file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
FStar.Matrix.fst
FStar.Matrix.foldm_snoc_distributivity_left
val foldm_snoc_distributivity_left (#c #eq: _) (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a (SP.foldm_snoc add s)) `eq.eq` (SP.foldm_snoc add (const_op_seq mul a s)) ) (decreases SB.length s)
val foldm_snoc_distributivity_left (#c #eq: _) (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a (SP.foldm_snoc add s)) `eq.eq` (SP.foldm_snoc add (const_op_seq mul a s)) ) (decreases SB.length s)
let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 79, "end_line": 553, "start_col": 0, "start_line": 539 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> a: c -> s: FStar.Seq.Base.seq c -> FStar.Pervasives.Lemma (requires FStar.Matrix.is_fully_distributive mul add /\ FStar.Matrix.is_absorber (CM?.unit add) mul) (ensures EQ?.eq eq (CM?.mult mul a (FStar.Seq.Permutation.foldm_snoc add s)) (FStar.Seq.Permutation.foldm_snoc add (FStar.Matrix.const_op_seq mul a s))) (decreases FStar.Seq.Base.length s)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Seq.Base.seq", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "Prims.unit", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__congruence", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "FStar.Seq.Base.lemma_eq_elim", "FStar.Matrix.const_op_seq", "FStar.Matrix.foldm_snoc_distributivity_left", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.Seq.Properties.snoc", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Seq.Properties.un_snoc", "FStar.Seq.Permutation.foldm_snoc", "FStar.Pervasives.Native.tuple3", "FStar.Pervasives.Native.Mktuple3", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "Prims.bool", "Prims.l_and", "FStar.Matrix.is_fully_distributive", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec foldm_snoc_distributivity_left #c #eq (mul: CE.cm c eq) (add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a (SP.foldm_snoc add s)) `eq.eq` (SP.foldm_snoc add (const_op_seq mul a s)) ) (decreases SB.length s) =
if SB.length s > 0 then let ( + ), ( * ), ( = ) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a * sum liat) rhs_last (sum rhs_liat); eq.transitivity (a * sum s) (rhs_last + a * sum liat) (rhs_last + sum rhs_liat)
false
Demo.Deps.fst
Demo.Deps.buffer
val buffer : a: Type0 -> Type0
let buffer = B.buffer
{ "file_name": "examples/demos/low-star/Demo.Deps.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 26, "start_col": 0, "start_line": 26 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Demo.Deps open LowStar.Buffer open FStar.UInt32 module B = LowStar.Buffer module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack open FStar.HyperStack.ST effect St (a:Type) = FStar.HyperStack.ST.St a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Demo.Deps.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type0 -> Type0
Prims.Tot
[ "total" ]
[]
[ "LowStar.Buffer.buffer" ]
[]
false
false
false
true
true
let buffer =
B.buffer
false
FStar.Matrix.fst
FStar.Matrix.terminal_case_two_aux
val terminal_case_two_aux (#c #eq: _) (#p: pos) (#n: _) (cm: CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m = 1}) : Lemma (ensures (SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m * n))) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) ))
val terminal_case_two_aux (#c #eq: _) (#p: pos) (#n: _) (cm: CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m = 1}) : Lemma (ensures (SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m * n))) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) ))
let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 205, "start_col": 0, "start_line": 190 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> generator: FStar.Matrix.matrix_generator c p n -> m: Prims.pos{m = 1} -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.slice (FStar.Matrix.seq_of_matrix (FStar.Matrix.init generator)) 0 (m * n))) (FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init m (fun i -> FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init n (generator i))) )))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix_generator", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__symmetry", "FStar.Seq.Permutation.foldm_snoc", "FStar.Seq.Base.init", "FStar.IntegerIntervals.under", "Prims.unit", "FStar.Seq.Base.lemma_eq_elim", "FStar.Classical.forall_intro", "Prims.eq2", "FStar.Seq.Base.index", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Math.Lemmas.small_mod", "FStar.Math.Lemmas.small_div", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice", "FStar.Matrix.matrix_seq", "Prims._assert", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Seq.Permutation.foldm_snoc_singleton", "FStar.Matrix.seq_of_matrix", "FStar.Matrix.init", "FStar.Mul.op_Star" ]
[]
false
false
true
false
false
let terminal_case_two_aux #c #eq (#p: pos) #n (cm: CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m = 1}) : Lemma (ensures (SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m * n))) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) )) =
SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert ((SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) `eq.eq` (SP.foldm_snoc cm (SB.init n (generator 0)))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line)
false
Demo.Deps.fst
Demo.Deps.uint32
val uint32 : Prims.eqtype
let uint32 = U32.t
{ "file_name": "examples/demos/low-star/Demo.Deps.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 18, "end_line": 28, "start_col": 0, "start_line": 28 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Demo.Deps open LowStar.Buffer open FStar.UInt32 module B = LowStar.Buffer module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack open FStar.HyperStack.ST effect St (a:Type) = FStar.HyperStack.ST.St a let buffer = B.buffer
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Demo.Deps.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.eqtype
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.t" ]
[]
false
false
false
true
false
let uint32 =
U32.t
false
FStar.Matrix.fst
FStar.Matrix.matrix_fold_equals_double_fold
val matrix_fold_equals_double_fold (#c #eq: _) (#p: pos) (#n: _) (cm: CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m <= p}) : Lemma (ensures (SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m * n))) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))))) (decreases m)
val matrix_fold_equals_double_fold (#c #eq: _) (#p: pos) (#n: _) (cm: CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m <= p}) : Lemma (ensures (SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m * n))) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))))) (decreases m)
let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 92, "end_line": 285, "start_col": 0, "start_line": 242 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 15, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> generator: FStar.Matrix.matrix_generator c p n -> m: Prims.pos{m <= p} -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.slice (FStar.Matrix.seq_of_matrix (FStar.Matrix.init generator)) 0 (m * n))) (FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init m (fun i -> FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init n (generator i)))))) (decreases m)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix_generator", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "FStar.Matrix.terminal_case_aux", "Prims.bool", "FStar.Matrix.terminal_case_two_aux", "FStar.Seq.Base.seq", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Seq.Permutation.foldm_snoc", "Prims.unit", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__congruence", "FStar.Seq.Base.init", "Prims.op_Subtraction", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__commutativity", "FStar.Seq.Base.lemma_eq_elim", "FStar.Matrix.seq_eq_from_member_eq", "FStar.IntegerIntervals.under", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.index", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Seq.Permutation.foldm_snoc_decomposition", "FStar.Matrix.liat_equals_init", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.snoc", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Seq.Properties.un_snoc", "FStar.Classical.forall_intro", "FStar.Matrix.math_aux_4", "FStar.Matrix.math_aux_3", "FStar.Matrix.math_aux_2", "FStar.Seq.Base.lemma_index_app2", "Prims.op_Addition", "FStar.Mul.op_Star", "FStar.Matrix.matrix_fold_equals_double_fold", "FStar.Seq.Permutation.foldm_snoc_append", "FStar.Seq.Base.append", "Prims._assert", "Prims.l_or", "Prims.op_GreaterThan", "Prims.op_GreaterThanOrEqual", "FStar.Seq.Base.length", "FStar.Seq.Base.lemma_len_slice", "FStar.Matrix.matrix_seq", "FStar.Seq.Base.slice", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Matrix.seq_of_matrix", "FStar.Matrix.init" ]
[ "recursion" ]
false
false
true
false
false
let rec matrix_fold_equals_double_fold #c #eq (#p: pos) #n (cm: CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m <= p}) : Lemma (ensures (SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m * n))) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))))) (decreases m) =
if p = 1 then terminal_case_aux cm generator m else if m = 1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m * n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m - 1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m - 1) * n) in let last_row = SB.slice (matrix_seq generator) ((m - 1) * n) (m * n) in SB.lemma_len_slice (matrix_seq generator) ((m - 1) * n) (m * n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m - 1); SB.lemma_eq_elim (SB.init (m - 1) rhs_seq_gen) (SB.init (m - 1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m - 1) j) = SB.lemma_index_app2 submatrix last_row (j + ((m - 1) * n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m - 1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m - 1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs ((SP.foldm_snoc cm submatrix) `cm.mult` (SP.foldm_snoc cm last_row)) ((SP.foldm_snoc cm last_row) `cm.mult` (SP.foldm_snoc cm submatrix)); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m - 1) rhs_seq_subgen)); eq.transitivity lhs ((SP.foldm_snoc cm last_row) `cm.mult` (SP.foldm_snoc cm submatrix)) rhs
false
FStar.Matrix.fst
FStar.Matrix.foldm_snoc_distributivity_right
val foldm_snoc_distributivity_right (#c #eq: _) (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult (SP.foldm_snoc add s) a) `eq.eq` (SP.foldm_snoc add (seq_op_const mul s a)) ) (decreases SB.length s)
val foldm_snoc_distributivity_right (#c #eq: _) (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult (SP.foldm_snoc add s) a) `eq.eq` (SP.foldm_snoc add (seq_op_const mul s a)) ) (decreases SB.length s)
let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 79, "end_line": 569, "start_col": 0, "start_line": 555 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> s: FStar.Seq.Base.seq c -> a: c -> FStar.Pervasives.Lemma (requires FStar.Matrix.is_fully_distributive mul add /\ FStar.Matrix.is_absorber (CM?.unit add) mul) (ensures EQ?.eq eq (CM?.mult mul (FStar.Seq.Permutation.foldm_snoc add s) a) (FStar.Seq.Permutation.foldm_snoc add (FStar.Matrix.seq_op_const mul s a))) (decreases FStar.Seq.Base.length s)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Seq.Base.seq", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "Prims.unit", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__congruence", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "FStar.Seq.Base.lemma_eq_elim", "FStar.Matrix.seq_op_const", "FStar.Matrix.foldm_snoc_distributivity_right", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.Seq.Properties.snoc", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Seq.Properties.un_snoc", "FStar.Seq.Permutation.foldm_snoc", "FStar.Pervasives.Native.tuple3", "FStar.Pervasives.Native.Mktuple3", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "Prims.bool", "Prims.l_and", "FStar.Matrix.is_fully_distributive", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec foldm_snoc_distributivity_right #c #eq (mul: CE.cm c eq) (add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult (SP.foldm_snoc add s) a) `eq.eq` (SP.foldm_snoc add (seq_op_const mul s a)) ) (decreases SB.length s) =
if SB.length s > 0 then let ( + ), ( * ), ( = ) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat * a) rhs_last (sum rhs_liat); eq.transitivity (sum s * a) (rhs_last + sum liat * a) (rhs_last + sum rhs_liat)
false
FStar.Matrix.fst
FStar.Matrix.matrix_mul_ijth_as_sum
val matrix_mul_ijth_as_sum (#c:_) (#eq:_) (#m #n #p:pos) (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k))))
val matrix_mul_ijth_as_sum (#c:_) (#eq:_) (#m #n #p:pos) (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k))))
let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 51, "end_line": 597, "start_col": 0, "start_line": 590 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mx: FStar.Matrix.matrix c m n -> my: FStar.Matrix.matrix c n p -> i: FStar.IntegerIntervals.under m -> k: FStar.IntegerIntervals.under p -> FStar.Pervasives.Lemma (ensures FStar.Matrix.ijth (FStar.Matrix.matrix_mul add mul mx my) i k == FStar.Seq.Permutation.foldm_snoc add (FStar.Seq.Base.init n (fun j -> CM?.mult mul (FStar.Matrix.ijth mx i j) (FStar.Matrix.ijth my j k))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix", "FStar.IntegerIntervals.under", "FStar.Matrix.seq_of_products_lemma", "FStar.Matrix.row", "FStar.Matrix.col", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.Matrix.ijth", "FStar.Matrix.matrix_mul", "FStar.Seq.Permutation.foldm_snoc", "FStar.Matrix.seq_of_products", "FStar.Seq.Base.seq", "FStar.Seq.Base.init", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let matrix_mul_ijth_as_sum #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) =
let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r
false
Demo.Deps.fst
Demo.Deps.uint8
val uint8 : Prims.eqtype
let uint8 = U8.t
{ "file_name": "examples/demos/low-star/Demo.Deps.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 16, "end_line": 29, "start_col": 0, "start_line": 29 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Demo.Deps open LowStar.Buffer open FStar.UInt32 module B = LowStar.Buffer module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack open FStar.HyperStack.ST effect St (a:Type) = FStar.HyperStack.ST.St a let buffer = B.buffer
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Demo.Deps.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.eqtype
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.t" ]
[]
false
false
false
true
false
let uint8 =
U8.t
false
Demo.Deps.fst
Demo.Deps.modifies
val modifies : b: LowStar.Buffer.buffer 'a -> h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> Type0
let modifies (b:B.buffer 'a) h0 h1 = modifies (loc_buffer b) h0 h1
{ "file_name": "examples/demos/low-star/Demo.Deps.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 66, "end_line": 36, "start_col": 0, "start_line": 36 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Demo.Deps open LowStar.Buffer open FStar.UInt32 module B = LowStar.Buffer module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack open FStar.HyperStack.ST effect St (a:Type) = FStar.HyperStack.ST.St a let buffer = B.buffer let uint32 = U32.t let uint8 = U8.t unfold let length (#a:Type) (b:buffer a) : GTot U32.t = U32.uint_to_t (B.length b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Demo.Deps.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowStar.Buffer.buffer 'a -> h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> Type0
Prims.Tot
[ "total" ]
[]
[ "LowStar.Buffer.buffer", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_buffer", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
true
true
let modifies (b: B.buffer 'a) h0 h1 =
modifies (loc_buffer b) h0 h1
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.length
val length : #ty: Type -> seq ty -> nat
val length : #ty: Type -> seq ty -> nat
let length = FLT.length
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 23, "end_line": 53, "start_col": 0, "start_line": 53 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: FStar.Sequence.Base.seq ty -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "FStar.List.Tot.Base.length" ]
[]
false
false
false
true
false
let length =
FLT.length
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.empty
val empty : #ty: Type -> seq ty
val empty : #ty: Type -> seq ty
let empty (#ty: Type) : seq ty = []
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 59, "start_col": 0, "start_line": 59 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Sequence.Base.seq ty
Prims.Tot
[ "total" ]
[]
[ "Prims.Nil", "FStar.Sequence.Base.seq" ]
[]
false
false
false
true
false
let empty (#ty: Type) : seq ty =
[]
false
FStar.Matrix.fst
FStar.Matrix.double_foldm_snoc_of_equal_generators
val double_foldm_snoc_of_equal_generators (#c #eq: _) (#m #n: pos) (cm: CE.cm c eq) (f g: (under m -> under n -> c)) : Lemma (requires (forall (i: under m) (j: under n). (f i j) `eq.eq` (g i j))) (ensures (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))))
val double_foldm_snoc_of_equal_generators (#c #eq: _) (#m #n: pos) (cm: CE.cm c eq) (f g: (under m -> under n -> c)) : Lemma (requires (forall (i: under m) (j: under n). (f i j) `eq.eq` (g i j))) (ensures (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))))
let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j)))
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 112, "end_line": 660, "start_col": 0, "start_line": 649 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> f: (_: FStar.IntegerIntervals.under m -> _: FStar.IntegerIntervals.under n -> c) -> g: (_: FStar.IntegerIntervals.under m -> _: FStar.IntegerIntervals.under n -> c) -> FStar.Pervasives.Lemma (requires forall (i: FStar.IntegerIntervals.under m) (j: FStar.IntegerIntervals.under n). EQ?.eq eq (f i j) (g i j)) (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init m (fun i -> FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init n (fun j -> f i j)))) ) (FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init m (fun i -> FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init n (fun j -> g i j)))) ))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.IntegerIntervals.under", "FStar.Seq.Permutation.foldm_snoc_of_equal_inits", "FStar.Seq.Permutation.foldm_snoc", "FStar.Seq.Base.init", "Prims.unit", "FStar.Classical.forall_intro", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Prims.l_Forall" ]
[]
false
false
true
false
false
let double_foldm_snoc_of_equal_generators #c #eq (#m: pos) (#n: pos) (cm: CE.cm c eq) (f: (under m -> under n -> c)) (g: (under m -> under n -> c)) : Lemma (requires (forall (i: under m) (j: under n). (f i j) `eq.eq` (g i j))) (ensures (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j)))))) =
let aux i : Lemma ((SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) `eq.eq` (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j)))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j)))
false
FStar.Matrix.fst
FStar.Matrix.seq_of_products_zeroes_lemma
val seq_of_products_zeroes_lemma (#c #eq #m: _) (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c {SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z)))
val seq_of_products_zeroes_lemma (#c #eq #m: _) (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c {SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z)))
let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 94, "end_line": 753, "start_col": 0, "start_line": 749 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> z: c{FStar.Matrix.is_absorber z mul} -> s: FStar.Seq.Base.seq c {FStar.Seq.Base.length s == m} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Equiv.eq_of_seq eq (FStar.Matrix.seq_of_products mul (FStar.Seq.Base.create m z) s) (FStar.Seq.Base.create m z))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.nat", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.is_absorber", "FStar.Seq.Base.seq", "Prims.eq2", "FStar.Seq.Base.length", "FStar.Seq.Equiv.eq_of_seq_from_element_equality", "FStar.Matrix.seq_of_products", "FStar.Seq.Base.create", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Seq.Equiv.eq_of_seq", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c {SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) =
eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z)
false
Demo.Deps.fst
Demo.Deps.live
val live : h: FStar.Monotonic.HyperStack.mem -> b: Demo.Deps.buffer 'a -> Type0
let live h (b:buffer 'a) = B.live h b
{ "file_name": "examples/demos/low-star/Demo.Deps.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 39, "start_col": 0, "start_line": 39 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Demo.Deps open LowStar.Buffer open FStar.UInt32 module B = LowStar.Buffer module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack open FStar.HyperStack.ST effect St (a:Type) = FStar.HyperStack.ST.St a let buffer = B.buffer let uint32 = U32.t let uint8 = U8.t unfold let length (#a:Type) (b:buffer a) : GTot U32.t = U32.uint_to_t (B.length b) unfold let modifies (b:B.buffer 'a) h0 h1 = modifies (loc_buffer b) h0 h1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Demo.Deps.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> b: Demo.Deps.buffer 'a -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "Demo.Deps.buffer", "LowStar.Monotonic.Buffer.live", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
true
true
let live h (b: buffer 'a) =
B.live h b
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.singleton
val singleton : #ty: Type -> ty -> seq ty
val singleton : #ty: Type -> ty -> seq ty
let singleton (#ty: Type) (v: ty) : seq ty = [v]
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 66, "start_col": 0, "start_line": 65 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: ty -> FStar.Sequence.Base.seq ty
Prims.Tot
[ "total" ]
[]
[ "Prims.Cons", "Prims.Nil", "FStar.Sequence.Base.seq" ]
[]
false
false
false
true
false
let singleton (#ty: Type) (v: ty) : seq ty =
[v]
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.build
val build: #ty: Type -> seq ty -> ty -> seq ty
val build: #ty: Type -> seq ty -> ty -> seq ty
let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v]
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 18, "end_line": 80, "start_col": 0, "start_line": 79 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Sequence.Base.seq ty -> v: ty -> FStar.Sequence.Base.seq ty
Prims.Tot
[ "total" ]
[]
[ "FStar.Sequence.Base.seq", "FStar.List.Tot.Base.append", "Prims.Cons", "Prims.Nil" ]
[]
false
false
false
true
false
let build (#ty: Type) (s: seq ty) (v: ty) : seq ty =
FLT.append s [v]
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.append
val append: #ty: Type -> seq ty -> seq ty -> seq ty
val append: #ty: Type -> seq ty -> seq ty -> seq ty
let append = FLT.append
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 23, "end_line": 86, "start_col": 0, "start_line": 86 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: FStar.Sequence.Base.seq ty -> _: FStar.Sequence.Base.seq ty -> FStar.Sequence.Base.seq ty
Prims.Tot
[ "total" ]
[]
[ "FStar.List.Tot.Base.append" ]
[]
false
false
false
true
false
let append =
FLT.append
false
FStar.Matrix.fst
FStar.Matrix.matrix_right_mul_identity_aux_0
val matrix_right_mul_identity_aux_0 (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: nat{k = 0}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth mx i k) `mul.mult` (ijth (matrix_mul_unit add mul m) k j))) ) `eq.eq` add.unit)
val matrix_right_mul_identity_aux_0 (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: nat{k = 0}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth mx i k) `mul.mult` (ijth (matrix_mul_unit add mul m) k j))) ) `eq.eq` add.unit)
let matrix_right_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) = eq.reflexivity add.unit
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 790, "start_col": 0, "start_line": 781 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i) let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z) let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). SB.index zeroes i `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) = if (SB.length zeroes < 1) then begin assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit end else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit let matrix_mul_unit_ijth #c #eq (add mul: CE.cm c eq) m (i j: under m) : Lemma (ijth (matrix_mul_unit add mul m) i j == (if i=j then mul.unit else add.unit))=() let last_equals_index #c (s: SB.seq c{SB.length s > 0}) : Lemma ((snd (SProp.un_snoc s)) == SB.index s (SB.length s - 1)) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq {FStar.Matrix.is_absorber (CM?.unit add) mul} -> mx: FStar.Matrix.matrix c m m -> i: FStar.IntegerIntervals.under m -> j: FStar.IntegerIntervals.under m -> k: Prims.nat{k = 0} -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc add (FStar.Seq.Base.init k (fun k -> CM?.mult mul (FStar.Matrix.ijth mx i k) (FStar.Matrix.ijth (FStar.Matrix.matrix_mul_unit add mul m) k j)))) (CM?.unit add))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "FStar.Matrix.matrix", "FStar.IntegerIntervals.under", "Prims.nat", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Seq.Permutation.foldm_snoc", "FStar.Seq.Base.init", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Matrix.ijth", "FStar.Matrix.matrix_mul_unit", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let matrix_right_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i: under m) (j: under m) (k: nat{k = 0}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth mx i k) `mul.mult` (ijth (matrix_mul_unit add mul m) k j))) ) `eq.eq` add.unit) =
eq.reflexivity add.unit
false
Demo.Deps.fst
Demo.Deps.lbuffer
val lbuffer : len: FStar.UInt32.t -> a: Type0 -> Type0
let lbuffer (len:U32.t) (a:Type) = b:B.buffer a{len <=^ length b}
{ "file_name": "examples/demos/low-star/Demo.Deps.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 65, "end_line": 74, "start_col": 0, "start_line": 74 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Demo.Deps open LowStar.Buffer open FStar.UInt32 module B = LowStar.Buffer module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack open FStar.HyperStack.ST effect St (a:Type) = FStar.HyperStack.ST.St a let buffer = B.buffer let uint32 = U32.t let uint8 = U8.t unfold let length (#a:Type) (b:buffer a) : GTot U32.t = U32.uint_to_t (B.length b) unfold let modifies (b:B.buffer 'a) h0 h1 = modifies (loc_buffer b) h0 h1 unfold let live h (b:buffer 'a) = B.live h b unfold let ( .() ) (b:buffer 'a) (i:U32.t) : ST 'a (requires fun h -> live h b /\ i <^ length b) (ensures (fun h y h' -> h == h' /\ y == Seq.index (as_seq h b) (U32.v i))) = B.index b i unfold let ( .()<- ) (b:buffer 'a) (i:U32.t) (v:'a) : ST unit (requires (fun h -> live h b /\ i <^ length b)) (ensures (fun h _ h' -> modifies b h h' /\ live h' b /\ as_seq h' b == Seq.upd (as_seq h b) (U32.v i) v)) = B.upd b i v unfold let suffix (#a:Type) (b:buffer a) (from:U32.t) (len:U32.t{len <=^ length b /\ from <=^ len}) : ST (buffer a) (requires (fun h -> U32.v from + U32.v len <= U32.v (length b) /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub _ b from (len -^ from))) = B.sub b from (len -^ from) unfold let disjoint (b0 b1:B.buffer 'a) = B.disjoint b0 b1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Demo.Deps.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: FStar.UInt32.t -> a: Type0 -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.t", "LowStar.Buffer.buffer", "Prims.b2t", "FStar.UInt32.op_Less_Equals_Hat", "Demo.Deps.length" ]
[]
false
false
false
true
true
let lbuffer (len: U32.t) (a: Type) =
b: B.buffer a {len <=^ length b}
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.take
val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty
val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty
let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 8, "end_line": 109, "start_col": 0, "start_line": 107 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Sequence.Base.seq ty -> howMany: Prims.nat{howMany <= FStar.Sequence.Base.length s} -> FStar.Sequence.Base.seq ty
Prims.Tot
[ "total" ]
[]
[ "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.List.Tot.Base.splitAt" ]
[]
false
false
false
false
false
let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty =
let result, _ = FLT.splitAt howMany s in result
false
Demo.Deps.fst
Demo.Deps.disjoint
val disjoint : b0: LowStar.Buffer.buffer 'a -> b1: LowStar.Buffer.buffer 'a -> Type0
let disjoint (b0 b1:B.buffer 'a) = B.disjoint b0 b1
{ "file_name": "examples/demos/low-star/Demo.Deps.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 51, "end_line": 72, "start_col": 0, "start_line": 72 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Demo.Deps open LowStar.Buffer open FStar.UInt32 module B = LowStar.Buffer module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack open FStar.HyperStack.ST effect St (a:Type) = FStar.HyperStack.ST.St a let buffer = B.buffer let uint32 = U32.t let uint8 = U8.t unfold let length (#a:Type) (b:buffer a) : GTot U32.t = U32.uint_to_t (B.length b) unfold let modifies (b:B.buffer 'a) h0 h1 = modifies (loc_buffer b) h0 h1 unfold let live h (b:buffer 'a) = B.live h b unfold let ( .() ) (b:buffer 'a) (i:U32.t) : ST 'a (requires fun h -> live h b /\ i <^ length b) (ensures (fun h y h' -> h == h' /\ y == Seq.index (as_seq h b) (U32.v i))) = B.index b i unfold let ( .()<- ) (b:buffer 'a) (i:U32.t) (v:'a) : ST unit (requires (fun h -> live h b /\ i <^ length b)) (ensures (fun h _ h' -> modifies b h h' /\ live h' b /\ as_seq h' b == Seq.upd (as_seq h b) (U32.v i) v)) = B.upd b i v unfold let suffix (#a:Type) (b:buffer a) (from:U32.t) (len:U32.t{len <=^ length b /\ from <=^ len}) : ST (buffer a) (requires (fun h -> U32.v from + U32.v len <= U32.v (length b) /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub _ b from (len -^ from))) = B.sub b from (len -^ from)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Demo.Deps.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b0: LowStar.Buffer.buffer 'a -> b1: LowStar.Buffer.buffer 'a -> Type0
Prims.Tot
[ "total" ]
[]
[ "LowStar.Buffer.buffer", "LowStar.Monotonic.Buffer.disjoint", "LowStar.Buffer.trivial_preorder" ]
[]
false
false
false
true
true
let disjoint (b0 b1: B.buffer 'a) =
B.disjoint b0 b1
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.drop
val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty
val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty
let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 8, "end_line": 117, "start_col": 0, "start_line": 115 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Sequence.Base.seq ty -> howMany: Prims.nat{howMany <= FStar.Sequence.Base.length s} -> FStar.Sequence.Base.seq ty
Prims.Tot
[ "total" ]
[]
[ "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.List.Tot.Base.splitAt" ]
[]
false
false
false
false
false
let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty =
let _, result = FLT.splitAt howMany s in result
false
FStar.Matrix.fst
FStar.Matrix.matrix_left_mul_identity_aux_0
val matrix_left_mul_identity_aux_0 (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: nat{k = 0}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth (matrix_mul_unit add mul m) i k) `mul.mult` (ijth mx k j))) ) `eq.eq` add.unit)
val matrix_left_mul_identity_aux_0 (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: nat{k = 0}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth (matrix_mul_unit add mul m) i k) `mul.mult` (ijth mx k j))) ) `eq.eq` add.unit)
let matrix_left_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = eq.reflexivity add.unit
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 917, "start_col": 0, "start_line": 910 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i) let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z) let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). SB.index zeroes i `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) = if (SB.length zeroes < 1) then begin assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit end else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit let matrix_mul_unit_ijth #c #eq (add mul: CE.cm c eq) m (i j: under m) : Lemma (ijth (matrix_mul_unit add mul m) i j == (if i=j then mul.unit else add.unit))=() let last_equals_index #c (s: SB.seq c{SB.length s > 0}) : Lemma ((snd (SProp.un_snoc s)) == SB.index s (SB.length s - 1)) = () let matrix_right_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_right_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=j}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) (decreases k) = if k = 0 then matrix_right_mul_identity_aux_0 add mul mx i j k else let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit let matrix_right_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j j; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_right_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1){k>j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) (decreases k) = if (k-1) > j+1 then matrix_right_mul_identity_aux_3 add mul mx i j (k-1) else matrix_right_mul_identity_aux_2 add mul mx i j (k-1); let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let subgen (i: under (k)) = gen i in let full = SB.init k gen in SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j) let matrix_right_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` (if k>j then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_right_mul_identity_aux_0 add mul mx i j k else if k <= j then matrix_right_mul_identity_aux_1 add mul mx i j k else if k = j+1 then matrix_right_mul_identity_aux_2 add mul mx i j k else matrix_right_mul_identity_aux_3 add mul mx i j k
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq {FStar.Matrix.is_absorber (CM?.unit add) mul} -> mx: FStar.Matrix.matrix c m m -> i: FStar.IntegerIntervals.under m -> j: FStar.IntegerIntervals.under m -> k: Prims.nat{k = 0} -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc add (FStar.Seq.Base.init k (fun k -> CM?.mult mul (FStar.Matrix.ijth (FStar.Matrix.matrix_mul_unit add mul m) i k) (FStar.Matrix.ijth mx k j)))) (CM?.unit add))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "FStar.Matrix.matrix", "FStar.IntegerIntervals.under", "Prims.nat", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Seq.Permutation.foldm_snoc", "FStar.Seq.Base.init", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Matrix.ijth", "FStar.Matrix.matrix_mul_unit", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let matrix_left_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i: under m) (j: under m) (k: nat{k = 0}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth (matrix_mul_unit add mul m) i k) `mul.mult` (ijth mx k j))) ) `eq.eq` add.unit) =
eq.reflexivity add.unit
false
FStar.Matrix.fst
FStar.Matrix.foldm_snoc_zero_lemma
val foldm_snoc_zero_lemma (#c #eq: _) (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). (SB.index zeroes i) `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes)
val foldm_snoc_zero_lemma (#c #eq: _) (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). (SB.index zeroes i) `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes)
let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). SB.index zeroes i `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) = if (SB.length zeroes < 1) then begin assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit end else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 770, "start_col": 0, "start_line": 755 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i) let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> zeroes: FStar.Seq.Base.seq c -> FStar.Pervasives.Lemma (requires forall (i: FStar.IntegerIntervals.under (FStar.Seq.Base.length zeroes)). EQ?.eq eq (FStar.Seq.Base.index zeroes i) (CM?.unit add)) (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc add zeroes) (CM?.unit add)) (decreases FStar.Seq.Base.length zeroes)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Seq.Base.seq", "Prims.op_LessThan", "FStar.Seq.Base.length", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "FStar.Seq.Permutation.foldm_snoc", "Prims.bool", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Seq.Permutation.foldm_snoc_decomposition", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__identity", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__congruence", "FStar.Matrix.foldm_snoc_zero_lemma", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Properties.snoc", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Seq.Properties.un_snoc", "Prims.l_Forall", "FStar.IntegerIntervals.under", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Seq.Base.index", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). (SB.index zeroes i) `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) =
if (SB.length zeroes < 1) then (assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit) else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.contains
val contains: #ty: Type -> seq ty -> ty -> Type0
val contains: #ty: Type -> seq ty -> ty -> Type0
let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 14, "end_line": 101, "start_col": 0, "start_line": 100 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Sequence.Base.seq ty -> v: ty -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Sequence.Base.seq", "FStar.List.Tot.Base.memP" ]
[]
false
false
false
true
true
let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 =
FLT.memP v s
false
FStar.Matrix.fst
FStar.Matrix.matrix_mul_unit_row_lemma
val matrix_mul_unit_row_lemma (#c #eq m: _) (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m - i - 1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m - i - 1) add.unit)))
val matrix_mul_unit_row_lemma (#c #eq m: _) (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m - i - 1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m - i - 1) add.unit)))
let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 733, "start_col": 0, "start_line": 721 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Prims.nat -> add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> i: FStar.IntegerIntervals.under m -> FStar.Pervasives.Lemma (ensures FStar.Matrix.row (FStar.Matrix.matrix_mul_unit add mul m) i == FStar.Seq.Base.append (FStar.Seq.Base.create i (CM?.unit add)) (FStar.Seq.Base.append (FStar.Seq.Base.create 1 (CM?.unit mul)) (FStar.Seq.Base.create (m - i - 1) (CM?.unit add))) /\ FStar.Matrix.row (FStar.Matrix.matrix_mul_unit add mul m) i == FStar.Seq.Base.append (FStar.Seq.Base.append (FStar.Seq.Base.create i (CM?.unit add)) (FStar.Seq.Base.create 1 (CM?.unit mul))) (FStar.Seq.Base.create (m - i - 1) (CM?.unit add)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.nat", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.IntegerIntervals.under", "FStar.Seq.Base.lemma_eq_elim", "FStar.Seq.Base.append", "FStar.Seq.Base.create", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "Prims.op_Subtraction", "FStar.Matrix.row", "FStar.Matrix.matrix_mul_unit", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let matrix_mul_unit_row_lemma #c #eq m (add: CE.cm c eq) (mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m - i - 1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m - i - 1) add.unit))) =
SB.lemma_eq_elim (((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m - i - 1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m - i - 1) add.unit))) (row (matrix_mul_unit add mul m) i)
false
FStar.Matrix.fst
FStar.Matrix.matrix_right_identity_aux
val matrix_right_identity_aux (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: under (m + 1)) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth mx i k) `mul.mult` (ijth (matrix_mul_unit add mul m) k j) ))) `eq.eq` (if k > j then ijth mx i j else add.unit)) (decreases k)
val matrix_right_identity_aux (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: under (m + 1)) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth mx i k) `mul.mult` (ijth (matrix_mul_unit add mul m) k j) ))) `eq.eq` (if k > j then ijth mx i j else add.unit)) (decreases k)
let matrix_right_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` (if k>j then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_right_mul_identity_aux_0 add mul mx i j k else if k <= j then matrix_right_mul_identity_aux_1 add mul mx i j k else if k = j+1 then matrix_right_mul_identity_aux_2 add mul mx i j k else matrix_right_mul_identity_aux_3 add mul mx i j k
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 908, "start_col": 0, "start_line": 895 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i) let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z) let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). SB.index zeroes i `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) = if (SB.length zeroes < 1) then begin assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit end else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit let matrix_mul_unit_ijth #c #eq (add mul: CE.cm c eq) m (i j: under m) : Lemma (ijth (matrix_mul_unit add mul m) i j == (if i=j then mul.unit else add.unit))=() let last_equals_index #c (s: SB.seq c{SB.length s > 0}) : Lemma ((snd (SProp.un_snoc s)) == SB.index s (SB.length s - 1)) = () let matrix_right_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_right_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=j}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) (decreases k) = if k = 0 then matrix_right_mul_identity_aux_0 add mul mx i j k else let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit let matrix_right_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j j; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_right_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1){k>j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) (decreases k) = if (k-1) > j+1 then matrix_right_mul_identity_aux_3 add mul mx i j (k-1) else matrix_right_mul_identity_aux_2 add mul mx i j (k-1); let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let subgen (i: under (k)) = gen i in let full = SB.init k gen in SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq {FStar.Matrix.is_absorber (CM?.unit add) mul} -> mx: FStar.Matrix.matrix c m m -> i: FStar.IntegerIntervals.under m -> j: FStar.IntegerIntervals.under m -> k: FStar.IntegerIntervals.under (m + 1) -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc add (FStar.Seq.Base.init k (fun k -> CM?.mult mul (FStar.Matrix.ijth mx i k) (FStar.Matrix.ijth (FStar.Matrix.matrix_mul_unit add mul m) k j)))) (match k > j with | true -> FStar.Matrix.ijth mx i j | _ -> CM?.unit add)) (decreases k)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "FStar.Matrix.matrix", "FStar.IntegerIntervals.under", "Prims.op_Addition", "Prims.op_Equality", "Prims.int", "FStar.Matrix.matrix_right_mul_identity_aux_0", "Prims.bool", "Prims.op_LessThanOrEqual", "FStar.Matrix.matrix_right_mul_identity_aux_1", "FStar.Matrix.matrix_right_mul_identity_aux_2", "FStar.Matrix.matrix_right_mul_identity_aux_3", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Seq.Permutation.foldm_snoc", "FStar.Seq.Base.init", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Matrix.ijth", "FStar.Matrix.matrix_mul_unit", "Prims.op_GreaterThan", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let matrix_right_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i: under m) (j: under m) (k: under (m + 1)) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth mx i k) `mul.mult` (ijth (matrix_mul_unit add mul m) k j) ))) `eq.eq` (if k > j then ijth mx i j else add.unit)) (decreases k) =
if k = 0 then matrix_right_mul_identity_aux_0 add mul mx i j k else if k <= j then matrix_right_mul_identity_aux_1 add mul mx i j k else if k = j + 1 then matrix_right_mul_identity_aux_2 add mul mx i j k else matrix_right_mul_identity_aux_3 add mul mx i j k
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.rank
val rank: #ty: Type -> ty -> ty
val rank: #ty: Type -> ty -> ty
let rank (#ty: Type) (v: ty) = v
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 143, "start_col": 0, "start_line": 143 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: ty -> ty
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
true
false
let rank (#ty: Type) (v: ty) =
v
false
FStar.Matrix.fst
FStar.Matrix.matrix_mul_unit_col_lemma
val matrix_mul_unit_col_lemma (#c #eq m: _) (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m - i - 1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m - i - 1) add.unit)))
val matrix_mul_unit_col_lemma (#c #eq m: _) (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m - i - 1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m - i - 1) add.unit)))
let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 747, "start_col": 0, "start_line": 735 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Prims.nat -> add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> i: FStar.IntegerIntervals.under m -> FStar.Pervasives.Lemma (ensures FStar.Matrix.col (FStar.Matrix.matrix_mul_unit add mul m) i == FStar.Seq.Base.append (FStar.Seq.Base.create i (CM?.unit add)) (FStar.Seq.Base.append (FStar.Seq.Base.create 1 (CM?.unit mul)) (FStar.Seq.Base.create (m - i - 1) (CM?.unit add))) /\ FStar.Matrix.col (FStar.Matrix.matrix_mul_unit add mul m) i == FStar.Seq.Base.append (FStar.Seq.Base.append (FStar.Seq.Base.create i (CM?.unit add)) (FStar.Seq.Base.create 1 (CM?.unit mul))) (FStar.Seq.Base.create (m - i - 1) (CM?.unit add)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.nat", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.IntegerIntervals.under", "FStar.Seq.Base.lemma_eq_elim", "FStar.Seq.Base.append", "FStar.Seq.Base.create", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "Prims.op_Subtraction", "FStar.Matrix.col", "FStar.Matrix.matrix_mul_unit", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let matrix_mul_unit_col_lemma #c #eq m (add: CE.cm c eq) (mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m - i - 1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m - i - 1) add.unit))) =
SB.lemma_eq_elim (((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m - i - 1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m - i - 1) add.unit))) (col (matrix_mul_unit add mul m) i)
false
FStar.Matrix.fst
FStar.Matrix.matrix_mul_left_identity
val matrix_mul_left_identity (#c:_) (#eq:_) (#m: pos) (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul (matrix_mul_unit add mul m) mx `(matrix_equiv eq m m).eq` mx)
val matrix_mul_left_identity (#c:_) (#eq:_) (#m: pos) (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul (matrix_mul_unit add mul m) mx `(matrix_equiv eq m m).eq` mx)
let matrix_mul_left_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul (matrix_mul_unit add mul m) mx `matrix_eq_fun eq` mx) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul unit mx in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let aux (i j: under m) : squash (ijth mxu i j $=$ ijth mx i j) = let gen (k: under m) = ijth unit i k * ijth mx k j in matrix_mul_ijth_eq_sum_of_seq_for_init add mul unit mx i j gen; let seq = SB.init m gen in matrix_left_identity_aux add mul mx i j m in matrix_equiv_from_proof eq mxu mx aux
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 1060, "start_col": 0, "start_line": 1046 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i) let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z) let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). SB.index zeroes i `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) = if (SB.length zeroes < 1) then begin assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit end else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit let matrix_mul_unit_ijth #c #eq (add mul: CE.cm c eq) m (i j: under m) : Lemma (ijth (matrix_mul_unit add mul m) i j == (if i=j then mul.unit else add.unit))=() let last_equals_index #c (s: SB.seq c{SB.length s > 0}) : Lemma ((snd (SProp.un_snoc s)) == SB.index s (SB.length s - 1)) = () let matrix_right_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_right_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=j}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) (decreases k) = if k = 0 then matrix_right_mul_identity_aux_0 add mul mx i j k else let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit let matrix_right_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j j; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_right_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1){k>j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) (decreases k) = if (k-1) > j+1 then matrix_right_mul_identity_aux_3 add mul mx i j (k-1) else matrix_right_mul_identity_aux_2 add mul mx i j (k-1); let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let subgen (i: under (k)) = gen i in let full = SB.init k gen in SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j) let matrix_right_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` (if k>j then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_right_mul_identity_aux_0 add mul mx i j k else if k <= j then matrix_right_mul_identity_aux_1 add mul mx i j k else if k = j+1 then matrix_right_mul_identity_aux_2 add mul mx i j k else matrix_right_mul_identity_aux_3 add mul mx i j k let matrix_left_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_left_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=i /\ k>0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in if k=1 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); SP.foldm_snoc_decomposition add full; mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit #push-options "--z3rlimit 20" let matrix_left_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=i+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in assert (k-1 <= i /\ k-1 >= 0); if (k-1)=0 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); matrix_mul_unit_ijth add mul m i (k-1); // This one reduces the rlimits needs to default SP.foldm_snoc_decomposition add full; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_left_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under(m+1){k>i+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in if (k-1 = i+1) then matrix_left_mul_identity_aux_2 add mul mx i j (k-1) else matrix_left_mul_identity_aux_3 add mul mx i j (k-1); matrix_mul_unit_ijth add mul m i (k-1); // This one reduces the rlimits needs to default SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j) let matrix_left_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` (if k>i then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_left_mul_identity_aux_0 add mul mx i j k else if k <= i then matrix_left_mul_identity_aux_1 add mul mx i j k else if k = i+1 then matrix_left_mul_identity_aux_2 add mul mx i j k else matrix_left_mul_identity_aux_3 add mul mx i j k let matrix_mul_right_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul mx (matrix_mul_unit add mul m) `matrix_eq_fun eq` mx) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let aux (i j: under m) : Lemma (ijth mxu i j $=$ ijth mx i j) = let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx unit i j gen; let seq = SB.init m gen in matrix_right_identity_aux add mul mx i j m in Classical.forall_intro_2 aux; matrix_equiv_from_element_eq eq mxu mx
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq {FStar.Matrix.is_absorber (CM?.unit add) mul} -> mx: FStar.Matrix.matrix c m m -> FStar.Pervasives.Lemma (ensures EQ?.eq (FStar.Matrix.matrix_equiv eq m m) (FStar.Matrix.matrix_mul add mul (FStar.Matrix.matrix_mul_unit add mul m) mx) mx)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "FStar.Matrix.matrix", "FStar.Matrix.matrix_equiv_from_proof", "FStar.IntegerIntervals.under", "Prims.squash", "FStar.Matrix.ijth", "FStar.Matrix.matrix_left_identity_aux", "FStar.Seq.Base.seq", "FStar.Seq.Base.init", "Prims.unit", "FStar.Matrix.matrix_mul_ijth_eq_sum_of_seq_for_init", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Matrix.matrix_mul", "FStar.Matrix.matrix_mul_unit", "Prims.l_True", "FStar.Matrix.matrix_eq_fun", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let matrix_mul_left_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_eq_fun eq (matrix_mul add mul (matrix_mul_unit add mul m) mx) mx) =
let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul unit mx in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let aux (i j: under m) : squash (ijth mxu i j $=$ ijth mx i j) = let gen (k: under m) = ijth unit i k * ijth mx k j in matrix_mul_ijth_eq_sum_of_seq_for_init add mul unit mx i j gen; let seq = SB.init m gen in matrix_left_identity_aux add mul mx i j m in matrix_equiv_from_proof eq mxu mx aux
false
FStar.Matrix.fst
FStar.Matrix.matrix_mul_identity
val matrix_mul_identity (#c:_) (#eq:_) (#m: pos) (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul mx (matrix_mul_unit add mul m) `(matrix_equiv eq m m).eq` mx /\ matrix_mul add mul (matrix_mul_unit add mul m) mx `(matrix_equiv eq m m).eq` mx)
val matrix_mul_identity (#c:_) (#eq:_) (#m: pos) (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul mx (matrix_mul_unit add mul m) `(matrix_equiv eq m m).eq` mx /\ matrix_mul add mul (matrix_mul_unit add mul m) mx `(matrix_equiv eq m m).eq` mx)
let matrix_mul_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul mx (matrix_mul_unit add mul m) `matrix_eq_fun eq` mx /\ matrix_mul add mul (matrix_mul_unit add mul m) mx `matrix_eq_fun eq` mx) = matrix_mul_left_identity add mul mx; matrix_mul_right_identity add mul mx
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 1068, "start_col": 0, "start_line": 1062 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i) let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z) let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). SB.index zeroes i `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) = if (SB.length zeroes < 1) then begin assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit end else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit let matrix_mul_unit_ijth #c #eq (add mul: CE.cm c eq) m (i j: under m) : Lemma (ijth (matrix_mul_unit add mul m) i j == (if i=j then mul.unit else add.unit))=() let last_equals_index #c (s: SB.seq c{SB.length s > 0}) : Lemma ((snd (SProp.un_snoc s)) == SB.index s (SB.length s - 1)) = () let matrix_right_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_right_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=j}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) (decreases k) = if k = 0 then matrix_right_mul_identity_aux_0 add mul mx i j k else let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit let matrix_right_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j j; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_right_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1){k>j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) (decreases k) = if (k-1) > j+1 then matrix_right_mul_identity_aux_3 add mul mx i j (k-1) else matrix_right_mul_identity_aux_2 add mul mx i j (k-1); let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let subgen (i: under (k)) = gen i in let full = SB.init k gen in SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j) let matrix_right_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` (if k>j then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_right_mul_identity_aux_0 add mul mx i j k else if k <= j then matrix_right_mul_identity_aux_1 add mul mx i j k else if k = j+1 then matrix_right_mul_identity_aux_2 add mul mx i j k else matrix_right_mul_identity_aux_3 add mul mx i j k let matrix_left_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_left_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=i /\ k>0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in if k=1 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); SP.foldm_snoc_decomposition add full; mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit #push-options "--z3rlimit 20" let matrix_left_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=i+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in assert (k-1 <= i /\ k-1 >= 0); if (k-1)=0 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); matrix_mul_unit_ijth add mul m i (k-1); // This one reduces the rlimits needs to default SP.foldm_snoc_decomposition add full; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_left_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under(m+1){k>i+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in if (k-1 = i+1) then matrix_left_mul_identity_aux_2 add mul mx i j (k-1) else matrix_left_mul_identity_aux_3 add mul mx i j (k-1); matrix_mul_unit_ijth add mul m i (k-1); // This one reduces the rlimits needs to default SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j) let matrix_left_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` (if k>i then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_left_mul_identity_aux_0 add mul mx i j k else if k <= i then matrix_left_mul_identity_aux_1 add mul mx i j k else if k = i+1 then matrix_left_mul_identity_aux_2 add mul mx i j k else matrix_left_mul_identity_aux_3 add mul mx i j k let matrix_mul_right_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul mx (matrix_mul_unit add mul m) `matrix_eq_fun eq` mx) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let aux (i j: under m) : Lemma (ijth mxu i j $=$ ijth mx i j) = let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx unit i j gen; let seq = SB.init m gen in matrix_right_identity_aux add mul mx i j m in Classical.forall_intro_2 aux; matrix_equiv_from_element_eq eq mxu mx let matrix_mul_left_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul (matrix_mul_unit add mul m) mx `matrix_eq_fun eq` mx) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul unit mx in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let aux (i j: under m) : squash (ijth mxu i j $=$ ijth mx i j) = let gen (k: under m) = ijth unit i k * ijth mx k j in matrix_mul_ijth_eq_sum_of_seq_for_init add mul unit mx i j gen; let seq = SB.init m gen in matrix_left_identity_aux add mul mx i j m in matrix_equiv_from_proof eq mxu mx aux
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq {FStar.Matrix.is_absorber (CM?.unit add) mul} -> mx: FStar.Matrix.matrix c m m -> FStar.Pervasives.Lemma (ensures EQ?.eq (FStar.Matrix.matrix_equiv eq m m) (FStar.Matrix.matrix_mul add mul mx (FStar.Matrix.matrix_mul_unit add mul m)) mx /\ EQ?.eq (FStar.Matrix.matrix_equiv eq m m) (FStar.Matrix.matrix_mul add mul (FStar.Matrix.matrix_mul_unit add mul m) mx) mx)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "FStar.Matrix.matrix", "FStar.Matrix.matrix_mul_right_identity", "Prims.unit", "FStar.Matrix.matrix_mul_left_identity", "Prims.l_True", "Prims.squash", "Prims.l_and", "FStar.Matrix.matrix_eq_fun", "FStar.Matrix.matrix_mul", "FStar.Matrix.matrix_mul_unit", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let matrix_mul_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_eq_fun eq (matrix_mul add mul mx (matrix_mul_unit add mul m)) mx /\ matrix_eq_fun eq (matrix_mul add mul (matrix_mul_unit add mul m) mx) mx) =
matrix_mul_left_identity add mul mx; matrix_mul_right_identity add mul mx
false
Steel.ST.HigherArray.fst
Steel.ST.HigherArray.ghost_join
val ghost_join (#opened: _) (#elt: Type) (#x1 #x2: Seq.seq elt) (#p: P.perm) (a1 a2: array elt) (h: squash (adjacent a1 a2)) : STGhostT unit opened (pts_to a1 p x1 `star` pts_to a2 p x2) (fun res -> pts_to (merge a1 a2) p (x1 `Seq.append` x2))
val ghost_join (#opened: _) (#elt: Type) (#x1 #x2: Seq.seq elt) (#p: P.perm) (a1 a2: array elt) (h: squash (adjacent a1 a2)) : STGhostT unit opened (pts_to a1 p x1 `star` pts_to a2 p x2) (fun res -> pts_to (merge a1 a2) p (x1 `Seq.append` x2))
let ghost_join #_ #_ #x1 #x2 #p a1 a2 h = elim_pts_to a1 p x1; elim_pts_to a2 p x2; mk_carrier_merge (US.v (ptr_of a1).base_len) ((ptr_of a1).offset) x1 x2 (p); change_r_pts_to (ptr_of a2).base _ (ptr_of a1).base (mk_carrier (US.v (ptr_of a1).base_len) ((ptr_of a1).offset + Seq.length x1) x2 p); R.gather (ptr_of a1).base (mk_carrier (US.v (ptr_of a1).base_len) ((ptr_of a1).offset) x1 (p)) (mk_carrier (US.v (ptr_of a1).base_len) ((ptr_of a1).offset + Seq.length x1) x2 (p)); change_r_pts_to (ptr_of a1).base _ (ptr_of (merge a1 a2)).base (mk_carrier (US.v (ptr_of (merge a1 a2)).base_len) ((ptr_of (merge a1 a2)).offset) (x1 `Seq.append` x2) (p)); intro_pts_to (merge a1 a2) p (Seq.append x1 x2)
{ "file_name": "lib/steel/Steel.ST.HigherArray.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 49, "end_line": 521, "start_col": 0, "start_line": 507 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.HigherArray module P = Steel.PCMFrac module R = Steel.ST.PCMReference module M = FStar.Map module PM = Steel.PCMMap [@@noextract_to "krml"] let index_t (len: Ghost.erased nat) : Tot Type0 = (i: nat { i < len }) [@@noextract_to "krml"] let carrier (elt: Type u#a) (len: Ghost.erased nat) : Tot Type = PM.map (index_t len) (P.fractional elt) [@@noextract_to "krml"] let pcm (elt: Type u#a) (len: Ghost.erased nat) : Tot (P.pcm (carrier elt len)) = PM.pointwise (index_t len) (P.pcm_frac #elt) [@@noextract_to "krml"] let one (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.one let composable (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.composable [@@noextract_to "krml"] let compose (#elt: Type) (#len: Ghost.erased nat) = (pcm elt len).P.p.P.op [@@noextract_to "krml"] let mk_carrier (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p: P.perm) : Tot (carrier elt len) = let f (i: nat) : Tot (P.fractional elt) = if offset + Seq.length s > len || i < offset || i >= offset + Seq.length s then None else Some (Seq.index s (i - offset), p) in M.map_literal f let mk_carrier_inj (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires ( mk_carrier len offset s1 p1 == mk_carrier len offset s2 p2 /\ offset + Seq.length s1 <= len /\ offset + Seq.length s2 <= len )) (ensures ( s1 `Seq.equal` s2 /\ (Seq.length s1 > 0 ==> p1 == p2) )) = assert (forall (i: nat) . i < Seq.length s1 ==> (M.sel (mk_carrier len offset s1 p1) (offset + i) == Some (Seq.index s1 i, p1))); assert (forall (i: nat) . i < Seq.length s2 ==> M.sel (mk_carrier len offset s2 p2) (offset + i) == Some (Seq.index s2 i, p2)) [@@erasable] let base_t (elt: Type u#a) : Tot Type0 = Ghost.erased (base_len: US.t & ref _ (pcm elt (US.v base_len))) let base_len (#elt: Type) (b: base_t elt) : GTot nat = US.v (dfst b) [@@noextract_to "krml"] noeq type ptr (elt: Type u#a) : Type0 = { base_len: Ghost.erased US.t; // U32.t to prove that A.read, A.write offset computation does not overflow. TODO: replace U32.t with size_t base: (r: ref _ (pcm elt (US.v base_len)) { core_ref_is_null r ==> US.v base_len == 0 }); offset: (offset: nat { offset <= US.v base_len }); } let null_ptr a = { base_len = 0sz; base = null #_ #(pcm a 0) ; offset = 0 } let is_null_ptr p = is_null p.base let base (#elt: Type) (p: ptr elt) : Tot (base_t elt) = (| Ghost.reveal p.base_len, p.base |) let offset (#elt: Type) (p: ptr elt) : Ghost nat (requires True) (ensures (fun offset -> offset <= base_len (base p))) = p.offset let ptr_base_offset_inj (#elt: Type) (p1 p2: ptr elt) : Lemma (requires ( base p1 == base p2 /\ offset p1 == offset p2 )) (ensures ( p1 == p2 )) = () let base_len_null_ptr _ = () let length_fits #elt a = () let valid_perm (len: nat) (offset: nat) (slice_len: nat) (p: P.perm) : Tot prop = let open FStar.Real in ((offset + slice_len <= len /\ slice_len > 0) ==> (p.P.v <=. one)) [@__reduce__] let pts_to0 (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : Tot vprop = R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p) `star` pure ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) let pts_to (#elt: Type u#1) (a: array elt) ([@@@ smt_fallback ] p: P.perm) ([@@@ smt_fallback ] s: Seq.seq elt) : Tot vprop = pts_to0 a p s // this lemma is necessary because Steel.PCMReference is marked unfold let change_r_pts_to (#opened: _) (#carrier: Type u#1) (#pcm: P.pcm carrier) (p: ref carrier pcm) (v: carrier) (#carrier': Type u#1) (#pcm': P.pcm carrier') (p': ref carrier' pcm') (v': carrier') : STGhost unit opened (R.pts_to p v) (fun _ -> R.pts_to p' v') (// keep on distinct lines for error messages carrier == carrier' /\ pcm == pcm' /\ p == p' /\ v == v') (fun _ -> True) = rewrite (R.pts_to p v) (R.pts_to p' v') let intro_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (#v: _) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (R.pts_to (ptr_of a).base v) (fun _ -> pts_to a p s) ( v == mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p /\ valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) (fun _ -> True) = change_r_pts_to (ptr_of a).base v (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p); intro_pure _; rewrite (pts_to0 a p s) (pts_to a p s) let elim_pts_to (#opened: _) (#elt: Type u#1) (a: array elt) (p: P.perm) (s: Seq.seq elt) : STGhost unit opened (pts_to a p s) (fun _ -> R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s p)) (True) (fun _ -> valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s) p /\ Seq.length s == length a ) = rewrite (pts_to a p s) (pts_to0 a p s); elim_pure _ let pts_to_length a s = elim_pts_to a _ s; intro_pts_to a _ s let pts_to_not_null a s = elim_pts_to a _ s; R.pts_to_not_null _ _; intro_pts_to a _ s let mk_carrier_joinable (#elt: Type) (len: nat) (offset: nat) (s1: Seq.seq elt) (p1: P.perm) (s2: Seq.seq elt) (p2: P.perm) : Lemma (requires ( offset + Seq.length s1 <= len /\ Seq.length s1 == Seq.length s2 /\ P.joinable (pcm elt len) (mk_carrier len offset s1 p1) (mk_carrier len offset s2 p2) )) (ensures ( s1 `Seq.equal` s2 )) = let lem (i: nat { 0 <= i /\ i < Seq.length s1 }) : Lemma (Seq.index s1 i == Seq.index s2 i) [SMTPat (Seq.index s1 i); SMTPat (Seq.index s2 i)] = assert ( forall z . ( P.compatible (pcm elt len) (mk_carrier len offset s1 p1) z /\ P.compatible (pcm elt len) (mk_carrier len offset s2 p2) z ) ==> begin match M.sel z (offset + i) with | None -> False | Some (v, _) -> v == Seq.index s1 i /\ v == Seq.index s2 i end ) in () let pure_star_interp' (p:slprop u#a) (q:prop) (m:mem) : Lemma (interp (p `Steel.Memory.star` Steel.Memory.pure q) m <==> interp p m /\ q) = pure_star_interp p q m; emp_unit p let pts_to_inj a p1 s1 p2 s2 m = Classical.forall_intro reveal_pure; pure_star_interp' (hp_of (R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1))) ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s1) p1 /\ Seq.length s1 == length a ) m; pure_star_interp' (hp_of (R.pts_to (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s2 p2))) ( valid_perm (US.v (ptr_of a).base_len) (ptr_of a).offset (Seq.length s2) p2 /\ Seq.length s2 == length a ) m; pts_to_join (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1) (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset s2 p2) m; mk_carrier_joinable (US.v (ptr_of a).base_len) (ptr_of a).offset s1 p1 s2 p2 [@@noextract_to "krml"] let malloc0 (#elt: Type) (x: elt) (n: US.t) : ST (array elt) emp (fun a -> pts_to a P.full_perm (Seq.create (US.v n) x)) (True) (fun a -> length a == US.v n /\ base_len (base (ptr_of a)) == US.v n ) = let c : carrier elt (US.v n) = mk_carrier (US.v n) 0 (Seq.create (US.v n) x) P.full_perm in let base : ref (carrier elt (US.v n)) (pcm elt (US.v n)) = R.alloc c in R.pts_to_not_null base _; let p = { base_len = n; base = base; offset = 0; } in let a = (| p, Ghost.hide (US.v n) |) in change_r_pts_to base c (ptr_of a).base c; intro_pts_to a P.full_perm (Seq.create (US.v n) x); return a let malloc_ptr x n = let a = malloc0 x n in let (| p, _ |) = a in rewrite (pts_to _ _ _) (pts_to (| p, Ghost.hide (US.v n) |) _ _); return p [@@noextract_to "krml"] let free0 (#elt: Type) (#s: Ghost.erased (Seq.seq elt)) (a: array elt) : ST unit (pts_to a P.full_perm s) (fun _ -> emp) ( length a == base_len (base (ptr_of a)) ) (fun _ -> True) = drop (pts_to a _ _) let free_ptr a = free0 _ let valid_sum_perm (len: nat) (offset: nat) (slice_len: nat) (p1 p2: P.perm) : Tot prop = let open FStar.Real in valid_perm len offset slice_len (P.sum_perm p1 p2) let mk_carrier_share (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires (valid_sum_perm len offset (Seq.length s) p1 p2)) (ensures ( let c1 = mk_carrier len offset s p1 in let c2 = mk_carrier len offset s p2 in composable c1 c2 /\ mk_carrier len offset s (p1 `P.sum_perm` p2) `M.equal` (c1 `compose` c2) )) = () let share #_ #_ #x a p p1 p2 = elim_pts_to a p x; mk_carrier_share (US.v (ptr_of a).base_len) (ptr_of a).offset x p1 p2; R.split (ptr_of a).base _ (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset x p1) (mk_carrier (US.v (ptr_of a).base_len) (ptr_of a).offset x p2); intro_pts_to a p1 x; intro_pts_to a p2 x let mk_carrier_gather (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p1 p2: P.perm) : Lemma (requires ( let c1 = mk_carrier len offset s1 p1 in let c2 = mk_carrier len offset s2 p2 in composable c1 c2 /\ Seq.length s1 == Seq.length s2 /\ offset + Seq.length s1 <= len )) (ensures ( let c1 = mk_carrier len offset s1 p1 in let c2 = mk_carrier len offset s2 p2 in composable c1 c2 /\ mk_carrier len offset s1 (p1 `P.sum_perm` p2) == (c1 `compose` c2) /\ mk_carrier len offset s2 (p1 `P.sum_perm` p2) == (c1 `compose` c2) /\ s1 == s2 )) = let c1 = mk_carrier len offset s1 p1 in let c2 = mk_carrier len offset s2 p2 in assert (composable c1 c2); assert (mk_carrier len offset s1 (p1 `P.sum_perm` p2) `M.equal` (c1 `compose` c2)); assert (mk_carrier len offset s2 (p1 `P.sum_perm` p2) `M.equal` (c1 `compose` c2)); mk_carrier_inj len offset s1 s2 (p1 `P.sum_perm` p2) (p1 `P.sum_perm` p2) let mk_carrier_valid_sum_perm (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (p1 p2: P.perm) : Lemma (let c1 = mk_carrier len offset s p1 in let c2 = mk_carrier len offset s p2 in composable c1 c2 <==> valid_sum_perm len offset (Seq.length s) p1 p2) = let c1 = mk_carrier len offset s p1 in let c2 = mk_carrier len offset s p2 in if Seq.length s > 0 && offset + Seq.length s <= len then let open FStar.Real in assert (P.composable (M.sel c1 offset) (M.sel c2 offset) <==> valid_perm len offset (Seq.length s) (P.sum_perm p1 p2)) else () let gather a #x1 p1 #x2 p2 = elim_pts_to a p1 x1; elim_pts_to a p2 x2; let _ = R.gather (ptr_of a).base (mk_carrier (US.v (ptr_of a).base_len) ((ptr_of a).offset) x1 p1) (mk_carrier (US.v (ptr_of a).base_len) ((ptr_of a).offset) x2 p2) in mk_carrier_gather (US.v (ptr_of a).base_len) ((ptr_of a).offset) x1 x2 p1 p2; mk_carrier_valid_sum_perm (US.v (ptr_of a).base_len) ((ptr_of a).offset) x1 p1 p2; intro_pts_to a (p1 `P.sum_perm` p2) x1 #push-options "--z3rlimit 16" [@@noextract_to "krml"] let index0 (#t: Type) (#p: P.perm) (a: array t) (#s: Ghost.erased (Seq.seq t)) (i: US.t) : ST t (pts_to a p s) (fun _ -> pts_to a p s) (US.v i < length a \/ US.v i < Seq.length s) (fun res -> Seq.length s == length a /\ US.v i < Seq.length s /\ res == Seq.index s (US.v i)) = elim_pts_to a p s; let s' = R.read (ptr_of a).base _ in let res = fst (Some?.v (M.sel s' ((ptr_of a).offset + US.v i))) in intro_pts_to a p s; return res #pop-options let index_ptr a i = index0 _ i let mk_carrier_upd (#elt: Type) (len: nat) (offset: nat) (s: Seq.seq elt) (i: nat) (v: elt) (_: squash ( offset + Seq.length s <= len /\ i < Seq.length s )) : Lemma (ensures ( let o = mk_carrier len offset s P.full_perm in let o' = mk_carrier len offset (Seq.upd s i v) P.full_perm in o' `Map.equal` Map.upd o (offset + i) (Some (v, P.full_perm)) )) = () #push-options "--z3rlimit 20" [@@noextract_to "krml"] let upd0 (#t: Type) (a: array t) (#s: Ghost.erased (Seq.seq t)) (i: US.t { US.v i < Seq.length s }) (v: t) : STT unit (pts_to a P.full_perm s) (fun res -> pts_to a P.full_perm (Seq.upd s (US.v i) v)) = elim_pts_to a _ _; mk_carrier_upd (US.v (ptr_of a).base_len) ((ptr_of a).offset) s (US.v i) v (); R.upd_gen (ptr_of a).base _ _ (PM.lift_frame_preserving_upd _ _ (P.mk_frame_preserving_upd (Seq.index s (US.v i)) v ) _ ((ptr_of a).offset + US.v i) ); intro_pts_to a _ _ #pop-options let upd_ptr a i v = upd0 _ i v; rewrite (pts_to _ _ _) (pts_to _ _ _) let mk_carrier_merge (#elt: Type) (len: nat) (offset: nat) (s1 s2: Seq.seq elt) (p: P.perm) : Lemma (requires ( offset + Seq.length s1 + Seq.length s2 <= len )) (ensures ( let c1 = mk_carrier len offset s1 p in let c2 = mk_carrier len (offset + Seq.length s1) s2 p in composable c1 c2 /\ mk_carrier len offset (s1 `Seq.append` s2) p `M.equal` (c1 `compose` c2) )) = ()
{ "checked_file": "/", "dependencies": [ "Steel.ST.PCMReference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.PCMMap.fst.checked", "Steel.PCMFrac.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.HigherArray.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMMap", "short_module": "PM" }, { "abbrev": true, "full_module": "FStar.Map", "short_module": "M" }, { "abbrev": true, "full_module": "Steel.ST.PCMReference", "short_module": "R" }, { "abbrev": true, "full_module": "Steel.PCMFrac", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a1: Steel.ST.HigherArray.array elt -> a2: Steel.ST.HigherArray.array elt -> h: Prims.squash (Steel.ST.HigherArray.adjacent a1 a2) -> Steel.ST.Effect.Ghost.STGhostT Prims.unit
Steel.ST.Effect.Ghost.STGhostT
[]
[]
[ "Steel.Memory.inames", "FStar.Seq.Base.seq", "Steel.FractionalPermission.perm", "Steel.ST.HigherArray.array", "Prims.squash", "Steel.ST.HigherArray.adjacent", "Steel.ST.HigherArray.intro_pts_to", "Steel.ST.HigherArray.merge", "FStar.Ghost.hide", "Steel.ST.HigherArray.mk_carrier", "FStar.SizeT.v", "FStar.Ghost.reveal", "FStar.SizeT.t", "Steel.ST.HigherArray.__proj__Mkptr__item__base_len", "Steel.ST.HigherArray.ptr_of", "Steel.ST.HigherArray.__proj__Mkptr__item__offset", "FStar.Seq.Base.append", "Prims.unit", "Steel.ST.HigherArray.change_r_pts_to", "Steel.ST.HigherArray.carrier", "Prims.nat", "Steel.ST.HigherArray.pcm", "Steel.ST.HigherArray.__proj__Mkptr__item__base", "FStar.PCM.op", "Prims.op_Addition", "FStar.Seq.Base.length", "Steel.ST.PCMReference.gather", "FStar.PCM.composable", "Steel.ST.HigherArray.mk_carrier_merge", "Steel.ST.HigherArray.elim_pts_to" ]
[]
false
true
false
false
false
let ghost_join #_ #_ #x1 #x2 #p a1 a2 h =
elim_pts_to a1 p x1; elim_pts_to a2 p x2; mk_carrier_merge (US.v (ptr_of a1).base_len) ((ptr_of a1).offset) x1 x2 (p); change_r_pts_to (ptr_of a2).base _ (ptr_of a1).base (mk_carrier (US.v (ptr_of a1).base_len) ((ptr_of a1).offset + Seq.length x1) x2 p); R.gather (ptr_of a1).base (mk_carrier (US.v (ptr_of a1).base_len) ((ptr_of a1).offset) x1 (p)) (mk_carrier (US.v (ptr_of a1).base_len) ((ptr_of a1).offset + Seq.length x1) x2 (p)); change_r_pts_to (ptr_of a1).base _ (ptr_of (merge a1 a2)).base (mk_carrier (US.v (ptr_of (merge a1 a2)).base_len) ((ptr_of (merge a1 a2)).offset) (x1 `Seq.append` x2) (p)); intro_pts_to (merge a1 a2) p (Seq.append x1 x2)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.index
val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty
val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty
let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 15, "end_line": 73, "start_col": 0, "start_line": 72 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Sequence.Base.seq ty -> i: Prims.nat{i < FStar.Sequence.Base.length s} -> ty
Prims.Tot
[ "total" ]
[]
[ "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "FStar.List.Tot.Base.index" ]
[]
false
false
false
false
false
let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty =
FLT.index s i
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.equal
val equal: #ty: Type -> seq ty -> seq ty -> Type0
val equal: #ty: Type -> seq ty -> seq ty -> Type0
let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 59, "end_line": 126, "start_col": 0, "start_line": 123 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s0: FStar.Sequence.Base.seq ty -> s1: FStar.Sequence.Base.seq ty -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Sequence.Base.seq", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Sequence.Base.length", "Prims.l_Forall", "Prims.int", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThan", "Prims.l_imp", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.index" ]
[]
false
false
false
true
true
let equal (#ty: Type) (s0 s1: seq ty) : Type0 =
length s0 == length s1 /\ (forall j. {:pattern index s0 j\/index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j)
false
Hacl.HPKE.Curve64_CP256_SHA512.fsti
Hacl.HPKE.Curve64_CP256_SHA512.cs
val cs:S.ciphersuite
val cs:S.ciphersuite
let cs:S.ciphersuite = (DH.DH_Curve25519, Hash.SHA2_256, S.Seal AEAD.CHACHA20_POLY1305, Hash.SHA2_512)
{ "file_name": "code/hpke/Hacl.HPKE.Curve64_CP256_SHA512.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 102, "end_line": 10, "start_col": 0, "start_line": 10 }
module Hacl.HPKE.Curve64_CP256_SHA512 open Hacl.Impl.HPKE module S = Spec.Agile.HPKE module DH = Spec.Agile.DH module AEAD = Spec.Agile.AEAD module Hash = Spec.Agile.Hash
{ "checked_file": "/", "dependencies": [ "Vale.X64.CPU_Features_s.fst.checked", "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.Hash.fsti.checked", "Spec.Agile.DH.fst.checked", "Spec.Agile.AEAD.fsti.checked", "prims.fst.checked", "Hacl.Impl.HPKE.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.HPKE.Curve64_CP256_SHA512.fsti" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Spec.Agile.HPKE.ciphersuite
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.Mktuple4", "Spec.Agile.DH.algorithm", "Spec.Agile.HPKE.hash_algorithm", "Spec.Agile.HPKE.aead", "Spec.Hash.Definitions.hash_alg", "Spec.Agile.DH.DH_Curve25519", "Spec.Hash.Definitions.SHA2_256", "Spec.Agile.HPKE.Seal", "Spec.Agile.AEAD.CHACHA20_POLY1305", "Spec.Hash.Definitions.SHA2_512" ]
[]
false
false
false
true
false
let cs:S.ciphersuite =
(DH.DH_Curve25519, Hash.SHA2_256, S.Seal AEAD.CHACHA20_POLY1305, Hash.SHA2_512)
false
FStar.Matrix.fst
FStar.Matrix.matrix_left_identity_aux
val matrix_left_identity_aux (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: under (m + 1)) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth (matrix_mul_unit add mul m) i k) `mul.mult` (ijth mx k j) ))) `eq.eq` (if k > i then ijth mx i j else add.unit)) (decreases k)
val matrix_left_identity_aux (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: under (m + 1)) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth (matrix_mul_unit add mul m) i k) `mul.mult` (ijth mx k j) ))) `eq.eq` (if k > i then ijth mx i j else add.unit)) (decreases k)
let matrix_left_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` (if k>i then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_left_mul_identity_aux_0 add mul mx i j k else if k <= i then matrix_left_mul_identity_aux_1 add mul mx i j k else if k = i+1 then matrix_left_mul_identity_aux_2 add mul mx i j k else matrix_left_mul_identity_aux_3 add mul mx i j k
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 1028, "start_col": 0, "start_line": 1016 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i) let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z) let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). SB.index zeroes i `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) = if (SB.length zeroes < 1) then begin assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit end else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit let matrix_mul_unit_ijth #c #eq (add mul: CE.cm c eq) m (i j: under m) : Lemma (ijth (matrix_mul_unit add mul m) i j == (if i=j then mul.unit else add.unit))=() let last_equals_index #c (s: SB.seq c{SB.length s > 0}) : Lemma ((snd (SProp.un_snoc s)) == SB.index s (SB.length s - 1)) = () let matrix_right_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_right_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=j}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) (decreases k) = if k = 0 then matrix_right_mul_identity_aux_0 add mul mx i j k else let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit let matrix_right_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j j; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_right_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1){k>j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) (decreases k) = if (k-1) > j+1 then matrix_right_mul_identity_aux_3 add mul mx i j (k-1) else matrix_right_mul_identity_aux_2 add mul mx i j (k-1); let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let subgen (i: under (k)) = gen i in let full = SB.init k gen in SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j) let matrix_right_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` (if k>j then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_right_mul_identity_aux_0 add mul mx i j k else if k <= j then matrix_right_mul_identity_aux_1 add mul mx i j k else if k = j+1 then matrix_right_mul_identity_aux_2 add mul mx i j k else matrix_right_mul_identity_aux_3 add mul mx i j k let matrix_left_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_left_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=i /\ k>0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in if k=1 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); SP.foldm_snoc_decomposition add full; mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit #push-options "--z3rlimit 20" let matrix_left_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=i+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in assert (k-1 <= i /\ k-1 >= 0); if (k-1)=0 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); matrix_mul_unit_ijth add mul m i (k-1); // This one reduces the rlimits needs to default SP.foldm_snoc_decomposition add full; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_left_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under(m+1){k>i+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in if (k-1 = i+1) then matrix_left_mul_identity_aux_2 add mul mx i j (k-1) else matrix_left_mul_identity_aux_3 add mul mx i j (k-1); matrix_mul_unit_ijth add mul m i (k-1); // This one reduces the rlimits needs to default SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq {FStar.Matrix.is_absorber (CM?.unit add) mul} -> mx: FStar.Matrix.matrix c m m -> i: FStar.IntegerIntervals.under m -> j: FStar.IntegerIntervals.under m -> k: FStar.IntegerIntervals.under (m + 1) -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc add (FStar.Seq.Base.init k (fun k -> CM?.mult mul (FStar.Matrix.ijth (FStar.Matrix.matrix_mul_unit add mul m) i k) (FStar.Matrix.ijth mx k j)))) (match k > i with | true -> FStar.Matrix.ijth mx i j | _ -> CM?.unit add)) (decreases k)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "FStar.Matrix.matrix", "FStar.IntegerIntervals.under", "Prims.op_Addition", "Prims.op_Equality", "Prims.int", "FStar.Matrix.matrix_left_mul_identity_aux_0", "Prims.bool", "Prims.op_LessThanOrEqual", "FStar.Matrix.matrix_left_mul_identity_aux_1", "FStar.Matrix.matrix_left_mul_identity_aux_2", "FStar.Matrix.matrix_left_mul_identity_aux_3", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Seq.Permutation.foldm_snoc", "FStar.Seq.Base.init", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Matrix.ijth", "FStar.Matrix.matrix_mul_unit", "Prims.op_GreaterThan", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let matrix_left_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i: under m) (j: under m) (k: under (m + 1)) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth (matrix_mul_unit add mul m) i k) `mul.mult` (ijth mx k j) ))) `eq.eq` (if k > i then ijth mx i j else add.unit)) (decreases k) =
if k = 0 then matrix_left_mul_identity_aux_0 add mul mx i j k else if k <= i then matrix_left_mul_identity_aux_1 add mul mx i j k else if k = i + 1 then matrix_left_mul_identity_aux_2 add mul mx i j k else matrix_left_mul_identity_aux_3 add mul mx i j k
false
FStar.Matrix.fst
FStar.Matrix.matrix_right_mul_identity_aux_1
val matrix_right_mul_identity_aux_1 (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: nat{k <= j}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth mx i k) `mul.mult` (ijth (matrix_mul_unit add mul m) k j) ))) `eq.eq` add.unit) (decreases k)
val matrix_right_mul_identity_aux_1 (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: nat{k <= j}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth mx i k) `mul.mult` (ijth (matrix_mul_unit add mul m) k j) ))) `eq.eq` add.unit) (decreases k)
let rec matrix_right_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=j}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) (decreases k) = if k = 0 then matrix_right_mul_identity_aux_0 add mul mx i j k else let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 826, "start_col": 0, "start_line": 792 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i) let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z) let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). SB.index zeroes i `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) = if (SB.length zeroes < 1) then begin assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit end else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit let matrix_mul_unit_ijth #c #eq (add mul: CE.cm c eq) m (i j: under m) : Lemma (ijth (matrix_mul_unit add mul m) i j == (if i=j then mul.unit else add.unit))=() let last_equals_index #c (s: SB.seq c{SB.length s > 0}) : Lemma ((snd (SProp.un_snoc s)) == SB.index s (SB.length s - 1)) = () let matrix_right_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) = eq.reflexivity add.unit
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq {FStar.Matrix.is_absorber (CM?.unit add) mul} -> mx: FStar.Matrix.matrix c m m -> i: FStar.IntegerIntervals.under m -> j: FStar.IntegerIntervals.under m -> k: Prims.nat{k <= j} -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc add (FStar.Seq.Base.init k (fun k -> CM?.mult mul (FStar.Matrix.ijth mx i k) (FStar.Matrix.ijth (FStar.Matrix.matrix_mul_unit add mul m) k j)))) (CM?.unit add)) (decreases k)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "FStar.Matrix.matrix", "FStar.IntegerIntervals.under", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "FStar.Matrix.matrix_right_mul_identity_aux_0", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "FStar.Seq.Permutation.foldm_snoc", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "Prims.unit", "FStar.Seq.Permutation.foldm_snoc_decomposition", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__identity", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__congruence", "FStar.Matrix.matrix_mul_unit_ijth", "Prims.op_Subtraction", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "FStar.Seq.Base.init", "FStar.Matrix.liat_equals_init", "FStar.Matrix.matrix_right_mul_identity_aux_1", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.Seq.Properties.snoc", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Seq.Properties.un_snoc", "FStar.Matrix.ijth", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Matrix.matrix_mul", "FStar.Matrix.matrix_mul_unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec matrix_right_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i: under m) (j: under m) (k: nat{k <= j}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth mx i k) `mul.mult` (ijth (matrix_mul_unit add mul m) k j) ))) `eq.eq` add.unit) (decreases k) =
if k = 0 then matrix_right_mul_identity_aux_0 add mul mx i j k else let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat, last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j (k - 1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); eq.reflexivity (SP.foldm_snoc add (SB.init (k - 1) gen)); matrix_mul_unit_ijth add mul m (k - 1) j; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.update
val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty
val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty
let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 94, "start_col": 0, "start_line": 92 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Sequence.Base.seq ty -> i: Prims.nat{i < FStar.Sequence.Base.length s} -> v: ty -> FStar.Sequence.Base.seq ty
Prims.Tot
[ "total" ]
[]
[ "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "Prims.list", "FStar.Sequence.Base.append", "Prims.Cons", "Prims.Nil", "FStar.Pervasives.Native.tuple3", "FStar.List.Tot.Base.split3" ]
[]
false
false
false
false
false
let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty =
let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2)
false
FStar.Matrix.fst
FStar.Matrix.dot_of_equal_sequences
val dot_of_equal_sequences (#c #eq: _) (add mul: CE.cm c eq) (m: _) (p q r s: (z: SB.seq c {SB.length z == m})) : Lemma (requires eq_of_seq eq p r /\ eq_of_seq eq q s) (ensures eq.eq (dot add mul p q) (dot add mul r s))
val dot_of_equal_sequences (#c #eq: _) (add mul: CE.cm c eq) (m: _) (p q r s: (z: SB.seq c {SB.length z == m})) : Lemma (requires eq_of_seq eq p r /\ eq_of_seq eq q s) (ensures eq.eq (dot add mul p q) (dot add mul r s))
let dot_of_equal_sequences #c #eq (add mul: CE.cm c eq) m (p q r s: (z:SB.seq c{SB.length z == m})) : Lemma (requires eq_of_seq eq p r /\ eq_of_seq eq q s) (ensures eq.eq (dot add mul p q) (dot add mul r s)) = eq_of_seq_element_equality eq p r; eq_of_seq_element_equality eq q s; let aux (i: under (SB.length p)) : Lemma (SB.index (seq_of_products mul p q) i `eq.eq` SB.index (seq_of_products mul r s) i) = mul.congruence (SB.index p i) (SB.index q i) (SB.index r i) (SB.index s i) in Classical.forall_intro aux; eq_of_seq_from_element_equality eq (seq_of_products mul p q) (seq_of_products mul r s); SP.foldm_snoc_equality add (seq_of_products mul p q) (seq_of_products mul r s)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 80, "end_line": 1081, "start_col": 0, "start_line": 1070 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i) let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z) let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). SB.index zeroes i `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) = if (SB.length zeroes < 1) then begin assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit end else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit let matrix_mul_unit_ijth #c #eq (add mul: CE.cm c eq) m (i j: under m) : Lemma (ijth (matrix_mul_unit add mul m) i j == (if i=j then mul.unit else add.unit))=() let last_equals_index #c (s: SB.seq c{SB.length s > 0}) : Lemma ((snd (SProp.un_snoc s)) == SB.index s (SB.length s - 1)) = () let matrix_right_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_right_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=j}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) (decreases k) = if k = 0 then matrix_right_mul_identity_aux_0 add mul mx i j k else let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit let matrix_right_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j j; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_right_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1){k>j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) (decreases k) = if (k-1) > j+1 then matrix_right_mul_identity_aux_3 add mul mx i j (k-1) else matrix_right_mul_identity_aux_2 add mul mx i j (k-1); let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let subgen (i: under (k)) = gen i in let full = SB.init k gen in SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j) let matrix_right_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` (if k>j then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_right_mul_identity_aux_0 add mul mx i j k else if k <= j then matrix_right_mul_identity_aux_1 add mul mx i j k else if k = j+1 then matrix_right_mul_identity_aux_2 add mul mx i j k else matrix_right_mul_identity_aux_3 add mul mx i j k let matrix_left_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_left_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=i /\ k>0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in if k=1 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); SP.foldm_snoc_decomposition add full; mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit #push-options "--z3rlimit 20" let matrix_left_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=i+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in assert (k-1 <= i /\ k-1 >= 0); if (k-1)=0 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); matrix_mul_unit_ijth add mul m i (k-1); // This one reduces the rlimits needs to default SP.foldm_snoc_decomposition add full; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_left_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under(m+1){k>i+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in if (k-1 = i+1) then matrix_left_mul_identity_aux_2 add mul mx i j (k-1) else matrix_left_mul_identity_aux_3 add mul mx i j (k-1); matrix_mul_unit_ijth add mul m i (k-1); // This one reduces the rlimits needs to default SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j) let matrix_left_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` (if k>i then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_left_mul_identity_aux_0 add mul mx i j k else if k <= i then matrix_left_mul_identity_aux_1 add mul mx i j k else if k = i+1 then matrix_left_mul_identity_aux_2 add mul mx i j k else matrix_left_mul_identity_aux_3 add mul mx i j k let matrix_mul_right_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul mx (matrix_mul_unit add mul m) `matrix_eq_fun eq` mx) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let aux (i j: under m) : Lemma (ijth mxu i j $=$ ijth mx i j) = let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx unit i j gen; let seq = SB.init m gen in matrix_right_identity_aux add mul mx i j m in Classical.forall_intro_2 aux; matrix_equiv_from_element_eq eq mxu mx let matrix_mul_left_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul (matrix_mul_unit add mul m) mx `matrix_eq_fun eq` mx) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul unit mx in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let aux (i j: under m) : squash (ijth mxu i j $=$ ijth mx i j) = let gen (k: under m) = ijth unit i k * ijth mx k j in matrix_mul_ijth_eq_sum_of_seq_for_init add mul unit mx i j gen; let seq = SB.init m gen in matrix_left_identity_aux add mul mx i j m in matrix_equiv_from_proof eq mxu mx aux let matrix_mul_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul mx (matrix_mul_unit add mul m) `matrix_eq_fun eq` mx /\ matrix_mul add mul (matrix_mul_unit add mul m) mx `matrix_eq_fun eq` mx) = matrix_mul_left_identity add mul mx; matrix_mul_right_identity add mul mx
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> m: Prims.nat -> p: z: FStar.Seq.Base.seq c {FStar.Seq.Base.length z == m} -> q: z: FStar.Seq.Base.seq c {FStar.Seq.Base.length z == m} -> r: z: FStar.Seq.Base.seq c {FStar.Seq.Base.length z == m} -> s: z: FStar.Seq.Base.seq c {FStar.Seq.Base.length z == m} -> FStar.Pervasives.Lemma (requires FStar.Seq.Equiv.eq_of_seq eq p r /\ FStar.Seq.Equiv.eq_of_seq eq q s) (ensures EQ?.eq eq (FStar.Matrix.dot add mul p q) (FStar.Matrix.dot add mul r s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Algebra.CommMonoid.Equiv.cm", "Prims.nat", "FStar.Seq.Base.seq", "Prims.eq2", "FStar.Seq.Base.length", "FStar.Seq.Permutation.foldm_snoc_equality", "FStar.Matrix.seq_of_products", "Prims.unit", "FStar.Seq.Equiv.eq_of_seq_from_element_equality", "FStar.Classical.forall_intro", "FStar.IntegerIntervals.under", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Seq.Base.index", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__congruence", "FStar.Seq.Equiv.eq_of_seq_element_equality", "Prims.l_and", "FStar.Seq.Equiv.eq_of_seq", "FStar.Matrix.dot" ]
[]
false
false
true
false
false
let dot_of_equal_sequences #c #eq (add: CE.cm c eq) (mul: CE.cm c eq) m (p: (z: SB.seq c {SB.length z == m})) (q: (z: SB.seq c {SB.length z == m})) (r: (z: SB.seq c {SB.length z == m})) (s: (z: SB.seq c {SB.length z == m})) : Lemma (requires eq_of_seq eq p r /\ eq_of_seq eq q s) (ensures eq.eq (dot add mul p q) (dot add mul r s)) =
eq_of_seq_element_equality eq p r; eq_of_seq_element_equality eq q s; let aux (i: under (SB.length p)) : Lemma ((SB.index (seq_of_products mul p q) i) `eq.eq` (SB.index (seq_of_products mul r s) i)) = mul.congruence (SB.index p i) (SB.index q i) (SB.index r i) (SB.index s i) in Classical.forall_intro aux; eq_of_seq_from_element_equality eq (seq_of_products mul p q) (seq_of_products mul r s); SP.foldm_snoc_equality add (seq_of_products mul p q) (seq_of_products mul r s)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.is_prefix
val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0
val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0
let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 48, "end_line": 137, "start_col": 0, "start_line": 134 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool;
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s0: FStar.Sequence.Base.seq ty -> s1: FStar.Sequence.Base.seq ty -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Sequence.Base.seq", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.op_LessThan", "Prims.eq2", "FStar.Sequence.Base.index" ]
[]
false
false
false
true
true
let is_prefix (#ty: Type) (s0 s1: seq ty) : Type0 =
length s0 <= length s1 /\ (forall (j: nat). {:pattern index s0 j\/index s1 j} j < length s0 ==> index s0 j == index s1 j)
false
FStar.Matrix.fst
FStar.Matrix.matrix_right_mul_identity_aux_3
val matrix_right_mul_identity_aux_3 (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: under (m + 1) {k > j + 1}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth mx i k) `mul.mult` (ijth (matrix_mul_unit add mul m) k j) ))) `eq.eq` (ijth mx i j)) (decreases k)
val matrix_right_mul_identity_aux_3 (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: under (m + 1) {k > j + 1}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth mx i k) `mul.mult` (ijth (matrix_mul_unit add mul m) k j) ))) `eq.eq` (ijth mx i j)) (decreases k)
let rec matrix_right_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1){k>j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) (decreases k) = if (k-1) > j+1 then matrix_right_mul_identity_aux_3 add mul mx i j (k-1) else matrix_right_mul_identity_aux_2 add mul mx i j (k-1); let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let subgen (i: under (k)) = gen i in let full = SB.init k gen in SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 893, "start_col": 0, "start_line": 859 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i) let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z) let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). SB.index zeroes i `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) = if (SB.length zeroes < 1) then begin assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit end else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit let matrix_mul_unit_ijth #c #eq (add mul: CE.cm c eq) m (i j: under m) : Lemma (ijth (matrix_mul_unit add mul m) i j == (if i=j then mul.unit else add.unit))=() let last_equals_index #c (s: SB.seq c{SB.length s > 0}) : Lemma ((snd (SProp.un_snoc s)) == SB.index s (SB.length s - 1)) = () let matrix_right_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_right_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=j}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) (decreases k) = if k = 0 then matrix_right_mul_identity_aux_0 add mul mx i j k else let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit let matrix_right_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j j; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq {FStar.Matrix.is_absorber (CM?.unit add) mul} -> mx: FStar.Matrix.matrix c m m -> i: FStar.IntegerIntervals.under m -> j: FStar.IntegerIntervals.under m -> k: FStar.IntegerIntervals.under (m + 1) {k > j + 1} -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc add (FStar.Seq.Base.init k (fun k -> CM?.mult mul (FStar.Matrix.ijth mx i k) (FStar.Matrix.ijth (FStar.Matrix.matrix_mul_unit add mul m) k j)))) (FStar.Matrix.ijth mx i j)) (decreases k)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "FStar.Matrix.matrix", "FStar.IntegerIntervals.under", "Prims.op_Addition", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.seq", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "FStar.Seq.Permutation.foldm_snoc", "FStar.Seq.Base.init", "Prims.op_Subtraction", "FStar.Matrix.ijth", "Prims.unit", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__identity", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__congruence", "FStar.Matrix.matrix_mul_unit_ijth", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__commutativity", "FStar.Seq.Base.lemma_eq_elim", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.Seq.Properties.snoc", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Seq.Properties.un_snoc", "FStar.Matrix.liat_equals_init", "FStar.Seq.Permutation.foldm_snoc_decomposition", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Matrix.matrix_mul", "FStar.Matrix.matrix_mul_unit", "FStar.Matrix.matrix_right_mul_identity_aux_3", "Prims.bool", "FStar.Matrix.matrix_right_mul_identity_aux_2", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec matrix_right_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i: under m) (j: under m) (k: under (m + 1) {k > j + 1}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth mx i k) `mul.mult` (ijth (matrix_mul_unit add mul m) k j) ))) `eq.eq` (ijth mx i j)) (decreases k) =
if (k - 1) > j + 1 then matrix_right_mul_identity_aux_3 add mul mx i j (k - 1) else matrix_right_mul_identity_aux_2 add mul mx i j (k - 1); let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let subgen (i: under (k)) = gen i in let full = SB.init k gen in SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat, last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k - 1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k - 1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k - 1) gen)); matrix_mul_unit_ijth add mul m (k - 1) j; add.congruence last (SP.foldm_snoc add (SB.init (k - 1) gen)) add.unit (SP.foldm_snoc add (SB.init (k - 1) gen)); add.identity (SP.foldm_snoc add (SB.init (k - 1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k - 1) gen))) (SP.foldm_snoc add (SB.init (k - 1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k - 1) gen)) (ijth mx i j)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.append_sums_lengths_lemma
val append_sums_lengths_lemma: Prims.unit -> Lemma (append_sums_lengths_fact)
val append_sums_lengths_lemma: Prims.unit -> Lemma (append_sums_lengths_fact)
let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 188, "start_col": 8, "start_line": 184 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.append_sums_lengths_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Sequence.Base.length", "FStar.Sequence.Base.append", "Prims.op_Addition", "FStar.List.Tot.Properties.append_length", "Prims.squash", "Prims.l_True", "FStar.Sequence.Base.append_sums_lengths_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) =
introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) . length (append s0 s1) = length s0 + length s1 with (FLT.append_length s0 s1)
false
Demo.Deps.fst
Demo.Deps.length
val length (#a: Type) (b: buffer a) : GTot U32.t
val length (#a: Type) (b: buffer a) : GTot U32.t
let length (#a:Type) (b:buffer a) : GTot U32.t = U32.uint_to_t (B.length b)
{ "file_name": "examples/demos/low-star/Demo.Deps.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 33, "start_col": 0, "start_line": 32 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Demo.Deps open LowStar.Buffer open FStar.UInt32 module B = LowStar.Buffer module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack open FStar.HyperStack.ST effect St (a:Type) = FStar.HyperStack.ST.St a let buffer = B.buffer let uint32 = U32.t let uint8 = U8.t
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Demo.Deps.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Demo.Deps.buffer a -> Prims.GTot FStar.UInt32.t
Prims.GTot
[ "sometrivial" ]
[]
[ "Demo.Deps.buffer", "FStar.UInt32.uint_to_t", "LowStar.Monotonic.Buffer.length", "LowStar.Buffer.trivial_preorder", "FStar.UInt32.t" ]
[]
false
false
false
false
false
let length (#a: Type) (b: buffer a) : GTot U32.t =
U32.uint_to_t (B.length b)
false
FStar.Matrix.fst
FStar.Matrix.matrix_mul_right_identity
val matrix_mul_right_identity (#c:_) (#eq:_) (#m: pos) (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul mx (matrix_mul_unit add mul m) `(matrix_equiv eq m m).eq` mx)
val matrix_mul_right_identity (#c:_) (#eq:_) (#m: pos) (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul mx (matrix_mul_unit add mul m) `(matrix_equiv eq m m).eq` mx)
let matrix_mul_right_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul mx (matrix_mul_unit add mul m) `matrix_eq_fun eq` mx) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let aux (i j: under m) : Lemma (ijth mxu i j $=$ ijth mx i j) = let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx unit i j gen; let seq = SB.init m gen in matrix_right_identity_aux add mul mx i j m in Classical.forall_intro_2 aux; matrix_equiv_from_element_eq eq mxu mx
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 1044, "start_col": 0, "start_line": 1030 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i) let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z) let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). SB.index zeroes i `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) = if (SB.length zeroes < 1) then begin assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit end else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit let matrix_mul_unit_ijth #c #eq (add mul: CE.cm c eq) m (i j: under m) : Lemma (ijth (matrix_mul_unit add mul m) i j == (if i=j then mul.unit else add.unit))=() let last_equals_index #c (s: SB.seq c{SB.length s > 0}) : Lemma ((snd (SProp.un_snoc s)) == SB.index s (SB.length s - 1)) = () let matrix_right_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_right_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=j}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) (decreases k) = if k = 0 then matrix_right_mul_identity_aux_0 add mul mx i j k else let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit let matrix_right_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j j; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_right_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1){k>j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) (decreases k) = if (k-1) > j+1 then matrix_right_mul_identity_aux_3 add mul mx i j (k-1) else matrix_right_mul_identity_aux_2 add mul mx i j (k-1); let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let subgen (i: under (k)) = gen i in let full = SB.init k gen in SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j) let matrix_right_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` (if k>j then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_right_mul_identity_aux_0 add mul mx i j k else if k <= j then matrix_right_mul_identity_aux_1 add mul mx i j k else if k = j+1 then matrix_right_mul_identity_aux_2 add mul mx i j k else matrix_right_mul_identity_aux_3 add mul mx i j k let matrix_left_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_left_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=i /\ k>0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in if k=1 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); SP.foldm_snoc_decomposition add full; mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit #push-options "--z3rlimit 20" let matrix_left_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=i+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in assert (k-1 <= i /\ k-1 >= 0); if (k-1)=0 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); matrix_mul_unit_ijth add mul m i (k-1); // This one reduces the rlimits needs to default SP.foldm_snoc_decomposition add full; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_left_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under(m+1){k>i+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in if (k-1 = i+1) then matrix_left_mul_identity_aux_2 add mul mx i j (k-1) else matrix_left_mul_identity_aux_3 add mul mx i j (k-1); matrix_mul_unit_ijth add mul m i (k-1); // This one reduces the rlimits needs to default SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j) let matrix_left_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` (if k>i then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_left_mul_identity_aux_0 add mul mx i j k else if k <= i then matrix_left_mul_identity_aux_1 add mul mx i j k else if k = i+1 then matrix_left_mul_identity_aux_2 add mul mx i j k else matrix_left_mul_identity_aux_3 add mul mx i j k
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq {FStar.Matrix.is_absorber (CM?.unit add) mul} -> mx: FStar.Matrix.matrix c m m -> FStar.Pervasives.Lemma (ensures EQ?.eq (FStar.Matrix.matrix_equiv eq m m) (FStar.Matrix.matrix_mul add mul mx (FStar.Matrix.matrix_mul_unit add mul m)) mx)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "FStar.Matrix.matrix", "FStar.Matrix.matrix_equiv_from_element_eq", "Prims.unit", "FStar.Classical.forall_intro_2", "FStar.IntegerIntervals.under", "FStar.Matrix.ijth", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Matrix.matrix_right_identity_aux", "FStar.Seq.Base.seq", "FStar.Seq.Base.init", "FStar.Matrix.matrix_mul_ijth_eq_sum_of_seq_for_init", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Matrix.matrix_mul", "FStar.Matrix.matrix_mul_unit", "FStar.Matrix.matrix_eq_fun" ]
[]
false
false
true
false
false
let matrix_mul_right_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_eq_fun eq (matrix_mul add mul mx (matrix_mul_unit add mul m)) mx) =
let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let aux (i j: under m) : Lemma (ijth mxu i j $=$ ijth mx i j) = let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx unit i j gen; let seq = SB.init m gen in matrix_right_identity_aux add mul mx i j m in Classical.forall_intro_2 aux; matrix_equiv_from_element_eq eq mxu mx
false
FStar.Matrix.fst
FStar.Matrix.matrix_mul_is_left_distributive
val matrix_mul_is_left_distributive (#c:_) (#eq:_) (#m #n #p:pos) (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my mz: matrix c n p) : Lemma (matrix_mul add mul mx (matrix_add add my mz) `(matrix_equiv eq m p).eq` matrix_add add (matrix_mul add mul mx my) (matrix_mul add mul mx mz))
val matrix_mul_is_left_distributive (#c:_) (#eq:_) (#m #n #p:pos) (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my mz: matrix c n p) : Lemma (matrix_mul add mul mx (matrix_add add my mz) `(matrix_equiv eq m p).eq` matrix_add add (matrix_mul add mul mx my) (matrix_mul add mul mx mz))
let matrix_mul_is_left_distributive #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my mz: matrix c n p) : Lemma (matrix_mul add mul mx (matrix_add add my mz) `matrix_eq_fun eq` matrix_add add (matrix_mul add mul mx my) (matrix_mul add mul mx mz)) = let myz = matrix_add add my mz in let mxy = matrix_mul add mul mx my in let mxz = matrix_mul add mul mx mz in let lhs = matrix_mul add mul mx myz in let rhs = matrix_add add mxy mxz in let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let aux i k : Lemma (ijth lhs i k `eq.eq` ijth rhs i k) = let init_lhs j = mul.mult (ijth mx i j) (ijth myz j k) in let init_xy j = mul.mult (ijth mx i j) (ijth my j k) in let init_xz j = mul.mult (ijth mx i j) (ijth mz j k) in let init_rhs j = mul.mult (ijth mx i j) (ijth my j k) `add.mult` mul.mult (ijth mx i j) (ijth mz j k) in Classical.forall_intro eq.reflexivity; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i k init_lhs; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k init_xy; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx mz i k init_xz; SP.foldm_snoc_split_seq add (SB.init n init_xy) (SB.init n init_xz) (SB.init n init_rhs) (fun j -> ()); eq.symmetry (ijth rhs i k) (sum_j init_rhs); SP.foldm_snoc_of_equal_inits add init_lhs init_rhs; eq.transitivity (ijth lhs i k) (sum_j init_rhs) (ijth rhs i k) in matrix_equiv_from_proof eq lhs rhs aux
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 1137, "start_col": 0, "start_line": 1106 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i) let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z) let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). SB.index zeroes i `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) = if (SB.length zeroes < 1) then begin assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit end else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit let matrix_mul_unit_ijth #c #eq (add mul: CE.cm c eq) m (i j: under m) : Lemma (ijth (matrix_mul_unit add mul m) i j == (if i=j then mul.unit else add.unit))=() let last_equals_index #c (s: SB.seq c{SB.length s > 0}) : Lemma ((snd (SProp.un_snoc s)) == SB.index s (SB.length s - 1)) = () let matrix_right_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_right_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=j}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) (decreases k) = if k = 0 then matrix_right_mul_identity_aux_0 add mul mx i j k else let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit let matrix_right_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j j; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_right_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1){k>j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) (decreases k) = if (k-1) > j+1 then matrix_right_mul_identity_aux_3 add mul mx i j (k-1) else matrix_right_mul_identity_aux_2 add mul mx i j (k-1); let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let subgen (i: under (k)) = gen i in let full = SB.init k gen in SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j) let matrix_right_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` (if k>j then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_right_mul_identity_aux_0 add mul mx i j k else if k <= j then matrix_right_mul_identity_aux_1 add mul mx i j k else if k = j+1 then matrix_right_mul_identity_aux_2 add mul mx i j k else matrix_right_mul_identity_aux_3 add mul mx i j k let matrix_left_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_left_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=i /\ k>0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in if k=1 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); SP.foldm_snoc_decomposition add full; mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit #push-options "--z3rlimit 20" let matrix_left_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=i+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in assert (k-1 <= i /\ k-1 >= 0); if (k-1)=0 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); matrix_mul_unit_ijth add mul m i (k-1); // This one reduces the rlimits needs to default SP.foldm_snoc_decomposition add full; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_left_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under(m+1){k>i+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in if (k-1 = i+1) then matrix_left_mul_identity_aux_2 add mul mx i j (k-1) else matrix_left_mul_identity_aux_3 add mul mx i j (k-1); matrix_mul_unit_ijth add mul m i (k-1); // This one reduces the rlimits needs to default SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j) let matrix_left_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` (if k>i then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_left_mul_identity_aux_0 add mul mx i j k else if k <= i then matrix_left_mul_identity_aux_1 add mul mx i j k else if k = i+1 then matrix_left_mul_identity_aux_2 add mul mx i j k else matrix_left_mul_identity_aux_3 add mul mx i j k let matrix_mul_right_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul mx (matrix_mul_unit add mul m) `matrix_eq_fun eq` mx) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let aux (i j: under m) : Lemma (ijth mxu i j $=$ ijth mx i j) = let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx unit i j gen; let seq = SB.init m gen in matrix_right_identity_aux add mul mx i j m in Classical.forall_intro_2 aux; matrix_equiv_from_element_eq eq mxu mx let matrix_mul_left_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul (matrix_mul_unit add mul m) mx `matrix_eq_fun eq` mx) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul unit mx in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let aux (i j: under m) : squash (ijth mxu i j $=$ ijth mx i j) = let gen (k: under m) = ijth unit i k * ijth mx k j in matrix_mul_ijth_eq_sum_of_seq_for_init add mul unit mx i j gen; let seq = SB.init m gen in matrix_left_identity_aux add mul mx i j m in matrix_equiv_from_proof eq mxu mx aux let matrix_mul_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul mx (matrix_mul_unit add mul m) `matrix_eq_fun eq` mx /\ matrix_mul add mul (matrix_mul_unit add mul m) mx `matrix_eq_fun eq` mx) = matrix_mul_left_identity add mul mx; matrix_mul_right_identity add mul mx let dot_of_equal_sequences #c #eq (add mul: CE.cm c eq) m (p q r s: (z:SB.seq c{SB.length z == m})) : Lemma (requires eq_of_seq eq p r /\ eq_of_seq eq q s) (ensures eq.eq (dot add mul p q) (dot add mul r s)) = eq_of_seq_element_equality eq p r; eq_of_seq_element_equality eq q s; let aux (i: under (SB.length p)) : Lemma (SB.index (seq_of_products mul p q) i `eq.eq` SB.index (seq_of_products mul r s) i) = mul.congruence (SB.index p i) (SB.index q i) (SB.index r i) (SB.index s i) in Classical.forall_intro aux; eq_of_seq_from_element_equality eq (seq_of_products mul p q) (seq_of_products mul r s); SP.foldm_snoc_equality add (seq_of_products mul p q) (seq_of_products mul r s) let matrix_mul_congruence #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c m n) (mw: matrix c n p) : Lemma (requires matrix_eq_fun eq mx mz /\ matrix_eq_fun eq my mw) (ensures matrix_eq_fun eq (matrix_mul add mul mx my) (matrix_mul add mul mz mw)) = let aux (i: under m) (k: under p) : Lemma (ijth (matrix_mul add mul mx my) i k `eq.eq` ijth (matrix_mul add mul mz mw) i k) = let init_xy (j: under n) = mul.mult (ijth mx i j) (ijth my j k) in let init_zw (j: under n) = mul.mult (ijth mz i j) (ijth mw j k) in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k init_xy; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mz mw i k init_zw; let sp_xy = SB.init n init_xy in let sp_zw = SB.init n init_zw in let all_eq (j: under n) : Lemma (init_xy j `eq.eq` init_zw j) = matrix_equiv_ijth eq mx mz i j; matrix_equiv_ijth eq my mw j k; mul.congruence (ijth mx i j) (ijth my j k) (ijth mz i j) (ijth mw j k) in Classical.forall_intro all_eq; eq_of_seq_from_element_equality eq sp_xy sp_zw; SP.foldm_snoc_equality add sp_xy sp_zw in matrix_equiv_from_proof eq (matrix_mul add mul mx my) (matrix_mul add mul mz mw) aux
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq {FStar.Matrix.is_fully_distributive mul add /\ FStar.Matrix.is_absorber (CM?.unit add) mul} -> mx: FStar.Matrix.matrix c m n -> my: FStar.Matrix.matrix c n p -> mz: FStar.Matrix.matrix c n p -> FStar.Pervasives.Lemma (ensures EQ?.eq (FStar.Matrix.matrix_equiv eq m p) (FStar.Matrix.matrix_mul add mul mx (FStar.Matrix.matrix_add add my mz)) (FStar.Matrix.matrix_add add (FStar.Matrix.matrix_mul add mul mx my) (FStar.Matrix.matrix_mul add mul mx mz)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "Prims.l_and", "FStar.Matrix.is_fully_distributive", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "FStar.Matrix.matrix", "FStar.Matrix.matrix_equiv_from_proof", "FStar.IntegerIntervals.under", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Matrix.ijth", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "FStar.Seq.Permutation.foldm_snoc_of_equal_inits", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__symmetry", "FStar.Seq.Permutation.foldm_snoc_split_seq", "FStar.Seq.Base.init", "FStar.Seq.Base.length", "FStar.Matrix.matrix_mul_ijth_eq_sum_of_seq_for_init", "FStar.Classical.forall_intro", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Seq.Permutation.foldm_snoc", "FStar.Matrix.matrix_of", "FStar.Matrix.matrix_add_generator", "FStar.Matrix.matrix_add", "FStar.Matrix.matrix_mul", "FStar.Matrix.matrix_eq_fun" ]
[]
false
false
true
false
false
let matrix_mul_is_left_distributive #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq {is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c n p) : Lemma (matrix_eq_fun eq (matrix_mul add mul mx (matrix_add add my mz)) (matrix_add add (matrix_mul add mul mx my) (matrix_mul add mul mx mz))) =
let myz = matrix_add add my mz in let mxy = matrix_mul add mul mx my in let mxz = matrix_mul add mul mx mz in let lhs = matrix_mul add mul mx myz in let rhs = matrix_add add mxy mxz in let sum_j (f: (under n -> c)) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: (under p -> c)) = SP.foldm_snoc add (SB.init p f) in let aux i k : Lemma ((ijth lhs i k) `eq.eq` (ijth rhs i k)) = let init_lhs j = mul.mult (ijth mx i j) (ijth myz j k) in let init_xy j = mul.mult (ijth mx i j) (ijth my j k) in let init_xz j = mul.mult (ijth mx i j) (ijth mz j k) in let init_rhs j = (mul.mult (ijth mx i j) (ijth my j k)) `add.mult` (mul.mult (ijth mx i j) (ijth mz j k)) in Classical.forall_intro eq.reflexivity; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i k init_lhs; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k init_xy; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx mz i k init_xz; SP.foldm_snoc_split_seq add (SB.init n init_xy) (SB.init n init_xz) (SB.init n init_rhs) (fun j -> ()); eq.symmetry (ijth rhs i k) (sum_j init_rhs); SP.foldm_snoc_of_equal_inits add init_lhs init_rhs; eq.transitivity (ijth lhs i k) (sum_j init_rhs) (ijth rhs i k) in matrix_equiv_from_proof eq lhs rhs aux
false
Demo.Deps.fst
Demo.Deps.suffix
val suffix (#a: Type) (b: buffer a) (from: U32.t) (len: U32.t{len <=^ length b /\ from <=^ len}) : ST (buffer a) (requires (fun h -> U32.v from + U32.v len <= U32.v (length b) /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub _ b from (len -^ from)))
val suffix (#a: Type) (b: buffer a) (from: U32.t) (len: U32.t{len <=^ length b /\ from <=^ len}) : ST (buffer a) (requires (fun h -> U32.v from + U32.v len <= U32.v (length b) /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub _ b from (len -^ from)))
let suffix (#a:Type) (b:buffer a) (from:U32.t) (len:U32.t{len <=^ length b /\ from <=^ len}) : ST (buffer a) (requires (fun h -> U32.v from + U32.v len <= U32.v (length b) /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub _ b from (len -^ from))) = B.sub b from (len -^ from)
{ "file_name": "examples/demos/low-star/Demo.Deps.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 69, "start_col": 0, "start_line": 60 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Demo.Deps open LowStar.Buffer open FStar.UInt32 module B = LowStar.Buffer module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack open FStar.HyperStack.ST effect St (a:Type) = FStar.HyperStack.ST.St a let buffer = B.buffer let uint32 = U32.t let uint8 = U8.t unfold let length (#a:Type) (b:buffer a) : GTot U32.t = U32.uint_to_t (B.length b) unfold let modifies (b:B.buffer 'a) h0 h1 = modifies (loc_buffer b) h0 h1 unfold let live h (b:buffer 'a) = B.live h b unfold let ( .() ) (b:buffer 'a) (i:U32.t) : ST 'a (requires fun h -> live h b /\ i <^ length b) (ensures (fun h y h' -> h == h' /\ y == Seq.index (as_seq h b) (U32.v i))) = B.index b i unfold let ( .()<- ) (b:buffer 'a) (i:U32.t) (v:'a) : ST unit (requires (fun h -> live h b /\ i <^ length b)) (ensures (fun h _ h' -> modifies b h h' /\ live h' b /\ as_seq h' b == Seq.upd (as_seq h b) (U32.v i) v)) = B.upd b i v
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Demo.Deps.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Demo.Deps.buffer a -> from: FStar.UInt32.t -> len: FStar.UInt32.t{len <=^ Demo.Deps.length b /\ from <=^ len} -> FStar.HyperStack.ST.ST (Demo.Deps.buffer a)
FStar.HyperStack.ST.ST
[]
[]
[ "Demo.Deps.buffer", "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "FStar.UInt32.op_Less_Equals_Hat", "Demo.Deps.length", "LowStar.Buffer.sub", "FStar.Ghost.hide", "FStar.UInt32.op_Subtraction_Hat", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Buffer.trivial_preorder", "FStar.Monotonic.HyperStack.mem", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.UInt32.v", "Demo.Deps.live", "Prims.eq2", "LowStar.Monotonic.Buffer.mgsub" ]
[]
false
true
false
false
false
let suffix (#a: Type) (b: buffer a) (from: U32.t) (len: U32.t{len <=^ length b /\ from <=^ len}) : ST (buffer a) (requires (fun h -> U32.v from + U32.v len <= U32.v (length b) /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub _ b from (len -^ from))) =
B.sub b from (len -^ from)
false
Demo.Deps.fst
Demo.Deps.op_Subtraction
val op_Subtraction : x: FStar.UInt32.t -> y: FStar.UInt32.t{FStar.UInt.size (FStar.UInt32.v x - FStar.UInt32.v y) FStar.UInt32.n} -> FStar.UInt32.t
let op_Subtraction (x:U32.t) (y:U32.t{FStar.UInt.size (v x - v y) U32.n}) = U32.(x -^ y)
{ "file_name": "examples/demos/low-star/Demo.Deps.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 97, "start_col": 0, "start_line": 95 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Demo.Deps open LowStar.Buffer open FStar.UInt32 module B = LowStar.Buffer module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack open FStar.HyperStack.ST effect St (a:Type) = FStar.HyperStack.ST.St a let buffer = B.buffer let uint32 = U32.t let uint8 = U8.t unfold let length (#a:Type) (b:buffer a) : GTot U32.t = U32.uint_to_t (B.length b) unfold let modifies (b:B.buffer 'a) h0 h1 = modifies (loc_buffer b) h0 h1 unfold let live h (b:buffer 'a) = B.live h b unfold let ( .() ) (b:buffer 'a) (i:U32.t) : ST 'a (requires fun h -> live h b /\ i <^ length b) (ensures (fun h y h' -> h == h' /\ y == Seq.index (as_seq h b) (U32.v i))) = B.index b i unfold let ( .()<- ) (b:buffer 'a) (i:U32.t) (v:'a) : ST unit (requires (fun h -> live h b /\ i <^ length b)) (ensures (fun h _ h' -> modifies b h h' /\ live h' b /\ as_seq h' b == Seq.upd (as_seq h b) (U32.v i) v)) = B.upd b i v unfold let suffix (#a:Type) (b:buffer a) (from:U32.t) (len:U32.t{len <=^ length b /\ from <=^ len}) : ST (buffer a) (requires (fun h -> U32.v from + U32.v len <= U32.v (length b) /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub _ b from (len -^ from))) = B.sub b from (len -^ from) unfold let disjoint (b0 b1:B.buffer 'a) = B.disjoint b0 b1 let lbuffer (len:U32.t) (a:Type) = b:B.buffer a{len <=^ length b} let prefix_equal (#l:uint32) (#a:Type) (h:HS.mem) (b1 b2: lbuffer l a) (i:uint32{i <=^ l}) : prop = forall (j:uint32). j <^ i ==> B.get h b1 (U32.v j) == B.get h b2 (U32.v j) unfold let ( <= ) x y = U32.(x <=^ y) unfold let ( < ) x y = U32.(x <^ y) let ( + ) (x:U32.t) (y:U32.t{FStar.UInt.size (v x + v y) U32.n}) = U32.(x +^ y)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Demo.Deps.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt32.t -> y: FStar.UInt32.t{FStar.UInt.size (FStar.UInt32.v x - FStar.UInt32.v y) FStar.UInt32.n} -> FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.t", "FStar.UInt.size", "Prims.op_Subtraction", "FStar.UInt32.v", "FStar.UInt32.n", "FStar.UInt32.op_Subtraction_Hat" ]
[]
false
false
false
false
false
let ( - ) (x: U32.t) (y: U32.t{FStar.UInt.size (v x - v y) U32.n}) =
let open U32 in x -^ y
false
Hacl.Impl.Ed25519.Ladder.fst
Hacl.Impl.Ed25519.Ladder.point_mul_noalloc
val point_mul_noalloc: out:point -> bscalar:lbuffer uint64 4ul -> q:point -> Stack unit (requires fun h -> live h bscalar /\ live h q /\ live h out /\ disjoint q out /\ disjoint q bscalar /\ disjoint out bscalar /\ F51.point_inv_t h q /\ F51.inv_ext_point (as_seq h q) /\ BD.bn_v h bscalar < pow2 256) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\ S.to_aff_point (F51.point_eval h1 out) == LE.exp_fw S.mk_ed25519_comm_monoid (S.to_aff_point (F51.point_eval h0 q)) 256 (BD.bn_v h0 bscalar) 4)
val point_mul_noalloc: out:point -> bscalar:lbuffer uint64 4ul -> q:point -> Stack unit (requires fun h -> live h bscalar /\ live h q /\ live h out /\ disjoint q out /\ disjoint q bscalar /\ disjoint out bscalar /\ F51.point_inv_t h q /\ F51.inv_ext_point (as_seq h q) /\ BD.bn_v h bscalar < pow2 256) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\ S.to_aff_point (F51.point_eval h1 out) == LE.exp_fw S.mk_ed25519_comm_monoid (S.to_aff_point (F51.point_eval h0 q)) 256 (BD.bn_v h0 bscalar) 4)
let point_mul_noalloc out bscalar q = BE.lexp_fw_consttime 20ul 0ul mk_ed25519_concrete_ops 4ul (null uint64) q 4ul 256ul bscalar out
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Ladder.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 85, "start_col": 0, "start_line": 83 }
module Hacl.Impl.Ed25519.Ladder module ST = FStar.HyperStack.ST open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module BSeq = Lib.ByteSequence module LE = Lib.Exponentiation module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module ME = Hacl.Impl.MultiExponentiation module PT = Hacl.Impl.PrecompTable module SPT256 = Hacl.Spec.PrecompBaseTable256 module BD = Hacl.Bignum.Definitions module SD = Hacl.Spec.Bignum.Definitions module S = Spec.Ed25519 open Hacl.Impl.Ed25519.PointConstants include Hacl.Impl.Ed25519.Group include Hacl.Ed25519.PrecompTable #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let table_inv_w4 : BE.table_inv_t U64 20ul 16ul = [@inline_let] let len = 20ul in [@inline_let] let ctx_len = 0ul in [@inline_let] let k = mk_ed25519_concrete_ops in [@inline_let] let l = 4ul in [@inline_let] let table_len = 16ul in BE.table_inv_precomp len ctx_len k l table_len inline_for_extraction noextract let table_inv_w5 : BE.table_inv_t U64 20ul 32ul = [@inline_let] let len = 20ul in [@inline_let] let ctx_len = 0ul in [@inline_let] let k = mk_ed25519_concrete_ops in [@inline_let] let l = 5ul in [@inline_let] let table_len = 32ul in assert_norm (pow2 (v l) = v table_len); BE.table_inv_precomp len ctx_len k l table_len inline_for_extraction noextract val convert_scalar: scalar:lbuffer uint8 32ul -> bscalar:lbuffer uint64 4ul -> Stack unit (requires fun h -> live h scalar /\ live h bscalar /\ disjoint scalar bscalar) (ensures fun h0 _ h1 -> modifies (loc bscalar) h0 h1 /\ BD.bn_v h1 bscalar == BSeq.nat_from_bytes_le (as_seq h0 scalar)) let convert_scalar scalar bscalar = let h0 = ST.get () in Hacl.Spec.Bignum.Convert.bn_from_bytes_le_lemma #U64 32 (as_seq h0 scalar); Hacl.Bignum.Convert.mk_bn_from_bytes_le true 32ul scalar bscalar inline_for_extraction noextract val point_mul_noalloc: out:point -> bscalar:lbuffer uint64 4ul -> q:point -> Stack unit (requires fun h -> live h bscalar /\ live h q /\ live h out /\ disjoint q out /\ disjoint q bscalar /\ disjoint out bscalar /\ F51.point_inv_t h q /\ F51.inv_ext_point (as_seq h q) /\ BD.bn_v h bscalar < pow2 256) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\ S.to_aff_point (F51.point_eval h1 out) == LE.exp_fw S.mk_ed25519_comm_monoid (S.to_aff_point (F51.point_eval h0 q)) 256 (BD.bn_v h0 bscalar) 4)
{ "checked_file": "/", "dependencies": [ "Spec.Exponentiation.fsti.checked", "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "prims.fst.checked", "LowStar.Ignore.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable256.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Impl.PrecompTable.fsti.checked", "Hacl.Impl.MultiExponentiation.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "Hacl.Impl.Ed25519.PointNegate.fst.checked", "Hacl.Impl.Ed25519.PointConstants.fst.checked", "Hacl.Impl.Ed25519.Group.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Ed25519.PrecompTable.fsti.checked", "Hacl.Bignum25519.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Convert.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Ed25519.Ladder.fst" }
[ { "abbrev": false, "full_module": "Hacl.Ed25519.PrecompTable", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519.PointConstants", "short_module": null }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Hacl.Impl.PrecompTable", "short_module": "PT" }, { "abbrev": true, "full_module": "Hacl.Impl.MultiExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
out: Hacl.Bignum25519.point -> bscalar: Lib.Buffer.lbuffer Lib.IntTypes.uint64 4ul -> q: Hacl.Bignum25519.point -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Bignum25519.point", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint64", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Exponentiation.lexp_fw_consttime", "Lib.IntTypes.U64", "Hacl.Impl.Ed25519.Group.mk_ed25519_concrete_ops", "Lib.Buffer.null", "Lib.Buffer.MUT", "Prims.unit" ]
[]
false
true
false
false
false
let point_mul_noalloc out bscalar q =
BE.lexp_fw_consttime 20ul 0ul mk_ed25519_concrete_ops 4ul (null uint64) q 4ul 256ul bscalar out
false
Demo.Deps.fst
Demo.Deps.free
val free (#a: Type0) (b: buffer a) : ST unit (requires fun h0 -> live h0 b /\ freeable b) (ensures (fun h0 _ h1 -> (Map.domain (HS.get_hmap h1)) `Set.equal` (Map.domain (HS.get_hmap h0)) /\ (HS.get_tip h1) == (HS.get_tip h0) /\ B.modifies (loc_addr_of_buffer b) h0 h1 /\ HS.live_region h1 (frameOf b)))
val free (#a: Type0) (b: buffer a) : ST unit (requires fun h0 -> live h0 b /\ freeable b) (ensures (fun h0 _ h1 -> (Map.domain (HS.get_hmap h1)) `Set.equal` (Map.domain (HS.get_hmap h0)) /\ (HS.get_tip h1) == (HS.get_tip h0) /\ B.modifies (loc_addr_of_buffer b) h0 h1 /\ HS.live_region h1 (frameOf b)))
let free (#a:Type0) (b:buffer a) : ST unit (requires fun h0 -> live h0 b /\ freeable b) (ensures (fun h0 _ h1 -> Map.domain (HS.get_hmap h1) `Set.equal` Map.domain (HS.get_hmap h0) /\ (HS.get_tip h1) == (HS.get_tip h0) /\ B.modifies (loc_addr_of_buffer b) h0 h1 /\ HS.live_region h1 (frameOf b))) = B.free b
{ "file_name": "examples/demos/low-star/Demo.Deps.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 11, "end_line": 117, "start_col": 0, "start_line": 107 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Demo.Deps open LowStar.Buffer open FStar.UInt32 module B = LowStar.Buffer module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack open FStar.HyperStack.ST effect St (a:Type) = FStar.HyperStack.ST.St a let buffer = B.buffer let uint32 = U32.t let uint8 = U8.t unfold let length (#a:Type) (b:buffer a) : GTot U32.t = U32.uint_to_t (B.length b) unfold let modifies (b:B.buffer 'a) h0 h1 = modifies (loc_buffer b) h0 h1 unfold let live h (b:buffer 'a) = B.live h b unfold let ( .() ) (b:buffer 'a) (i:U32.t) : ST 'a (requires fun h -> live h b /\ i <^ length b) (ensures (fun h y h' -> h == h' /\ y == Seq.index (as_seq h b) (U32.v i))) = B.index b i unfold let ( .()<- ) (b:buffer 'a) (i:U32.t) (v:'a) : ST unit (requires (fun h -> live h b /\ i <^ length b)) (ensures (fun h _ h' -> modifies b h h' /\ live h' b /\ as_seq h' b == Seq.upd (as_seq h b) (U32.v i) v)) = B.upd b i v unfold let suffix (#a:Type) (b:buffer a) (from:U32.t) (len:U32.t{len <=^ length b /\ from <=^ len}) : ST (buffer a) (requires (fun h -> U32.v from + U32.v len <= U32.v (length b) /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub _ b from (len -^ from))) = B.sub b from (len -^ from) unfold let disjoint (b0 b1:B.buffer 'a) = B.disjoint b0 b1 let lbuffer (len:U32.t) (a:Type) = b:B.buffer a{len <=^ length b} let prefix_equal (#l:uint32) (#a:Type) (h:HS.mem) (b1 b2: lbuffer l a) (i:uint32{i <=^ l}) : prop = forall (j:uint32). j <^ i ==> B.get h b1 (U32.v j) == B.get h b2 (U32.v j) unfold let ( <= ) x y = U32.(x <=^ y) unfold let ( < ) x y = U32.(x <^ y) let ( + ) (x:U32.t) (y:U32.t{FStar.UInt.size (v x + v y) U32.n}) = U32.(x +^ y) let op_Subtraction (x:U32.t) (y:U32.t{FStar.UInt.size (v x - v y) U32.n}) = U32.(x -^ y) let malloc (init:'a) (len:U32.t) : ST (lbuffer len 'a) (requires fun h -> malloc_pre HS.root len) (ensures fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ freeable b) = B.malloc HS.root init len
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Demo.Deps.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Demo.Deps.buffer a -> FStar.HyperStack.ST.ST Prims.unit
FStar.HyperStack.ST.ST
[]
[]
[ "Demo.Deps.buffer", "LowStar.Monotonic.Buffer.free", "LowStar.Buffer.trivial_preorder", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Demo.Deps.live", "LowStar.Monotonic.Buffer.freeable", "FStar.Set.equal", "FStar.Monotonic.HyperHeap.rid", "FStar.Map.domain", "FStar.Monotonic.Heap.heap", "FStar.Monotonic.HyperStack.get_hmap", "Prims.eq2", "FStar.Monotonic.HyperStack.get_tip", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_addr_of_buffer", "Prims.b2t", "FStar.Monotonic.HyperStack.live_region", "LowStar.Monotonic.Buffer.frameOf" ]
[]
false
true
false
false
false
let free (#a: Type0) (b: buffer a) : ST unit (requires fun h0 -> live h0 b /\ freeable b) (ensures (fun h0 _ h1 -> (Map.domain (HS.get_hmap h1)) `Set.equal` (Map.domain (HS.get_hmap h0)) /\ (HS.get_tip h1) == (HS.get_tip h0) /\ B.modifies (loc_addr_of_buffer b) h0 h1 /\ HS.live_region h1 (frameOf b))) =
B.free b
false
Demo.Deps.fst
Demo.Deps.prefix_equal
val prefix_equal (#l: uint32) (#a: Type) (h: HS.mem) (b1 b2: lbuffer l a) (i: uint32{i <=^ l}) : prop
val prefix_equal (#l: uint32) (#a: Type) (h: HS.mem) (b1 b2: lbuffer l a) (i: uint32{i <=^ l}) : prop
let prefix_equal (#l:uint32) (#a:Type) (h:HS.mem) (b1 b2: lbuffer l a) (i:uint32{i <=^ l}) : prop = forall (j:uint32). j <^ i ==> B.get h b1 (U32.v j) == B.get h b2 (U32.v j)
{ "file_name": "examples/demos/low-star/Demo.Deps.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 62, "end_line": 82, "start_col": 0, "start_line": 76 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Demo.Deps open LowStar.Buffer open FStar.UInt32 module B = LowStar.Buffer module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack open FStar.HyperStack.ST effect St (a:Type) = FStar.HyperStack.ST.St a let buffer = B.buffer let uint32 = U32.t let uint8 = U8.t unfold let length (#a:Type) (b:buffer a) : GTot U32.t = U32.uint_to_t (B.length b) unfold let modifies (b:B.buffer 'a) h0 h1 = modifies (loc_buffer b) h0 h1 unfold let live h (b:buffer 'a) = B.live h b unfold let ( .() ) (b:buffer 'a) (i:U32.t) : ST 'a (requires fun h -> live h b /\ i <^ length b) (ensures (fun h y h' -> h == h' /\ y == Seq.index (as_seq h b) (U32.v i))) = B.index b i unfold let ( .()<- ) (b:buffer 'a) (i:U32.t) (v:'a) : ST unit (requires (fun h -> live h b /\ i <^ length b)) (ensures (fun h _ h' -> modifies b h h' /\ live h' b /\ as_seq h' b == Seq.upd (as_seq h b) (U32.v i) v)) = B.upd b i v unfold let suffix (#a:Type) (b:buffer a) (from:U32.t) (len:U32.t{len <=^ length b /\ from <=^ len}) : ST (buffer a) (requires (fun h -> U32.v from + U32.v len <= U32.v (length b) /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub _ b from (len -^ from))) = B.sub b from (len -^ from) unfold let disjoint (b0 b1:B.buffer 'a) = B.disjoint b0 b1 let lbuffer (len:U32.t) (a:Type) = b:B.buffer a{len <=^ length b}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Demo.Deps.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> b1: Demo.Deps.lbuffer l a -> b2: Demo.Deps.lbuffer l a -> i: Demo.Deps.uint32{i <=^ l} -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Demo.Deps.uint32", "FStar.Monotonic.HyperStack.mem", "Demo.Deps.lbuffer", "Prims.b2t", "FStar.UInt32.op_Less_Equals_Hat", "Prims.l_Forall", "Prims.l_imp", "FStar.UInt32.op_Less_Hat", "Prims.eq2", "LowStar.Monotonic.Buffer.get", "LowStar.Buffer.trivial_preorder", "FStar.UInt32.v", "Prims.prop" ]
[]
false
false
false
false
true
let prefix_equal (#l: uint32) (#a: Type) (h: HS.mem) (b1 b2: lbuffer l a) (i: uint32{i <=^ l}) : prop =
forall (j: uint32). j <^ i ==> B.get h b1 (U32.v j) == B.get h b2 (U32.v j)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.update_maintains_length_lemma
val update_maintains_length_lemma: Prims.unit -> Lemma (update_maintains_length_fact)
val update_maintains_length_lemma: Prims.unit -> Lemma (update_maintains_length_fact)
let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 231, "start_col": 8, "start_line": 226 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.update_maintains_length_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "Prims.op_Equality", "FStar.Sequence.Base.update", "FStar.Sequence.Base.update_maintains_length_helper", "Prims.squash", "Prims.l_True", "FStar.Sequence.Base.update_maintains_length_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) =
introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) . length (update s i v) = length s with (update_maintains_length_helper s i v)
false
FStar.Matrix.fst
FStar.Matrix.double_foldm_snoc_transpose_lemma
val double_foldm_snoc_transpose_lemma (#c #eq: _) (#m #n: pos) (cm: CE.cm c eq) (f: (under m -> under n -> c)) : Lemma ((SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) ) `eq.eq` (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))) ))
val double_foldm_snoc_transpose_lemma (#c #eq: _) (#m #n: pos) (cm: CE.cm c eq) (f: (under m -> under n -> c)) : Lemma ((SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) ) `eq.eq` (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))) ))
let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))))
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 126, "end_line": 642, "start_col": 0, "start_line": 606 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> f: (_: FStar.IntegerIntervals.under m -> _: FStar.IntegerIntervals.under n -> c) -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init m (fun i -> FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init n (fun j -> f i j))))) (FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init n (fun j -> FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init m (fun i -> f i j))))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.IntegerIntervals.under", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "FStar.Seq.Permutation.foldm_snoc", "FStar.Seq.Base.init", "FStar.Matrix.foldm", "Prims.unit", "Prims._assert", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Seq.Base.lemma_eq_elim", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Classical.forall_intro", "Prims.eq2", "FStar.Seq.Base.seq", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Matrix.matrix_fold_equals_fold_of_seq_folds", "Prims.l_and", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Multiply", "Prims.l_Forall", "FStar.Seq.Base.index", "FStar.Matrix.get_ij", "FStar.Matrix.get_i", "FStar.Matrix.get_j", "FStar.Matrix.matrix_seq", "FStar.Matrix.matrix_of", "FStar.Matrix.init", "FStar.Matrix.matrix_generator", "FStar.Matrix.transposed_matrix_gen", "FStar.Matrix.matrix_fold_equals_fold_of_transpose", "FStar.Matrix.matrix_transpose_is_permutation", "FStar.Classical.forall_intro_2", "Prims.l_imp", "FStar.Classical.move_requires_2", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__symmetry" ]
[]
false
false
true
false
false
let double_foldm_snoc_transpose_lemma #c #eq (#m: pos) (#n: pos) (cm: CE.cm c eq) (f: (under m -> under n -> c)) : Lemma ((SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) ) `eq.eq` (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))) )) =
Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen:matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i)) (SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert ((foldm cm mx_trans) `eq.eq` (SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert ((foldm cm mx_trans) `eq.eq` (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))))
false
FStar.Matrix.fst
FStar.Matrix.matrix_left_mul_identity_aux_1
val matrix_left_mul_identity_aux_1 (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: nat{k <= i /\ k > 0}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth (matrix_mul_unit add mul m) i k) `mul.mult` (ijth mx k j))) ) `eq.eq` add.unit)
val matrix_left_mul_identity_aux_1 (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: nat{k <= i /\ k > 0}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth (matrix_mul_unit add mul m) i k) `mul.mult` (ijth mx k j))) ) `eq.eq` add.unit)
let rec matrix_left_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=i /\ k>0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in if k=1 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); SP.foldm_snoc_decomposition add full; mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 947, "start_col": 0, "start_line": 919 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i) let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z) let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). SB.index zeroes i `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) = if (SB.length zeroes < 1) then begin assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit end else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit let matrix_mul_unit_ijth #c #eq (add mul: CE.cm c eq) m (i j: under m) : Lemma (ijth (matrix_mul_unit add mul m) i j == (if i=j then mul.unit else add.unit))=() let last_equals_index #c (s: SB.seq c{SB.length s > 0}) : Lemma ((snd (SProp.un_snoc s)) == SB.index s (SB.length s - 1)) = () let matrix_right_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_right_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=j}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) (decreases k) = if k = 0 then matrix_right_mul_identity_aux_0 add mul mx i j k else let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit let matrix_right_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j j; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_right_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1){k>j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) (decreases k) = if (k-1) > j+1 then matrix_right_mul_identity_aux_3 add mul mx i j (k-1) else matrix_right_mul_identity_aux_2 add mul mx i j (k-1); let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let subgen (i: under (k)) = gen i in let full = SB.init k gen in SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j) let matrix_right_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` (if k>j then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_right_mul_identity_aux_0 add mul mx i j k else if k <= j then matrix_right_mul_identity_aux_1 add mul mx i j k else if k = j+1 then matrix_right_mul_identity_aux_2 add mul mx i j k else matrix_right_mul_identity_aux_3 add mul mx i j k let matrix_left_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = eq.reflexivity add.unit
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq {FStar.Matrix.is_absorber (CM?.unit add) mul} -> mx: FStar.Matrix.matrix c m m -> i: FStar.IntegerIntervals.under m -> j: FStar.IntegerIntervals.under m -> k: Prims.nat{k <= i /\ k > 0} -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc add (FStar.Seq.Base.init k (fun k -> CM?.mult mul (FStar.Matrix.ijth (FStar.Matrix.matrix_mul_unit add mul m) i k) (FStar.Matrix.ijth mx k j)))) (CM?.unit add))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "FStar.Matrix.matrix", "FStar.IntegerIntervals.under", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_GreaterThan", "FStar.Seq.Base.seq", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "FStar.Seq.Permutation.foldm_snoc", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "Prims.unit", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__identity", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__congruence", "FStar.Seq.Permutation.foldm_snoc_decomposition", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "FStar.Matrix.liat_equals_init", "Prims.op_Equality", "Prims.int", "FStar.Matrix.matrix_left_mul_identity_aux_0", "Prims.op_Subtraction", "Prims.bool", "FStar.Matrix.matrix_left_mul_identity_aux_1", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.Seq.Properties.snoc", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Seq.Properties.un_snoc", "FStar.Seq.Base.init", "FStar.Matrix.ijth", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Matrix.matrix_mul", "FStar.Matrix.matrix_mul_unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec matrix_left_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i: under m) (j: under m) (k: nat{k <= i /\ k > 0}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth (matrix_mul_unit add mul m) i k) `mul.mult` (ijth mx k j))) ) `eq.eq` add.unit) =
let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat, last = SProp.un_snoc full in if k = 1 then matrix_left_mul_identity_aux_0 add mul mx i j (k - 1) else matrix_left_mul_identity_aux_1 add mul mx i j (k - 1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); SP.foldm_snoc_decomposition add full; mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit
false
Demo.Deps.fst
Demo.Deps.get
val get : h: FStar.Monotonic.HyperStack.mem -> b: Demo.Deps.buffer 'a {Demo.Deps.live h b} -> i: FStar.UInt32.t{i < Demo.Deps.length b} -> Prims.GTot 'a
let get (h:HS.mem) (b:buffer 'a{ live h b }) (i:U32.t{ i < length b}) = B.get h b (U32.v i)
{ "file_name": "examples/demos/low-star/Demo.Deps.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 120, "start_col": 0, "start_line": 119 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Demo.Deps open LowStar.Buffer open FStar.UInt32 module B = LowStar.Buffer module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack open FStar.HyperStack.ST effect St (a:Type) = FStar.HyperStack.ST.St a let buffer = B.buffer let uint32 = U32.t let uint8 = U8.t unfold let length (#a:Type) (b:buffer a) : GTot U32.t = U32.uint_to_t (B.length b) unfold let modifies (b:B.buffer 'a) h0 h1 = modifies (loc_buffer b) h0 h1 unfold let live h (b:buffer 'a) = B.live h b unfold let ( .() ) (b:buffer 'a) (i:U32.t) : ST 'a (requires fun h -> live h b /\ i <^ length b) (ensures (fun h y h' -> h == h' /\ y == Seq.index (as_seq h b) (U32.v i))) = B.index b i unfold let ( .()<- ) (b:buffer 'a) (i:U32.t) (v:'a) : ST unit (requires (fun h -> live h b /\ i <^ length b)) (ensures (fun h _ h' -> modifies b h h' /\ live h' b /\ as_seq h' b == Seq.upd (as_seq h b) (U32.v i) v)) = B.upd b i v unfold let suffix (#a:Type) (b:buffer a) (from:U32.t) (len:U32.t{len <=^ length b /\ from <=^ len}) : ST (buffer a) (requires (fun h -> U32.v from + U32.v len <= U32.v (length b) /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub _ b from (len -^ from))) = B.sub b from (len -^ from) unfold let disjoint (b0 b1:B.buffer 'a) = B.disjoint b0 b1 let lbuffer (len:U32.t) (a:Type) = b:B.buffer a{len <=^ length b} let prefix_equal (#l:uint32) (#a:Type) (h:HS.mem) (b1 b2: lbuffer l a) (i:uint32{i <=^ l}) : prop = forall (j:uint32). j <^ i ==> B.get h b1 (U32.v j) == B.get h b2 (U32.v j) unfold let ( <= ) x y = U32.(x <=^ y) unfold let ( < ) x y = U32.(x <^ y) let ( + ) (x:U32.t) (y:U32.t{FStar.UInt.size (v x + v y) U32.n}) = U32.(x +^ y) let op_Subtraction (x:U32.t) (y:U32.t{FStar.UInt.size (v x - v y) U32.n}) = U32.(x -^ y) let malloc (init:'a) (len:U32.t) : ST (lbuffer len 'a) (requires fun h -> malloc_pre HS.root len) (ensures fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ freeable b) = B.malloc HS.root init len let free (#a:Type0) (b:buffer a) : ST unit (requires fun h0 -> live h0 b /\ freeable b) (ensures (fun h0 _ h1 -> Map.domain (HS.get_hmap h1) `Set.equal` Map.domain (HS.get_hmap h0) /\ (HS.get_tip h1) == (HS.get_tip h0) /\ B.modifies (loc_addr_of_buffer b) h0 h1 /\ HS.live_region h1 (frameOf b))) = B.free b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Demo.Deps.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> b: Demo.Deps.buffer 'a {Demo.Deps.live h b} -> i: FStar.UInt32.t{i < Demo.Deps.length b} -> Prims.GTot 'a
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "Demo.Deps.buffer", "Demo.Deps.live", "FStar.UInt32.t", "Prims.b2t", "Demo.Deps.op_Less", "Demo.Deps.length", "LowStar.Monotonic.Buffer.get", "LowStar.Buffer.trivial_preorder", "FStar.UInt32.v" ]
[]
false
false
false
false
false
let get (h: HS.mem) (b: buffer 'a {live h b}) (i: U32.t{i < length b}) =
B.get h b (U32.v i)
false
Demo.Deps.fst
Demo.Deps.malloc
val malloc (init: 'a) (len: U32.t) : ST (lbuffer len 'a) (requires fun h -> malloc_pre HS.root len) (ensures fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ freeable b)
val malloc (init: 'a) (len: U32.t) : ST (lbuffer len 'a) (requires fun h -> malloc_pre HS.root len) (ensures fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ freeable b)
let malloc (init:'a) (len:U32.t) : ST (lbuffer len 'a) (requires fun h -> malloc_pre HS.root len) (ensures fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ freeable b) = B.malloc HS.root init len
{ "file_name": "examples/demos/low-star/Demo.Deps.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 105, "start_col": 0, "start_line": 99 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Demo.Deps open LowStar.Buffer open FStar.UInt32 module B = LowStar.Buffer module U32 = FStar.UInt32 module U8 = FStar.UInt8 module HS = FStar.HyperStack open FStar.HyperStack.ST effect St (a:Type) = FStar.HyperStack.ST.St a let buffer = B.buffer let uint32 = U32.t let uint8 = U8.t unfold let length (#a:Type) (b:buffer a) : GTot U32.t = U32.uint_to_t (B.length b) unfold let modifies (b:B.buffer 'a) h0 h1 = modifies (loc_buffer b) h0 h1 unfold let live h (b:buffer 'a) = B.live h b unfold let ( .() ) (b:buffer 'a) (i:U32.t) : ST 'a (requires fun h -> live h b /\ i <^ length b) (ensures (fun h y h' -> h == h' /\ y == Seq.index (as_seq h b) (U32.v i))) = B.index b i unfold let ( .()<- ) (b:buffer 'a) (i:U32.t) (v:'a) : ST unit (requires (fun h -> live h b /\ i <^ length b)) (ensures (fun h _ h' -> modifies b h h' /\ live h' b /\ as_seq h' b == Seq.upd (as_seq h b) (U32.v i) v)) = B.upd b i v unfold let suffix (#a:Type) (b:buffer a) (from:U32.t) (len:U32.t{len <=^ length b /\ from <=^ len}) : ST (buffer a) (requires (fun h -> U32.v from + U32.v len <= U32.v (length b) /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub _ b from (len -^ from))) = B.sub b from (len -^ from) unfold let disjoint (b0 b1:B.buffer 'a) = B.disjoint b0 b1 let lbuffer (len:U32.t) (a:Type) = b:B.buffer a{len <=^ length b} let prefix_equal (#l:uint32) (#a:Type) (h:HS.mem) (b1 b2: lbuffer l a) (i:uint32{i <=^ l}) : prop = forall (j:uint32). j <^ i ==> B.get h b1 (U32.v j) == B.get h b2 (U32.v j) unfold let ( <= ) x y = U32.(x <=^ y) unfold let ( < ) x y = U32.(x <^ y) let ( + ) (x:U32.t) (y:U32.t{FStar.UInt.size (v x + v y) U32.n}) = U32.(x +^ y) let op_Subtraction (x:U32.t) (y:U32.t{FStar.UInt.size (v x - v y) U32.n}) = U32.(x -^ y)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Demo.Deps.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.UInt32", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "Demo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
init: 'a -> len: FStar.UInt32.t -> FStar.HyperStack.ST.ST (Demo.Deps.lbuffer len 'a)
FStar.HyperStack.ST.ST
[]
[]
[ "FStar.UInt32.t", "LowStar.Buffer.malloc", "FStar.Monotonic.HyperHeap.root", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Buffer.trivial_preorder", "Prims.l_and", "Prims.eq2", "Prims.nat", "LowStar.Monotonic.Buffer.length", "FStar.UInt32.v", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.freeable", "Demo.Deps.lbuffer", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.malloc_pre", "LowStar.Monotonic.Buffer.alloc_post_mem_common", "FStar.Seq.Base.create" ]
[]
false
true
false
false
false
let malloc (init: 'a) (len: U32.t) : ST (lbuffer len 'a) (requires fun h -> malloc_pre HS.root len) (ensures fun h0 b h1 -> alloc_post_mem_common b h0 h1 (Seq.create (U32.v len) init) /\ freeable b) =
B.malloc HS.root init len
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.build_contains_equiv_lemma
val build_contains_equiv_lemma: Prims.unit -> Lemma (build_contains_equiv_fact)
val build_contains_equiv_lemma: Prims.unit -> Lemma (build_contains_equiv_fact)
let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 296, "start_col": 8, "start_line": 290 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.build_contains_equiv_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.l_iff", "FStar.Sequence.Base.contains", "FStar.Sequence.Base.build", "Prims.l_or", "Prims.eq2", "FStar.Sequence.Base.build_contains_equiv_helper", "Prims.squash", "Prims.l_True", "FStar.Sequence.Base.build_contains_equiv_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) =
introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty) . contains (build s v) x <==> (v == x \/ contains s x) with (build_contains_equiv_helper ty s v x)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.take_contains_equiv_exists_lemma
val take_contains_equiv_exists_lemma: Prims.unit -> Lemma (take_contains_equiv_exists_fact)
val take_contains_equiv_exists_lemma: Prims.unit -> Lemma (take_contains_equiv_exists_fact)
let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 346, "start_col": 8, "start_line": 340 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.take_contains_equiv_exists_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.l_iff", "FStar.Sequence.Base.contains", "FStar.Sequence.Base.take", "Prims.l_Exists", "Prims.l_and", "Prims.op_LessThan", "Prims.eq2", "FStar.Sequence.Base.index", "FStar.Sequence.Base.take_contains_equiv_exists_helper3", "Prims.squash", "Prims.l_True", "FStar.Sequence.Base.take_contains_equiv_exists_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) =
introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty) . contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with (take_contains_equiv_exists_helper3 ty s n x)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.index_after_append_lemma
val index_after_append_lemma: squash (append_sums_lengths_fact u#a) -> Lemma (index_after_append_fact u#a ())
val index_after_append_lemma: squash (append_sums_lengths_fact u#a) -> Lemma (index_after_append_fact u#a ())
let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 207, "start_col": 8, "start_line": 200 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.squash FStar.Sequence.Base.append_sums_lengths_fact -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.index_after_append_fact ())
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.squash", "FStar.Sequence.Base.append_sums_lengths_fact", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "FStar.Sequence.Base.append", "Prims.l_and", "Prims.l_imp", "Prims.eq2", "FStar.Sequence.Base.index", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "FStar.Sequence.Base.index_after_append_helper", "Prims.unit", "Prims.l_True", "FStar.Sequence.Base.index_after_append_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) =
introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) . (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with (index_after_append_helper ty s0 s1 n)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.build_increments_length_lemma
val build_increments_length_lemma: Prims.unit -> Lemma (build_increments_length_fact)
val build_increments_length_lemma: Prims.unit -> Lemma (build_increments_length_fact)
let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 163, "start_col": 8, "start_line": 159 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.build_increments_length_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Sequence.Base.length", "FStar.Sequence.Base.build", "Prims.op_Addition", "FStar.List.Tot.Properties.append_length", "Prims.Cons", "Prims.Nil", "Prims.squash", "Prims.l_True", "FStar.Sequence.Base.build_increments_length_fact", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let build_increments_length_lemma () : Lemma (build_increments_length_fact) =
introduce forall (ty: Type) (s: seq ty) (v: ty) . length (build s v) = 1 + length s with (FLT.append_length s [v])
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.lemma_splitAt_fst_length
val lemma_splitAt_fst_length (#a: Type) (n: nat) (l: list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n))
val lemma_splitAt_fst_length (#a: Type) (n: nat) (l: list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n))
let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l'
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 216, "start_col": 8, "start_line": 209 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> l: Prims.list a -> FStar.Pervasives.Lemma (requires n <= FStar.Sequence.Base.length l) (ensures FStar.Sequence.Base.length (FStar.Pervasives.Native.fst (FStar.List.Tot.Base.splitAt n l)) = n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.list", "FStar.Pervasives.Native.Mktuple2", "Prims.int", "FStar.Sequence.Base.lemma_splitAt_fst_length", "Prims.op_Subtraction", "Prims.unit", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.squash", "Prims.op_Equality", "FStar.Pervasives.Native.fst", "FStar.List.Tot.Base.splitAt", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_splitAt_fst_length (#a: Type) (n: nat) (l: list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) =
match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l'
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.build_contains_equiv_helper
val build_contains_equiv_helper (ty: Type) (s: list ty) (v x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s))
val build_contains_equiv_helper (ty: Type) (s: list ty) (v x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s))
let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 288, "start_col": 8, "start_line": 280 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ty: Type -> s: Prims.list ty -> v: ty -> x: ty -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.memP x (FStar.Sequence.Base.append s [v]) <==> v == x \/ FStar.List.Tot.Base.memP x s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.Classical.Sugar.or_elim", "Prims.eq2", "Prims.squash", "Prims.l_not", "Prims.l_iff", "FStar.List.Tot.Base.memP", "FStar.Sequence.Base.append", "Prims.Cons", "Prims.Nil", "Prims.l_or", "FStar.Sequence.Base.build_contains_equiv_helper", "Prims.unit", "Prims.l_True", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) =
match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _ . () and _ . build_contains_equiv_helper ty tl v x
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.take_contains_equiv_exists_helper2
val take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n))
val take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n))
let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 81, "end_line": 324, "start_col": 8, "start_line": 316 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ())
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ty: Type -> s: Prims.list ty -> n: Prims.nat{n <= FStar.Sequence.Base.length s} -> x: ty -> i: Prims.nat -> FStar.Pervasives.Lemma (requires i < n /\ i < FStar.Sequence.Base.length s /\ FStar.Sequence.Base.index s i == x) (ensures FStar.List.Tot.Base.memP x (FStar.Sequence.Base.take s n))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "FStar.Classical.Sugar.or_elim", "Prims.eq2", "Prims.squash", "Prims.l_not", "FStar.List.Tot.Base.memP", "FStar.Sequence.Base.take", "FStar.Sequence.Base.take_contains_equiv_exists_helper2", "Prims.op_Subtraction", "Prims.unit", "Prims.l_and", "Prims.op_LessThan", "FStar.Sequence.Base.index", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) =
match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd . () and case_x_ne_hd . take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.drop_length_lemma
val drop_length_lemma: Prims.unit -> Lemma (drop_length_fact)
val drop_length_lemma: Prims.unit -> Lemma (drop_length_fact)
let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 468, "start_col": 8, "start_line": 461 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.drop_length_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.op_Equality", "Prims.int", "FStar.Sequence.Base.drop", "Prims.op_Subtraction", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.List.Tot.Base.lemma_splitAt_snd_length", "Prims.l_True", "FStar.Sequence.Base.drop_length_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let drop_length_lemma () : Lemma (drop_length_fact) =
introduce forall (ty: Type) (s: seq ty) (n: nat) . n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. (FLT.lemma_splitAt_snd_length n s)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.update_then_index_lemma
val update_then_index_lemma: Prims.unit -> Lemma (update_then_index_fact)
val update_then_index_lemma: Prims.unit -> Lemma (update_then_index_fact)
let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 257, "start_col": 8, "start_line": 246 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.update_then_index_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "FStar.Sequence.Base.update", "Prims.l_imp", "Prims.l_and", "Prims.op_Equality", "Prims.l_or", "Prims.eq2", "FStar.Sequence.Base.index", "Prims.op_disEquality", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.Sequence.Base.update_then_index_helper", "FStar.Sequence.Base.update_maintains_length_lemma", "Prims.l_True", "FStar.Sequence.Base.update_then_index_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let update_then_index_lemma () : Lemma (update_then_index_fact) =
update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) . n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. (update_then_index_helper s i v n)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.take_length_lemma
val take_length_lemma: Prims.unit -> Lemma (take_length_fact)
val take_length_lemma: Prims.unit -> Lemma (take_length_fact)
let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 441, "start_col": 8, "start_line": 434 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.take_length_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.op_Equality", "FStar.Sequence.Base.take", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.Sequence.Base.lemma_splitAt_fst_length", "Prims.l_True", "FStar.Sequence.Base.take_length_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let take_length_lemma () : Lemma (take_length_fact) =
introduce forall (ty: Type) (s: seq ty) (n: nat) . n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. (lemma_splitAt_fst_length n s)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.drop_contains_equiv_exists_lemma
val drop_contains_equiv_exists_lemma: Prims.unit -> Lemma (drop_contains_equiv_exists_fact)
val drop_contains_equiv_exists_lemma: Prims.unit -> Lemma (drop_contains_equiv_exists_fact)
let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 412, "start_col": 8, "start_line": 403 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.drop_contains_equiv_exists_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.l_iff", "FStar.Sequence.Base.contains", "FStar.Sequence.Base.drop", "Prims.l_Exists", "Prims.l_and", "Prims.op_LessThan", "Prims.eq2", "FStar.Sequence.Base.index", "Prims._assert", "FStar.List.Tot.Base.memP", "FStar.Sequence.Base.drop_contains_equiv_exists_helper3", "Prims.squash", "Prims.l_True", "FStar.Sequence.Base.drop_contains_equiv_exists_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) =
introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty) . contains (drop s n) x <==> (exists (i: nat). {:pattern index s i} n <= i /\ i < length s /\ index s i == x) with (drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)))
false
FStar.Matrix.fst
FStar.Matrix.matrix_left_mul_identity_aux_3
val matrix_left_mul_identity_aux_3 (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: under (m + 1) {k > i + 1}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth (matrix_mul_unit add mul m) i k) `mul.mult` (ijth mx k j))) ) `eq.eq` (ijth mx i j))
val matrix_left_mul_identity_aux_3 (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: under (m + 1) {k > i + 1}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth (matrix_mul_unit add mul m) i k) `mul.mult` (ijth mx k j))) ) `eq.eq` (ijth mx i j))
let rec matrix_left_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under(m+1){k>i+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in if (k-1 = i+1) then matrix_left_mul_identity_aux_2 add mul mx i j (k-1) else matrix_left_mul_identity_aux_3 add mul mx i j (k-1); matrix_mul_unit_ijth add mul m i (k-1); // This one reduces the rlimits needs to default SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 1014, "start_col": 0, "start_line": 982 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i) let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z) let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). SB.index zeroes i `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) = if (SB.length zeroes < 1) then begin assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit end else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit let matrix_mul_unit_ijth #c #eq (add mul: CE.cm c eq) m (i j: under m) : Lemma (ijth (matrix_mul_unit add mul m) i j == (if i=j then mul.unit else add.unit))=() let last_equals_index #c (s: SB.seq c{SB.length s > 0}) : Lemma ((snd (SProp.un_snoc s)) == SB.index s (SB.length s - 1)) = () let matrix_right_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_right_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=j}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) (decreases k) = if k = 0 then matrix_right_mul_identity_aux_0 add mul mx i j k else let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit let matrix_right_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j j; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_right_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1){k>j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) (decreases k) = if (k-1) > j+1 then matrix_right_mul_identity_aux_3 add mul mx i j (k-1) else matrix_right_mul_identity_aux_2 add mul mx i j (k-1); let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let subgen (i: under (k)) = gen i in let full = SB.init k gen in SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j) let matrix_right_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` (if k>j then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_right_mul_identity_aux_0 add mul mx i j k else if k <= j then matrix_right_mul_identity_aux_1 add mul mx i j k else if k = j+1 then matrix_right_mul_identity_aux_2 add mul mx i j k else matrix_right_mul_identity_aux_3 add mul mx i j k let matrix_left_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_left_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=i /\ k>0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in if k=1 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); SP.foldm_snoc_decomposition add full; mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit #push-options "--z3rlimit 20" let matrix_left_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=i+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in assert (k-1 <= i /\ k-1 >= 0); if (k-1)=0 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); matrix_mul_unit_ijth add mul m i (k-1); // This one reduces the rlimits needs to default SP.foldm_snoc_decomposition add full; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq {FStar.Matrix.is_absorber (CM?.unit add) mul} -> mx: FStar.Matrix.matrix c m m -> i: FStar.IntegerIntervals.under m -> j: FStar.IntegerIntervals.under m -> k: FStar.IntegerIntervals.under (m + 1) {k > i + 1} -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc add (FStar.Seq.Base.init k (fun k -> CM?.mult mul (FStar.Matrix.ijth (FStar.Matrix.matrix_mul_unit add mul m) i k) (FStar.Matrix.ijth mx k j)))) (FStar.Matrix.ijth mx i j))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "FStar.Matrix.matrix", "FStar.IntegerIntervals.under", "Prims.op_Addition", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.seq", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "FStar.Seq.Permutation.foldm_snoc", "FStar.Seq.Base.init", "Prims.op_Subtraction", "FStar.Matrix.ijth", "Prims.unit", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__identity", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__congruence", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__commutativity", "FStar.Seq.Base.lemma_eq_elim", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.Seq.Properties.snoc", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Seq.Properties.un_snoc", "FStar.Matrix.liat_equals_init", "FStar.Seq.Permutation.foldm_snoc_decomposition", "FStar.Matrix.matrix_mul_unit_ijth", "Prims.op_Equality", "Prims.int", "FStar.Matrix.matrix_left_mul_identity_aux_2", "Prims.bool", "FStar.Matrix.matrix_left_mul_identity_aux_3", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Matrix.matrix_mul", "FStar.Matrix.matrix_mul_unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec matrix_left_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i: under m) (j: under m) (k: under (m + 1) {k > i + 1}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth (matrix_mul_unit add mul m) i k) `mul.mult` (ijth mx k j))) ) `eq.eq` (ijth mx i j)) =
let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in if (k - 1 = i + 1) then matrix_left_mul_identity_aux_2 add mul mx i j (k - 1) else matrix_left_mul_identity_aux_3 add mul mx i j (k - 1); matrix_mul_unit_ijth add mul m i (k - 1); SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat, last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k - 1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k - 1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k - 1) gen)); add.congruence last (SP.foldm_snoc add (SB.init (k - 1) gen)) add.unit (SP.foldm_snoc add (SB.init (k - 1) gen)); add.identity (SP.foldm_snoc add (SB.init (k - 1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k - 1) gen))) (SP.foldm_snoc add (SB.init (k - 1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k - 1) gen)) (ijth mx i j)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.index_into_build_lemma
val index_into_build_lemma: Prims.unit -> Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ())
val index_into_build_lemma: Prims.unit -> Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ())
let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 182, "start_col": 8, "start_line": 174 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (requires FStar.Sequence.Base.build_increments_length_fact) (ensures FStar.Sequence.Base.index_into_build_fact ())
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "FStar.Sequence.Base.build", "Prims.l_and", "Prims.l_imp", "Prims.op_Equality", "Prims.eq2", "FStar.Sequence.Base.index", "Prims.op_disEquality", "FStar.Sequence.Base.index_into_build_helper", "Prims.squash", "FStar.Sequence.Base.build_increments_length_fact", "FStar.Sequence.Base.index_into_build_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) =
introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) . (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with (index_into_build_helper u#a s v i)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.take_contains_equiv_exists_helper1
val take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat). {:pattern index s i} i < n /\ i < length s /\ index s i == x))
val take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat). {:pattern index s i} i < n /\ i < length s /\ index s i == x))
let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ())
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 15, "end_line": 314, "start_col": 8, "start_line": 298 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ty: Type -> s: Prims.list ty -> n: Prims.nat{n <= FStar.Sequence.Base.length s} -> x: ty -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.memP x (FStar.Sequence.Base.take s n)) (ensures exists (i: Prims.nat). {:pattern FStar.Sequence.Base.index s i} i < n /\ i < FStar.Sequence.Base.length s /\ FStar.Sequence.Base.index s i == x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "FStar.Classical.Sugar.or_elim", "Prims.eq2", "Prims.squash", "Prims.l_not", "Prims.l_Exists", "Prims.l_and", "Prims.op_LessThan", "FStar.Sequence.Base.index", "Prims._assert", "FStar.Classical.Sugar.exists_elim", "Prims.op_Subtraction", "FStar.Classical.Sugar.exists_intro", "Prims.op_Addition", "Prims.unit", "FStar.Sequence.Base.take_contains_equiv_exists_helper1", "FStar.List.Tot.Base.memP", "FStar.Sequence.Base.take", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat). {:pattern index s i} i < n /\ i < length s /\ index s i == x)) =
match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat). {:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd . assert (index s 0 == x) and case_x_ne_hd . (take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat). {:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat).i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ())
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.update_maintains_length_helper
val update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s)
val update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s)
let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 224, "start_col": 8, "start_line": 218 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Prims.list ty -> i: Prims.nat{i < FStar.Sequence.Base.length s} -> v: ty -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.length (FStar.Sequence.Base.update s i v) = FStar.Sequence.Base.length s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "FStar.List.Tot.Properties.append_length", "FStar.Sequence.Base.append", "Prims.Cons", "Prims.Nil", "Prims.unit", "FStar.List.Tot.Base.lemma_splitAt_snd_length", "FStar.Sequence.Base.lemma_splitAt_fst_length", "FStar.Pervasives.Native.tuple3", "FStar.List.Tot.Base.split3", "Prims.l_True", "Prims.squash", "Prims.op_Equality", "FStar.Sequence.Base.update", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) =
let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.take_contains_equiv_exists_helper3
val take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat). {:pattern index s i} i < n /\ i < length s /\ index s i == x))
val take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat). {:pattern index s i} i < n /\ i < length s /\ index s i == x))
let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 338, "start_col": 8, "start_line": 326 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ty: Type -> s: Prims.list ty -> n: Prims.nat{n <= FStar.Sequence.Base.length s} -> x: ty -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.memP x (FStar.Sequence.Base.take s n) <==> (exists (i: Prims.nat). {:pattern FStar.Sequence.Base.index s i} i < n /\ i < FStar.Sequence.Base.length s /\ FStar.Sequence.Base.index s i == x))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "FStar.Classical.Sugar.implies_intro", "Prims.l_Exists", "Prims.l_and", "Prims.op_LessThan", "Prims.eq2", "FStar.Sequence.Base.index", "Prims.squash", "FStar.List.Tot.Base.memP", "FStar.Sequence.Base.take", "FStar.Classical.Sugar.exists_elim", "FStar.Sequence.Base.take_contains_equiv_exists_helper2", "Prims.unit", "FStar.Sequence.Base.take_contains_equiv_exists_helper1", "Prims.l_True", "Prims.l_iff", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat). {:pattern index s i} i < n /\ i < length s /\ index s i == x)) =
introduce FLT.memP x (take s n) ==> (exists (i: nat). {:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat). {:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. (eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.drop_contains_equiv_exists_helper2
val drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n))
val drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n))
let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ())
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 93, "end_line": 386, "start_col": 8, "start_line": 373 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ty: Type -> s: Prims.list ty -> n: Prims.nat{n <= FStar.Sequence.Base.length s} -> x: ty -> i: Prims.nat -> FStar.Pervasives.Lemma (requires n <= i /\ i < FStar.Sequence.Base.length s /\ FStar.Sequence.Base.index s i == x) (ensures FStar.List.Tot.Base.memP x (FStar.Sequence.Base.drop s n))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "FStar.Classical.Sugar.or_elim", "Prims.eq2", "Prims.int", "Prims.squash", "Prims.l_not", "Prims.op_disEquality", "FStar.List.Tot.Base.memP", "FStar.Sequence.Base.drop", "FStar.List.Tot.Properties.lemma_index_memP", "FStar.Classical.Sugar.exists_elim", "Prims.l_and", "Prims.op_Subtraction", "Prims.op_LessThan", "FStar.Sequence.Base.index", "Prims.l_Exists", "Prims.op_GreaterThanOrEqual", "FStar.Classical.Sugar.exists_intro", "Prims.op_Addition", "Prims.unit", "FStar.Sequence.Base.drop_contains_equiv_exists_helper2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) =
match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _ . FLT.lemma_index_memP s i and _ . (drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i.n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ())
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.contains_iff_exists_index_lemma
val contains_iff_exists_index_lemma: Prims.unit -> Lemma (contains_iff_exists_index_fact)
val contains_iff_exists_index_lemma: Prims.unit -> Lemma (contains_iff_exists_index_fact)
let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 275, "start_col": 8, "start_line": 259 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.contains_iff_exists_index_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.l_iff", "FStar.Sequence.Base.contains", "Prims.l_Exists", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.index", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.Classical.Sugar.exists_elim", "FStar.List.Tot.Properties.lemma_index_memP", "FStar.Classical.Sugar.exists_intro", "FStar.List.Tot.Properties.index_of", "Prims.l_True", "FStar.Sequence.Base.contains_iff_exists_index_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) =
introduce forall (ty: Type) (s: seq ty) (x: ty) . contains s x <==> (exists (i: nat). {:pattern index s i} i < length s /\ index s i == x) with (introduce contains s x ==> (exists (i: nat). {:pattern index s i} i < length s /\ index s i == x) with given_antecedent. (introduce exists (i: nat).i < length s /\ index s i == x with (FLT.index_of s x) and ()); introduce (exists (i: nat). {:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. (eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i))
false
FStar.Matrix.fst
FStar.Matrix.matrix_mul_is_associative
val matrix_mul_is_associative (#c:_) (#eq:_) (#m #n #p #q: pos) (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma ((matrix_equiv eq m q).eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz)))
val matrix_mul_is_associative (#c:_) (#eq:_) (#m #n #p #q: pos) (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma ((matrix_equiv eq m q).eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz)))
let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 46, "end_line": 718, "start_col": 0, "start_line": 663 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 15, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq {FStar.Matrix.is_fully_distributive mul add /\ FStar.Matrix.is_absorber (CM?.unit add) mul} -> mx: FStar.Matrix.matrix c m n -> my: FStar.Matrix.matrix c n p -> mz: FStar.Matrix.matrix c p q -> FStar.Pervasives.Lemma (ensures EQ?.eq (FStar.Matrix.matrix_equiv eq m q) (FStar.Matrix.matrix_mul add mul (FStar.Matrix.matrix_mul add mul mx my) mz) (FStar.Matrix.matrix_mul add mul mx (FStar.Matrix.matrix_mul add mul my mz)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "Prims.l_and", "FStar.Matrix.is_fully_distributive", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "FStar.Matrix.matrix", "FStar.Matrix.matrix_equiv_from_proof", "FStar.IntegerIntervals.under", "Prims.squash", "FStar.Matrix.ijth", "Prims.unit", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__symmetry", "FStar.Seq.Permutation.foldm_snoc_of_equal_inits", "FStar.Classical.forall_intro", "Prims.l_True", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Matrix.foldm_snoc_distributivity_left_eq", "FStar.Seq.Base.init", "FStar.Matrix.matrix_mul_ijth_eq_sum_of_seq_for_init", "Prims.eq2", "FStar.Matrix.double_foldm_snoc_of_equal_generators", "FStar.Classical.forall_intro_2", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__associativity", "FStar.Matrix.double_foldm_snoc_transpose_lemma", "FStar.Matrix.foldm_snoc_distributivity_right_eq", "FStar.Seq.Permutation.foldm_snoc", "FStar.Pervasives.Native.tuple3", "FStar.Pervasives.Native.Mktuple3", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Matrix.matrix_mul", "FStar.Matrix.matrix_eq_fun" ]
[]
false
false
true
false
false
let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq {is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq (matrix_mul add mul (matrix_mul add mul mx my) mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) =
let rhs = matrix_mul add mul mx (matrix_mul add mul my mz) in let lhs = matrix_mul add mul (matrix_mul add mul mx my) mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ( + ), ( * ), ( = ) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: (under n -> c)) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: (under p -> c)) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.extensionality_lemma
val extensionality_lemma: Prims.unit -> Lemma (extensionality_fact)
val extensionality_lemma: Prims.unit -> Lemma (extensionality_fact)
let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 429, "start_col": 8, "start_line": 417 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.extensionality_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.l_imp", "FStar.Sequence.Base.equal", "Prims.eq2", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.List.Tot.Properties.index_extensionality", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "FStar.Sequence.Base.index", "Prims._assert", "Prims.l_True", "FStar.Sequence.Base.extensionality_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let extensionality_lemma () : Lemma (extensionality_fact) =
introduce forall (ty: Type) (a: seq ty) (b: seq ty) . equal a b ==> a == b with introduce _ ==> _ with given_antecedent. (introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. (assert (index a i == index b i)); FStar.List.Tot.Properties.index_extensionality a b)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.drop_contains_equiv_exists_helper3
val drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat). {:pattern index s i} n <= i /\ i < length s /\ index s i == x))
val drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat). {:pattern index s i} n <= i /\ i < length s /\ index s i == x))
let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 401, "start_col": 8, "start_line": 388 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ())
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ty: Type -> s: Prims.list ty -> n: Prims.nat{n <= FStar.Sequence.Base.length s} -> x: ty -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.memP x (FStar.Sequence.Base.drop s n) <==> (exists (i: Prims.nat). {:pattern FStar.Sequence.Base.index s i} n <= i /\ i < FStar.Sequence.Base.length s /\ FStar.Sequence.Base.index s i == x))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "FStar.Classical.Sugar.implies_intro", "Prims.l_Exists", "Prims.l_and", "Prims.op_LessThan", "Prims.eq2", "FStar.Sequence.Base.index", "Prims.squash", "FStar.List.Tot.Base.memP", "FStar.Sequence.Base.drop", "FStar.Classical.Sugar.exists_elim", "FStar.Sequence.Base.drop_contains_equiv_exists_helper2", "Prims.unit", "FStar.Sequence.Base.drop_contains_equiv_exists_helper1", "Prims.l_True", "Prims.l_iff", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat). {:pattern index s i} n <= i /\ i < length s /\ index s i == x)) =
introduce FLT.memP x (drop s n) ==> (exists (i: nat). {:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. (drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat). {:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. (eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.index_into_take_lemma
val index_into_take_lemma: Prims.unit -> Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ())
val index_into_take_lemma: Prims.unit -> Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ())
let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 459, "start_col": 8, "start_line": 449 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (requires FStar.Sequence.Base.take_length_fact) (ensures FStar.Sequence.Base.index_into_take_fact ())
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.index", "FStar.Sequence.Base.take", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.Sequence.Base.index_into_take_helper", "Prims._assert", "FStar.Sequence.Base.take_length_fact", "FStar.Sequence.Base.index_into_take_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) =
introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat) . j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. (assert (length (take s n) == n); index_into_take_helper s n j)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.index_into_build_helper
val index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i))
val index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i))
let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 64, "end_line": 172, "start_col": 8, "start_line": 165 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Prims.list ty -> v: ty -> i: Prims.nat{i < FStar.Sequence.Base.length (FStar.Sequence.Base.append s [v])} -> FStar.Pervasives.Lemma (requires i <= FStar.Sequence.Base.length s) (ensures FStar.Sequence.Base.index (FStar.Sequence.Base.append s [v]) i == (match i = FStar.Sequence.Base.length s with | true -> v | _ -> FStar.Sequence.Base.index s i))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "FStar.Sequence.Base.append", "Prims.Cons", "Prims.Nil", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Sequence.Base.index_into_build_helper", "Prims.op_Subtraction", "Prims.unit", "FStar.List.Tot.Properties.append_length", "Prims.op_LessThanOrEqual", "Prims.squash", "Prims.eq2", "FStar.Sequence.Base.index", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) =
FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.index_into_take_helper
val index_into_take_helper (#ty: Type) (s: list ty) (n j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j)
val index_into_take_helper (#ty: Type) (s: list ty) (n j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j)
let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 88, "end_line": 447, "start_col": 8, "start_line": 443 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Prims.list ty -> n: Prims.nat -> j: Prims.nat -> FStar.Pervasives.Lemma (requires j < n && n <= FStar.Sequence.Base.length s /\ FStar.Sequence.Base.length (FStar.Sequence.Base.take s n) = n) (ensures FStar.Sequence.Base.index (FStar.Sequence.Base.take s n) j == FStar.Sequence.Base.index s j)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.nat", "Prims.op_BarBar", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Sequence.Base.index_into_take_helper", "Prims.op_Subtraction", "Prims.unit", "Prims.l_and", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "FStar.Sequence.Base.take", "Prims.squash", "Prims.eq2", "FStar.Sequence.Base.index", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec index_into_take_helper (#ty: Type) (s: list ty) (n j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) =
match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.index_after_append_helper
val index_after_append_helper (ty: Type) (s0 s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0)))
val index_after_append_helper (ty: Type) (s0 s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0)))
let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 80, "end_line": 198, "start_col": 8, "start_line": 193 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ty: Type -> s0: Prims.list ty -> s1: Prims.list ty -> n: Prims.nat -> FStar.Pervasives.Lemma (requires n < FStar.Sequence.Base.length (FStar.Sequence.Base.append s0 s1) && FStar.Sequence.Base.length (FStar.Sequence.Base.append s0 s1) = FStar.Sequence.Base.length s0 + FStar.Sequence.Base.length s1) (ensures FStar.Sequence.Base.index (FStar.Sequence.Base.append s0 s1) n == (match n < FStar.Sequence.Base.length s0 with | true -> FStar.Sequence.Base.index s0 n | _ -> FStar.Sequence.Base.index s1 (n - FStar.Sequence.Base.length s0)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Sequence.Base.index_after_append_helper", "Prims.op_Subtraction", "Prims.unit", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "FStar.Sequence.Base.length", "FStar.Sequence.Base.append", "Prims.op_Addition", "Prims.squash", "Prims.eq2", "FStar.Sequence.Base.index", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec index_after_append_helper (ty: Type) (s0 s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) =
match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.element_ranks_less_lemma
val element_ranks_less_lemma: Prims.unit -> Lemma (element_ranks_less_fact)
val element_ranks_less_lemma: Prims.unit -> Lemma (element_ranks_less_fact)
let element_ranks_less_lemma () : Lemma (element_ranks_less_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat). i < length s ==> rank (index s i) << rank s with introduce _ ==> _ with given_antecedent. ( contains_iff_exists_index_lemma (); assert (contains s (index s i)); FLT.memP_precedes (index s i) s )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 656, "start_col": 8, "start_line": 648 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j private let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j ) private let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat). n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n (k - n) ) private let rec append_then_take_or_drop_helper (#ty: Type) (s: list ty) (t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t) = match s with | [] -> () | hd :: tl -> append_then_take_or_drop_helper tl t (n - 1) private let append_then_take_or_drop_lemma () : Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (t: seq ty) (n: nat). n = length s ==> take (append s t) n == s /\ drop (append s t) n == t with introduce _ ==> _ with given_antecedent. ( append_then_take_or_drop_helper s t n ) #push-options "--z3rlimit 20" private let rec take_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s /\ length (take s n) = n) (ensures take (update s i v) n == update (take s n) i v) = match s with | hd :: tl -> if i = 0 then () else (update_maintains_length_lemma() ; take_commutes_with_in_range_update_helper tl (i - 1) v (n - 1)) #pop-options private let take_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ take_length_fact u#a) (ensures take_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> take (update s i v) n == update (take s n) i v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (take s n) = n); // triggers take_length_fact take_commutes_with_in_range_update_helper s i v n ) private let rec take_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s) (ensures take (update s i v) n == take s n) = match s with | hd :: tl -> if n = 0 then () else take_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let take_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures take_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> take (update s i v) n == take s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact take_ignores_out_of_range_update_helper s i v n ) #push-options "--fuel 2 --ifuel 1 --z3rlimit_factor 4" private let rec drop_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s /\ length (drop s n) = length s - n) (ensures drop (update s i v) n == update (drop s n) (i - n) v) = match s with | hd :: tl -> if n = 0 then () else ( update_maintains_length_lemma (); drop_length_lemma (); drop_commutes_with_in_range_update_helper tl (i - 1) v (n - 1) ) #pop-options private let drop_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ drop_length_fact u#a) (ensures drop_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (drop s n) = length s - n); // triggers drop_length_fact drop_commutes_with_in_range_update_helper s i v n ) private let rec drop_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s) (ensures drop (update s i v) n == drop s n) = match s with | hd :: tl -> if i = 0 then () else drop_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let drop_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures drop_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> drop (update s i v) n == drop s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact drop_ignores_out_of_range_update_helper s i v n ) private let rec drop_commutes_with_build_helper (#ty: Type) (s: list ty) (v: ty) (n: nat) : Lemma (requires n <= length s /\ length (append s [v]) = 1 + length s) (ensures drop (append s [v]) n == append (drop s n) [v]) = match s with | [] -> assert (append s [v] == [v]); assert (n == 0); () | hd :: tl -> if n = 0 then () else drop_commutes_with_build_helper tl v (n - 1) private let drop_commutes_with_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures drop_commutes_with_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (n: nat). n <= length s ==> drop (build s v) n == build (drop s n) v with introduce _ ==> _ with given_antecedent. ( assert (length (build s v) = 1 + length s); // triggers build_increments_length_fact drop_commutes_with_build_helper s v n ) private let rank_def_lemma () : Lemma (rank_def_fact) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.element_ranks_less_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "Prims.precedes", "FStar.Sequence.Base.rank", "FStar.Sequence.Base.index", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.List.Tot.Properties.memP_precedes", "Prims._assert", "FStar.Sequence.Base.contains", "FStar.Sequence.Base.contains_iff_exists_index_lemma", "Prims.l_True", "FStar.Sequence.Base.element_ranks_less_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let element_ranks_less_lemma () : Lemma (element_ranks_less_fact) =
introduce forall (ty: Type) (s: seq ty) (i: nat) . i < length s ==> rank (index s i) << rank s with introduce _ ==> _ with given_antecedent. (contains_iff_exists_index_lemma (); assert (contains s (index s i)); FLT.memP_precedes (index s i) s)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.index_into_drop_lemma
val index_into_drop_lemma: Prims.unit -> Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ())
val index_into_drop_lemma: Prims.unit -> Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ())
let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 486, "start_col": 8, "start_line": 476 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (requires FStar.Sequence.Base.drop_length_fact) (ensures FStar.Sequence.Base.index_into_drop_fact ())
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.index", "FStar.Sequence.Base.drop", "Prims.op_Addition", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.Sequence.Base.index_into_drop_helper", "Prims._assert", "Prims.op_Equality", "Prims.int", "FStar.Sequence.Base.drop_length_fact", "FStar.Sequence.Base.index_into_drop_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) =
introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat) . j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. (assert (length (drop s n) = length s - n); index_into_drop_helper s n j)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.append_then_take_or_drop_lemma
val append_then_take_or_drop_lemma: Prims.unit -> Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ())
val append_then_take_or_drop_lemma: Prims.unit -> Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ())
let append_then_take_or_drop_lemma () : Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (t: seq ty) (n: nat). n = length s ==> take (append s t) n == s /\ drop (append s t) n == t with introduce _ ==> _ with given_antecedent. ( append_then_take_or_drop_helper s t n )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 516, "start_col": 8, "start_line": 507 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j private let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j ) private let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat). n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n (k - n) ) private let rec append_then_take_or_drop_helper (#ty: Type) (s: list ty) (t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t) = match s with | [] -> () | hd :: tl -> append_then_take_or_drop_helper tl t (n - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (requires FStar.Sequence.Base.append_sums_lengths_fact) (ensures FStar.Sequence.Base.append_then_take_or_drop_fact ())
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_Equality", "FStar.Sequence.Base.length", "Prims.l_and", "Prims.eq2", "FStar.Sequence.Base.take", "FStar.Sequence.Base.append", "FStar.Sequence.Base.drop", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.Sequence.Base.append_then_take_or_drop_helper", "FStar.Sequence.Base.append_sums_lengths_fact", "FStar.Sequence.Base.append_then_take_or_drop_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let append_then_take_or_drop_lemma () : Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ()) =
introduce forall (ty: Type) (s: seq ty) (t: seq ty) (n: nat) . n = length s ==> take (append s t) n == s /\ drop (append s t) n == t with introduce _ ==> _ with given_antecedent. (append_then_take_or_drop_helper s t n)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.drop_commutes_with_build_lemma
val drop_commutes_with_build_lemma: Prims.unit -> Lemma (requires build_increments_length_fact u#a) (ensures drop_commutes_with_build_fact u#a ())
val drop_commutes_with_build_lemma: Prims.unit -> Lemma (requires build_increments_length_fact u#a) (ensures drop_commutes_with_build_fact u#a ())
let drop_commutes_with_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures drop_commutes_with_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (n: nat). n <= length s ==> drop (build s v) n == build (drop s n) v with introduce _ ==> _ with given_antecedent. ( assert (length (build s v) = 1 + length s); // triggers build_increments_length_fact drop_commutes_with_build_helper s v n )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 643, "start_col": 8, "start_line": 632 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j private let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j ) private let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat). n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n (k - n) ) private let rec append_then_take_or_drop_helper (#ty: Type) (s: list ty) (t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t) = match s with | [] -> () | hd :: tl -> append_then_take_or_drop_helper tl t (n - 1) private let append_then_take_or_drop_lemma () : Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (t: seq ty) (n: nat). n = length s ==> take (append s t) n == s /\ drop (append s t) n == t with introduce _ ==> _ with given_antecedent. ( append_then_take_or_drop_helper s t n ) #push-options "--z3rlimit 20" private let rec take_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s /\ length (take s n) = n) (ensures take (update s i v) n == update (take s n) i v) = match s with | hd :: tl -> if i = 0 then () else (update_maintains_length_lemma() ; take_commutes_with_in_range_update_helper tl (i - 1) v (n - 1)) #pop-options private let take_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ take_length_fact u#a) (ensures take_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> take (update s i v) n == update (take s n) i v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (take s n) = n); // triggers take_length_fact take_commutes_with_in_range_update_helper s i v n ) private let rec take_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s) (ensures take (update s i v) n == take s n) = match s with | hd :: tl -> if n = 0 then () else take_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let take_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures take_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> take (update s i v) n == take s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact take_ignores_out_of_range_update_helper s i v n ) #push-options "--fuel 2 --ifuel 1 --z3rlimit_factor 4" private let rec drop_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s /\ length (drop s n) = length s - n) (ensures drop (update s i v) n == update (drop s n) (i - n) v) = match s with | hd :: tl -> if n = 0 then () else ( update_maintains_length_lemma (); drop_length_lemma (); drop_commutes_with_in_range_update_helper tl (i - 1) v (n - 1) ) #pop-options private let drop_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ drop_length_fact u#a) (ensures drop_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (drop s n) = length s - n); // triggers drop_length_fact drop_commutes_with_in_range_update_helper s i v n ) private let rec drop_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s) (ensures drop (update s i v) n == drop s n) = match s with | hd :: tl -> if i = 0 then () else drop_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let drop_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures drop_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> drop (update s i v) n == drop s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact drop_ignores_out_of_range_update_helper s i v n ) private let rec drop_commutes_with_build_helper (#ty: Type) (s: list ty) (v: ty) (n: nat) : Lemma (requires n <= length s /\ length (append s [v]) = 1 + length s) (ensures drop (append s [v]) n == append (drop s n) [v]) = match s with | [] -> assert (append s [v] == [v]); assert (n == 0); () | hd :: tl -> if n = 0 then () else drop_commutes_with_build_helper tl v (n - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (requires FStar.Sequence.Base.build_increments_length_fact) (ensures FStar.Sequence.Base.drop_commutes_with_build_fact ())
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.drop", "FStar.Sequence.Base.build", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.Sequence.Base.drop_commutes_with_build_helper", "Prims._assert", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "FStar.Sequence.Base.build_increments_length_fact", "FStar.Sequence.Base.drop_commutes_with_build_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let drop_commutes_with_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures drop_commutes_with_build_fact u#a ()) =
introduce forall (ty: Type) (s: seq ty) (v: ty) (n: nat) . n <= length s ==> drop (build s v) n == build (drop s n) v with introduce _ ==> _ with given_antecedent. (assert (length (build s v) = 1 + length s); drop_commutes_with_build_helper s v n)
false
FStar.Matrix.fst
FStar.Matrix.matrix_mul_congruence
val matrix_mul_congruence (#c:_) (#eq:_) (#m #n #p:pos) (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c m n) (mw: matrix c n p) : Lemma (requires (matrix_equiv eq m n).eq mx mz /\ (matrix_equiv eq n p).eq my mw) (ensures (matrix_equiv eq m p).eq (matrix_mul add mul mx my) (matrix_mul add mul mz mw))
val matrix_mul_congruence (#c:_) (#eq:_) (#m #n #p:pos) (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c m n) (mw: matrix c n p) : Lemma (requires (matrix_equiv eq m n).eq mx mz /\ (matrix_equiv eq n p).eq my mw) (ensures (matrix_equiv eq m p).eq (matrix_mul add mul mx my) (matrix_mul add mul mz mw))
let matrix_mul_congruence #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c m n) (mw: matrix c n p) : Lemma (requires matrix_eq_fun eq mx mz /\ matrix_eq_fun eq my mw) (ensures matrix_eq_fun eq (matrix_mul add mul mx my) (matrix_mul add mul mz mw)) = let aux (i: under m) (k: under p) : Lemma (ijth (matrix_mul add mul mx my) i k `eq.eq` ijth (matrix_mul add mul mz mw) i k) = let init_xy (j: under n) = mul.mult (ijth mx i j) (ijth my j k) in let init_zw (j: under n) = mul.mult (ijth mz i j) (ijth mw j k) in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k init_xy; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mz mw i k init_zw; let sp_xy = SB.init n init_xy in let sp_zw = SB.init n init_zw in let all_eq (j: under n) : Lemma (init_xy j `eq.eq` init_zw j) = matrix_equiv_ijth eq mx mz i j; matrix_equiv_ijth eq my mw j k; mul.congruence (ijth mx i j) (ijth my j k) (ijth mz i j) (ijth mw j k) in Classical.forall_intro all_eq; eq_of_seq_from_element_equality eq sp_xy sp_zw; SP.foldm_snoc_equality add sp_xy sp_zw in matrix_equiv_from_proof eq (matrix_mul add mul mx my) (matrix_mul add mul mz mw) aux
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 89, "end_line": 1103, "start_col": 0, "start_line": 1083 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i) let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z) let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). SB.index zeroes i `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) = if (SB.length zeroes < 1) then begin assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit end else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit let matrix_mul_unit_ijth #c #eq (add mul: CE.cm c eq) m (i j: under m) : Lemma (ijth (matrix_mul_unit add mul m) i j == (if i=j then mul.unit else add.unit))=() let last_equals_index #c (s: SB.seq c{SB.length s > 0}) : Lemma ((snd (SProp.un_snoc s)) == SB.index s (SB.length s - 1)) = () let matrix_right_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_right_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=j}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) (decreases k) = if k = 0 then matrix_right_mul_identity_aux_0 add mul mx i j k else let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit let matrix_right_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j j; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_right_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1){k>j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) (decreases k) = if (k-1) > j+1 then matrix_right_mul_identity_aux_3 add mul mx i j (k-1) else matrix_right_mul_identity_aux_2 add mul mx i j (k-1); let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let subgen (i: under (k)) = gen i in let full = SB.init k gen in SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j) let matrix_right_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` (if k>j then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_right_mul_identity_aux_0 add mul mx i j k else if k <= j then matrix_right_mul_identity_aux_1 add mul mx i j k else if k = j+1 then matrix_right_mul_identity_aux_2 add mul mx i j k else matrix_right_mul_identity_aux_3 add mul mx i j k let matrix_left_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_left_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=i /\ k>0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` add.unit) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in if k=1 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); SP.foldm_snoc_decomposition add full; mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit #push-options "--z3rlimit 20" let matrix_left_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=i+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in assert (k-1 <= i /\ k-1 >= 0); if (k-1)=0 then matrix_left_mul_identity_aux_0 add mul mx i j (k-1) else matrix_left_mul_identity_aux_1 add mul mx i j (k-1); matrix_mul_unit_ijth add mul m i (k-1); // This one reduces the rlimits needs to default SP.foldm_snoc_decomposition add full; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j) let rec matrix_left_mul_identity_aux_3 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under(m+1){k>i+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen (k: under m) = ijth unit i k * ijth mx k j in let full = SB.init k gen in if (k-1 = i+1) then matrix_left_mul_identity_aux_2 add mul mx i j (k-1) else matrix_left_mul_identity_aux_3 add mul mx i j (k-1); matrix_mul_unit_ijth add mul m i (k-1); // This one reduces the rlimits needs to default SP.foldm_snoc_decomposition add full; liat_equals_init k gen; let liat,last = SProp.un_snoc full in SB.lemma_eq_elim liat (SB.init (k-1) gen); add.identity add.unit; mul.commutativity (ijth mx i (k-1)) add.unit; eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); add.congruence last (SP.foldm_snoc add (SB.init (k-1) gen)) add.unit (SP.foldm_snoc add (SB.init (k-1) gen)); add.identity (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit (SP.foldm_snoc add (SB.init (k-1) gen))) (SP.foldm_snoc add (SB.init (k-1) gen)); eq.transitivity (SP.foldm_snoc add full) (SP.foldm_snoc add (SB.init (k-1) gen)) (ijth mx i j) let matrix_left_identity_aux #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:under (m+1)) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth (matrix_mul_unit add mul m) i k `mul.mult` ijth mx k j)) `eq.eq` (if k>i then ijth mx i j else add.unit)) (decreases k) = if k=0 then matrix_left_mul_identity_aux_0 add mul mx i j k else if k <= i then matrix_left_mul_identity_aux_1 add mul mx i j k else if k = i+1 then matrix_left_mul_identity_aux_2 add mul mx i j k else matrix_left_mul_identity_aux_3 add mul mx i j k let matrix_mul_right_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul mx (matrix_mul_unit add mul m) `matrix_eq_fun eq` mx) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let aux (i j: under m) : Lemma (ijth mxu i j $=$ ijth mx i j) = let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx unit i j gen; let seq = SB.init m gen in matrix_right_identity_aux add mul mx i j m in Classical.forall_intro_2 aux; matrix_equiv_from_element_eq eq mxu mx let matrix_mul_left_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul (matrix_mul_unit add mul m) mx `matrix_eq_fun eq` mx) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul unit mx in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let aux (i j: under m) : squash (ijth mxu i j $=$ ijth mx i j) = let gen (k: under m) = ijth unit i k * ijth mx k j in matrix_mul_ijth_eq_sum_of_seq_for_init add mul unit mx i j gen; let seq = SB.init m gen in matrix_left_identity_aux add mul mx i j m in matrix_equiv_from_proof eq mxu mx aux let matrix_mul_identity #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) : Lemma (matrix_mul add mul mx (matrix_mul_unit add mul m) `matrix_eq_fun eq` mx /\ matrix_mul add mul (matrix_mul_unit add mul m) mx `matrix_eq_fun eq` mx) = matrix_mul_left_identity add mul mx; matrix_mul_right_identity add mul mx let dot_of_equal_sequences #c #eq (add mul: CE.cm c eq) m (p q r s: (z:SB.seq c{SB.length z == m})) : Lemma (requires eq_of_seq eq p r /\ eq_of_seq eq q s) (ensures eq.eq (dot add mul p q) (dot add mul r s)) = eq_of_seq_element_equality eq p r; eq_of_seq_element_equality eq q s; let aux (i: under (SB.length p)) : Lemma (SB.index (seq_of_products mul p q) i `eq.eq` SB.index (seq_of_products mul r s) i) = mul.congruence (SB.index p i) (SB.index q i) (SB.index r i) (SB.index s i) in Classical.forall_intro aux; eq_of_seq_from_element_equality eq (seq_of_products mul p q) (seq_of_products mul r s); SP.foldm_snoc_equality add (seq_of_products mul p q) (seq_of_products mul r s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mx: FStar.Matrix.matrix c m n -> my: FStar.Matrix.matrix c n p -> mz: FStar.Matrix.matrix c m n -> mw: FStar.Matrix.matrix c n p -> FStar.Pervasives.Lemma (requires EQ?.eq (FStar.Matrix.matrix_equiv eq m n) mx mz /\ EQ?.eq (FStar.Matrix.matrix_equiv eq n p) my mw) (ensures EQ?.eq (FStar.Matrix.matrix_equiv eq m p) (FStar.Matrix.matrix_mul add mul mx my) (FStar.Matrix.matrix_mul add mul mz mw))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix", "FStar.Matrix.matrix_equiv_from_proof", "FStar.Matrix.matrix_mul", "FStar.IntegerIntervals.under", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Matrix.ijth", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Seq.Permutation.foldm_snoc_equality", "FStar.Seq.Equiv.eq_of_seq_from_element_equality", "FStar.Classical.forall_intro", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__congruence", "FStar.Matrix.matrix_equiv_ijth", "FStar.Seq.Base.seq", "FStar.Seq.Base.init", "FStar.Matrix.matrix_mul_ijth_eq_sum_of_seq_for_init", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "Prims.l_and", "FStar.Matrix.matrix_eq_fun" ]
[]
false
false
true
false
false
let matrix_mul_congruence #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c m n) (mw: matrix c n p) : Lemma (requires matrix_eq_fun eq mx mz /\ matrix_eq_fun eq my mw) (ensures matrix_eq_fun eq (matrix_mul add mul mx my) (matrix_mul add mul mz mw)) =
let aux (i: under m) (k: under p) : Lemma ((ijth (matrix_mul add mul mx my) i k) `eq.eq` (ijth (matrix_mul add mul mz mw) i k)) = let init_xy (j: under n) = mul.mult (ijth mx i j) (ijth my j k) in let init_zw (j: under n) = mul.mult (ijth mz i j) (ijth mw j k) in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k init_xy; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mz mw i k init_zw; let sp_xy = SB.init n init_xy in let sp_zw = SB.init n init_zw in let all_eq (j: under n) : Lemma ((init_xy j) `eq.eq` (init_zw j)) = matrix_equiv_ijth eq mx mz i j; matrix_equiv_ijth eq my mw j k; mul.congruence (ijth mx i j) (ijth my j k) (ijth mz i j) (ijth mw j k) in Classical.forall_intro all_eq; eq_of_seq_from_element_equality eq sp_xy sp_zw; SP.foldm_snoc_equality add sp_xy sp_zw in matrix_equiv_from_proof eq (matrix_mul add mul mx my) (matrix_mul add mul mz mw) aux
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.drop_ignores_out_of_range_update_lemma
val drop_ignores_out_of_range_update_lemma: Prims.unit -> Lemma (requires update_maintains_length_fact u#a) (ensures drop_ignores_out_of_range_update_fact u#a ())
val drop_ignores_out_of_range_update_lemma: Prims.unit -> Lemma (requires update_maintains_length_fact u#a) (ensures drop_ignores_out_of_range_update_fact u#a ())
let drop_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures drop_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> drop (update s i v) n == drop s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact drop_ignores_out_of_range_update_helper s i v n )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 620, "start_col": 8, "start_line": 608 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j private let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j ) private let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat). n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n (k - n) ) private let rec append_then_take_or_drop_helper (#ty: Type) (s: list ty) (t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t) = match s with | [] -> () | hd :: tl -> append_then_take_or_drop_helper tl t (n - 1) private let append_then_take_or_drop_lemma () : Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (t: seq ty) (n: nat). n = length s ==> take (append s t) n == s /\ drop (append s t) n == t with introduce _ ==> _ with given_antecedent. ( append_then_take_or_drop_helper s t n ) #push-options "--z3rlimit 20" private let rec take_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s /\ length (take s n) = n) (ensures take (update s i v) n == update (take s n) i v) = match s with | hd :: tl -> if i = 0 then () else (update_maintains_length_lemma() ; take_commutes_with_in_range_update_helper tl (i - 1) v (n - 1)) #pop-options private let take_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ take_length_fact u#a) (ensures take_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> take (update s i v) n == update (take s n) i v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (take s n) = n); // triggers take_length_fact take_commutes_with_in_range_update_helper s i v n ) private let rec take_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s) (ensures take (update s i v) n == take s n) = match s with | hd :: tl -> if n = 0 then () else take_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let take_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures take_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> take (update s i v) n == take s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact take_ignores_out_of_range_update_helper s i v n ) #push-options "--fuel 2 --ifuel 1 --z3rlimit_factor 4" private let rec drop_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s /\ length (drop s n) = length s - n) (ensures drop (update s i v) n == update (drop s n) (i - n) v) = match s with | hd :: tl -> if n = 0 then () else ( update_maintains_length_lemma (); drop_length_lemma (); drop_commutes_with_in_range_update_helper tl (i - 1) v (n - 1) ) #pop-options private let drop_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ drop_length_fact u#a) (ensures drop_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (drop s n) = length s - n); // triggers drop_length_fact drop_commutes_with_in_range_update_helper s i v n ) private let rec drop_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s) (ensures drop (update s i v) n == drop s n) = match s with | hd :: tl -> if i = 0 then () else drop_ignores_out_of_range_update_helper tl (i - 1) v (n - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (requires FStar.Sequence.Base.update_maintains_length_fact) (ensures FStar.Sequence.Base.drop_ignores_out_of_range_update_fact ())
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.drop", "FStar.Sequence.Base.update", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.Sequence.Base.drop_ignores_out_of_range_update_helper", "Prims._assert", "Prims.op_Equality", "FStar.Sequence.Base.update_maintains_length_fact", "FStar.Sequence.Base.drop_ignores_out_of_range_update_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let drop_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures drop_ignores_out_of_range_update_fact u#a ()) =
introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat) . i < n && n <= length s ==> drop (update s i v) n == drop s n with introduce _ ==> _ with given_antecedent. (assert (length (update s i v) = length s); drop_ignores_out_of_range_update_helper s i v n)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.update_then_index_helper
val update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n))
val update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n))
let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 244, "start_col": 8, "start_line": 233 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Prims.list ty -> i: Prims.nat{i < FStar.Sequence.Base.length s} -> v: ty -> n: Prims.nat{n < FStar.Sequence.Base.length (FStar.Sequence.Base.update s i v)} -> FStar.Pervasives.Lemma (requires n < FStar.Sequence.Base.length s) (ensures FStar.Sequence.Base.index (FStar.Sequence.Base.update s i v) n == (match i = n with | true -> v | _ -> FStar.Sequence.Base.index s n))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "FStar.Sequence.Base.update", "Prims.op_BarBar", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Sequence.Base.update_then_index_helper", "Prims.op_Subtraction", "Prims.unit", "Prims.squash", "Prims.eq2", "FStar.Sequence.Base.index", "Prims.l_or", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) =
match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1)
false
FStar.Matrix.fst
FStar.Matrix.matrix_right_mul_identity_aux_2
val matrix_right_mul_identity_aux_2 (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: nat{k = j + 1}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth mx i k) `mul.mult` (ijth (matrix_mul_unit add mul m) k j))) ) `eq.eq` (ijth mx i j))
val matrix_right_mul_identity_aux_2 (#c #eq #m: _) (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k: nat{k = j + 1}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth mx i k) `mul.mult` (ijth (matrix_mul_unit add mul m) k j))) ) `eq.eq` (ijth mx i j))
let matrix_right_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=j+1}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` ijth mx i j) = let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j j; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 61, "end_line": 857, "start_col": 0, "start_line": 828 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s let matrix_mul_ijth #c #eq #m #n #k (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n k) i h : Lemma (ijth (matrix_mul add mul mx my) i h == dot add mul (row mx i) (col my h)) = () let matrix_mul_ijth_as_sum #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)))) = let r = SB.init n (fun (j: under n) -> mul.mult (ijth mx i j) (ijth my j k)) in assert (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (seq_of_products mul (row mx i) (col my k))); seq_of_products_lemma mul (row mx i) (col my k) r let matrix_mul_ijth_eq_sum_of_seq #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) (r: SB.seq c{r `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add r) = () let double_foldm_snoc_transpose_lemma #c #eq (#m #n: pos) (cm: CE.cm c eq) (f: under m -> under n -> c) : Lemma (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) = Classical.forall_intro_2 (Classical.move_requires_2 eq.symmetry); let gen : matrix_generator c m n = f in let mx = init gen in let mx_seq = matrix_seq gen in matrix_fold_equals_fold_of_seq_folds cm gen; let aux (i: under m) : Lemma (SB.init n (gen i) == SB.init n (fun (j: under n) -> f i j)) = SB.lemma_eq_elim (SB.init n (gen i))(SB.init n (fun (j: under n) -> f i j)) in Classical.forall_intro aux; SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (gen i)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); SB.lemma_eq_elim (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))); matrix_transpose_is_permutation gen; matrix_fold_equals_fold_of_transpose cm gen; let trans_gen = transposed_matrix_gen gen in let mx_trans = init trans_gen in let mx_trans_seq = matrix_seq trans_gen in matrix_fold_equals_fold_of_seq_folds cm trans_gen; assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j))))); let aux_tr_lemma (j: under n) : Lemma ((SB.init m (trans_gen j)) == (SB.init m (fun (i: under m) -> f i j))) = SB.lemma_eq_elim (SB.init m (trans_gen j)) (SB.init m (fun (i: under m) -> f i j)) in Classical.forall_intro aux_tr_lemma; SB.lemma_eq_elim (SB.init n (fun j -> SP.foldm_snoc cm (SB.init m (trans_gen j)))) (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j)))); assert (foldm cm mx_trans `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx) (foldm cm mx_trans); eq.transitivity (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))))) (foldm cm mx_trans) (SP.foldm_snoc cm (SB.init n (fun (j:under n) -> SP.foldm_snoc cm (SB.init m (fun (i: under m) -> f i j))))) let matrix_mul_ijth_eq_sum_of_seq_for_init #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) i k (f: under n -> c { SB.init n f `SB.equal` seq_of_products mul (row mx i) (col my k)}) : Lemma (ijth (matrix_mul add mul mx my) i k == SP.foldm_snoc add (SB.init n f)) = () let double_foldm_snoc_of_equal_generators #c #eq (#m #n: pos) (cm: CE.cm c eq) (f g: under m -> under n -> c) : Lemma (requires (forall (i: under m) (j: under n). f i j `eq.eq` g i j)) (ensures SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)))) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))))) = let aux i : Lemma (SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j)) `eq.eq` SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) = SP.foldm_snoc_of_equal_inits cm (fun j -> f i j) (fun j -> g i j) in Classical.forall_intro aux; SP.foldm_snoc_of_equal_inits cm (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> f i j))) (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (fun (j: under n) -> g i j))) #push-options "--z3rlimit 15 --ifuel 0 --fuel 0" let matrix_mul_is_associative #c #eq #m #n #p #q (add: CE.cm c eq) (mul: CE.cm c eq{is_fully_distributive mul add /\ is_absorber add.unit mul}) (mx: matrix c m n) (my: matrix c n p) (mz: matrix c p q) : Lemma (matrix_eq_fun eq ((matrix_mul add mul mx my) `matrix_mul add mul` mz) (matrix_mul add mul mx (matrix_mul add mul my mz))) = let rhs = mx `matrix_mul add mul` (my `matrix_mul add mul` mz) in let lhs = (mx `matrix_mul add mul` my) `matrix_mul add mul` mz in let mxy = matrix_mul add mul mx my in let myz = matrix_mul add mul my mz in let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let aux i l : squash (ijth lhs i l = ijth rhs i l) = let sum_j (f: under n -> c) = SP.foldm_snoc add (SB.init n f) in let sum_k (f: under p -> c) = SP.foldm_snoc add (SB.init p f) in let xy_products_init k j = ijth mx i j * ijth my j k in let xy_cell_as_sum k = sum_j (xy_products_init k) in let xy_cell_lemma k : Lemma (ijth mxy i k == xy_cell_as_sum k) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx my i k (xy_products_init k) in Classical.forall_intro xy_cell_lemma; let xy_z_products_init k = xy_cell_as_sum k * ijth mz k l in matrix_mul_ijth_eq_sum_of_seq_for_init add mul mxy mz i l xy_z_products_init; let full_init_kj k j = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_jk j k = (ijth mx i j * ijth my j k) * ijth mz k l in let full_init_rh j k = ijth mx i j * (ijth my j k * ijth mz k l) in let sum_jk (f: (under n -> under p -> c)) = sum_j (fun j -> sum_k (fun k -> f j k)) in let sum_kj (f: (under p -> under n -> c)) = sum_k (fun k -> sum_j (fun j -> f k j)) in let xy_z_distr k : Lemma (((xy_cell_as_sum k) * (ijth mz k l)) = sum_j (full_init_kj k)) = foldm_snoc_distributivity_right_eq mul add (SB.init n (xy_products_init k)) (ijth mz k l) (SB.init n (full_init_kj k)) in Classical.forall_intro xy_z_distr; SP.foldm_snoc_of_equal_inits add xy_z_products_init (fun k -> sum_j (full_init_kj k)); double_foldm_snoc_transpose_lemma add full_init_kj; eq.transitivity (ijth lhs i l) (sum_kj full_init_kj) (sum_jk full_init_jk); let aux_rh j k : Lemma (full_init_jk j k = full_init_rh j k) = mul.associativity (ijth mx i j) (ijth my j k) (ijth mz k l) in Classical.forall_intro_2 aux_rh; double_foldm_snoc_of_equal_generators add full_init_jk full_init_rh; eq.transitivity (ijth lhs i l) (sum_jk full_init_jk) (sum_jk full_init_rh); // now expand the right hand side, fully dual to the first part of the lemma. let yz_products_init j k = ijth my j k * ijth mz k l in let yz_cell_as_sum j = sum_k (yz_products_init j) in let x_yz_products_init j = ijth mx i j * yz_cell_as_sum j in let yz_cell_lemma j : Lemma (ijth myz j l == sum_k (yz_products_init j)) = matrix_mul_ijth_eq_sum_of_seq_for_init add mul my mz j l (yz_products_init j); () in Classical.forall_intro yz_cell_lemma; matrix_mul_ijth_eq_sum_of_seq_for_init add mul mx myz i l x_yz_products_init; let x_yz_distr j : Lemma (ijth mx i j * yz_cell_as_sum j = sum_k (full_init_rh j)) = foldm_snoc_distributivity_left_eq mul add (ijth mx i j) (SB.init p (yz_products_init j)) (SB.init p (full_init_rh j)) in Classical.forall_intro x_yz_distr; SP.foldm_snoc_of_equal_inits add x_yz_products_init (fun j -> sum_k (full_init_rh j)); eq.symmetry (ijth rhs i l) (sum_jk full_init_rh); eq.transitivity (ijth lhs i l) (sum_jk full_init_rh) (ijth rhs i l); () in matrix_equiv_from_proof eq lhs rhs aux #pop-options let matrix_mul_unit_row_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((row (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (row (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (row (matrix_mul_unit add mul m) i) let matrix_mul_unit_col_lemma #c #eq m (add mul: CE.cm c eq) (i: under m) : Lemma ((col (matrix_mul_unit add mul m) i == (SB.create i add.unit) `SB.append` ((SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit))) /\ (col (matrix_mul_unit add mul m) i == ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit)) `SB.append` (SB.create (m-i-1) add.unit))) = SB.lemma_eq_elim ((SB.create i add.unit `SB.append` SB.create 1 mul.unit) `SB.append` (SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i); SB.lemma_eq_elim ((SB.create i add.unit) `SB.append` (SB.create 1 mul.unit `SB.append` SB.create (m-i-1) add.unit)) (col (matrix_mul_unit add mul m) i) let seq_of_products_zeroes_lemma #c #eq #m (mul: CE.cm c eq) (z: c{is_absorber z mul}) (s: SB.seq c{SB.length s == m}) : Lemma (ensures (eq_of_seq eq (seq_of_products mul (SB.create m z) s) (SB.create m z))) = eq_of_seq_from_element_equality eq (seq_of_products mul (SB.create m z) s) (SB.create m z) let rec foldm_snoc_zero_lemma #c #eq (add: CE.cm c eq) (zeroes: SB.seq c) : Lemma (requires (forall (i: under (SB.length zeroes)). SB.index zeroes i `eq.eq` add.unit)) (ensures eq.eq (SP.foldm_snoc add zeroes) add.unit) (decreases SB.length zeroes) = if (SB.length zeroes < 1) then begin assert_norm (SP.foldm_snoc add zeroes == add.unit); eq.reflexivity add.unit end else let liat, last = SProp.un_snoc zeroes in foldm_snoc_zero_lemma add liat; add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add zeroes; eq.transitivity (SP.foldm_snoc add zeroes) (add.mult add.unit add.unit) add.unit let matrix_mul_unit_ijth #c #eq (add mul: CE.cm c eq) m (i j: under m) : Lemma (ijth (matrix_mul_unit add mul m) i j == (if i=j then mul.unit else add.unit))=() let last_equals_index #c (s: SB.seq c{SB.length s > 0}) : Lemma ((snd (SProp.un_snoc s)) == SB.index s (SB.length s - 1)) = () let matrix_right_mul_identity_aux_0 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k=0}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) = eq.reflexivity add.unit let rec matrix_right_mul_identity_aux_1 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq{is_absorber add.unit mul}) (mx: matrix c m m) (i j: under m) (k:nat{k<=j}) : Lemma (ensures SP.foldm_snoc add (SB.init k (fun (k: under m) -> ijth mx i k `mul.mult` ijth (matrix_mul_unit add mul m) k j)) `eq.eq` add.unit) (decreases k) = if k = 0 then matrix_right_mul_identity_aux_0 add mul mx i j k else let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat,last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j (k-1); liat_equals_init k gen; eq.reflexivity (SP.foldm_snoc add liat); mul.congruence last (SP.foldm_snoc add liat) add.unit (SP.foldm_snoc add liat); eq.transitivity (last * SP.foldm_snoc add liat) (add.unit * SP.foldm_snoc add liat) (add.unit); eq.reflexivity (SP.foldm_snoc add (SB.init (k-1) gen)); matrix_mul_unit_ijth add mul m (k-1) j; // This one reduces the rlimits needs to default add.congruence last (SP.foldm_snoc add liat) add.unit add.unit; add.identity add.unit; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult add.unit add.unit) add.unit
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq {FStar.Matrix.is_absorber (CM?.unit add) mul} -> mx: FStar.Matrix.matrix c m m -> i: FStar.IntegerIntervals.under m -> j: FStar.IntegerIntervals.under m -> k: Prims.nat{k = j + 1} -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc add (FStar.Seq.Base.init k (fun k -> CM?.mult mul (FStar.Matrix.ijth mx i k) (FStar.Matrix.ijth (FStar.Matrix.matrix_mul_unit add mul m) k j)))) (FStar.Matrix.ijth mx i j))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "FStar.Matrix.matrix", "FStar.IntegerIntervals.under", "Prims.nat", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "FStar.Seq.Base.seq", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "FStar.Seq.Permutation.foldm_snoc", "FStar.Matrix.ijth", "Prims.unit", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Seq.Permutation.foldm_snoc_decomposition", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__commutativity", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__identity", "FStar.Matrix.matrix_mul_unit_ijth", "Prims.op_Subtraction", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__congruence", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "FStar.Matrix.liat_equals_init", "FStar.Matrix.matrix_right_mul_identity_aux_1", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.Seq.Properties.snoc", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "FStar.Seq.Properties.un_snoc", "FStar.Seq.Base.init", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Matrix.matrix_mul", "FStar.Matrix.matrix_mul_unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let matrix_right_mul_identity_aux_2 #c #eq #m (add: CE.cm c eq) (mul: CE.cm c eq {is_absorber add.unit mul}) (mx: matrix c m m) (i: under m) (j: under m) (k: nat{k = j + 1}) : Lemma (ensures (SP.foldm_snoc add (SB.init k (fun (k: under m) -> (ijth mx i k) `mul.mult` (ijth (matrix_mul_unit add mul m) k j))) ) `eq.eq` (ijth mx i j)) =
let unit = matrix_mul_unit add mul m in let mxu = matrix_mul add mul mx unit in let ( * ) = mul.mult in let ( $=$ ) = eq.eq in let gen = fun (k: under m) -> ijth mx i k * ijth unit k j in let full = SB.init k gen in let liat, last = SProp.un_snoc full in matrix_right_mul_identity_aux_1 add mul mx i j j; liat_equals_init k gen; mul.identity (ijth mx i j); eq.reflexivity last; add.congruence last (SP.foldm_snoc add liat) last add.unit; matrix_mul_unit_ijth add mul m (k - 1) j; add.identity last; add.commutativity last add.unit; mul.commutativity (ijth mx i j) mul.unit; eq.transitivity (add.mult last add.unit) (add.mult add.unit last) last; SP.foldm_snoc_decomposition add full; eq.transitivity (SP.foldm_snoc add full) (add.mult last add.unit) last; eq.transitivity last (mul.unit * ijth mx i j) (ijth mx i j); eq.transitivity (SP.foldm_snoc add full) last (ijth mx i j)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.all_seq_facts_lemma
val all_seq_facts_lemma : unit -> Lemma (all_seq_facts u#a)
val all_seq_facts_lemma : unit -> Lemma (all_seq_facts u#a)
let all_seq_facts_lemma () : Lemma (all_seq_facts u#a) = length_of_empty_is_zero_lemma u#a (); length_zero_implies_empty_lemma u#a (); singleton_length_one_lemma u#a (); build_increments_length_lemma u#a (); index_into_build_lemma u#a (); append_sums_lengths_lemma u#a (); index_into_singleton_lemma u#a (); index_after_append_lemma u#a (); update_maintains_length_lemma u#a (); update_then_index_lemma u#a (); contains_iff_exists_index_lemma u#a (); empty_doesnt_contain_anything_lemma u#a (); build_contains_equiv_lemma u#a (); take_contains_equiv_exists_lemma u#a (); drop_contains_equiv_exists_lemma u#a (); equal_def_lemma u#a (); extensionality_lemma u#a (); is_prefix_def_lemma u#a (); take_length_lemma u#a (); index_into_take_lemma u#a (); drop_length_lemma u#a (); index_into_drop_lemma u#a (); drop_index_offset_lemma u#a (); append_then_take_or_drop_lemma u#a (); take_commutes_with_in_range_update_lemma u#a (); take_ignores_out_of_range_update_lemma u#a (); drop_commutes_with_in_range_update_lemma u#a (); drop_ignores_out_of_range_update_lemma u#a (); drop_commutes_with_build_lemma u#a (); rank_def_lemma u#a (); element_ranks_less_lemma u#a (); drop_ranks_less_lemma u#a (); take_ranks_less_lemma u#a (); append_take_drop_ranks_less_lemma u#a (); drop_zero_lemma u#a (); take_zero_lemma u#a (); drop_then_drop_lemma u#a ()
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 752, "start_col": 0, "start_line": 715 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j private let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j ) private let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat). n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n (k - n) ) private let rec append_then_take_or_drop_helper (#ty: Type) (s: list ty) (t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t) = match s with | [] -> () | hd :: tl -> append_then_take_or_drop_helper tl t (n - 1) private let append_then_take_or_drop_lemma () : Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (t: seq ty) (n: nat). n = length s ==> take (append s t) n == s /\ drop (append s t) n == t with introduce _ ==> _ with given_antecedent. ( append_then_take_or_drop_helper s t n ) #push-options "--z3rlimit 20" private let rec take_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s /\ length (take s n) = n) (ensures take (update s i v) n == update (take s n) i v) = match s with | hd :: tl -> if i = 0 then () else (update_maintains_length_lemma() ; take_commutes_with_in_range_update_helper tl (i - 1) v (n - 1)) #pop-options private let take_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ take_length_fact u#a) (ensures take_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> take (update s i v) n == update (take s n) i v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (take s n) = n); // triggers take_length_fact take_commutes_with_in_range_update_helper s i v n ) private let rec take_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s) (ensures take (update s i v) n == take s n) = match s with | hd :: tl -> if n = 0 then () else take_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let take_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures take_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> take (update s i v) n == take s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact take_ignores_out_of_range_update_helper s i v n ) #push-options "--fuel 2 --ifuel 1 --z3rlimit_factor 4" private let rec drop_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s /\ length (drop s n) = length s - n) (ensures drop (update s i v) n == update (drop s n) (i - n) v) = match s with | hd :: tl -> if n = 0 then () else ( update_maintains_length_lemma (); drop_length_lemma (); drop_commutes_with_in_range_update_helper tl (i - 1) v (n - 1) ) #pop-options private let drop_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ drop_length_fact u#a) (ensures drop_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (drop s n) = length s - n); // triggers drop_length_fact drop_commutes_with_in_range_update_helper s i v n ) private let rec drop_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s) (ensures drop (update s i v) n == drop s n) = match s with | hd :: tl -> if i = 0 then () else drop_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let drop_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures drop_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> drop (update s i v) n == drop s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact drop_ignores_out_of_range_update_helper s i v n ) private let rec drop_commutes_with_build_helper (#ty: Type) (s: list ty) (v: ty) (n: nat) : Lemma (requires n <= length s /\ length (append s [v]) = 1 + length s) (ensures drop (append s [v]) n == append (drop s n) [v]) = match s with | [] -> assert (append s [v] == [v]); assert (n == 0); () | hd :: tl -> if n = 0 then () else drop_commutes_with_build_helper tl v (n - 1) private let drop_commutes_with_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures drop_commutes_with_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (n: nat). n <= length s ==> drop (build s v) n == build (drop s n) v with introduce _ ==> _ with given_antecedent. ( assert (length (build s v) = 1 + length s); // triggers build_increments_length_fact drop_commutes_with_build_helper s v n ) private let rank_def_lemma () : Lemma (rank_def_fact) = () private let element_ranks_less_lemma () : Lemma (element_ranks_less_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat). i < length s ==> rank (index s i) << rank s with introduce _ ==> _ with given_antecedent. ( contains_iff_exists_index_lemma (); assert (contains s (index s i)); FLT.memP_precedes (index s i) s ) private let rec drop_ranks_less_helper (ty: Type) (s: list ty) (i: nat) : Lemma (requires 0 < i && i <= length s) (ensures drop s i << s) = match s with | [] -> () | hd :: tl -> if i = 1 then () else drop_ranks_less_helper ty tl (i - 1) private let drop_ranks_less_lemma () : Lemma (drop_ranks_less_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat). 0 < i && i <= length s ==> rank (drop s i) << rank s with introduce _ ==> _ with given_antecedent. ( drop_ranks_less_helper ty s i ) private let take_ranks_less_lemma () : Lemma (take_ranks_less_fact) = take_length_lemma () private let append_take_drop_ranks_less_lemma () : Lemma (append_take_drop_ranks_less_fact) = take_length_lemma (); drop_length_lemma (); append_sums_lengths_lemma () private let drop_zero_lemma () : Lemma (drop_zero_fact) = () private let take_zero_lemma () : Lemma (take_zero_fact) = () private let rec drop_then_drop_helper (#ty: Type) (s: seq ty) (m: nat) (n: nat) : Lemma (requires m + n <= length s /\ length (drop s m) = length s - m) (ensures drop (drop s m) n == drop s (m + n)) = match s with | [] -> () | hd :: tl -> if m = 0 then () else ( drop_length_lemma (); drop_then_drop_helper tl (m - 1) n ) private let drop_then_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_then_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (m: nat) (n: nat). m + n <= length s ==> drop (drop s m) n == drop s (m + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s m) = length s - m); // triggers drop_length_fact drop_then_drop_helper s m n ) /// Finally, we use all the lemmas for all the facts to establish /// `all_seq_facts`. To get all those facts in scope, one can /// invoke `all_seq_facts_lemma`.
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.all_seq_facts)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Sequence.Base.drop_then_drop_lemma", "FStar.Sequence.Base.take_zero_lemma", "FStar.Sequence.Base.drop_zero_lemma", "FStar.Sequence.Base.append_take_drop_ranks_less_lemma", "FStar.Sequence.Base.take_ranks_less_lemma", "FStar.Sequence.Base.drop_ranks_less_lemma", "FStar.Sequence.Base.element_ranks_less_lemma", "FStar.Sequence.Base.rank_def_lemma", "FStar.Sequence.Base.drop_commutes_with_build_lemma", "FStar.Sequence.Base.drop_ignores_out_of_range_update_lemma", "FStar.Sequence.Base.drop_commutes_with_in_range_update_lemma", "FStar.Sequence.Base.take_ignores_out_of_range_update_lemma", "FStar.Sequence.Base.take_commutes_with_in_range_update_lemma", "FStar.Sequence.Base.append_then_take_or_drop_lemma", "FStar.Sequence.Base.drop_index_offset_lemma", "FStar.Sequence.Base.index_into_drop_lemma", "FStar.Sequence.Base.drop_length_lemma", "FStar.Sequence.Base.index_into_take_lemma", "FStar.Sequence.Base.take_length_lemma", "FStar.Sequence.Base.is_prefix_def_lemma", "FStar.Sequence.Base.extensionality_lemma", "FStar.Sequence.Base.equal_def_lemma", "FStar.Sequence.Base.drop_contains_equiv_exists_lemma", "FStar.Sequence.Base.take_contains_equiv_exists_lemma", "FStar.Sequence.Base.build_contains_equiv_lemma", "FStar.Sequence.Base.empty_doesnt_contain_anything_lemma", "FStar.Sequence.Base.contains_iff_exists_index_lemma", "FStar.Sequence.Base.update_then_index_lemma", "FStar.Sequence.Base.update_maintains_length_lemma", "FStar.Sequence.Base.index_after_append_lemma", "FStar.Sequence.Base.index_into_singleton_lemma", "FStar.Sequence.Base.append_sums_lengths_lemma", "FStar.Sequence.Base.index_into_build_lemma", "FStar.Sequence.Base.build_increments_length_lemma", "FStar.Sequence.Base.singleton_length_one_lemma", "FStar.Sequence.Base.length_zero_implies_empty_lemma", "FStar.Sequence.Base.length_of_empty_is_zero_lemma", "Prims.l_True", "Prims.squash", "FStar.Sequence.Base.all_seq_facts", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let all_seq_facts_lemma () : Lemma (all_seq_facts u#a) =
length_of_empty_is_zero_lemma u#a (); length_zero_implies_empty_lemma u#a (); singleton_length_one_lemma u#a (); build_increments_length_lemma u#a (); index_into_build_lemma u#a (); append_sums_lengths_lemma u#a (); index_into_singleton_lemma u#a (); index_after_append_lemma u#a (); update_maintains_length_lemma u#a (); update_then_index_lemma u#a (); contains_iff_exists_index_lemma u#a (); empty_doesnt_contain_anything_lemma u#a (); build_contains_equiv_lemma u#a (); take_contains_equiv_exists_lemma u#a (); drop_contains_equiv_exists_lemma u#a (); equal_def_lemma u#a (); extensionality_lemma u#a (); is_prefix_def_lemma u#a (); take_length_lemma u#a (); index_into_take_lemma u#a (); drop_length_lemma u#a (); index_into_drop_lemma u#a (); drop_index_offset_lemma u#a (); append_then_take_or_drop_lemma u#a (); take_commutes_with_in_range_update_lemma u#a (); take_ignores_out_of_range_update_lemma u#a (); drop_commutes_with_in_range_update_lemma u#a (); drop_ignores_out_of_range_update_lemma u#a (); drop_commutes_with_build_lemma u#a (); rank_def_lemma u#a (); element_ranks_less_lemma u#a (); drop_ranks_less_lemma u#a (); take_ranks_less_lemma u#a (); append_take_drop_ranks_less_lemma u#a (); drop_zero_lemma u#a (); take_zero_lemma u#a (); drop_then_drop_lemma u#a ()
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.drop_ranks_less_lemma
val drop_ranks_less_lemma: Prims.unit -> Lemma (drop_ranks_less_fact)
val drop_ranks_less_lemma: Prims.unit -> Lemma (drop_ranks_less_fact)
let drop_ranks_less_lemma () : Lemma (drop_ranks_less_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat). 0 < i && i <= length s ==> rank (drop s i) << rank s with introduce _ ==> _ with given_antecedent. ( drop_ranks_less_helper ty s i )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 672, "start_col": 8, "start_line": 665 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j private let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j ) private let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat). n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n (k - n) ) private let rec append_then_take_or_drop_helper (#ty: Type) (s: list ty) (t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t) = match s with | [] -> () | hd :: tl -> append_then_take_or_drop_helper tl t (n - 1) private let append_then_take_or_drop_lemma () : Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (t: seq ty) (n: nat). n = length s ==> take (append s t) n == s /\ drop (append s t) n == t with introduce _ ==> _ with given_antecedent. ( append_then_take_or_drop_helper s t n ) #push-options "--z3rlimit 20" private let rec take_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s /\ length (take s n) = n) (ensures take (update s i v) n == update (take s n) i v) = match s with | hd :: tl -> if i = 0 then () else (update_maintains_length_lemma() ; take_commutes_with_in_range_update_helper tl (i - 1) v (n - 1)) #pop-options private let take_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ take_length_fact u#a) (ensures take_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> take (update s i v) n == update (take s n) i v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (take s n) = n); // triggers take_length_fact take_commutes_with_in_range_update_helper s i v n ) private let rec take_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s) (ensures take (update s i v) n == take s n) = match s with | hd :: tl -> if n = 0 then () else take_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let take_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures take_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> take (update s i v) n == take s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact take_ignores_out_of_range_update_helper s i v n ) #push-options "--fuel 2 --ifuel 1 --z3rlimit_factor 4" private let rec drop_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s /\ length (drop s n) = length s - n) (ensures drop (update s i v) n == update (drop s n) (i - n) v) = match s with | hd :: tl -> if n = 0 then () else ( update_maintains_length_lemma (); drop_length_lemma (); drop_commutes_with_in_range_update_helper tl (i - 1) v (n - 1) ) #pop-options private let drop_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ drop_length_fact u#a) (ensures drop_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (drop s n) = length s - n); // triggers drop_length_fact drop_commutes_with_in_range_update_helper s i v n ) private let rec drop_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s) (ensures drop (update s i v) n == drop s n) = match s with | hd :: tl -> if i = 0 then () else drop_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let drop_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures drop_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> drop (update s i v) n == drop s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact drop_ignores_out_of_range_update_helper s i v n ) private let rec drop_commutes_with_build_helper (#ty: Type) (s: list ty) (v: ty) (n: nat) : Lemma (requires n <= length s /\ length (append s [v]) = 1 + length s) (ensures drop (append s [v]) n == append (drop s n) [v]) = match s with | [] -> assert (append s [v] == [v]); assert (n == 0); () | hd :: tl -> if n = 0 then () else drop_commutes_with_build_helper tl v (n - 1) private let drop_commutes_with_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures drop_commutes_with_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (n: nat). n <= length s ==> drop (build s v) n == build (drop s n) v with introduce _ ==> _ with given_antecedent. ( assert (length (build s v) = 1 + length s); // triggers build_increments_length_fact drop_commutes_with_build_helper s v n ) private let rank_def_lemma () : Lemma (rank_def_fact) = () private let element_ranks_less_lemma () : Lemma (element_ranks_less_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat). i < length s ==> rank (index s i) << rank s with introduce _ ==> _ with given_antecedent. ( contains_iff_exists_index_lemma (); assert (contains s (index s i)); FLT.memP_precedes (index s i) s ) private let rec drop_ranks_less_helper (ty: Type) (s: list ty) (i: nat) : Lemma (requires 0 < i && i <= length s) (ensures drop s i << s) = match s with | [] -> () | hd :: tl -> if i = 1 then () else drop_ranks_less_helper ty tl (i - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.drop_ranks_less_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.precedes", "FStar.Sequence.Base.rank", "FStar.Sequence.Base.drop", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.Sequence.Base.drop_ranks_less_helper", "Prims.l_True", "FStar.Sequence.Base.drop_ranks_less_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let drop_ranks_less_lemma () : Lemma (drop_ranks_less_fact) =
introduce forall (ty: Type) (s: seq ty) (i: nat) . 0 < i && i <= length s ==> rank (drop s i) << rank s with introduce _ ==> _ with given_antecedent. (drop_ranks_less_helper ty s i)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.drop_commutes_with_in_range_update_lemma
val drop_commutes_with_in_range_update_lemma: Prims.unit -> Lemma (requires update_maintains_length_fact u#a /\ drop_length_fact u#a) (ensures drop_commutes_with_in_range_update_fact u#a ())
val drop_commutes_with_in_range_update_lemma: Prims.unit -> Lemma (requires update_maintains_length_fact u#a /\ drop_length_fact u#a) (ensures drop_commutes_with_in_range_update_fact u#a ())
let drop_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ drop_length_fact u#a) (ensures drop_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (drop s n) = length s - n); // triggers drop_length_fact drop_commutes_with_in_range_update_helper s i v n )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 598, "start_col": 8, "start_line": 585 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j private let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j ) private let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat). n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n (k - n) ) private let rec append_then_take_or_drop_helper (#ty: Type) (s: list ty) (t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t) = match s with | [] -> () | hd :: tl -> append_then_take_or_drop_helper tl t (n - 1) private let append_then_take_or_drop_lemma () : Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (t: seq ty) (n: nat). n = length s ==> take (append s t) n == s /\ drop (append s t) n == t with introduce _ ==> _ with given_antecedent. ( append_then_take_or_drop_helper s t n ) #push-options "--z3rlimit 20" private let rec take_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s /\ length (take s n) = n) (ensures take (update s i v) n == update (take s n) i v) = match s with | hd :: tl -> if i = 0 then () else (update_maintains_length_lemma() ; take_commutes_with_in_range_update_helper tl (i - 1) v (n - 1)) #pop-options private let take_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ take_length_fact u#a) (ensures take_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> take (update s i v) n == update (take s n) i v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (take s n) = n); // triggers take_length_fact take_commutes_with_in_range_update_helper s i v n ) private let rec take_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s) (ensures take (update s i v) n == take s n) = match s with | hd :: tl -> if n = 0 then () else take_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let take_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures take_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> take (update s i v) n == take s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact take_ignores_out_of_range_update_helper s i v n ) #push-options "--fuel 2 --ifuel 1 --z3rlimit_factor 4" private let rec drop_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s /\ length (drop s n) = length s - n) (ensures drop (update s i v) n == update (drop s n) (i - n) v) = match s with | hd :: tl -> if n = 0 then () else ( update_maintains_length_lemma (); drop_length_lemma (); drop_commutes_with_in_range_update_helper tl (i - 1) v (n - 1) ) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (requires FStar.Sequence.Base.update_maintains_length_fact /\ FStar.Sequence.Base.drop_length_fact) (ensures FStar.Sequence.Base.drop_commutes_with_in_range_update_fact ())
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.drop", "FStar.Sequence.Base.update", "Prims.op_Subtraction", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.Sequence.Base.drop_commutes_with_in_range_update_helper", "Prims._assert", "Prims.op_Equality", "Prims.int", "Prims.l_and", "FStar.Sequence.Base.update_maintains_length_fact", "FStar.Sequence.Base.drop_length_fact", "FStar.Sequence.Base.drop_commutes_with_in_range_update_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let drop_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ drop_length_fact u#a) (ensures drop_commutes_with_in_range_update_fact u#a ()) =
introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat) . n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v with introduce _ ==> _ with given_antecedent. (assert (length (update s i v) = length s); assert (length (drop s n) = length s - n); drop_commutes_with_in_range_update_helper s i v n)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.drop_index_offset_lemma
val drop_index_offset_lemma: Prims.unit -> Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ())
val drop_index_offset_lemma: Prims.unit -> Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ())
let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat). n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n (k - n) )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 498, "start_col": 8, "start_line": 488 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j private let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (requires FStar.Sequence.Base.drop_length_fact) (ensures FStar.Sequence.Base.drop_index_offset_fact ())
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.index", "FStar.Sequence.Base.drop", "Prims.op_Subtraction", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.Sequence.Base.index_into_drop_helper", "Prims._assert", "Prims.op_Equality", "Prims.int", "FStar.Sequence.Base.drop_length_fact", "FStar.Sequence.Base.drop_index_offset_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) =
introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat) . n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. (assert (length (drop s n) = length s - n); index_into_drop_helper s n (k - n))
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.append_then_take_or_drop_helper
val append_then_take_or_drop_helper (#ty: Type) (s t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t)
val append_then_take_or_drop_helper (#ty: Type) (s t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t)
let rec append_then_take_or_drop_helper (#ty: Type) (s: list ty) (t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t) = match s with | [] -> () | hd :: tl -> append_then_take_or_drop_helper tl t (n - 1)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 60, "end_line": 505, "start_col": 8, "start_line": 500 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j private let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j ) private let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat). n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n (k - n) )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Prims.list ty -> t: Prims.list ty -> n: Prims.nat -> FStar.Pervasives.Lemma (requires n = FStar.Sequence.Base.length s /\ FStar.Sequence.Base.length (FStar.Sequence.Base.append s t) = FStar.Sequence.Base.length s + FStar.Sequence.Base.length t) (ensures FStar.Sequence.Base.take (FStar.Sequence.Base.append s t) n == s /\ FStar.Sequence.Base.drop (FStar.Sequence.Base.append s t) n == t)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.nat", "FStar.Sequence.Base.append_then_take_or_drop_helper", "Prims.op_Subtraction", "Prims.unit", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "FStar.Sequence.Base.length", "Prims.int", "FStar.Sequence.Base.append", "Prims.op_Addition", "Prims.squash", "Prims.eq2", "FStar.Sequence.Base.take", "FStar.Sequence.Base.drop", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec append_then_take_or_drop_helper (#ty: Type) (s t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t) =
match s with | [] -> () | hd :: tl -> append_then_take_or_drop_helper tl t (n - 1)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.drop_commutes_with_build_helper
val drop_commutes_with_build_helper (#ty: Type) (s: list ty) (v: ty) (n: nat) : Lemma (requires n <= length s /\ length (append s [v]) = 1 + length s) (ensures drop (append s [v]) n == append (drop s n) [v])
val drop_commutes_with_build_helper (#ty: Type) (s: list ty) (v: ty) (n: nat) : Lemma (requires n <= length s /\ length (append s [v]) = 1 + length s) (ensures drop (append s [v]) n == append (drop s n) [v])
let rec drop_commutes_with_build_helper (#ty: Type) (s: list ty) (v: ty) (n: nat) : Lemma (requires n <= length s /\ length (append s [v]) = 1 + length s) (ensures drop (append s [v]) n == append (drop s n) [v]) = match s with | [] -> assert (append s [v] == [v]); assert (n == 0); () | hd :: tl -> if n = 0 then () else drop_commutes_with_build_helper tl v (n - 1)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 82, "end_line": 630, "start_col": 8, "start_line": 622 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j private let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j ) private let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat). n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n (k - n) ) private let rec append_then_take_or_drop_helper (#ty: Type) (s: list ty) (t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t) = match s with | [] -> () | hd :: tl -> append_then_take_or_drop_helper tl t (n - 1) private let append_then_take_or_drop_lemma () : Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (t: seq ty) (n: nat). n = length s ==> take (append s t) n == s /\ drop (append s t) n == t with introduce _ ==> _ with given_antecedent. ( append_then_take_or_drop_helper s t n ) #push-options "--z3rlimit 20" private let rec take_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s /\ length (take s n) = n) (ensures take (update s i v) n == update (take s n) i v) = match s with | hd :: tl -> if i = 0 then () else (update_maintains_length_lemma() ; take_commutes_with_in_range_update_helper tl (i - 1) v (n - 1)) #pop-options private let take_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ take_length_fact u#a) (ensures take_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> take (update s i v) n == update (take s n) i v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (take s n) = n); // triggers take_length_fact take_commutes_with_in_range_update_helper s i v n ) private let rec take_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s) (ensures take (update s i v) n == take s n) = match s with | hd :: tl -> if n = 0 then () else take_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let take_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures take_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> take (update s i v) n == take s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact take_ignores_out_of_range_update_helper s i v n ) #push-options "--fuel 2 --ifuel 1 --z3rlimit_factor 4" private let rec drop_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s /\ length (drop s n) = length s - n) (ensures drop (update s i v) n == update (drop s n) (i - n) v) = match s with | hd :: tl -> if n = 0 then () else ( update_maintains_length_lemma (); drop_length_lemma (); drop_commutes_with_in_range_update_helper tl (i - 1) v (n - 1) ) #pop-options private let drop_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ drop_length_fact u#a) (ensures drop_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (drop s n) = length s - n); // triggers drop_length_fact drop_commutes_with_in_range_update_helper s i v n ) private let rec drop_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s) (ensures drop (update s i v) n == drop s n) = match s with | hd :: tl -> if i = 0 then () else drop_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let drop_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures drop_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> drop (update s i v) n == drop s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact drop_ignores_out_of_range_update_helper s i v n )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Prims.list ty -> v: ty -> n: Prims.nat -> FStar.Pervasives.Lemma (requires n <= FStar.Sequence.Base.length s /\ FStar.Sequence.Base.length (FStar.Sequence.Base.append s [v]) = 1 + FStar.Sequence.Base.length s) (ensures FStar.Sequence.Base.drop (FStar.Sequence.Base.append s [v]) n == FStar.Sequence.Base.append (FStar.Sequence.Base.drop s n) [v])
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.nat", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "FStar.Sequence.Base.append", "Prims.Cons", "Prims.Nil", "Prims.op_Equality", "Prims.bool", "FStar.Sequence.Base.drop_commutes_with_build_helper", "Prims.op_Subtraction", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.op_Addition", "Prims.squash", "FStar.Sequence.Base.seq", "FStar.Sequence.Base.drop", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec drop_commutes_with_build_helper (#ty: Type) (s: list ty) (v: ty) (n: nat) : Lemma (requires n <= length s /\ length (append s [v]) = 1 + length s) (ensures drop (append s [v]) n == append (drop s n) [v]) =
match s with | [] -> assert (append s [v] == [v]); assert (n == 0); () | hd :: tl -> if n = 0 then () else drop_commutes_with_build_helper tl v (n - 1)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.take_ignores_out_of_range_update_lemma
val take_ignores_out_of_range_update_lemma: Prims.unit -> Lemma (requires update_maintains_length_fact u#a) (ensures take_ignores_out_of_range_update_fact u#a ())
val take_ignores_out_of_range_update_lemma: Prims.unit -> Lemma (requires update_maintains_length_fact u#a) (ensures take_ignores_out_of_range_update_fact u#a ())
let take_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures take_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> take (update s i v) n == take s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact take_ignores_out_of_range_update_helper s i v n )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 564, "start_col": 8, "start_line": 552 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j private let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j ) private let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat). n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n (k - n) ) private let rec append_then_take_or_drop_helper (#ty: Type) (s: list ty) (t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t) = match s with | [] -> () | hd :: tl -> append_then_take_or_drop_helper tl t (n - 1) private let append_then_take_or_drop_lemma () : Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (t: seq ty) (n: nat). n = length s ==> take (append s t) n == s /\ drop (append s t) n == t with introduce _ ==> _ with given_antecedent. ( append_then_take_or_drop_helper s t n ) #push-options "--z3rlimit 20" private let rec take_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s /\ length (take s n) = n) (ensures take (update s i v) n == update (take s n) i v) = match s with | hd :: tl -> if i = 0 then () else (update_maintains_length_lemma() ; take_commutes_with_in_range_update_helper tl (i - 1) v (n - 1)) #pop-options private let take_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ take_length_fact u#a) (ensures take_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> take (update s i v) n == update (take s n) i v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (take s n) = n); // triggers take_length_fact take_commutes_with_in_range_update_helper s i v n ) private let rec take_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s) (ensures take (update s i v) n == take s n) = match s with | hd :: tl -> if n = 0 then () else take_ignores_out_of_range_update_helper tl (i - 1) v (n - 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (requires FStar.Sequence.Base.update_maintains_length_fact) (ensures FStar.Sequence.Base.take_ignores_out_of_range_update_fact ())
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.take", "FStar.Sequence.Base.update", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.Sequence.Base.take_ignores_out_of_range_update_helper", "Prims._assert", "Prims.op_Equality", "FStar.Sequence.Base.update_maintains_length_fact", "FStar.Sequence.Base.take_ignores_out_of_range_update_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let take_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures take_ignores_out_of_range_update_fact u#a ()) =
introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat) . n <= i && i < length s ==> take (update s i v) n == take s n with introduce _ ==> _ with given_antecedent. (assert (length (update s i v) = length s); take_ignores_out_of_range_update_helper s i v n)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.append_take_drop_ranks_less_lemma
val append_take_drop_ranks_less_lemma: Prims.unit -> Lemma (append_take_drop_ranks_less_fact)
val append_take_drop_ranks_less_lemma: Prims.unit -> Lemma (append_take_drop_ranks_less_fact)
let append_take_drop_ranks_less_lemma () : Lemma (append_take_drop_ranks_less_fact) = take_length_lemma (); drop_length_lemma (); append_sums_lengths_lemma ()
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 680, "start_col": 8, "start_line": 677 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j private let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j ) private let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat). n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n (k - n) ) private let rec append_then_take_or_drop_helper (#ty: Type) (s: list ty) (t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t) = match s with | [] -> () | hd :: tl -> append_then_take_or_drop_helper tl t (n - 1) private let append_then_take_or_drop_lemma () : Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (t: seq ty) (n: nat). n = length s ==> take (append s t) n == s /\ drop (append s t) n == t with introduce _ ==> _ with given_antecedent. ( append_then_take_or_drop_helper s t n ) #push-options "--z3rlimit 20" private let rec take_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s /\ length (take s n) = n) (ensures take (update s i v) n == update (take s n) i v) = match s with | hd :: tl -> if i = 0 then () else (update_maintains_length_lemma() ; take_commutes_with_in_range_update_helper tl (i - 1) v (n - 1)) #pop-options private let take_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ take_length_fact u#a) (ensures take_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> take (update s i v) n == update (take s n) i v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (take s n) = n); // triggers take_length_fact take_commutes_with_in_range_update_helper s i v n ) private let rec take_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s) (ensures take (update s i v) n == take s n) = match s with | hd :: tl -> if n = 0 then () else take_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let take_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures take_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> take (update s i v) n == take s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact take_ignores_out_of_range_update_helper s i v n ) #push-options "--fuel 2 --ifuel 1 --z3rlimit_factor 4" private let rec drop_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s /\ length (drop s n) = length s - n) (ensures drop (update s i v) n == update (drop s n) (i - n) v) = match s with | hd :: tl -> if n = 0 then () else ( update_maintains_length_lemma (); drop_length_lemma (); drop_commutes_with_in_range_update_helper tl (i - 1) v (n - 1) ) #pop-options private let drop_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ drop_length_fact u#a) (ensures drop_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (drop s n) = length s - n); // triggers drop_length_fact drop_commutes_with_in_range_update_helper s i v n ) private let rec drop_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s) (ensures drop (update s i v) n == drop s n) = match s with | hd :: tl -> if i = 0 then () else drop_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let drop_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures drop_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> drop (update s i v) n == drop s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact drop_ignores_out_of_range_update_helper s i v n ) private let rec drop_commutes_with_build_helper (#ty: Type) (s: list ty) (v: ty) (n: nat) : Lemma (requires n <= length s /\ length (append s [v]) = 1 + length s) (ensures drop (append s [v]) n == append (drop s n) [v]) = match s with | [] -> assert (append s [v] == [v]); assert (n == 0); () | hd :: tl -> if n = 0 then () else drop_commutes_with_build_helper tl v (n - 1) private let drop_commutes_with_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures drop_commutes_with_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (n: nat). n <= length s ==> drop (build s v) n == build (drop s n) v with introduce _ ==> _ with given_antecedent. ( assert (length (build s v) = 1 + length s); // triggers build_increments_length_fact drop_commutes_with_build_helper s v n ) private let rank_def_lemma () : Lemma (rank_def_fact) = () private let element_ranks_less_lemma () : Lemma (element_ranks_less_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat). i < length s ==> rank (index s i) << rank s with introduce _ ==> _ with given_antecedent. ( contains_iff_exists_index_lemma (); assert (contains s (index s i)); FLT.memP_precedes (index s i) s ) private let rec drop_ranks_less_helper (ty: Type) (s: list ty) (i: nat) : Lemma (requires 0 < i && i <= length s) (ensures drop s i << s) = match s with | [] -> () | hd :: tl -> if i = 1 then () else drop_ranks_less_helper ty tl (i - 1) private let drop_ranks_less_lemma () : Lemma (drop_ranks_less_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat). 0 < i && i <= length s ==> rank (drop s i) << rank s with introduce _ ==> _ with given_antecedent. ( drop_ranks_less_helper ty s i ) private let take_ranks_less_lemma () : Lemma (take_ranks_less_fact) = take_length_lemma ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.append_take_drop_ranks_less_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Sequence.Base.append_sums_lengths_lemma", "FStar.Sequence.Base.drop_length_lemma", "FStar.Sequence.Base.take_length_lemma", "Prims.l_True", "Prims.squash", "FStar.Sequence.Base.append_take_drop_ranks_less_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let append_take_drop_ranks_less_lemma () : Lemma (append_take_drop_ranks_less_fact) =
take_length_lemma (); drop_length_lemma (); append_sums_lengths_lemma ()
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.take_ranks_less_lemma
val take_ranks_less_lemma: Prims.unit -> Lemma (take_ranks_less_fact)
val take_ranks_less_lemma: Prims.unit -> Lemma (take_ranks_less_fact)
let take_ranks_less_lemma () : Lemma (take_ranks_less_fact) = take_length_lemma ()
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 675, "start_col": 8, "start_line": 674 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j private let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j ) private let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat). n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n (k - n) ) private let rec append_then_take_or_drop_helper (#ty: Type) (s: list ty) (t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t) = match s with | [] -> () | hd :: tl -> append_then_take_or_drop_helper tl t (n - 1) private let append_then_take_or_drop_lemma () : Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (t: seq ty) (n: nat). n = length s ==> take (append s t) n == s /\ drop (append s t) n == t with introduce _ ==> _ with given_antecedent. ( append_then_take_or_drop_helper s t n ) #push-options "--z3rlimit 20" private let rec take_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s /\ length (take s n) = n) (ensures take (update s i v) n == update (take s n) i v) = match s with | hd :: tl -> if i = 0 then () else (update_maintains_length_lemma() ; take_commutes_with_in_range_update_helper tl (i - 1) v (n - 1)) #pop-options private let take_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ take_length_fact u#a) (ensures take_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> take (update s i v) n == update (take s n) i v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (take s n) = n); // triggers take_length_fact take_commutes_with_in_range_update_helper s i v n ) private let rec take_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s) (ensures take (update s i v) n == take s n) = match s with | hd :: tl -> if n = 0 then () else take_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let take_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures take_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> take (update s i v) n == take s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact take_ignores_out_of_range_update_helper s i v n ) #push-options "--fuel 2 --ifuel 1 --z3rlimit_factor 4" private let rec drop_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s /\ length (drop s n) = length s - n) (ensures drop (update s i v) n == update (drop s n) (i - n) v) = match s with | hd :: tl -> if n = 0 then () else ( update_maintains_length_lemma (); drop_length_lemma (); drop_commutes_with_in_range_update_helper tl (i - 1) v (n - 1) ) #pop-options private let drop_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ drop_length_fact u#a) (ensures drop_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (drop s n) = length s - n); // triggers drop_length_fact drop_commutes_with_in_range_update_helper s i v n ) private let rec drop_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s) (ensures drop (update s i v) n == drop s n) = match s with | hd :: tl -> if i = 0 then () else drop_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let drop_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures drop_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> drop (update s i v) n == drop s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact drop_ignores_out_of_range_update_helper s i v n ) private let rec drop_commutes_with_build_helper (#ty: Type) (s: list ty) (v: ty) (n: nat) : Lemma (requires n <= length s /\ length (append s [v]) = 1 + length s) (ensures drop (append s [v]) n == append (drop s n) [v]) = match s with | [] -> assert (append s [v] == [v]); assert (n == 0); () | hd :: tl -> if n = 0 then () else drop_commutes_with_build_helper tl v (n - 1) private let drop_commutes_with_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures drop_commutes_with_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (n: nat). n <= length s ==> drop (build s v) n == build (drop s n) v with introduce _ ==> _ with given_antecedent. ( assert (length (build s v) = 1 + length s); // triggers build_increments_length_fact drop_commutes_with_build_helper s v n ) private let rank_def_lemma () : Lemma (rank_def_fact) = () private let element_ranks_less_lemma () : Lemma (element_ranks_less_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat). i < length s ==> rank (index s i) << rank s with introduce _ ==> _ with given_antecedent. ( contains_iff_exists_index_lemma (); assert (contains s (index s i)); FLT.memP_precedes (index s i) s ) private let rec drop_ranks_less_helper (ty: Type) (s: list ty) (i: nat) : Lemma (requires 0 < i && i <= length s) (ensures drop s i << s) = match s with | [] -> () | hd :: tl -> if i = 1 then () else drop_ranks_less_helper ty tl (i - 1) private let drop_ranks_less_lemma () : Lemma (drop_ranks_less_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat). 0 < i && i <= length s ==> rank (drop s i) << rank s with introduce _ ==> _ with given_antecedent. ( drop_ranks_less_helper ty s i )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures FStar.Sequence.Base.take_ranks_less_fact)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Sequence.Base.take_length_lemma", "Prims.l_True", "Prims.squash", "FStar.Sequence.Base.take_ranks_less_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let take_ranks_less_lemma () : Lemma (take_ranks_less_fact) =
take_length_lemma ()
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.drop_ranks_less_helper
val drop_ranks_less_helper (ty: Type) (s: list ty) (i: nat) : Lemma (requires 0 < i && i <= length s) (ensures drop s i << s)
val drop_ranks_less_helper (ty: Type) (s: list ty) (i: nat) : Lemma (requires 0 < i && i <= length s) (ensures drop s i << s)
let rec drop_ranks_less_helper (ty: Type) (s: list ty) (i: nat) : Lemma (requires 0 < i && i <= length s) (ensures drop s i << s) = match s with | [] -> () | hd :: tl -> if i = 1 then () else drop_ranks_less_helper ty tl (i - 1)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 74, "end_line": 663, "start_col": 8, "start_line": 658 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j private let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j ) private let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat). n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n (k - n) ) private let rec append_then_take_or_drop_helper (#ty: Type) (s: list ty) (t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t) = match s with | [] -> () | hd :: tl -> append_then_take_or_drop_helper tl t (n - 1) private let append_then_take_or_drop_lemma () : Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (t: seq ty) (n: nat). n = length s ==> take (append s t) n == s /\ drop (append s t) n == t with introduce _ ==> _ with given_antecedent. ( append_then_take_or_drop_helper s t n ) #push-options "--z3rlimit 20" private let rec take_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s /\ length (take s n) = n) (ensures take (update s i v) n == update (take s n) i v) = match s with | hd :: tl -> if i = 0 then () else (update_maintains_length_lemma() ; take_commutes_with_in_range_update_helper tl (i - 1) v (n - 1)) #pop-options private let take_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ take_length_fact u#a) (ensures take_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> take (update s i v) n == update (take s n) i v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (take s n) = n); // triggers take_length_fact take_commutes_with_in_range_update_helper s i v n ) private let rec take_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s) (ensures take (update s i v) n == take s n) = match s with | hd :: tl -> if n = 0 then () else take_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let take_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures take_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> take (update s i v) n == take s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact take_ignores_out_of_range_update_helper s i v n ) #push-options "--fuel 2 --ifuel 1 --z3rlimit_factor 4" private let rec drop_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s /\ length (drop s n) = length s - n) (ensures drop (update s i v) n == update (drop s n) (i - n) v) = match s with | hd :: tl -> if n = 0 then () else ( update_maintains_length_lemma (); drop_length_lemma (); drop_commutes_with_in_range_update_helper tl (i - 1) v (n - 1) ) #pop-options private let drop_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ drop_length_fact u#a) (ensures drop_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (drop s n) = length s - n); // triggers drop_length_fact drop_commutes_with_in_range_update_helper s i v n ) private let rec drop_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s) (ensures drop (update s i v) n == drop s n) = match s with | hd :: tl -> if i = 0 then () else drop_ignores_out_of_range_update_helper tl (i - 1) v (n - 1) private let drop_ignores_out_of_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a) (ensures drop_ignores_out_of_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> drop (update s i v) n == drop s n with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact drop_ignores_out_of_range_update_helper s i v n ) private let rec drop_commutes_with_build_helper (#ty: Type) (s: list ty) (v: ty) (n: nat) : Lemma (requires n <= length s /\ length (append s [v]) = 1 + length s) (ensures drop (append s [v]) n == append (drop s n) [v]) = match s with | [] -> assert (append s [v] == [v]); assert (n == 0); () | hd :: tl -> if n = 0 then () else drop_commutes_with_build_helper tl v (n - 1) private let drop_commutes_with_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures drop_commutes_with_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (n: nat). n <= length s ==> drop (build s v) n == build (drop s n) v with introduce _ ==> _ with given_antecedent. ( assert (length (build s v) = 1 + length s); // triggers build_increments_length_fact drop_commutes_with_build_helper s v n ) private let rank_def_lemma () : Lemma (rank_def_fact) = () private let element_ranks_less_lemma () : Lemma (element_ranks_less_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat). i < length s ==> rank (index s i) << rank s with introduce _ ==> _ with given_antecedent. ( contains_iff_exists_index_lemma (); assert (contains s (index s i)); FLT.memP_precedes (index s i) s )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ty: Type -> s: Prims.list ty -> i: Prims.nat -> FStar.Pervasives.Lemma (requires 0 < i && i <= FStar.Sequence.Base.length s) (ensures FStar.Sequence.Base.drop s i << s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Sequence.Base.drop_ranks_less_helper", "Prims.op_Subtraction", "Prims.unit", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.squash", "Prims.precedes", "FStar.Sequence.Base.seq", "FStar.Sequence.Base.drop", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec drop_ranks_less_helper (ty: Type) (s: list ty) (i: nat) : Lemma (requires 0 < i && i <= length s) (ensures drop s i << s) =
match s with | [] -> () | hd :: tl -> if i = 1 then () else drop_ranks_less_helper ty tl (i - 1)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.take_commutes_with_in_range_update_lemma
val take_commutes_with_in_range_update_lemma: Prims.unit -> Lemma (requires update_maintains_length_fact u#a /\ take_length_fact u#a) (ensures take_commutes_with_in_range_update_fact u#a ())
val take_commutes_with_in_range_update_lemma: Prims.unit -> Lemma (requires update_maintains_length_fact u#a /\ take_length_fact u#a) (ensures take_commutes_with_in_range_update_fact u#a ())
let take_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ take_length_fact u#a) (ensures take_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> take (update s i v) n == update (take s n) i v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (take s n) = n); // triggers take_length_fact take_commutes_with_in_range_update_helper s i v n )
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 542, "start_col": 8, "start_line": 529 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j private let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j ) private let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat). n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n (k - n) ) private let rec append_then_take_or_drop_helper (#ty: Type) (s: list ty) (t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t) = match s with | [] -> () | hd :: tl -> append_then_take_or_drop_helper tl t (n - 1) private let append_then_take_or_drop_lemma () : Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (t: seq ty) (n: nat). n = length s ==> take (append s t) n == s /\ drop (append s t) n == t with introduce _ ==> _ with given_antecedent. ( append_then_take_or_drop_helper s t n ) #push-options "--z3rlimit 20" private let rec take_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s /\ length (take s n) = n) (ensures take (update s i v) n == update (take s n) i v) = match s with | hd :: tl -> if i = 0 then () else (update_maintains_length_lemma() ; take_commutes_with_in_range_update_helper tl (i - 1) v (n - 1)) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (requires FStar.Sequence.Base.update_maintains_length_fact /\ FStar.Sequence.Base.take_length_fact) (ensures FStar.Sequence.Base.take_commutes_with_in_range_update_fact ())
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.take", "FStar.Sequence.Base.update", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.Sequence.Base.take_commutes_with_in_range_update_helper", "Prims._assert", "Prims.op_Equality", "Prims.l_and", "FStar.Sequence.Base.update_maintains_length_fact", "FStar.Sequence.Base.take_length_fact", "FStar.Sequence.Base.take_commutes_with_in_range_update_fact", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let take_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ take_length_fact u#a) (ensures take_commutes_with_in_range_update_fact u#a ()) =
introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat) . i < n && n <= length s ==> take (update s i v) n == update (take s n) i v with introduce _ ==> _ with given_antecedent. (assert (length (update s i v) = length s); assert (length (take s n) = n); take_commutes_with_in_range_update_helper s i v n)
false
FStar.Sequence.Base.fst
FStar.Sequence.Base.take_ignores_out_of_range_update_helper
val take_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s) (ensures take (update s i v) n == take s n)
val take_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s) (ensures take (update s i v) n == take s n)
let rec take_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s) (ensures take (update s i v) n == take s n) = match s with | hd :: tl -> if n = 0 then () else take_ignores_out_of_range_update_helper tl (i - 1) v (n - 1)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 98, "end_line": 550, "start_col": 8, "start_line": 544 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. It also states and proves some properties about sequences, and provides a lemma `all_seq_facts_lemma` one can call to bring them into context. The properties are modeled after those in the Dafny sequence axioms, with patterns for quantifiers chosen as in those axioms. @summary Type, functions, and properties of sequences *) module FStar.Sequence.Base module FLT = FStar.List.Tot /// Internally, we represent a sequence as a list. type seq (ty: Type) = list ty /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; let length = FLT.length /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; let empty (#ty: Type) : seq ty = [] /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; let singleton (#ty: Type) (v: ty) : seq ty = [v] /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; let index (#ty: Type) (s: seq ty) (i: nat{i < length s}) : ty = FLT.index s i /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; let build (#ty: Type) (s: seq ty) (v: ty) : seq ty = FLT.append s [v] /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; let append = FLT.append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; let update (#ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) : seq ty = let s1, _, s2 = FLT.split3 s i in append s1 (append [v] s2) /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; let contains (#ty: Type) (s: seq ty) (v: ty) : Type0 = FLT.memP v s /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; let take (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let result, _ = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; let drop (#ty: Type) (s: seq ty) (howMany: nat{howMany <= length s}) : seq ty = let _, result = FLT.splitAt howMany s in result /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; let equal (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; let is_prefix (#ty: Type) (s0: seq ty) (s1: seq ty) : Type0 = length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; let rank (#ty: Type) (v: ty) = v /// We now prove each of the facts that comprise `all_seq_facts`. /// For fact `xxx_fact`, we prove it with `xxx_lemma`. Sometimes, that /// requires a helper lemma, which we call `xxx_helper`. In some cases, /// we need multiple helpers, so we suffix their names with integers. private let length_of_empty_is_zero_lemma () : Lemma (length_of_empty_is_zero_fact) = () private let length_zero_implies_empty_lemma () : Lemma (length_zero_implies_empty_fact) = () private let singleton_length_one_lemma () : Lemma (singleton_length_one_fact) = () private let build_increments_length_lemma () : Lemma (build_increments_length_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty). length (build s v) = 1 + length s with ( FLT.append_length s [v] ) private let rec index_into_build_helper (#ty: Type) (s: list ty) (v: ty) (i: nat{i < length (append s [v])}) : Lemma (requires i <= length s) (ensures index (append s [v]) i == (if i = length s then v else index s i)) = FLT.append_length s [v]; match s with | [] -> () | hd :: tl -> if i = 0 then () else index_into_build_helper tl v (i - 1) private let index_into_build_lemma () : Lemma (requires build_increments_length_fact u#a) (ensures index_into_build_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) with ( index_into_build_helper u#a s v i ) private let append_sums_lengths_lemma () : Lemma (append_sums_lengths_fact) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty). length (append s0 s1) = length s0 + length s1 with ( FLT.append_length s0 s1 ) private let index_into_singleton_lemma (_: squash (singleton_length_one_fact u#a)) : Lemma (index_into_singleton_fact u#a ()) = () private let rec index_after_append_helper (ty: Type) (s0: list ty) (s1: list ty) (n: nat) : Lemma (requires n < length (append s0 s1) && length (append s0 s1) = length s0 + length s1) (ensures index (append s0 s1) n == (if n < length s0 then index s0 n else index s1 (n - length s0))) = match s0 with | [] -> () | hd :: tl -> if n = 0 then () else index_after_append_helper ty tl s1 (n - 1) private let index_after_append_lemma (_: squash (append_sums_lengths_fact u#a)) : Lemma (index_after_append_fact u#a ()) = introduce forall (ty: Type) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) with ( index_after_append_helper ty s0 s1 n ) private let rec lemma_splitAt_fst_length (#a:Type) (n:nat) (l:list a) : Lemma (requires (n <= length l)) (ensures (length (fst (FLT.splitAt n l)) = n)) = match n, l with | 0, _ -> () | _, [] -> () | _, _ :: l' -> lemma_splitAt_fst_length (n - 1) l' private let update_maintains_length_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) : Lemma (length (update s i v) = length s) = let s1, _, s2 = FLT.split3 s i in lemma_splitAt_fst_length i s; FLT.lemma_splitAt_snd_length i s; FLT.append_length [v] s2; FLT.append_length s1 (append [v] s2) private let update_maintains_length_lemma () : Lemma (update_maintains_length_fact) = introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty). length (update s i v) = length s with ( update_maintains_length_helper s i v ) private let rec update_then_index_helper (#ty: Type) (s: list ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) : Lemma (requires n < length s) (ensures index (update s i v) n == (if i = n then v else index s n)) = match s with | hd :: tl -> if i = 0 || n = 0 then () else update_then_index_helper tl (i - 1) v (n - 1) private let update_then_index_lemma () : Lemma (update_then_index_fact) = update_maintains_length_lemma (); introduce forall (ty: Type) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) with introduce _ ==> _ with given_antecedent. ( update_then_index_helper s i v n ) private let contains_iff_exists_index_lemma () : Lemma (contains_iff_exists_index_fact) = introduce forall (ty: Type) (s: seq ty) (x: ty). contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with ( introduce contains s x ==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) with given_antecedent. ( introduce exists (i: nat). i < length s /\ index s i == x with (FLT.index_of s x) and () ); introduce (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) ==> contains s x with given_antecedent. ( eliminate exists (i: nat). i < length s /\ index s i == x returns _ with _. FLT.lemma_index_memP s i ) ) private let empty_doesnt_contain_anything_lemma () : Lemma (empty_doesnt_contain_anything_fact) = () private let rec build_contains_equiv_helper (ty: Type) (s: list ty) (v: ty) (x: ty) : Lemma (FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s)) = match s with | [] -> () | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (append s [v]) <==> (v == x \/ FLT.memP x s) with _. () and _. build_contains_equiv_helper ty tl v x private let build_contains_equiv_lemma () : Lemma (build_contains_equiv_fact) = introduce forall (ty: Type) (s: seq ty) (v: ty) (x: ty). contains (build s v) x <==> (v == x \/ contains s x) with ( build_contains_equiv_helper ty s v x ) private let rec take_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (take s n)) (ensures (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with case_x_eq_hd. assert(index s 0 == x) and case_x_ne_hd. ( take_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). i_tl < n - 1 /\ i_tl < length tl /\ index tl i_tl == x returns exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x with _. introduce exists (i: nat). i < n /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let rec take_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (i < n /\ i < length s /\ index s i == x)) (ensures FLT.memP x (take s n)) = match s with | hd :: tl -> eliminate x == hd \/ ~(x == hd) returns FLT.memP x (take s n) with case_x_eq_hd. () and case_x_ne_hd. take_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1) private let take_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (take s n) <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)) = introduce FLT.memP x (take s n) ==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) with given_antecedent. (take_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) ==> FLT.memP x (take s n) with given_antecedent. ( eliminate exists (i: nat). i < n /\ i < length s /\ index s i == x returns _ with _. take_contains_equiv_exists_helper2 ty s n x i ) private let take_contains_equiv_exists_lemma () : Lemma (take_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (take s n) x <==> (exists (i: nat). i < n /\ i < length s /\ index s i == x) with ( take_contains_equiv_exists_helper3 ty s n x ) #push-options "--z3rlimit_factor 10 --fuel 1 --ifuel 1" private let rec drop_contains_equiv_exists_helper1 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (requires FLT.memP x (drop s n)) (ensures (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x with case_n_eq_0. ( eliminate x == hd \/ ~(x == hd) returns _ with _. assert(index s 0 == x) and _. ( drop_contains_equiv_exists_helper1 ty tl n x; eliminate exists (i_tl: nat). (n <= i_tl /\ i_tl < length tl /\ index tl i_tl == x) returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and () )) and case_n_ne_0. ( drop_contains_equiv_exists_helper1 ty tl (n - 1) x; eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) #pop-options private let rec drop_contains_equiv_exists_helper2 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) (i: nat) : Lemma (requires (n <= i /\ i < length s /\ index s i == x)) (ensures FLT.memP x (drop s n)) = match s with | hd :: tl -> eliminate n == 0 \/ n <> 0 returns FLT.memP x (drop s n) with _. FLT.lemma_index_memP s i and _. ( drop_contains_equiv_exists_helper2 ty tl (n - 1) x (i - 1); eliminate exists (i_tl: nat). n - 1 <= i_tl /\ i_tl < length tl /\ index tl i_tl == x returns _ with _. introduce exists i. n <= i /\ i < length s /\ index s i == x with (i_tl + 1) and ()) private let drop_contains_equiv_exists_helper3 (ty: Type) (s: list ty) (n: nat{n <= length s}) (x: ty) : Lemma (FLT.memP x (drop s n) <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x)) = introduce FLT.memP x (drop s n) ==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with given_antecedent. ( drop_contains_equiv_exists_helper1 ty s n x); introduce (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) ==> FLT.memP x (drop s n) with given_antecedent. ( eliminate exists (i: nat). n <= i /\ i < length s /\ index s i == x returns _ with _. drop_contains_equiv_exists_helper2 ty s n x i ) private let drop_contains_equiv_exists_lemma () : Lemma (drop_contains_equiv_exists_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat{n <= length s}) (x: ty). contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i /\ i < length s /\ index s i == x) with ( drop_contains_equiv_exists_helper3 ty s n x; assert (FLT.memP x (drop s n) <==> (exists (i: nat). n <= i /\ i < length s /\ index s i == x)) ) private let equal_def_lemma () : Lemma (equal_def_fact) = () private let extensionality_lemma () : Lemma (extensionality_fact) = introduce forall (ty: Type) (a: seq ty) (b: seq ty). equal a b ==> a == b with introduce _ ==> _ with given_antecedent. ( introduce forall (i: nat) . i < length a ==> index a i == index b i with introduce _ ==> _ with given_antecedent. ( assert (index a i == index b i) // needed to trigger ); FStar.List.Tot.Properties.index_extensionality a b ) private let is_prefix_def_lemma () : Lemma (is_prefix_def_fact) = () private let take_length_lemma () : Lemma (take_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (take s n) = n with introduce _ ==> _ with given_antecedent. ( lemma_splitAt_fst_length n s ) private let rec index_into_take_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < n && n <= length s /\ length (take s n) = n) (ensures index (take s n) j == index s j) = match s with | hd :: tl -> if j = 0 || n = 0 then () else index_into_take_helper tl (n - 1) (j - 1) private let index_into_take_lemma () : Lemma (requires take_length_fact u#a) (ensures index_into_take_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < n && n <= length s ==> index (take s n) j == index s j with introduce _ ==> _ with given_antecedent. ( assert (length (take s n) == n); // triggers take_length_fact index_into_take_helper s n j ) private let drop_length_lemma () : Lemma (drop_length_fact) = introduce forall (ty: Type) (s: seq ty) (n: nat). n <= length s ==> length (drop s n) = length s - n with introduce _ ==> _ with given_antecedent. ( FLT.lemma_splitAt_snd_length n s ) private let rec index_into_drop_helper (#ty: Type) (s: list ty) (n: nat) (j: nat) : Lemma (requires j < length s - n /\ length (drop s n) = length s - n) (ensures index (drop s n) j == index s (j + n)) = match s with | hd :: tl -> if n = 0 then () else index_into_drop_helper tl (n - 1) j private let index_into_drop_lemma () : Lemma (requires drop_length_fact u#a) (ensures index_into_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (j: nat). j < length s - n ==> index (drop s n) j == index s (j + n) with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n j ) private let drop_index_offset_lemma () : Lemma (requires drop_length_fact u#a) (ensures drop_index_offset_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (n: nat) (k: nat). n <= k && k < length s ==> index (drop s n) (k - n) == index s k with introduce _ ==> _ with given_antecedent. ( assert (length (drop s n) = length s - n); // triggers drop_length_fact index_into_drop_helper s n (k - n) ) private let rec append_then_take_or_drop_helper (#ty: Type) (s: list ty) (t: list ty) (n: nat) : Lemma (requires n = length s /\ length (append s t) = length s + length t) (ensures take (append s t) n == s /\ drop (append s t) n == t) = match s with | [] -> () | hd :: tl -> append_then_take_or_drop_helper tl t (n - 1) private let append_then_take_or_drop_lemma () : Lemma (requires append_sums_lengths_fact u#a) (ensures append_then_take_or_drop_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (t: seq ty) (n: nat). n = length s ==> take (append s t) n == s /\ drop (append s t) n == t with introduce _ ==> _ with given_antecedent. ( append_then_take_or_drop_helper s t n ) #push-options "--z3rlimit 20" private let rec take_commutes_with_in_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires i < n /\ n <= length s /\ length (update s i v) = length s /\ length (take s n) = n) (ensures take (update s i v) n == update (take s n) i v) = match s with | hd :: tl -> if i = 0 then () else (update_maintains_length_lemma() ; take_commutes_with_in_range_update_helper tl (i - 1) v (n - 1)) #pop-options private let take_commutes_with_in_range_update_lemma () : Lemma (requires update_maintains_length_fact u#a /\ take_length_fact u#a) (ensures take_commutes_with_in_range_update_fact u#a ()) = introduce forall (ty: Type) (s: seq ty) (i: nat) (v: ty) (n: nat). i < n && n <= length s ==> take (update s i v) n == update (take s n) i v with introduce _ ==> _ with given_antecedent. ( assert (length (update s i v) = length s); // triggers update_maintains_length_fact assert (length (take s n) = n); // triggers take_length_fact take_commutes_with_in_range_update_helper s i v n )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "FStar.Sequence.Base.fst" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Prims.list ty -> i: Prims.nat -> v: ty -> n: Prims.nat -> FStar.Pervasives.Lemma (requires n <= i /\ i < FStar.Sequence.Base.length s /\ FStar.Sequence.Base.length (FStar.Sequence.Base.update s i v) = FStar.Sequence.Base.length s ) (ensures FStar.Sequence.Base.take (FStar.Sequence.Base.update s i v) n == FStar.Sequence.Base.take s n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.Sequence.Base.take_ignores_out_of_range_update_helper", "Prims.op_Subtraction", "Prims.unit", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Sequence.Base.length", "FStar.Sequence.Base.update", "Prims.squash", "Prims.eq2", "FStar.Sequence.Base.seq", "FStar.Sequence.Base.take", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec take_ignores_out_of_range_update_helper (#ty: Type) (s: list ty) (i: nat) (v: ty) (n: nat) : Lemma (requires n <= i /\ i < length s /\ length (update s i v) = length s) (ensures take (update s i v) n == take s n) =
match s with | hd :: tl -> if n = 0 then () else take_ignores_out_of_range_update_helper tl (i - 1) v (n - 1)
false