonic.Buffer.fresh_loc",
"Hacl.Bignum.MontArithmetic.footprint",
"LowStar.Monotonic.Buffer.loc_includes",
"LowStar.Monotonic.Buffer.loc_region_only",
"Hacl.Bignum.MontArithmetic.freeable",
"Prims.eq2",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll",
"LowStar.Monotonic.Buffer.deref",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"LowStar.Buffer.trivial_preorder",
"Prims.nat",
"Hacl.Bignum.MontArithmetic.bn_v_n",
"Hacl.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx_inv",
"Hacl.Bignum.MontArithmetic.as_pctx",
"Hacl.Spec.Bignum.MontArithmetic.bn_mont_ctx",
"Hacl.Spec.Bignum.MontArithmetic.bn_field_init"
] | [] | false | false | false | false | true | let bn_field_init_st (t: limb_t) (len: BN.meta_len t) =
| r: HS.rid -> n: lbignum t len
-> ST (pbn_mont_ctx t)
(requires fun h -> S.bn_mont_ctx_pre (as_seq h n) /\ live h n /\ ST.is_eternal_region r)
(ensures
fun h0 res h1 ->
B.(modifies loc_none h0 h1) /\ B.(fresh_loc (footprint h1 res) h0 h1) /\
B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\ freeable h1 res /\
(B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\
S.bn_mont_ctx_inv (as_pctx h1 res) /\ as_pctx h1 res == S.bn_field_init (as_seq h0 n)) | false |
|
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d | val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) | val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) | let mont_preconditions_d pbits rLen n =
let d, k = eea_pow2_odd (pbits * rLen) n in
calc (==) {
pow2 (pbits * rLen) * d % n;
(==) { }
(1 + k * n) % n;
(==) { Math.Lemmas.modulo_addition_lemma 1 n k }
1 % n;
(==) { Math.Lemmas.small_mod 1 n }
1;
};
assert (pow2 (pbits * rLen) * d % n == 1) | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 43,
"end_line": 162,
"start_col": 0,
"start_line": 151
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a)
let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end
val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n)
let eea_pow2_odd a n =
let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == n * k / pow2 a * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k)
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos{1 < n}
-> FStar.Pervasives.Lemma (requires n % 2 = 1)
(ensures
(let _ = Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd (pbits * rLen) n in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ d _ = _ in
Prims.pow2 (pbits * rLen) * d % n == 1)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.int",
"Prims._assert",
"Prims.eq2",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Prims.op_Addition",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"FStar.Math.Lemmas.modulo_addition_lemma",
"FStar.Math.Lemmas.small_mod",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd"
] | [] | false | false | true | false | false | let mont_preconditions_d pbits rLen n =
| let d, k = eea_pow2_odd (pbits * rLen) n in
calc ( == ) {
pow2 (pbits * rLen) * d % n;
( == ) { () }
(1 + k * n) % n;
( == ) { Math.Lemmas.modulo_addition_lemma 1 n k }
1 % n;
( == ) { Math.Lemmas.small_mod 1 n }
1;
};
assert (pow2 (pbits * rLen) * d % n == 1) | false |
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.mont_preconditions | val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma
(requires
n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = eea_pow2_odd (pbits * rLen) n in
r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) | val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma
(requires
n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = eea_pow2_odd (pbits * rLen) n in
r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) | let mont_preconditions pbits rLen n mu =
mont_preconditions_d pbits rLen n;
mont_preconditions_n0 pbits n mu | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 194,
"start_col": 0,
"start_line": 192
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a)
let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end
val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n)
let eea_pow2_odd a n =
let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == n * k / pow2 a * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k)
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
let mont_preconditions_d pbits rLen n =
let d, k = eea_pow2_odd (pbits * rLen) n in
calc (==) {
pow2 (pbits * rLen) * d % n;
(==) { }
(1 + k * n) % n;
(==) { Math.Lemmas.modulo_addition_lemma 1 n k }
1 % n;
(==) { Math.Lemmas.small_mod 1 n }
1;
};
assert (pow2 (pbits * rLen) * d % n == 1)
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma
(requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures (1 + n * mu) % pow2 pbits == 0)
let mont_preconditions_n0 pbits n mu =
calc (==) {
(1 + n * mu) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) }
(1 + n * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) }
(1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) }
(1 + n % pow2 pbits * mu) % pow2 pbits;
(==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) }
0;
};
assert ((1 + n * mu) % pow2 pbits == 0)
val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma
(requires
n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = eea_pow2_odd (pbits * rLen) n in
r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos{1 < n} -> mu: Prims.nat
-> FStar.Pervasives.Lemma
(requires n % 2 = 1 /\ (1 + (n % Prims.pow2 pbits) * mu) % Prims.pow2 pbits == 0)
(ensures
(let r = Prims.pow2 (pbits * rLen) in
let _ = Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd (pbits * rLen) n in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ d _ = _ in
r * d % n == 1 /\ (1 + n * mu) % Prims.pow2 pbits == 0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_preconditions_n0",
"Prims.unit",
"Hacl.Spec.Montgomery.Lemmas.mont_preconditions_d"
] | [] | true | false | true | false | false | let mont_preconditions pbits rLen n mu =
| mont_preconditions_d pbits rLen n;
mont_preconditions_n0 pbits n mu | false |
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.mont_reduction_f | val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat | val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat | let mont_reduction_f pbits rLen n mu i c =
let c_i = c / pow2 (pbits * i) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
let res = c + n * q_i * pow2 (pbits * i) in
res | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 204,
"start_col": 0,
"start_line": 200
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a)
let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end
val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n)
let eea_pow2_odd a n =
let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == n * k / pow2 a * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k)
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
let mont_preconditions_d pbits rLen n =
let d, k = eea_pow2_odd (pbits * rLen) n in
calc (==) {
pow2 (pbits * rLen) * d % n;
(==) { }
(1 + k * n) % n;
(==) { Math.Lemmas.modulo_addition_lemma 1 n k }
1 % n;
(==) { Math.Lemmas.small_mod 1 n }
1;
};
assert (pow2 (pbits * rLen) * d % n == 1)
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma
(requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures (1 + n * mu) % pow2 pbits == 0)
let mont_preconditions_n0 pbits n mu =
calc (==) {
(1 + n * mu) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) }
(1 + n * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) }
(1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) }
(1 + n % pow2 pbits * mu) % pow2 pbits;
(==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) }
0;
};
assert ((1 + n * mu) % pow2 pbits == 0)
val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma
(requires
n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = eea_pow2_odd (pbits * rLen) n in
r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0))
let mont_preconditions pbits rLen n mu =
mont_preconditions_d pbits rLen n;
mont_preconditions_n0 pbits n mu
/// High-level specification of Montgomery arithmetic | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
pbits: Prims.pos ->
rLen: Prims.nat ->
n: Prims.pos ->
mu: Prims.nat ->
i: Prims.nat{i < rLen} ->
c: Prims.nat
-> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.int",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Modulus",
"Prims.op_Division"
] | [] | false | false | false | false | false | let mont_reduction_f pbits rLen n mu i c =
| let c_i = c / pow2 (pbits * i) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
let res = c + (n * q_i) * pow2 (pbits * i) in
res | false |
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.bn_field_get_len_st | val bn_field_get_len_st : t: Hacl.Bignum.Definitions.limb_t -> Type0 | let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t ->
Stack (BN.meta_len t)
(requires fun h -> pbn_mont_ctx_inv h k)
(ensures fun h0 r h1 -> h0 == h1 /\
r == (B.deref h0 k).len /\
v r == S.bn_field_get_len (as_pctx h0 k)) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 45,
"end_line": 120,
"start_col": 0,
"start_line": 115
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n
inline_for_extraction noextract
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2
inline_for_extraction noextract
let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.freeable k /\ freeable_s h (B.deref h k)
inline_for_extraction noextract
let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2))
inline_for_extraction noextract
let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k)))
inline_for_extraction noextract
let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
as_ctx h (B.deref h k)
inline_for_extraction noextract
let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.live h k /\
B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\
bn_mont_ctx_inv h (B.deref h k) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx",
"Hacl.Bignum.meta_len",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv",
"Prims.l_and",
"Prims.eq2",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll",
"LowStar.Monotonic.Buffer.deref",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"LowStar.Buffer.trivial_preorder",
"Prims.int",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.max_size_t",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Lib.IntTypes.range",
"Lib.IntTypes.U32",
"Lib.IntTypes.v",
"Lib.IntTypes.PUB",
"Hacl.Spec.Bignum.MontArithmetic.bn_field_get_len",
"Hacl.Bignum.MontArithmetic.as_pctx"
] | [] | false | false | false | true | true | let bn_field_get_len_st (t: limb_t) =
| k: pbn_mont_ctx t
-> Stack (BN.meta_len t)
(requires fun h -> pbn_mont_ctx_inv h k)
(ensures
fun h0 r h1 ->
h0 == h1 /\ r == (B.deref h0 k).len /\ v r == S.bn_field_get_len (as_pctx h0 k)) | false |
|
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.mont_reduction_loop_div_r | val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat | val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat | let mont_reduction_loop_div_r pbits rLen n mu c =
let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in
let res = res / pow2 (pbits * rLen) in
res | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 210,
"start_col": 0,
"start_line": 207
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a)
let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end
val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n)
let eea_pow2_odd a n =
let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == n * k / pow2 a * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k)
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
let mont_preconditions_d pbits rLen n =
let d, k = eea_pow2_odd (pbits * rLen) n in
calc (==) {
pow2 (pbits * rLen) * d % n;
(==) { }
(1 + k * n) % n;
(==) { Math.Lemmas.modulo_addition_lemma 1 n k }
1 % n;
(==) { Math.Lemmas.small_mod 1 n }
1;
};
assert (pow2 (pbits * rLen) * d % n == 1)
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma
(requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures (1 + n * mu) % pow2 pbits == 0)
let mont_preconditions_n0 pbits n mu =
calc (==) {
(1 + n * mu) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) }
(1 + n * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) }
(1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) }
(1 + n % pow2 pbits * mu) % pow2 pbits;
(==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) }
0;
};
assert ((1 + n * mu) % pow2 pbits == 0)
val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma
(requires
n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = eea_pow2_odd (pbits * rLen) n in
r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0))
let mont_preconditions pbits rLen n mu =
mont_preconditions_d pbits rLen n;
mont_preconditions_n0 pbits n mu
/// High-level specification of Montgomery arithmetic
val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat
let mont_reduction_f pbits rLen n mu i c =
let c_i = c / pow2 (pbits * i) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
let res = c + n * q_i * pow2 (pbits * i) in
res | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> c: Prims.nat -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.nat",
"Prims.int",
"Prims.op_Division",
"Prims.pow2",
"FStar.Mul.op_Star",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Lib.LoopCombinators.repeati",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction_f"
] | [] | false | false | false | true | false | let mont_reduction_loop_div_r pbits rLen n mu c =
| let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in
let res = res / pow2 (pbits * rLen) in
res | false |
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.mont_mul | val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat | val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat | let mont_mul pbits rLen n mu a b =
let c = a * b in
mont_reduction pbits rLen n mu c | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 230,
"start_col": 0,
"start_line": 228
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a)
let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end
val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n)
let eea_pow2_odd a n =
let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == n * k / pow2 a * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k)
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
let mont_preconditions_d pbits rLen n =
let d, k = eea_pow2_odd (pbits * rLen) n in
calc (==) {
pow2 (pbits * rLen) * d % n;
(==) { }
(1 + k * n) % n;
(==) { Math.Lemmas.modulo_addition_lemma 1 n k }
1 % n;
(==) { Math.Lemmas.small_mod 1 n }
1;
};
assert (pow2 (pbits * rLen) * d % n == 1)
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma
(requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures (1 + n * mu) % pow2 pbits == 0)
let mont_preconditions_n0 pbits n mu =
calc (==) {
(1 + n * mu) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) }
(1 + n * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) }
(1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) }
(1 + n % pow2 pbits * mu) % pow2 pbits;
(==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) }
0;
};
assert ((1 + n * mu) % pow2 pbits == 0)
val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma
(requires
n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = eea_pow2_odd (pbits * rLen) n in
r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0))
let mont_preconditions pbits rLen n mu =
mont_preconditions_d pbits rLen n;
mont_preconditions_n0 pbits n mu
/// High-level specification of Montgomery arithmetic
val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat
let mont_reduction_f pbits rLen n mu i c =
let c_i = c / pow2 (pbits * i) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
let res = c + n * q_i * pow2 (pbits * i) in
res
val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction_loop_div_r pbits rLen n mu c =
let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in
let res = res / pow2 (pbits * rLen) in
res
val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction pbits rLen n mu c =
let res = mont_reduction_loop_div_r pbits rLen n mu c in
if res < n then res else res - n
val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
let to_mont pbits rLen n mu a =
let r2 = pow2 (2 * pbits * rLen) % n in
let c = a * r2 in
mont_reduction pbits rLen n mu c
val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat
let from_mont pbits rLen n mu aM =
mont_reduction pbits rLen n mu aM | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pbits: Prims.pos -> rLen: Prims.nat -> n: Prims.pos -> mu: Prims.nat -> a: Prims.nat -> b: Prims.nat
-> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction",
"Prims.int",
"FStar.Mul.op_Star"
] | [] | false | false | false | true | false | let mont_mul pbits rLen n mu a b =
| let c = a * b in
mont_reduction pbits rLen n mu c | false |
Hacl.Impl.Frodo.Encode.fst | Hacl.Impl.Frodo.Encode.frodo_key_decode1 | val frodo_key_decode1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq}
-> n:size_t{v n == 8}
-> i:size_t{v i < v n}
-> templong:uint64
-> res:lbytes (n *! n *! b /. size 8)
-> Stack unit
(requires fun h -> live h res)
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_seq h1 res == S.frodo_key_decode1 (v logq) (v b) (v n) (v i) templong (as_seq h0 res)) | val frodo_key_decode1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq}
-> n:size_t{v n == 8}
-> i:size_t{v i < v n}
-> templong:uint64
-> res:lbytes (n *! n *! b /. size 8)
-> Stack unit
(requires fun h -> live h res)
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_seq h1 res == S.frodo_key_decode1 (v logq) (v b) (v n) (v i) templong (as_seq h0 res)) | let frodo_key_decode1 logq b n i templong res =
push_frame();
let v8 = create (size 8) (u8 0) in
uint_to_bytes_le v8 templong;
let tmp = sub v8 (size 0) b in
update_sub res (i *! b) b tmp;
pop_frame() | {
"file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 156,
"start_col": 0,
"start_line": 150
} | module Hacl.Impl.Frodo.Encode
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Hacl.Impl.Matrix
module ST = FStar.HyperStack.ST
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module S = Spec.Frodo.Encode
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract private
val ec:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= v logq}
-> k:uint16{v k < pow2 (v b)}
-> r:uint16{r == S.ec (v logq) (v b) k}
let ec logq b a =
a <<. (logq -. b)
inline_for_extraction noextract private
val dc:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b < v logq}
-> c:uint16
-> r:uint16{r == S.dc (v logq) (v b) c}
let dc logq b c =
let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in
res1 &. ((u16 1 <<. b) -. u16 1)
inline_for_extraction noextract private
val ec1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> x:uint64
-> k:size_t{v k < 8}
-> res:uint16{res == S.ec1 (v logq) (v b) x (v k)}
let ec1 logq b x k =
Spec.Frodo.Lemmas.modulo_pow2_u64 (x >>. (b *! k)) (v b);
let rk = (x >>. (b *! k)) &. ((u64 1 <<. b) -. u64 1) in
ec logq b (to_u16 rk)
inline_for_extraction noextract private
val frodo_key_encode1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> i:size_t{v i < v n}
-> Stack uint64
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i))
let frodo_key_encode1 logq b n a i =
let h0 = ST.get() in
push_frame();
let v8 = create (size 8) (u8 0) in
let chunk = sub a (i *! b) b in
let h1 = ST.get() in
assert (as_seq h1 chunk == LSeq.sub (as_seq h0 a) (v (i *! b)) (v b));
update_sub v8 (size 0) b chunk;
let x = uint_from_bytes_le #U64 v8 in
pop_frame();
x
inline_for_extraction noextract private
val frodo_key_encode2:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> i:size_t{v i < v n}
-> x:uint64
-> res:matrix_t n n
-> Stack unit
(requires fun h ->
live h a /\ live h res /\ disjoint a res)
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_matrix h1 res ==
Loops.repeati 8 (S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i)) (as_matrix h0 res))
let frodo_key_encode2 logq b n a i x res =
[@ inline_let]
let spec h0 = S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i) in
let h0 = ST.get () in
loop1 h0 (size 8) res spec
(fun k ->
Loops.unfold_repeati 8 (spec h0) (as_seq h0 res) (v k);
mset res i k (ec1 logq b x k)
)
val frodo_key_encode:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> res:matrix_t n n
-> Stack unit
(requires fun h ->
live h a /\ live h res /\ disjoint a res /\
as_seq h res == Spec.Matrix.create (v n) (v n))
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_matrix h1 res == S.frodo_key_encode (v logq) (v b) (v n) (as_seq h0 a))
[@"c_inline"]
let frodo_key_encode logq b n a res =
let h0 = ST.get () in
[@ inline_let]
let spec h0 = S.frodo_key_encode2 (v logq) (v b) (v n) (as_seq h0 a) in
loop1 h0 n res spec
(fun i ->
Loops.unfold_repeati (v n) (spec h0) (as_seq h0 res) (v i);
let x = frodo_key_encode1 logq b n a i in
frodo_key_encode2 logq b n a i x res
)
inline_for_extraction noextract private
val frodo_key_decode1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq}
-> n:size_t{v n == 8}
-> i:size_t{v i < v n}
-> templong:uint64
-> res:lbytes (n *! n *! b /. size 8)
-> Stack unit
(requires fun h -> live h res)
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_seq h1 res == S.frodo_key_decode1 (v logq) (v b) (v n) (v i) templong (as_seq h0 res)) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Matrix.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Frodo.Encode.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.Encode",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} ->
b:
Lib.IntTypes.size_t
{0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b <= 8 /\ Lib.IntTypes.v b < Lib.IntTypes.v logq} ->
n: Lib.IntTypes.size_t{Lib.IntTypes.v n == 8} ->
i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n} ->
templong: Lib.IntTypes.uint64 ->
res: Hacl.Impl.Matrix.lbytes (n *! n *! b /. Lib.IntTypes.size 8)
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.uint64",
"Hacl.Impl.Matrix.lbytes",
"Lib.IntTypes.op_Slash_Dot",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.size",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Lib.Buffer.update_sub",
"Lib.Buffer.MUT",
"Lib.IntTypes.uint8",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.sub",
"Lib.IntTypes.uint_t",
"Lib.ByteBuffer.uint_to_bytes_le",
"Lib.IntTypes.U64",
"Lib.IntTypes.mk_int",
"Lib.Buffer.create",
"Lib.IntTypes.u8",
"Lib.Buffer.lbuffer",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let frodo_key_decode1 logq b n i templong res =
| push_frame ();
let v8 = create (size 8) (u8 0) in
uint_to_bytes_le v8 templong;
let tmp = sub v8 (size 0) b in
update_sub res (i *! b) b tmp;
pop_frame () | false |
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.bn_from_field_st | val bn_from_field_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | let bn_from_field_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> a:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\
live h a /\ live h aM /\ disjoint a aM /\
B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\
bn_v h1 a < bn_v_n h0 k /\
as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 65,
"end_line": 217,
"start_col": 0,
"start_line": 203
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n
inline_for_extraction noextract
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2
inline_for_extraction noextract
let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.freeable k /\ freeable_s h (B.deref h k)
inline_for_extraction noextract
let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2))
inline_for_extraction noextract
let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k)))
inline_for_extraction noextract
let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
as_ctx h (B.deref h k)
inline_for_extraction noextract
let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.live h k /\
B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\
bn_mont_ctx_inv h (B.deref h k)
inline_for_extraction noextract
let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t ->
Stack (BN.meta_len t)
(requires fun h -> pbn_mont_ctx_inv h k)
(ensures fun h0 r h1 -> h0 == h1 /\
r == (B.deref h0 k).len /\
v r == S.bn_field_get_len (as_pctx h0 k))
inline_for_extraction noextract
val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t
inline_for_extraction noextract
let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len ->
Stack bool
(requires fun h -> live h n)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_field_check_modulus (as_seq h0 n))
inline_for_extraction noextract
val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_init_st (t:limb_t) (len:BN.meta_len t) =
r:HS.rid
-> n:lbignum t len ->
ST (pbn_mont_ctx t)
(requires fun h ->
S.bn_mont_ctx_pre (as_seq h n) /\
live h n /\ ST.is_eternal_region r)
(ensures fun h0 res h1 ->
B.(modifies loc_none h0 h1) /\
B.(fresh_loc (footprint h1 res) h0 h1) /\
B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\
freeable h1 res /\
(B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\
S.bn_mont_ctx_inv (as_pctx h1 res) /\
as_pctx h1 res == S.bn_field_init (as_seq h0 n))
inline_for_extraction noextract
val bn_field_init:
#t:limb_t
-> len:BN.meta_len t
-> precomp_r2:BM.bn_precomp_r2_mod_n_st t len ->
bn_field_init_st t len
inline_for_extraction noextract
let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t ->
ST unit
(requires fun h ->
freeable h k /\
pbn_mont_ctx_inv h k)
(ensures fun h0 _ h1 ->
B.(modifies (footprint h0 k) h0 h1))
inline_for_extraction noextract
val bn_field_free: #t:limb_t -> bn_field_free_st t
inline_for_extraction noextract
let bn_to_field_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> a:lbignum t len
-> aM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
live h a /\ live h aM /\ disjoint a aM /\
B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\
bn_v h1 aM < bn_v_n h0 k /\
as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a))
inline_for_extraction noextract
val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.meta_len",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx",
"Hacl.Bignum.Definitions.lbignum",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Prims.eq2",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll",
"LowStar.Monotonic.Buffer.deref",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"LowStar.Buffer.trivial_preorder",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Bignum.Definitions.bn_v",
"Hacl.Bignum.MontArithmetic.bn_v_n",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Hacl.Bignum.Definitions.limb",
"Lib.Buffer.disjoint",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Hacl.Bignum.MontArithmetic.footprint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.buffer",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Lib.Sequence.seq",
"Prims.l_or",
"Prims.nat",
"FStar.Seq.Base.length",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Spec.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len",
"Hacl.Bignum.MontArithmetic.as_pctx",
"Lib.Buffer.as_seq",
"Hacl.Spec.Bignum.MontArithmetic.bn_from_field"
] | [] | false | false | false | false | true | let bn_from_field_st (t: limb_t) (len: BN.meta_len t) =
| k: pbn_mont_ctx t -> aM: lbignum t len -> a: lbignum t len
-> Stack unit
(requires
fun h ->
(B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\ live h a /\
live h aM /\ disjoint a aM /\
B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))))
(ensures
fun h0 _ h1 ->
modifies (loc a) h0 h1 /\ bn_v h1 a < bn_v_n h0 k /\
as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM)) | false |
|
Hacl.Impl.Frodo.Encode.fst | Hacl.Impl.Frodo.Encode.frodo_key_decode2 | val frodo_key_decode2:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq}
-> n:size_t{v n == 8}
-> a:matrix_t n n
-> i:size_t{v i < v n}
-> Stack uint64
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == Loops.repeat_gen 8 S.decode_templong_t
(S.frodo_key_decode0 (v logq) (v b) (v n) (as_matrix h0 a) (v i)) (u64 0)) | val frodo_key_decode2:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq}
-> n:size_t{v n == 8}
-> a:matrix_t n n
-> i:size_t{v i < v n}
-> Stack uint64
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == Loops.repeat_gen 8 S.decode_templong_t
(S.frodo_key_decode0 (v logq) (v b) (v n) (as_matrix h0 a) (v i)) (u64 0)) | let frodo_key_decode2 logq b n a i =
push_frame();
let templong = create (size 1) (u64 0) in
[@ inline_let]
let refl h i : GTot uint64 = bget h templong 0 in
[@ inline_let]
let footprint i = loc templong in
[@ inline_let]
let spec h0 = S.frodo_key_decode0 (v logq) (v b) (v n) (as_matrix h0 a) (v i) in
let h0 = ST.get () in
assert (bget h0 templong 0 == u64 0);
loop h0 (size 8) S.decode_templong_t refl footprint spec
(fun k ->
Loops.unfold_repeat_gen 8 S.decode_templong_t (spec h0) (refl h0 0) (v k);
let aik = mget a i k in
templong.(size 0) <- templong.(size 0) |. (to_u64 (dc logq b aik) <<. (b *! k))
);
let templong = templong.(size 0) in
pop_frame();
templong | {
"file_name": "code/frodo/Hacl.Impl.Frodo.Encode.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 191,
"start_col": 0,
"start_line": 172
} | module Hacl.Impl.Frodo.Encode
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Hacl.Impl.Matrix
module ST = FStar.HyperStack.ST
module Loops = Lib.LoopCombinators
module LSeq = Lib.Sequence
module S = Spec.Frodo.Encode
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract private
val ec:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= v logq}
-> k:uint16{v k < pow2 (v b)}
-> r:uint16{r == S.ec (v logq) (v b) k}
let ec logq b a =
a <<. (logq -. b)
inline_for_extraction noextract private
val dc:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b < v logq}
-> c:uint16
-> r:uint16{r == S.dc (v logq) (v b) c}
let dc logq b c =
let res1 = (c +. (u16 1 <<. (logq -. b -. size 1))) >>. (logq -. b) in
res1 &. ((u16 1 <<. b) -. u16 1)
inline_for_extraction noextract private
val ec1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> x:uint64
-> k:size_t{v k < 8}
-> res:uint16{res == S.ec1 (v logq) (v b) x (v k)}
let ec1 logq b x k =
Spec.Frodo.Lemmas.modulo_pow2_u64 (x >>. (b *! k)) (v b);
let rk = (x >>. (b *! k)) &. ((u64 1 <<. b) -. u64 1) in
ec logq b (to_u16 rk)
inline_for_extraction noextract private
val frodo_key_encode1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> i:size_t{v i < v n}
-> Stack uint64
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.frodo_key_encode1 (v logq) (v b) (v n) (as_seq h0 a) (v i))
let frodo_key_encode1 logq b n a i =
let h0 = ST.get() in
push_frame();
let v8 = create (size 8) (u8 0) in
let chunk = sub a (i *! b) b in
let h1 = ST.get() in
assert (as_seq h1 chunk == LSeq.sub (as_seq h0 a) (v (i *! b)) (v b));
update_sub v8 (size 0) b chunk;
let x = uint_from_bytes_le #U64 v8 in
pop_frame();
x
inline_for_extraction noextract private
val frodo_key_encode2:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> i:size_t{v i < v n}
-> x:uint64
-> res:matrix_t n n
-> Stack unit
(requires fun h ->
live h a /\ live h res /\ disjoint a res)
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_matrix h1 res ==
Loops.repeati 8 (S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i)) (as_matrix h0 res))
let frodo_key_encode2 logq b n a i x res =
[@ inline_let]
let spec h0 = S.frodo_key_encode0 (v logq) (v b) (v n) (as_seq h0 a) x (v i) in
let h0 = ST.get () in
loop1 h0 (size 8) res spec
(fun k ->
Loops.unfold_repeati 8 (spec h0) (as_seq h0 res) (v k);
mset res i k (ec1 logq b x k)
)
val frodo_key_encode:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b <= v logq}
-> n:size_t{v n == 8}
-> a:lbytes (n *! n *! b /. size 8)
-> res:matrix_t n n
-> Stack unit
(requires fun h ->
live h a /\ live h res /\ disjoint a res /\
as_seq h res == Spec.Matrix.create (v n) (v n))
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_matrix h1 res == S.frodo_key_encode (v logq) (v b) (v n) (as_seq h0 a))
[@"c_inline"]
let frodo_key_encode logq b n a res =
let h0 = ST.get () in
[@ inline_let]
let spec h0 = S.frodo_key_encode2 (v logq) (v b) (v n) (as_seq h0 a) in
loop1 h0 n res spec
(fun i ->
Loops.unfold_repeati (v n) (spec h0) (as_seq h0 res) (v i);
let x = frodo_key_encode1 logq b n a i in
frodo_key_encode2 logq b n a i x res
)
inline_for_extraction noextract private
val frodo_key_decode1:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq}
-> n:size_t{v n == 8}
-> i:size_t{v i < v n}
-> templong:uint64
-> res:lbytes (n *! n *! b /. size 8)
-> Stack unit
(requires fun h -> live h res)
(ensures fun h0 _ h1 -> modifies1 res h0 h1 /\
as_seq h1 res == S.frodo_key_decode1 (v logq) (v b) (v n) (v i) templong (as_seq h0 res))
let frodo_key_decode1 logq b n i templong res =
push_frame();
let v8 = create (size 8) (u8 0) in
uint_to_bytes_le v8 templong;
let tmp = sub v8 (size 0) b in
update_sub res (i *! b) b tmp;
pop_frame()
inline_for_extraction noextract private
val frodo_key_decode2:
logq:size_t{0 < v logq /\ v logq <= 16}
-> b:size_t{0 < v b /\ v b <= 8 /\ v b < v logq}
-> n:size_t{v n == 8}
-> a:matrix_t n n
-> i:size_t{v i < v n}
-> Stack uint64
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == Loops.repeat_gen 8 S.decode_templong_t
(S.frodo_key_decode0 (v logq) (v b) (v n) (as_matrix h0 a) (v i)) (u64 0)) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Lemmas.fst.checked",
"Spec.Frodo.Encode.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Matrix.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Frodo.Encode.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.Encode",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} ->
b:
Lib.IntTypes.size_t
{0 < Lib.IntTypes.v b /\ Lib.IntTypes.v b <= 8 /\ Lib.IntTypes.v b < Lib.IntTypes.v logq} ->
n: Lib.IntTypes.size_t{Lib.IntTypes.v n == 8} ->
a: Hacl.Impl.Matrix.matrix_t n n ->
i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n}
-> FStar.HyperStack.ST.Stack Lib.IntTypes.uint64 | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"Prims.int",
"Hacl.Impl.Matrix.matrix_t",
"Lib.IntTypes.uint64",
"Prims.unit",
"FStar.HyperStack.ST.pop_frame",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.Buffer.op_Array_Access",
"Lib.Buffer.MUT",
"Lib.IntTypes.size",
"Lib.Buffer.loop",
"Spec.Frodo.Encode.decode_templong_t",
"Lib.Buffer.op_Array_Assignment",
"Lib.IntTypes.op_Bar_Dot",
"Lib.IntTypes.op_Less_Less_Dot",
"Lib.IntTypes.to_u64",
"Lib.IntTypes.U16",
"Hacl.Impl.Frodo.Encode.dc",
"Lib.IntTypes.op_Star_Bang",
"Hacl.Impl.Matrix.mget",
"Hacl.Impl.Matrix.elem",
"Lib.LoopCombinators.unfold_repeat_gen",
"Prims._assert",
"Lib.Buffer.bget",
"Lib.IntTypes.u64",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Prims.nat",
"Prims.op_Subtraction",
"Prims.pow2",
"Spec.Frodo.Encode.frodo_key_decode0",
"Hacl.Impl.Matrix.as_matrix",
"Lib.IntTypes.mk_int",
"LowStar.Monotonic.Buffer.loc",
"Lib.IntTypes.size_nat",
"Lib.Buffer.loc",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.create",
"Lib.Buffer.lbuffer",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let frodo_key_decode2 logq b n a i =
| push_frame ();
let templong = create (size 1) (u64 0) in
[@@ inline_let ]let refl h i : GTot uint64 = bget h templong 0 in
[@@ inline_let ]let footprint i = loc templong in
[@@ inline_let ]let spec h0 = S.frodo_key_decode0 (v logq) (v b) (v n) (as_matrix h0 a) (v i) in
let h0 = ST.get () in
assert (bget h0 templong 0 == u64 0);
loop h0
(size 8)
S.decode_templong_t
refl
footprint
spec
(fun k ->
Loops.unfold_repeat_gen 8 S.decode_templong_t (spec h0) (refl h0 0) (v k);
let aik = mget a i k in
templong.(size 0) <- templong.(size 0) |. (to_u64 (dc logq b aik) <<. (b *! k)));
let templong = templong.(size 0) in
pop_frame ();
templong | false |
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.bn_field_sub_st | val bn_field_sub_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | let bn_field_sub_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> bM:lbignum t len
-> cM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
bn_v h aM < bn_v_n h k /\
bn_v h bM < bn_v_n h k /\
live h aM /\ live h bM /\ live h cM /\
eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\
bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 80,
"end_line": 271,
"start_col": 0,
"start_line": 252
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n
inline_for_extraction noextract
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2
inline_for_extraction noextract
let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.freeable k /\ freeable_s h (B.deref h k)
inline_for_extraction noextract
let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2))
inline_for_extraction noextract
let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k)))
inline_for_extraction noextract
let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
as_ctx h (B.deref h k)
inline_for_extraction noextract
let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.live h k /\
B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\
bn_mont_ctx_inv h (B.deref h k)
inline_for_extraction noextract
let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t ->
Stack (BN.meta_len t)
(requires fun h -> pbn_mont_ctx_inv h k)
(ensures fun h0 r h1 -> h0 == h1 /\
r == (B.deref h0 k).len /\
v r == S.bn_field_get_len (as_pctx h0 k))
inline_for_extraction noextract
val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t
inline_for_extraction noextract
let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len ->
Stack bool
(requires fun h -> live h n)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_field_check_modulus (as_seq h0 n))
inline_for_extraction noextract
val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_init_st (t:limb_t) (len:BN.meta_len t) =
r:HS.rid
-> n:lbignum t len ->
ST (pbn_mont_ctx t)
(requires fun h ->
S.bn_mont_ctx_pre (as_seq h n) /\
live h n /\ ST.is_eternal_region r)
(ensures fun h0 res h1 ->
B.(modifies loc_none h0 h1) /\
B.(fresh_loc (footprint h1 res) h0 h1) /\
B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\
freeable h1 res /\
(B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\
S.bn_mont_ctx_inv (as_pctx h1 res) /\
as_pctx h1 res == S.bn_field_init (as_seq h0 n))
inline_for_extraction noextract
val bn_field_init:
#t:limb_t
-> len:BN.meta_len t
-> precomp_r2:BM.bn_precomp_r2_mod_n_st t len ->
bn_field_init_st t len
inline_for_extraction noextract
let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t ->
ST unit
(requires fun h ->
freeable h k /\
pbn_mont_ctx_inv h k)
(ensures fun h0 _ h1 ->
B.(modifies (footprint h0 k) h0 h1))
inline_for_extraction noextract
val bn_field_free: #t:limb_t -> bn_field_free_st t
inline_for_extraction noextract
let bn_to_field_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> a:lbignum t len
-> aM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
live h a /\ live h aM /\ disjoint a aM /\
B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\
bn_v h1 aM < bn_v_n h0 k /\
as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a))
inline_for_extraction noextract
val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_from_field_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> a:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\
live h a /\ live h aM /\ disjoint a aM /\
B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\
bn_v h1 a < bn_v_n h0 k /\
as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM))
inline_for_extraction noextract
val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_add_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> bM:lbignum t len
-> cM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
bn_v h aM < bn_v_n h k /\
bn_v h bM < bn_v_n h k /\
live h aM /\ live h bM /\ live h cM /\
eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\
bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
inline_for_extraction noextract
val bn_field_add: #t:limb_t -> km:BM.mont t -> bn_field_add_st t km.BM.bn.BN.len | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.meta_len",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx",
"Hacl.Bignum.Definitions.lbignum",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Prims.eq2",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll",
"LowStar.Monotonic.Buffer.deref",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"LowStar.Buffer.trivial_preorder",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Bignum.Definitions.bn_v",
"Hacl.Bignum.MontArithmetic.bn_v_n",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Hacl.Bignum.Definitions.limb",
"Lib.Buffer.eq_or_disjoint",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Hacl.Bignum.MontArithmetic.footprint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.buffer",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Lib.Sequence.seq",
"Prims.l_or",
"Prims.nat",
"FStar.Seq.Base.length",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Spec.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len",
"Hacl.Bignum.MontArithmetic.as_pctx",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n",
"Lib.Buffer.as_seq",
"Hacl.Spec.Bignum.MontArithmetic.bn_field_sub"
] | [] | false | false | false | false | true | let bn_field_sub_st (t: limb_t) (len: BN.meta_len t) =
| k: pbn_mont_ctx t -> aM: lbignum t len -> bM: lbignum t len -> cM: lbignum t len
-> Stack unit
(requires
fun h ->
(B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\
bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\
eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures
fun h0 _ h1 ->
modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) | false |
|
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd_k | val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a) | val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a) | let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 9,
"end_line": 125,
"start_col": 0,
"start_line": 116
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.pos -> n: Prims.pos -> Prims.Pure Prims.pos | Prims.Pure | [] | [] | [
"Prims.pos",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.pow2",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd_k_lemma_bound",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd_k_lemma",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"Prims.op_Subtraction",
"Prims.op_Addition",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd_k"
] | [
"recursion"
] | false | false | false | false | false | let rec eea_pow2_odd_k a n =
| if a = 1
then 1
else
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k | false |
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_modr | val mont_reduction_lemma_step_modr:
pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma
(requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0)
(ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) | val mont_reduction_lemma_step_modr:
pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma
(requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0)
(ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) | let mont_reduction_lemma_step_modr pbits rLen n mu i res0 =
let b1 = pow2 (pbits * (i - 1)) in
let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in
let c_i = res0 / b1 % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
Math.Lemmas.lemma_div_exact res0 b1;
mont_reduction_lemma_step_modr_aux pbits n q_i i res0;
mont_reduction_lemma_step_mod_pbits pbits n mu c_i | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 52,
"end_line": 351,
"start_col": 0,
"start_line": 343
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a)
let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end
val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n)
let eea_pow2_odd a n =
let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == n * k / pow2 a * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k)
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
let mont_preconditions_d pbits rLen n =
let d, k = eea_pow2_odd (pbits * rLen) n in
calc (==) {
pow2 (pbits * rLen) * d % n;
(==) { }
(1 + k * n) % n;
(==) { Math.Lemmas.modulo_addition_lemma 1 n k }
1 % n;
(==) { Math.Lemmas.small_mod 1 n }
1;
};
assert (pow2 (pbits * rLen) * d % n == 1)
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma
(requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures (1 + n * mu) % pow2 pbits == 0)
let mont_preconditions_n0 pbits n mu =
calc (==) {
(1 + n * mu) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) }
(1 + n * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) }
(1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) }
(1 + n % pow2 pbits * mu) % pow2 pbits;
(==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) }
0;
};
assert ((1 + n * mu) % pow2 pbits == 0)
val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma
(requires
n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = eea_pow2_odd (pbits * rLen) n in
r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0))
let mont_preconditions pbits rLen n mu =
mont_preconditions_d pbits rLen n;
mont_preconditions_n0 pbits n mu
/// High-level specification of Montgomery arithmetic
val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat
let mont_reduction_f pbits rLen n mu i c =
let c_i = c / pow2 (pbits * i) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
let res = c + n * q_i * pow2 (pbits * i) in
res
val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction_loop_div_r pbits rLen n mu c =
let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in
let res = res / pow2 (pbits * rLen) in
res
val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction pbits rLen n mu c =
let res = mont_reduction_loop_div_r pbits rLen n mu c in
if res < n then res else res - n
val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
let to_mont pbits rLen n mu a =
let r2 = pow2 (2 * pbits * rLen) % n in
let c = a * r2 in
mont_reduction pbits rLen n mu c
val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat
let from_mont pbits rLen n mu aM =
mont_reduction pbits rLen n mu aM
val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat
let mont_mul pbits rLen n mu a b =
let c = a * b in
mont_reduction pbits rLen n mu c
val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
let mont_sqr pbits rLen n mu a =
mont_mul pbits rLen n mu a a
val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat
let mont_one pbits rLen n mu =
let r2 = pow2 (2 * pbits * rLen) % n in
mont_reduction pbits rLen n mu r2
/// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in
/// res % n == c * d % n /\ res <= (c - n) / r + n)
val mont_reduction_lemma_step_bound_aux:
pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma
(requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n)
(ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n)
let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 =
let b = pow2 (pbits * i) in
let b1 = pow2 (pbits * (i - 1)) in
calc (<=) {
res0 + n * q_i * b1;
(<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) }
res0 + n * (pow2 pbits - 1) * b1;
(==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 }
res0 + n * ((pow2 pbits - 1) * b1);
(==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 }
res0 + n * (pow2 pbits * b1 - b1);
(==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
res0 + n * (b - b1);
(==) { Math.Lemmas.distributivity_sub_right n b b1 }
res0 + n * b - n * b1;
(<=) { }
c + (b1 - 1) * n + n * b - n * b1;
(==) { Math.Lemmas.distributivity_sub_left b1 1 n }
c + b1 * n - n + n * b - n * b1;
(==) { }
c - n + b * n;
(==) { Math.Lemmas.distributivity_sub_left b 1 n }
c + (b - 1) * n;
}
val mont_reduction_lemma_step_bound:
pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma
(requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n)
(ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n)
let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 =
let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in
let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
assert (res == res0 + n * q_i * pow2 (pbits * (i - 1)));
mont_reduction_lemma_step_bound_aux pbits n q_i i c res0;
assert (res <= c + (pow2 (pbits * i) - 1) * n)
val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma
(requires (1 + n * mu) % pow2 pbits == 0)
(ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0)
let mont_reduction_lemma_step_mod_pbits pbits n mu c_i =
let r = pow2 pbits in
let q_i = mu * c_i % r in
calc (==) {
(c_i + n * q_i) % r;
(==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r }
(c_i + n * q_i % r) % r;
(==) { }
(c_i + n * (mu * c_i % r) % r) % r;
(==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r }
(c_i + n * (mu * c_i) % r) % r;
(==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r }
(c_i + n * (mu * c_i)) % r;
(==) { Math.Lemmas.paren_mul_right n mu c_i }
(c_i + n * mu * c_i) % r;
(==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i }
((1 + n * mu) * c_i) % r;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r }
((1 + n * mu) % r * c_i) % r;
(==) { assert ((1 + n * mu) % r = 0) }
0;
}
val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat ->
Lemma (let b1 = pow2 (pbits * (i - 1)) in
(res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1)
let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 =
let b1 = pow2 (pbits * (i - 1)) in
Math.Lemmas.distributivity_sub_right pbits i 1;
assert (pbits * i - pbits * (i - 1) == pbits);
calc (==) {
(res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i);
(==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 }
(res0 / b1 + n * q_i) * b1 % pow2 (pbits * i);
(==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) }
(res0 / b1 + n * q_i) % pow2 pbits * b1;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) }
(res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1;
}
val mont_reduction_lemma_step_modr:
pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma
(requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0)
(ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
pbits: Prims.pos ->
rLen: Prims.nat ->
n: Prims.pos ->
mu: Prims.nat ->
i: Prims.pos{i <= rLen} ->
res0: Prims.nat
-> FStar.Pervasives.Lemma
(requires res0 % Prims.pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % Prims.pow2 pbits == 0)
(ensures
Hacl.Spec.Montgomery.Lemmas.mont_reduction_f pbits rLen n mu (i - 1) res0 %
Prims.pow2 (pbits * i) ==
0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_mod_pbits",
"Prims.unit",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_modr_aux",
"FStar.Math.Lemmas.lemma_div_exact",
"Prims.int",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Division",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction_f",
"Prims.op_Subtraction"
] | [] | true | false | true | false | false | let mont_reduction_lemma_step_modr pbits rLen n mu i res0 =
| let b1 = pow2 (pbits * (i - 1)) in
let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in
let c_i = res0 / b1 % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
Math.Lemmas.lemma_div_exact res0 b1;
mont_reduction_lemma_step_modr_aux pbits n q_i i res0;
mont_reduction_lemma_step_mod_pbits pbits n mu c_i | false |
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.bn_field_check_modulus_st | val bn_field_check_modulus_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len ->
Stack bool
(requires fun h -> live h n)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_field_check_modulus (as_seq h0 n)) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 48,
"end_line": 132,
"start_col": 0,
"start_line": 128
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n
inline_for_extraction noextract
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2
inline_for_extraction noextract
let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.freeable k /\ freeable_s h (B.deref h k)
inline_for_extraction noextract
let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2))
inline_for_extraction noextract
let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k)))
inline_for_extraction noextract
let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
as_ctx h (B.deref h k)
inline_for_extraction noextract
let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.live h k /\
B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\
bn_mont_ctx_inv h (B.deref h k)
inline_for_extraction noextract
let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t ->
Stack (BN.meta_len t)
(requires fun h -> pbn_mont_ctx_inv h k)
(ensures fun h0 r h1 -> h0 == h1 /\
r == (B.deref h0 k).len /\
v r == S.bn_field_get_len (as_pctx h0 k))
inline_for_extraction noextract
val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.meta_len",
"Hacl.Bignum.Definitions.lbignum",
"Prims.bool",
"FStar.Monotonic.HyperStack.mem",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Hacl.Bignum.Definitions.limb",
"Prims.l_and",
"Lib.Buffer.modifies0",
"Prims.eq2",
"Hacl.Spec.Bignum.MontArithmetic.bn_field_check_modulus",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.Buffer.as_seq"
] | [] | false | false | false | false | true | let bn_field_check_modulus_st (t: limb_t) (len: BN.meta_len t) =
| n: lbignum t len
-> Stack bool
(requires fun h -> live h n)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == S.bn_field_check_modulus (as_seq h0 n)) | false |
|
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.bn_field_mul_st | val bn_field_mul_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | let bn_field_mul_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> bM:lbignum t len
-> cM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
bn_v h aM < bn_v_n h k /\
bn_v h bM < bn_v_n h k /\
live h aM /\ live h bM /\ live h cM /\
eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\
bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 80,
"end_line": 298,
"start_col": 0,
"start_line": 279
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n
inline_for_extraction noextract
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2
inline_for_extraction noextract
let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.freeable k /\ freeable_s h (B.deref h k)
inline_for_extraction noextract
let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2))
inline_for_extraction noextract
let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k)))
inline_for_extraction noextract
let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
as_ctx h (B.deref h k)
inline_for_extraction noextract
let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.live h k /\
B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\
bn_mont_ctx_inv h (B.deref h k)
inline_for_extraction noextract
let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t ->
Stack (BN.meta_len t)
(requires fun h -> pbn_mont_ctx_inv h k)
(ensures fun h0 r h1 -> h0 == h1 /\
r == (B.deref h0 k).len /\
v r == S.bn_field_get_len (as_pctx h0 k))
inline_for_extraction noextract
val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t
inline_for_extraction noextract
let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len ->
Stack bool
(requires fun h -> live h n)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_field_check_modulus (as_seq h0 n))
inline_for_extraction noextract
val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_init_st (t:limb_t) (len:BN.meta_len t) =
r:HS.rid
-> n:lbignum t len ->
ST (pbn_mont_ctx t)
(requires fun h ->
S.bn_mont_ctx_pre (as_seq h n) /\
live h n /\ ST.is_eternal_region r)
(ensures fun h0 res h1 ->
B.(modifies loc_none h0 h1) /\
B.(fresh_loc (footprint h1 res) h0 h1) /\
B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\
freeable h1 res /\
(B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\
S.bn_mont_ctx_inv (as_pctx h1 res) /\
as_pctx h1 res == S.bn_field_init (as_seq h0 n))
inline_for_extraction noextract
val bn_field_init:
#t:limb_t
-> len:BN.meta_len t
-> precomp_r2:BM.bn_precomp_r2_mod_n_st t len ->
bn_field_init_st t len
inline_for_extraction noextract
let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t ->
ST unit
(requires fun h ->
freeable h k /\
pbn_mont_ctx_inv h k)
(ensures fun h0 _ h1 ->
B.(modifies (footprint h0 k) h0 h1))
inline_for_extraction noextract
val bn_field_free: #t:limb_t -> bn_field_free_st t
inline_for_extraction noextract
let bn_to_field_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> a:lbignum t len
-> aM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
live h a /\ live h aM /\ disjoint a aM /\
B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\
bn_v h1 aM < bn_v_n h0 k /\
as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a))
inline_for_extraction noextract
val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_from_field_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> a:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\
live h a /\ live h aM /\ disjoint a aM /\
B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\
bn_v h1 a < bn_v_n h0 k /\
as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM))
inline_for_extraction noextract
val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_add_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> bM:lbignum t len
-> cM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
bn_v h aM < bn_v_n h k /\
bn_v h bM < bn_v_n h k /\
live h aM /\ live h bM /\ live h cM /\
eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\
bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
inline_for_extraction noextract
val bn_field_add: #t:limb_t -> km:BM.mont t -> bn_field_add_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_sub_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> bM:lbignum t len
-> cM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
bn_v h aM < bn_v_n h k /\
bn_v h bM < bn_v_n h k /\
live h aM /\ live h bM /\ live h cM /\
eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\
bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
inline_for_extraction noextract
val bn_field_sub: #t:limb_t -> km:BM.mont t -> bn_field_sub_st t km.BM.bn.BN.len | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.meta_len",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx",
"Hacl.Bignum.Definitions.lbignum",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Prims.eq2",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll",
"LowStar.Monotonic.Buffer.deref",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"LowStar.Buffer.trivial_preorder",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Bignum.Definitions.bn_v",
"Hacl.Bignum.MontArithmetic.bn_v_n",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Hacl.Bignum.Definitions.limb",
"Lib.Buffer.eq_or_disjoint",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Hacl.Bignum.MontArithmetic.footprint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.buffer",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Lib.Sequence.seq",
"Prims.l_or",
"Prims.nat",
"FStar.Seq.Base.length",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Spec.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len",
"Hacl.Bignum.MontArithmetic.as_pctx",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n",
"Lib.Buffer.as_seq",
"Hacl.Spec.Bignum.MontArithmetic.bn_field_mul"
] | [] | false | false | false | false | true | let bn_field_mul_st (t: limb_t) (len: BN.meta_len t) =
| k: pbn_mont_ctx t -> aM: lbignum t len -> bM: lbignum t len -> cM: lbignum t len
-> Stack unit
(requires
fun h ->
(B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\
bn_v h bM < bn_v_n h k /\ live h aM /\ live h bM /\ live h cM /\ eq_or_disjoint aM bM /\
eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures
fun h0 _ h1 ->
modifies (loc cM) h0 h1 /\ bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM)) | false |
|
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_bound | val mont_reduction_lemma_step_bound:
pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma
(requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n)
(ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) | val mont_reduction_lemma_step_bound:
pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma
(requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n)
(ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) | let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 =
let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in
let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
assert (res == res0 + n * q_i * pow2 (pbits * (i - 1)));
mont_reduction_lemma_step_bound_aux pbits n q_i i c res0;
assert (res <= c + (pow2 (pbits * i) - 1) * n) | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 48,
"end_line": 287,
"start_col": 0,
"start_line": 281
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a)
let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end
val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n)
let eea_pow2_odd a n =
let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == n * k / pow2 a * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k)
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
let mont_preconditions_d pbits rLen n =
let d, k = eea_pow2_odd (pbits * rLen) n in
calc (==) {
pow2 (pbits * rLen) * d % n;
(==) { }
(1 + k * n) % n;
(==) { Math.Lemmas.modulo_addition_lemma 1 n k }
1 % n;
(==) { Math.Lemmas.small_mod 1 n }
1;
};
assert (pow2 (pbits * rLen) * d % n == 1)
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma
(requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures (1 + n * mu) % pow2 pbits == 0)
let mont_preconditions_n0 pbits n mu =
calc (==) {
(1 + n * mu) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) }
(1 + n * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) }
(1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) }
(1 + n % pow2 pbits * mu) % pow2 pbits;
(==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) }
0;
};
assert ((1 + n * mu) % pow2 pbits == 0)
val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma
(requires
n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = eea_pow2_odd (pbits * rLen) n in
r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0))
let mont_preconditions pbits rLen n mu =
mont_preconditions_d pbits rLen n;
mont_preconditions_n0 pbits n mu
/// High-level specification of Montgomery arithmetic
val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat
let mont_reduction_f pbits rLen n mu i c =
let c_i = c / pow2 (pbits * i) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
let res = c + n * q_i * pow2 (pbits * i) in
res
val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction_loop_div_r pbits rLen n mu c =
let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in
let res = res / pow2 (pbits * rLen) in
res
val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction pbits rLen n mu c =
let res = mont_reduction_loop_div_r pbits rLen n mu c in
if res < n then res else res - n
val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
let to_mont pbits rLen n mu a =
let r2 = pow2 (2 * pbits * rLen) % n in
let c = a * r2 in
mont_reduction pbits rLen n mu c
val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat
let from_mont pbits rLen n mu aM =
mont_reduction pbits rLen n mu aM
val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat
let mont_mul pbits rLen n mu a b =
let c = a * b in
mont_reduction pbits rLen n mu c
val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
let mont_sqr pbits rLen n mu a =
mont_mul pbits rLen n mu a a
val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat
let mont_one pbits rLen n mu =
let r2 = pow2 (2 * pbits * rLen) % n in
mont_reduction pbits rLen n mu r2
/// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in
/// res % n == c * d % n /\ res <= (c - n) / r + n)
val mont_reduction_lemma_step_bound_aux:
pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma
(requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n)
(ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n)
let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 =
let b = pow2 (pbits * i) in
let b1 = pow2 (pbits * (i - 1)) in
calc (<=) {
res0 + n * q_i * b1;
(<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) }
res0 + n * (pow2 pbits - 1) * b1;
(==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 }
res0 + n * ((pow2 pbits - 1) * b1);
(==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 }
res0 + n * (pow2 pbits * b1 - b1);
(==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
res0 + n * (b - b1);
(==) { Math.Lemmas.distributivity_sub_right n b b1 }
res0 + n * b - n * b1;
(<=) { }
c + (b1 - 1) * n + n * b - n * b1;
(==) { Math.Lemmas.distributivity_sub_left b1 1 n }
c + b1 * n - n + n * b - n * b1;
(==) { }
c - n + b * n;
(==) { Math.Lemmas.distributivity_sub_left b 1 n }
c + (b - 1) * n;
}
val mont_reduction_lemma_step_bound:
pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma
(requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n)
(ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
pbits: Prims.pos ->
rLen: Prims.nat ->
n: Prims.pos ->
mu: Prims.nat ->
i: Prims.pos{i <= rLen} ->
c: Prims.nat ->
res0: Prims.nat
-> FStar.Pervasives.Lemma (requires res0 <= c + (Prims.pow2 (pbits * (i - 1)) - 1) * n)
(ensures
Hacl.Spec.Montgomery.Lemmas.mont_reduction_f pbits rLen n mu (i - 1) res0 <=
c + (Prims.pow2 (pbits * i) - 1) * n) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims._assert",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.unit",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_bound_aux",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Division",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction_f"
] | [] | true | false | true | false | false | let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 =
| let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in
let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
assert (res == res0 + (n * q_i) * pow2 (pbits * (i - 1)));
mont_reduction_lemma_step_bound_aux pbits n q_i i c res0;
assert (res <= c + (pow2 (pbits * i) - 1) * n) | false |
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.mont_pre | val mont_pre : pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> Prims.logical | let mont_pre (pbits:pos) (rLen:pos) (n:pos) (mu:nat) =
(1 + n * mu) % pow2 pbits == 0 /\
1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 47,
"end_line": 456,
"start_col": 0,
"start_line": 454
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a)
let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end
val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n)
let eea_pow2_odd a n =
let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == n * k / pow2 a * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k)
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
let mont_preconditions_d pbits rLen n =
let d, k = eea_pow2_odd (pbits * rLen) n in
calc (==) {
pow2 (pbits * rLen) * d % n;
(==) { }
(1 + k * n) % n;
(==) { Math.Lemmas.modulo_addition_lemma 1 n k }
1 % n;
(==) { Math.Lemmas.small_mod 1 n }
1;
};
assert (pow2 (pbits * rLen) * d % n == 1)
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma
(requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures (1 + n * mu) % pow2 pbits == 0)
let mont_preconditions_n0 pbits n mu =
calc (==) {
(1 + n * mu) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) }
(1 + n * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) }
(1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) }
(1 + n % pow2 pbits * mu) % pow2 pbits;
(==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) }
0;
};
assert ((1 + n * mu) % pow2 pbits == 0)
val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma
(requires
n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = eea_pow2_odd (pbits * rLen) n in
r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0))
let mont_preconditions pbits rLen n mu =
mont_preconditions_d pbits rLen n;
mont_preconditions_n0 pbits n mu
/// High-level specification of Montgomery arithmetic
val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat
let mont_reduction_f pbits rLen n mu i c =
let c_i = c / pow2 (pbits * i) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
let res = c + n * q_i * pow2 (pbits * i) in
res
val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction_loop_div_r pbits rLen n mu c =
let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in
let res = res / pow2 (pbits * rLen) in
res
val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction pbits rLen n mu c =
let res = mont_reduction_loop_div_r pbits rLen n mu c in
if res < n then res else res - n
val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
let to_mont pbits rLen n mu a =
let r2 = pow2 (2 * pbits * rLen) % n in
let c = a * r2 in
mont_reduction pbits rLen n mu c
val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat
let from_mont pbits rLen n mu aM =
mont_reduction pbits rLen n mu aM
val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat
let mont_mul pbits rLen n mu a b =
let c = a * b in
mont_reduction pbits rLen n mu c
val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
let mont_sqr pbits rLen n mu a =
mont_mul pbits rLen n mu a a
val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat
let mont_one pbits rLen n mu =
let r2 = pow2 (2 * pbits * rLen) % n in
mont_reduction pbits rLen n mu r2
/// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in
/// res % n == c * d % n /\ res <= (c - n) / r + n)
val mont_reduction_lemma_step_bound_aux:
pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma
(requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n)
(ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n)
let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 =
let b = pow2 (pbits * i) in
let b1 = pow2 (pbits * (i - 1)) in
calc (<=) {
res0 + n * q_i * b1;
(<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) }
res0 + n * (pow2 pbits - 1) * b1;
(==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 }
res0 + n * ((pow2 pbits - 1) * b1);
(==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 }
res0 + n * (pow2 pbits * b1 - b1);
(==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
res0 + n * (b - b1);
(==) { Math.Lemmas.distributivity_sub_right n b b1 }
res0 + n * b - n * b1;
(<=) { }
c + (b1 - 1) * n + n * b - n * b1;
(==) { Math.Lemmas.distributivity_sub_left b1 1 n }
c + b1 * n - n + n * b - n * b1;
(==) { }
c - n + b * n;
(==) { Math.Lemmas.distributivity_sub_left b 1 n }
c + (b - 1) * n;
}
val mont_reduction_lemma_step_bound:
pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma
(requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n)
(ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n)
let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 =
let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in
let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
assert (res == res0 + n * q_i * pow2 (pbits * (i - 1)));
mont_reduction_lemma_step_bound_aux pbits n q_i i c res0;
assert (res <= c + (pow2 (pbits * i) - 1) * n)
val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma
(requires (1 + n * mu) % pow2 pbits == 0)
(ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0)
let mont_reduction_lemma_step_mod_pbits pbits n mu c_i =
let r = pow2 pbits in
let q_i = mu * c_i % r in
calc (==) {
(c_i + n * q_i) % r;
(==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r }
(c_i + n * q_i % r) % r;
(==) { }
(c_i + n * (mu * c_i % r) % r) % r;
(==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r }
(c_i + n * (mu * c_i) % r) % r;
(==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r }
(c_i + n * (mu * c_i)) % r;
(==) { Math.Lemmas.paren_mul_right n mu c_i }
(c_i + n * mu * c_i) % r;
(==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i }
((1 + n * mu) * c_i) % r;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r }
((1 + n * mu) % r * c_i) % r;
(==) { assert ((1 + n * mu) % r = 0) }
0;
}
val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat ->
Lemma (let b1 = pow2 (pbits * (i - 1)) in
(res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1)
let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 =
let b1 = pow2 (pbits * (i - 1)) in
Math.Lemmas.distributivity_sub_right pbits i 1;
assert (pbits * i - pbits * (i - 1) == pbits);
calc (==) {
(res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i);
(==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 }
(res0 / b1 + n * q_i) * b1 % pow2 (pbits * i);
(==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) }
(res0 / b1 + n * q_i) % pow2 pbits * b1;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) }
(res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1;
}
val mont_reduction_lemma_step_modr:
pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma
(requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0)
(ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0)
let mont_reduction_lemma_step_modr pbits rLen n mu i res0 =
let b1 = pow2 (pbits * (i - 1)) in
let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in
let c_i = res0 / b1 % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
Math.Lemmas.lemma_div_exact res0 b1;
mont_reduction_lemma_step_modr_aux pbits n q_i i res0;
mont_reduction_lemma_step_mod_pbits pbits n mu c_i
val mont_reduction_lemma_step_modn:
pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma
(requires res0 % n == c % n)
(ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n)
let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 =
let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in
let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
assert (res == res0 + n * q_i * pow2 (pbits * (i - 1)));
Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1)));
Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1)))
val mont_reduction_lemma_step:
pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma
(requires
res0 % n == c % n /\ res0 % pow2 (pbits * (i - 1)) == 0 /\
res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n /\ (1 + n * mu) % pow2 pbits == 0)
(ensures (let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in
res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n))
let mont_reduction_lemma_step pbits rLen n mu i c res0 =
mont_reduction_lemma_step_bound pbits rLen n mu i c res0;
mont_reduction_lemma_step_modr pbits rLen n mu i res0;
mont_reduction_lemma_step_modn pbits rLen n mu i c res0
val mont_reduction_loop_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i <= rLen} -> c:nat -> Lemma
(requires (1 + n * mu) % pow2 pbits == 0)
(ensures (let res = repeati i (mont_reduction_f pbits rLen n mu) c in
res % n == c % n /\ res % pow2 (pbits * i) == 0 /\ res <= c + (pow2 (pbits * i) - 1) * n))
let rec mont_reduction_loop_lemma pbits rLen n mu i c =
let res : nat = repeati i (mont_reduction_f pbits rLen n mu) c in
if i = 0 then
eq_repeati0 i (mont_reduction_f pbits rLen n mu) c
else begin
unfold_repeati i (mont_reduction_f pbits rLen n mu) c (i - 1);
let res0 : nat = repeati (i - 1) (mont_reduction_f pbits rLen n mu) c in
mont_reduction_loop_lemma pbits rLen n mu (i - 1) c;
mont_reduction_lemma_step pbits rLen n mu i c res0 end
val mont_reduction_loop_div_r_fits_lemma: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
(1 + n * mu) % pow2 pbits == 0))
(ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in
let r = pow2 (pbits * rLen) in
res <= (c - n) / r + n))
let mont_reduction_loop_div_r_fits_lemma pbits rLen n mu c =
let r = pow2 (pbits * rLen) in
let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in
mont_reduction_loop_lemma pbits rLen n mu rLen c;
assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n);
Math.Lemmas.lemma_div_le res (c + (r - 1) * n) r;
assert (res / r <= (c + (r - 1) * n) / r);
calc (==) {
(c + (r - 1) * n) / r;
(==) { Math.Lemmas.distributivity_sub_left r 1 n }
(c - n + r * n) / r;
(==) { Math.Lemmas.division_addition_lemma (c - n) r n }
(c - n) / r + n;
};
assert (res / r <= (c - n) / r + n)
val mont_reduction_loop_div_r_eval_lemma: pbits:pos -> rLen:nat -> n:pos -> d:int -> mu:nat -> c:nat -> Lemma
(requires (let r = pow2 (pbits * rLen) in
(1 + n * mu) % pow2 pbits == 0 /\ r * d % n == 1))
(ensures (let res = mont_reduction_loop_div_r pbits rLen n mu c in
res % n == c * d % n))
let mont_reduction_loop_div_r_eval_lemma pbits rLen n d mu c =
let r = pow2 (pbits * rLen) in
let res : nat = repeati rLen (mont_reduction_f pbits rLen n mu) c in
mont_reduction_loop_lemma pbits rLen n mu rLen c;
assert (res % n == c % n /\ res % r == 0 /\ res <= c + (r - 1) * n);
calc (==) {
res / r % n;
(==) { assert (r * d % n == 1) }
res / r * (r * d % n) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r (res / r) (r * d) n }
res / r * (r * d) % n;
(==) { Math.Lemmas.paren_mul_right (res / r) r d }
res / r * r * d % n;
(==) { Math.Lemmas.div_exact_r res r }
res * d % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l res d n }
res % n * d % n;
(==) { assert (res % n == c % n) }
c % n * d % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l c d n }
c * d % n;
};
assert (res / r % n == c * d % n) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | pbits: Prims.pos -> rLen: Prims.pos -> n: Prims.pos -> mu: Prims.nat -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.nat",
"Prims.l_and",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Equality",
"Prims.logical"
] | [] | false | false | false | true | true | let mont_pre (pbits rLen n: pos) (mu: nat) =
| (1 + n * mu) % pow2 pbits == 0 /\ 1 < n /\ n < pow2 (pbits * rLen) /\ n % 2 = 1 | false |
|
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma_step_modn | val mont_reduction_lemma_step_modn:
pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma
(requires res0 % n == c % n)
(ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) | val mont_reduction_lemma_step_modn:
pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma
(requires res0 % n == c % n)
(ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) | let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 =
let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in
let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
assert (res == res0 + n * q_i * pow2 (pbits * (i - 1)));
Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1)));
Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 73,
"end_line": 365,
"start_col": 0,
"start_line": 359
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a)
let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end
val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n)
let eea_pow2_odd a n =
let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == n * k / pow2 a * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k)
val mont_preconditions_d: pbits:pos -> rLen:pos -> n:pos{1 < n} -> Lemma
(requires n % 2 = 1)
(ensures (let d, k = eea_pow2_odd (pbits * rLen) n in pow2 (pbits * rLen) * d % n == 1))
let mont_preconditions_d pbits rLen n =
let d, k = eea_pow2_odd (pbits * rLen) n in
calc (==) {
pow2 (pbits * rLen) * d % n;
(==) { }
(1 + k * n) % n;
(==) { Math.Lemmas.modulo_addition_lemma 1 n k }
1 % n;
(==) { Math.Lemmas.small_mod 1 n }
1;
};
assert (pow2 (pbits * rLen) * d % n == 1)
val mont_preconditions_n0: pbits:pos -> n:pos{n > 1} -> mu:nat -> Lemma
(requires (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures (1 + n * mu) % pow2 pbits == 0)
let mont_preconditions_n0 pbits n mu =
calc (==) {
(1 + n * mu) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n * mu) (pow2 pbits) }
(1 + n * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_mul_distr_l n mu (pow2 pbits) }
(1 + n % pow2 pbits * mu % pow2 pbits) % pow2 pbits;
(==) { Math.Lemmas.lemma_mod_plus_distr_r 1 (n % pow2 pbits * mu) (pow2 pbits) }
(1 + n % pow2 pbits * mu) % pow2 pbits;
(==) { assert ((1 + (n % pow2 pbits) * mu) % pow2 pbits == 0) }
0;
};
assert ((1 + n * mu) % pow2 pbits == 0)
val mont_preconditions: pbits:pos -> rLen:pos -> n:pos{1 < n} -> mu:nat -> Lemma
(requires
n % 2 = 1 /\ (1 + (n % pow2 pbits) * mu) % pow2 pbits == 0)
(ensures
(let r = pow2 (pbits * rLen) in
let d, _ = eea_pow2_odd (pbits * rLen) n in
r * d % n == 1 /\ (1 + n * mu) % pow2 pbits == 0))
let mont_preconditions pbits rLen n mu =
mont_preconditions_d pbits rLen n;
mont_preconditions_n0 pbits n mu
/// High-level specification of Montgomery arithmetic
val mont_reduction_f: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:nat{i < rLen} -> c:nat -> nat
let mont_reduction_f pbits rLen n mu i c =
let c_i = c / pow2 (pbits * i) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
let res = c + n * q_i * pow2 (pbits * i) in
res
val mont_reduction_loop_div_r: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction_loop_div_r pbits rLen n mu c =
let res = repeati rLen (mont_reduction_f pbits rLen n mu) c in
let res = res / pow2 (pbits * rLen) in
res
val mont_reduction: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> c:nat -> nat
let mont_reduction pbits rLen n mu c =
let res = mont_reduction_loop_div_r pbits rLen n mu c in
if res < n then res else res - n
val to_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
let to_mont pbits rLen n mu a =
let r2 = pow2 (2 * pbits * rLen) % n in
let c = a * r2 in
mont_reduction pbits rLen n mu c
val from_mont: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> aM:nat -> nat
let from_mont pbits rLen n mu aM =
mont_reduction pbits rLen n mu aM
val mont_mul: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> b:nat -> nat
let mont_mul pbits rLen n mu a b =
let c = a * b in
mont_reduction pbits rLen n mu c
val mont_sqr: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> a:nat -> nat
let mont_sqr pbits rLen n mu a =
mont_mul pbits rLen n mu a a
val mont_one: pbits:pos -> rLen:nat -> n:pos -> mu:nat -> nat
let mont_one pbits rLen n mu =
let r2 = pow2 (2 * pbits * rLen) % n in
mont_reduction pbits rLen n mu r2
/// Lemma (let res = mont_reduction_loop_div_r pbits rLen n mu c in
/// res % n == c * d % n /\ res <= (c - n) / r + n)
val mont_reduction_lemma_step_bound_aux:
pbits:pos -> n:pos -> q_i:nat{q_i < pow2 pbits} -> i:pos -> c:nat -> res0:nat -> Lemma
(requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n)
(ensures res0 + n * q_i * pow2 (pbits * (i - 1)) <= c + (pow2 (pbits * i) - 1) * n)
let mont_reduction_lemma_step_bound_aux pbits n q_i i c res0 =
let b = pow2 (pbits * i) in
let b1 = pow2 (pbits * (i - 1)) in
calc (<=) {
res0 + n * q_i * b1;
(<=) { Math.Lemmas.lemma_mult_le_right b1 q_i (pow2 pbits - 1) }
res0 + n * (pow2 pbits - 1) * b1;
(==) { Math.Lemmas.paren_mul_right n (pow2 pbits - 1) b1 }
res0 + n * ((pow2 pbits - 1) * b1);
(==) { Math.Lemmas.distributivity_sub_left (pow2 pbits) 1 b1 }
res0 + n * (pow2 pbits * b1 - b1);
(==) { Math.Lemmas.pow2_plus pbits (pbits * (i - 1)) }
res0 + n * (b - b1);
(==) { Math.Lemmas.distributivity_sub_right n b b1 }
res0 + n * b - n * b1;
(<=) { }
c + (b1 - 1) * n + n * b - n * b1;
(==) { Math.Lemmas.distributivity_sub_left b1 1 n }
c + b1 * n - n + n * b - n * b1;
(==) { }
c - n + b * n;
(==) { Math.Lemmas.distributivity_sub_left b 1 n }
c + (b - 1) * n;
}
val mont_reduction_lemma_step_bound:
pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma
(requires res0 <= c + (pow2 (pbits * (i - 1)) - 1) * n)
(ensures mont_reduction_f pbits rLen n mu (i - 1) res0 <= c + (pow2 (pbits * i) - 1) * n)
let mont_reduction_lemma_step_bound pbits rLen n mu i c res0 =
let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in
let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
assert (res == res0 + n * q_i * pow2 (pbits * (i - 1)));
mont_reduction_lemma_step_bound_aux pbits n q_i i c res0;
assert (res <= c + (pow2 (pbits * i) - 1) * n)
val mont_reduction_lemma_step_mod_pbits: pbits:pos -> n:pos -> mu:nat -> c_i:nat -> Lemma
(requires (1 + n * mu) % pow2 pbits == 0)
(ensures (c_i + n * (mu * c_i % pow2 pbits)) % pow2 pbits == 0)
let mont_reduction_lemma_step_mod_pbits pbits n mu c_i =
let r = pow2 pbits in
let q_i = mu * c_i % r in
calc (==) {
(c_i + n * q_i) % r;
(==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * q_i) r }
(c_i + n * q_i % r) % r;
(==) { }
(c_i + n * (mu * c_i % r) % r) % r;
(==) { Math.Lemmas.lemma_mod_mul_distr_r n (mu * c_i) r }
(c_i + n * (mu * c_i) % r) % r;
(==) { Math.Lemmas.lemma_mod_plus_distr_r c_i (n * (mu * c_i)) r }
(c_i + n * (mu * c_i)) % r;
(==) { Math.Lemmas.paren_mul_right n mu c_i }
(c_i + n * mu * c_i) % r;
(==) { Math.Lemmas.distributivity_add_left 1 (n * mu) c_i }
((1 + n * mu) * c_i) % r;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (1 + n * mu) c_i r }
((1 + n * mu) % r * c_i) % r;
(==) { assert ((1 + n * mu) % r = 0) }
0;
}
val mont_reduction_lemma_step_modr_aux: pbits:pos -> n:pos -> q_i:nat -> i:pos -> res0:nat ->
Lemma (let b1 = pow2 (pbits * (i - 1)) in
(res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i) == (res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1)
let mont_reduction_lemma_step_modr_aux pbits n q_i i res0 =
let b1 = pow2 (pbits * (i - 1)) in
Math.Lemmas.distributivity_sub_right pbits i 1;
assert (pbits * i - pbits * (i - 1) == pbits);
calc (==) {
(res0 / b1 * b1 + n * q_i * b1) % pow2 (pbits * i);
(==) { Math.Lemmas.distributivity_add_left (res0 / b1) (n * q_i) b1 }
(res0 / b1 + n * q_i) * b1 % pow2 (pbits * i);
(==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (res0 / b1 + n * q_i) (pbits * i) (pbits * (i - 1)) }
(res0 / b1 + n * q_i) % pow2 pbits * b1;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (res0 / b1) (n * q_i) (pow2 pbits) }
(res0 / b1 % pow2 pbits + n * q_i) % pow2 pbits * b1;
}
val mont_reduction_lemma_step_modr:
pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> res0:nat -> Lemma
(requires res0 % pow2 (pbits * (i - 1)) == 0 /\ (1 + n * mu) % pow2 pbits == 0)
(ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % pow2 (pbits * i) == 0)
let mont_reduction_lemma_step_modr pbits rLen n mu i res0 =
let b1 = pow2 (pbits * (i - 1)) in
let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in
let c_i = res0 / b1 % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
Math.Lemmas.lemma_div_exact res0 b1;
mont_reduction_lemma_step_modr_aux pbits n q_i i res0;
mont_reduction_lemma_step_mod_pbits pbits n mu c_i
val mont_reduction_lemma_step_modn:
pbits:pos -> rLen:nat -> n:pos -> mu:nat -> i:pos{i <= rLen} -> c:nat -> res0:nat -> Lemma
(requires res0 % n == c % n)
(ensures mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
pbits: Prims.pos ->
rLen: Prims.nat ->
n: Prims.pos ->
mu: Prims.nat ->
i: Prims.pos{i <= rLen} ->
c: Prims.nat ->
res0: Prims.nat
-> FStar.Pervasives.Lemma (requires res0 % n == c % n)
(ensures
Hacl.Spec.Montgomery.Lemmas.mont_reduction_f pbits rLen n mu (i - 1) res0 % n == c % n) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Math.Lemmas.modulo_addition_lemma",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Subtraction",
"Prims.unit",
"FStar.Math.Lemmas.paren_mul_right",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"Prims.op_Modulus",
"Prims.op_Division",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction_f"
] | [] | true | false | true | false | false | let mont_reduction_lemma_step_modn pbits rLen n mu i c res0 =
| let res = mont_reduction_f pbits rLen n mu (i - 1) res0 in
let c_i = res0 / pow2 (pbits * (i - 1)) % pow2 pbits in
let q_i = mu * c_i % pow2 pbits in
assert (res == res0 + (n * q_i) * pow2 (pbits * (i - 1)));
Math.Lemmas.paren_mul_right n q_i (pow2 (pbits * (i - 1)));
Math.Lemmas.modulo_addition_lemma res0 n (q_i * pow2 (pbits * (i - 1))) | false |
Hacl.Spec.Montgomery.Lemmas.fst | Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd | val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n) | val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n) | let eea_pow2_odd a n =
let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == n * k / pow2 a * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k) | {
"file_name": "code/bignum/Hacl.Spec.Montgomery.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 12,
"end_line": 144,
"start_col": 0,
"start_line": 134
} | module Hacl.Spec.Montgomery.Lemmas
open FStar.Mul
open Lib.IntTypes
open Lib.LoopCombinators
(**
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://eprint.iacr.org/2011/239.pdf
https://eprint.iacr.org/2017/1057.pdf *)
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val eea_pow2_odd_k_lemma_d: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let d = n * k1 / pow2 (a - 1) in
d % 2 == (if n * k1 % pow2 a < pow2 (a - 1) then 0 else 1)))
let eea_pow2_odd_k_lemma_d a n k1 =
let d = n * k1 / pow2 (a - 1) in
Math.Lemmas.pow2_modulo_division_lemma_1 (n * k1) (a - 1) a;
assert (d % 2 == n * k1 % pow2 a / pow2 (a - 1));
if d % 2 = 0 then begin
Math.Lemmas.small_division_lemma_2 (n * k1 % pow2 a) (pow2 (a - 1));
assert (n * k1 % pow2 a < pow2 (a - 1));
() end
#push-options "--z3rlimit 100"
val eea_pow2_odd_k_lemma: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1)
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
n * k % pow2 a == 1))
let eea_pow2_odd_k_lemma a n k1 =
let d = n * k1 / pow2 (a - 1) in
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
calc (==) {
n * k1;
(==) { Math.Lemmas.euclidean_division_definition (n * k1) (pow2 (a - 1)) }
1 + d * pow2 (a - 1);
(==) { Math.Lemmas.euclidean_division_definition d 2 }
1 + (d / 2 * 2 + d % 2) * pow2 (a - 1);
(==) { Math.Lemmas.distributivity_add_left (d / 2 * 2) (d % 2) (pow2 (a - 1)) }
1 + d / 2 * 2 * pow2 (a - 1) + d % 2 * pow2 (a - 1);
(==) { Math.Lemmas.pow2_plus 1 (a - 1) }
1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1);
};
assert (n * k1 == 1 + d / 2 * pow2 a + d % 2 * pow2 (a - 1));
if n * k1 % pow2 a < pow2 (a - 1) then begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 0);
calc (==) {
n * k % pow2 a;
(==) { }
(1 + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) (d / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a = 1);
() end
else begin
eea_pow2_odd_k_lemma_d a n k1;
assert (d % 2 = 1);
assert (n * k1 == 1 + d / 2 * pow2 a + pow2 (a - 1));
//assert (n * k == 1 + d / 2 * pow2 a + pow2 (a - 1) + n * pow2 (a - 1));
calc (==) {
n * k % pow2 a;
(==) { Math.Lemmas.distributivity_add_right n k1 (pow2 (a - 1)) }
(n * k1 + n * pow2 (a - 1)) % pow2 a;
(==) { }
(1 + pow2 (a - 1) + n * pow2 (a - 1) + d / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma (1 + pow2 (a - 1) + n * pow2 (a - 1)) (pow2 a) (d / 2) }
(1 + pow2 (a - 1) + n * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.distributivity_add_left 1 n (pow2 (a - 1)) }
(1 + (1 + n) * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.lemma_div_exact (1 + n) 2 }
(1 + (1 + n) / 2 * 2 * pow2 (a - 1)) % pow2 a;
(==) { Math.Lemmas.paren_mul_right ((1 + n) / 2) 2 (pow2 (a - 1)) }
(1 + (1 + n) / 2 * (2 * pow2 (a - 1))) % pow2 a;
(==) { Math.Lemmas.pow2_plus 1 (a - 1)}
(1 + (1 + n) / 2 * pow2 a) % pow2 a;
(==) { Math.Lemmas.modulo_addition_lemma 1 (pow2 a) ((1 + n) / 2) }
1 % pow2 a;
(==) { Math.Lemmas.pow2_le_compat a 1; Math.Lemmas.small_mod 1 (pow2 a) }
1;
};
assert (n * k % pow2 a == 1);
() end
#pop-options
val eea_pow2_odd_k_lemma_bound: a:pos -> n:pos -> k1:pos -> Lemma
(requires n * k1 % pow2 (a - 1) == 1 /\ n % 2 = 1 /\ k1 < pow2 (a - 1))
(ensures (let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
k < pow2 a))
let eea_pow2_odd_k_lemma_bound a n k1 =
if n * k1 % pow2 a < pow2 (a - 1) then
Math.Lemmas.pow2_lt_compat a (a - 1)
else
Math.Lemmas.pow2_double_sum (a - 1)
val eea_pow2_odd_k: a:pos -> n:pos ->
Pure pos
(requires n % 2 = 1)
(ensures fun k ->
n * k % pow2 a == 1 /\ k < pow2 a)
let rec eea_pow2_odd_k a n =
if a = 1 then 1
else begin
let k1 = eea_pow2_odd_k (a - 1) n in
assert (n * k1 % pow2 (a - 1) == 1);
let k = if n * k1 % pow2 a < pow2 (a - 1) then k1 else k1 + pow2 (a - 1) in
eea_pow2_odd_k_lemma a n k1;
eea_pow2_odd_k_lemma_bound a n k1;
assert (n * k % pow2 a == 1);
k end
val eea_pow2_odd: a:pos -> n:pos ->
Pure (tuple2 int int)
(requires n % 2 = 1)
(ensures fun (d, k) ->
pow2 a * d == 1 + k * n /\ - d < n) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Montgomery.Lemmas.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Montgomery",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.pos -> n: Prims.pos -> Prims.Pure (Prims.int * Prims.int) | Prims.Pure | [] | [] | [
"Prims.pos",
"FStar.Pervasives.Native.Mktuple2",
"Prims.int",
"Prims.op_Minus",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"Prims.pow2",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Math.Lemmas.cancel_mul_div",
"FStar.Math.Lemmas.lemma_mult_lt_left",
"Prims.op_Division",
"Prims.op_Modulus",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd_k",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let eea_pow2_odd a n =
| let k = eea_pow2_odd_k a n in
assert (n * k % pow2 a == 1);
assert (n * k == (n * k / pow2 a) * pow2 a + 1);
let d = n * k / pow2 a in
Math.Lemmas.lemma_mult_lt_left n k (pow2 a);
assert (n * k < n * pow2 a);
Math.Lemmas.cancel_mul_div n (pow2 a);
assert (d < n);
assert (n * k == d * pow2 a + 1);
(- d, - k) | false |
Vale.Transformers.Transform.fsti | Vale.Transformers.Transform.equiv_states | val equiv_states : s1: Vale.X64.Decls.va_state -> s2: Vale.X64.Decls.va_state -> Prims.logical | let equiv_states (s1 s2:va_state) = equiv_states s1 s2 | {
"file_name": "vale/code/lib/transformers/Vale.Transformers.Transform.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 61,
"end_line": 29,
"start_col": 7,
"start_line": 29
} | (**
This module exposes user-friendly transformers and lemmas for them.
Each transformation takes 1 or more [va_code] object(s) and
produces a [va_code] object, along with additional data. The lemma
guarantees that the produced [va_code] object is semantically
identical to the (first, if more than one) provided [va_code]
object.
The additional data that is generated is always a [pbool] which is
[ttrue] if the transformation succeeded, and otherwise is a [ffalse
reason]. Under both circumstances, the lemma mentioned above is
held, and in particular, a failed transformation is still safe to
use (since in that case, the code returned is exactly the same as
the first [va_code] object). The additional data is provided only
for debugging, since we expect that after debugging and fixing
things, all transformations will succeed.
*)
module Vale.Transformers.Transform
open Vale.X64.Machine_s
open Vale.Def.PossiblyMonad
open Vale.X64.Decls
open Vale.Transformers.Common | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Transformers.Common.fsti.checked",
"Vale.Def.PossiblyMonad.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Transformers.Transform.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.Transformers.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Decls",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.PossiblyMonad",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Transformers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Transformers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s1: Vale.X64.Decls.va_state -> s2: Vale.X64.Decls.va_state -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Vale.X64.Decls.va_state",
"Vale.Transformers.Common.equiv_states",
"Prims.logical"
] | [] | false | false | false | true | true | let equiv_states (s1 s2: va_state) =
| equiv_states s1 s2 | false |
|
Hacl.Bignum.MontArithmetic.fsti | Hacl.Bignum.MontArithmetic.bn_field_inv_st | val bn_field_inv_st : t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | let bn_field_inv_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> aInvM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
Euclid.is_prime (bn_v_n h k) /\
0 < bn_v h aM /\ bn_v h aM < bn_v_n h k /\
live h aM /\ live h aInvM /\ disjoint aM aInvM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aInvM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc aInvM) h0 h1 /\
bn_v h1 aInvM < bn_v_n h0 k /\
as_seq h1 aInvM == S.bn_field_inv (as_pctx h0 k) (as_seq h0 aM)) | {
"file_name": "code/bignum/Hacl.Bignum.MontArithmetic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 68,
"end_line": 419,
"start_col": 0,
"start_line": 403
} | module Hacl.Bignum.MontArithmetic
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
module B = LowStar.Buffer
module HS = FStar.HyperStack
module ST = FStar.HyperStack.ST
module Euclid = FStar.Math.Euclid
module S = Hacl.Spec.Bignum.MontArithmetic
module BE = Hacl.Bignum.Exponentiation
module BN = Hacl.Bignum
module BM = Hacl.Bignum.Montgomery
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val _align_fsti : unit
inline_for_extraction noextract
let lb (t:limb_t) =
match t with
| U32 -> buffer uint32
| U64 -> buffer uint64
inline_for_extraction noextract
let ll (t:limb_t) =
match t with
| U32 -> uint32
| U64 -> uint64
inline_for_extraction
noeq
type bn_mont_ctx' (t:limb_t) (a:Type0{a == lb t}) (b:Type0{b == ll t}) = {
len: BN.meta_len t;
n: x:a{length #MUT #(limb t) x == v len};
mu: b;
r2: x:a{length #MUT #(limb t) x == v len};
}
inline_for_extraction noextract
let bn_mont_ctx (t:limb_t) = bn_mont_ctx' t (lb t) (ll t)
let bn_mont_ctx_u32 = bn_mont_ctx' U32 (lb U32) (ll U32)
let bn_mont_ctx_u64 = bn_mont_ctx' U64 (lb U64) (ll U64)
inline_for_extraction noextract
let pbn_mont_ctx (t:limb_t) = B.pointer (bn_mont_ctx t)
inline_for_extraction noextract
let pbn_mont_ctx_u32 = B.pointer bn_mont_ctx_u32
inline_for_extraction noextract
let pbn_mont_ctx_u64 = B.pointer bn_mont_ctx_u64
inline_for_extraction noextract
let as_ctx (#t:limb_t) (h:mem) (k:bn_mont_ctx t) : GTot (S.bn_mont_ctx t) = {
S.len = v k.len;
S.n = as_seq h (k.n <: lbignum t k.len);
S.mu = k.mu;
S.r2 = as_seq h (k.r2 <: lbignum t k.len);
}
inline_for_extraction noextract
let bn_mont_ctx_inv (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
live h n /\ live h r2 /\ disjoint n r2 /\
S.bn_mont_ctx_inv (as_ctx h k)
inline_for_extraction noextract
let bn_v_n (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
let k1 = B.deref h k in
let n : lbignum t k1.len = k1.n in
bn_v h n
inline_for_extraction noextract
let freeable_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.freeable n /\ B.freeable r2
inline_for_extraction noextract
let freeable (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.freeable k /\ freeable_s h (B.deref h k)
inline_for_extraction noextract
let footprint_s (#t:limb_t) (h:mem) (k:bn_mont_ctx t) =
let n : buffer (limb t) = k.n in
let r2 : buffer (limb t) = k.r2 in
B.(loc_union (loc_addr_of_buffer n) (loc_addr_of_buffer r2))
inline_for_extraction noextract
let footprint (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.(loc_union (loc_addr_of_buffer k) (footprint_s h (B.deref h k)))
inline_for_extraction noextract
let as_pctx (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) : GTot (S.bn_mont_ctx t) =
as_ctx h (B.deref h k)
inline_for_extraction noextract
let pbn_mont_ctx_inv (#t:limb_t) (h:mem) (k:pbn_mont_ctx t) =
B.live h k /\
B.(loc_disjoint (loc_addr_of_buffer k) (footprint_s h (B.deref h k))) /\
bn_mont_ctx_inv h (B.deref h k)
inline_for_extraction noextract
let bn_field_get_len_st (t:limb_t) = k:pbn_mont_ctx t ->
Stack (BN.meta_len t)
(requires fun h -> pbn_mont_ctx_inv h k)
(ensures fun h0 r h1 -> h0 == h1 /\
r == (B.deref h0 k).len /\
v r == S.bn_field_get_len (as_pctx h0 k))
inline_for_extraction noextract
val bn_field_get_len: #t:limb_t -> bn_field_get_len_st t
inline_for_extraction noextract
let bn_field_check_modulus_st (t:limb_t) (len:BN.meta_len t) = n:lbignum t len ->
Stack bool
(requires fun h -> live h n)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_field_check_modulus (as_seq h0 n))
inline_for_extraction noextract
val bn_field_check_modulus: #t:limb_t -> km:BM.mont t -> bn_field_check_modulus_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_init_st (t:limb_t) (len:BN.meta_len t) =
r:HS.rid
-> n:lbignum t len ->
ST (pbn_mont_ctx t)
(requires fun h ->
S.bn_mont_ctx_pre (as_seq h n) /\
live h n /\ ST.is_eternal_region r)
(ensures fun h0 res h1 ->
B.(modifies loc_none h0 h1) /\
B.(fresh_loc (footprint h1 res) h0 h1) /\
B.(loc_includes (loc_region_only true r) (footprint h1 res)) /\
freeable h1 res /\
(B.deref h1 res).len == len /\ bn_v_n h1 res == bn_v h0 n /\
S.bn_mont_ctx_inv (as_pctx h1 res) /\
as_pctx h1 res == S.bn_field_init (as_seq h0 n))
inline_for_extraction noextract
val bn_field_init:
#t:limb_t
-> len:BN.meta_len t
-> precomp_r2:BM.bn_precomp_r2_mod_n_st t len ->
bn_field_init_st t len
inline_for_extraction noextract
let bn_field_free_st (t:limb_t) = k:pbn_mont_ctx t ->
ST unit
(requires fun h ->
freeable h k /\
pbn_mont_ctx_inv h k)
(ensures fun h0 _ h1 ->
B.(modifies (footprint h0 k) h0 h1))
inline_for_extraction noextract
val bn_field_free: #t:limb_t -> bn_field_free_st t
inline_for_extraction noextract
let bn_to_field_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> a:lbignum t len
-> aM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
live h a /\ live h aM /\ disjoint a aM /\
B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc aM) h0 h1 /\
bn_v h1 aM < bn_v_n h0 k /\
as_seq h1 aM == S.bn_to_field (as_pctx h0 k) (as_seq h0 a))
inline_for_extraction noextract
val bn_to_field: #t:limb_t -> km:BM.mont t -> bn_to_field_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_from_field_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> a:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\ bn_v h aM < bn_v_n h k /\
live h a /\ live h aM /\ disjoint a aM /\
B.(loc_disjoint (footprint h k) (loc_buffer (a <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc a) h0 h1 /\
bn_v h1 a < bn_v_n h0 k /\
as_seq h1 a == S.bn_from_field (as_pctx h0 k) (as_seq h0 aM))
inline_for_extraction noextract
val bn_from_field: #t:limb_t -> km:BM.mont t -> bn_from_field_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_add_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> bM:lbignum t len
-> cM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
bn_v h aM < bn_v_n h k /\
bn_v h bM < bn_v_n h k /\
live h aM /\ live h bM /\ live h cM /\
eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\
bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_add (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
inline_for_extraction noextract
val bn_field_add: #t:limb_t -> km:BM.mont t -> bn_field_add_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_sub_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> bM:lbignum t len
-> cM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
bn_v h aM < bn_v_n h k /\
bn_v h bM < bn_v_n h k /\
live h aM /\ live h bM /\ live h cM /\
eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\
bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_sub (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
inline_for_extraction noextract
val bn_field_sub: #t:limb_t -> km:BM.mont t -> bn_field_sub_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_mul_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> bM:lbignum t len
-> cM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
bn_v h aM < bn_v_n h k /\
bn_v h bM < bn_v_n h k /\
live h aM /\ live h bM /\ live h cM /\
eq_or_disjoint aM bM /\ eq_or_disjoint aM cM /\ eq_or_disjoint bM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (bM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\
bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_mul (as_pctx h0 k) (as_seq h0 aM) (as_seq h0 bM))
inline_for_extraction noextract
val bn_field_mul: #t:limb_t -> km:BM.mont t -> bn_field_mul_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_sqr_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> cM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
bn_v h aM < bn_v_n h k /\
live h aM /\ live h cM /\ eq_or_disjoint aM cM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (cM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc cM) h0 h1 /\
bn_v h1 cM < bn_v_n h0 k /\
as_seq h1 cM == S.bn_field_sqr (as_pctx h0 k) (as_seq h0 aM))
inline_for_extraction noextract
val bn_field_sqr: #t:limb_t -> km:BM.mont t -> bn_field_sqr_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_one_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> oneM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
live h oneM /\
B.(loc_disjoint (footprint h k) (loc_buffer (oneM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc oneM) h0 h1 /\
bn_v h1 oneM < bn_v_n h0 k /\
as_seq h1 oneM == S.bn_field_one (as_pctx h0 k))
inline_for_extraction noextract
val bn_field_one: #t:limb_t -> km:BM.mont t -> bn_field_one_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_exp_consttime_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> bBits:size_t
-> b:lbignum t (blocks0 bBits (size (bits t)))
-> resM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
bn_v h aM < bn_v_n h k /\
bn_v h b < pow2 (v bBits) /\
live h aM /\ live h b /\ live h resM /\
disjoint resM aM /\ disjoint resM b /\ disjoint aM b /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (resM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc resM) h0 h1 /\
bn_v h1 resM < bn_v_n h0 k /\
as_seq h1 resM == S.bn_field_exp_consttime (as_pctx h0 k) (as_seq h0 aM) (v bBits) (as_seq h0 b))
inline_for_extraction noextract
val bn_field_exp_consttime: #t:limb_t -> km:BM.mont t -> bn_field_exp_consttime_st t km.BM.bn.BN.len
inline_for_extraction noextract
let bn_field_exp_vartime_st (t:limb_t) (len:BN.meta_len t) =
k:pbn_mont_ctx t
-> aM:lbignum t len
-> bBits:size_t
-> b:lbignum t (blocks0 bBits (size (bits t)))
-> resM:lbignum t len ->
Stack unit
(requires fun h ->
(B.deref h k).len == len /\
pbn_mont_ctx_inv h k /\
bn_v h aM < bn_v_n h k /\
bn_v h b < pow2 (v bBits) /\
live h aM /\ live h b /\ live h resM /\
disjoint resM aM /\ disjoint resM b /\ disjoint aM b /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (resM <: buffer (limb t)))))
(ensures fun h0 _ h1 -> modifies (loc resM) h0 h1 /\
bn_v h1 resM < bn_v_n h0 k /\
as_seq h1 resM == S.bn_field_exp_vartime (as_pctx h0 k) (as_seq h0 aM) (v bBits) (as_seq h0 b))
inline_for_extraction noextract
val bn_field_exp_vartime: #t:limb_t -> km:BM.mont t -> bn_field_exp_vartime_st t km.BM.bn.BN.len | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.MontArithmetic.fsti.checked",
"Hacl.Bignum.Montgomery.fsti.checked",
"Hacl.Bignum.Exponentiation.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Euclid.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.MontArithmetic.fsti"
} | [
{
"abbrev": true,
"full_module": "Hacl.Bignum.Montgomery",
"short_module": "BM"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum",
"short_module": "BN"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.MontArithmetic",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> len: Hacl.Bignum.meta_len t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.meta_len",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx",
"Hacl.Bignum.Definitions.lbignum",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Prims.eq2",
"Hacl.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx'__item__len",
"Hacl.Bignum.MontArithmetic.lb",
"Hacl.Bignum.MontArithmetic.ll",
"LowStar.Monotonic.Buffer.deref",
"Hacl.Bignum.MontArithmetic.bn_mont_ctx",
"LowStar.Buffer.trivial_preorder",
"Hacl.Bignum.MontArithmetic.pbn_mont_ctx_inv",
"FStar.Math.Euclid.is_prime",
"Hacl.Bignum.MontArithmetic.bn_v_n",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Bignum.Definitions.bn_v",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Hacl.Bignum.Definitions.limb",
"Lib.Buffer.disjoint",
"LowStar.Monotonic.Buffer.loc_disjoint",
"Hacl.Bignum.MontArithmetic.footprint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Buffer.buffer",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Lib.Sequence.seq",
"Prims.l_or",
"Prims.nat",
"FStar.Seq.Base.length",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Spec.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__len",
"Hacl.Bignum.MontArithmetic.as_pctx",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.MontArithmetic.__proj__Mkbn_mont_ctx__item__n",
"Lib.Buffer.as_seq",
"Hacl.Spec.Bignum.MontArithmetic.bn_field_inv"
] | [] | false | false | false | false | true | let bn_field_inv_st (t: limb_t) (len: BN.meta_len t) =
| k: pbn_mont_ctx t -> aM: lbignum t len -> aInvM: lbignum t len
-> Stack unit
(requires
fun h ->
(B.deref h k).len == len /\ pbn_mont_ctx_inv h k /\ Euclid.is_prime (bn_v_n h k) /\
0 < bn_v h aM /\ bn_v h aM < bn_v_n h k /\ live h aM /\ live h aInvM /\ disjoint aM aInvM /\
B.(loc_disjoint (footprint h k) (loc_buffer (aM <: buffer (limb t)))) /\
B.(loc_disjoint (footprint h k) (loc_buffer (aInvM <: buffer (limb t)))))
(ensures
fun h0 _ h1 ->
modifies (loc aInvM) h0 h1 /\ bn_v h1 aInvM < bn_v_n h0 k /\
as_seq h1 aInvM == S.bn_field_inv (as_pctx h0 k) (as_seq h0 aM)) | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.